
Craik–Criminale solutions and elliptic instability in nonlinear-reactive closure models
for turbulence
Bruce R. Fabijonas, and Darryl D. Holm

Citation: Physics of Fluids 16, 853 (2004); doi: 10.1063/1.1638750
View online: https://doi.org/10.1063/1.1638750
View Table of Contents: http://aip.scitation.org/toc/phf/16/4
Published by the American Institute of Physics

Articles you may be interested in
Elliptic instability in the Lagrangian-averaged Euler–Boussinesq-  equations
Physics of Fluids 17, 054113 (2005); 10.1063/1.1897006

Regularization modeling for large-eddy simulation
Physics of Fluids 15, L13 (2003); 10.1063/1.1529180

Hamiltonian structure and Lyapunov stability of a hyperbolic system of two-phase flow equations including
surface tension
The Physics of Fluids 29, 986 (1986); 10.1063/1.865694

Shear-driven parametric instability in a precessing sphere
Physics of Fluids 27, 046601 (2015); 10.1063/1.4916234

Three regularization models of the Navier–Stokes equations
Physics of Fluids 20, 035107 (2008); 10.1063/1.2880275

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2037307372/x01/AIP-PT/MB_PoFArticleDL_060618/large-banner.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Fabijonas%2C+Bruce+R
http://aip.scitation.org/author/Holm%2C+Darryl+D
/loi/phf
https://doi.org/10.1063/1.1638750
http://aip.scitation.org/toc/phf/16/4
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.1897006
http://aip.scitation.org/doi/abs/10.1063/1.1529180
http://aip.scitation.org/doi/abs/10.1063/1.865694
http://aip.scitation.org/doi/abs/10.1063/1.865694
http://aip.scitation.org/doi/abs/10.1063/1.4916234
http://aip.scitation.org/doi/abs/10.1063/1.2880275


ARTICLES

Craik–Criminale solutions and elliptic instability in nonlinear-reactive
closure models for turbulence

Bruce R. Fabijonasa)

Department of Mathematics, Southern Methodist University, Dallas, Texas 75275-0156

Darryl D. Holmb)

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545
and Mathematics Department, Imperial College of Science, Technology and Medicine, London SW7 2AZ,
United Kingdom

~Received 20 March 2003; accepted 13 November 2003; published online 6 February 2004!

The Craik–Criminale class of exact solutions is examined for a nonlinear-reactive fluids theory that
includes a family of turbulence closure models. These may be formally regarded as either large eddy
simulation or Reynolds-averaged Navier–Stokes models of turbulence. All of the turbulence closure
models in the class under investigation preserve the existence of elliptic instability, although they
shift its angle of critical stability as a function of the rotation rateV of the coordinate system, the
wave numberb of the Kelvin wave, and the model parametera, the turbulence correlation length.
Elliptic instability allows a comparison among the properties of these models. It is emphasized that
the physical mechanism for this instability is not wave–wave interaction, but rather wave,
mean-flow interaction as governed by the choice of a model’s nonlinearity. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1638750#

I. INTRODUCTION

The fully nonlinear ‘‘elliptic instability’’ rapidly gener-
ates three-dimensional flows in regions of two-dimensional,
elliptical flowlines, e.g., in an elliptical vortex column, or
vortex tube. This instability is triggered when it becomes
possible for a wave packet propagating in three dimensions
to draw energy from an elliptical column of mean vorticity.
The mechanism for elliptic instability is a parametric reso-
nance in the wave, mean-flow interactions. The instability is
fundamentally three-dimensional, and its average maximum
growth rate is proportional to the mean strain rate, or equiva-
lently, the eccentricity of the elliptical flowlines. The mecha-
nism for elliptic instability is the same as that for critical
layer absorption.1 Laboratory experiments and numerical
modeling show that elliptic instability quickly breaks down
the elliptical vortex columns by producing complicated
flows, which themselves break down into small-scale disor-
der. As a result, elliptic instability is a natural candidate for
studying mechanisms involved in the onset and dynamics of
turbulence, in which the intermittent stretching of vortex fila-
ments by rapid three-dimensional fluctuations is a fundamen-
tal process.

Thus, elliptic instability is the nonlinear mechanism by
which vorticity creates three-dimensional instabilities in
swirling two-dimensional flows. In the classic paradigm, en-

ergy in an elliptic columnar vortex is transferred to a travel-
ing Kelvin wave whose wave vector is fully three-
dimensional. A detailed review of elliptic instability can be
found in Ref. 2. The topic was first investigated by Lord
Kelvin3 in 1887 for a circular vortex column and then was
generalized to elliptical vortex columns almost a century
later by Bayly.4 Both investigations considered the stability
of a traveling wave for the equations of motionlinearized
about the rotating column of fluid. The groundbreaking work
of Craik and Criminale5 showed that the sum of a rotating
column of fluid and a traveling Kelvin wave together with
any number of its harmonics is anexact solutionto the non-
linear Navier–Stokes~NS! equations. These exact nonlinear
solutions are called Craik–Criminale~CC! solutions.

The CC class of exact NS solutions provides a means of
analyzing the three-dimensional nonlinear dynamics of ellip-
tic instability. These exact solutions show that elliptic insta-
bility is generated by wave, mean-flow interaction via the
nonlinear term in the NS equations. Thus, elliptic instability
is a fundamental nonlinear mechanism in the dynamics of
turbulence. It seems reasonable to compare computational
models of turbulence in the light of whether they realistically
incorporate the effects of elliptic instability. In this paper, we
extend the literature of the CC flows by considering the el-
liptic instabilities allowed by a nonlinear-reactive~as op-
posed to nonlinear-dissipative! fluid theory that includes a
new class of one-point turbulence closure models whose
derivation by Lagrangian averaging alters the nonlinearity of
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the NS equations. This class of models was identified earlier
and studied analytically and numerically in a series of pa-
pers; see Refs. 6 and 7 and references therein. The question
that we shall investigate here is, ‘‘How do these nonlinear-
reactive turbulence closure models deal with elliptic instabil-
ity?’’ The answer to this question for each turbulence model
in this class allows us to compare the models according to
how their exact nonlinear solutions describe, or alter, the
fundamental NS elliptic instability. Formally, the mathemati-
cal analysis we present applies equally well to turbulence
closure models derived by either the RANS~Reynolds-
averaged Navier–Stokes! approach or LES~large eddy simu-
lations!.

The CC class of solutions have recently been revisited
by the present authors.8 It was shown that the CC class of
exact solutions persists for the Lagrangian-averaged Navier–
Stokes-alpha~LANS-a! model, a new closure model for in-
compressible turbulence that was introduced in Refs. 9 and
10. This paper investigates the CC solutions of the LANS-a
model in detail together with the effects of rotation and ex-
tends the CC analysis for several other constitutive models
for turbulence closure in a class of nonlinear-reactive fluids.

Nonlinear exact CC solutions of the NS equations: The
CC class of nonlinear exact solutions decomposes both fluid
velocity and pressure into the sum of two terms, asu5u0

1u1 andp5p01p1 . Here the base flow$u0 ,p0% is anexact
solution to the equations of motion in an unbounded physical
domain linear in the spatial coordinate. Consequently, in the
CC solutions, both of the pairs$u0 ,p0% and$u,p% are exact
solutions to the nonlinear equations. While the base flow in
the CC decomposition is an exact solution, the disturbance
$u1 ,p1% by itself is, in general, only a solution of the equa-
tions linearized about the base flow$u0 ,p0%.

The CC solutions consider the disturbance$u1 ,p1% in
the form of a traveling wave,

u15R$ma~ t !eic%,
~1!

p15R$ imp11~ t !eic1m2p12~ t !e2ic%,

where the amplitudea(t) depends only on time and the
phasec(x,t)5bk(t)•x1d(t) is linear in the spatial coordi-
nate. The phase shiftd(t) may also be regarded as arising
from a time-dependent shift of the origin of coordinates. The
scaling parametersm and b are chosen so the initial condi-
tions may be normalized asuk(0)u51 and ua(0)u51. The
parameterb can be viewed as the product of the wave num-
ber and the relative scale of lengths between the base flow
and the Kelvin wave. The base flow is linear in the spatial
coordinates,u05S(t)•x1U(t), whereS"x5Si j xj is the ac-
tion of the matrixS(t) on the vectorx5@x1 ,x2 ,x3#T from
the left andU(t) is the instantaneous velocity at the origin.
The construction method is one in which the Kelvin wave
does not alter the evolution of the base flow. The classic
problem of elliptic instability is found in this class of solu-
tions,

S5S 0 211g 0

11g 0 0

0 0 0
D , U50. ~2!

Here, the base flow in this case is a rigidly rotating column
of fluid whose flowlines are ellipses with eccentricityg. The
extreme values are circles (g50) and simple shear flows
(g→12).

Outline: We begin by reviewing the classic CC solutions
for the NS equations in Sec. II. In particular, we shall review
the case of elliptic instability. Section III examines this class
of solutions and elliptic instability for certain turbulence clo-
sure models, regarded as ‘‘constitutive laws’’ for nonlinear-
reactive fluids that include the LANS-a model. In Sec. IV,
we perform a detailed examination of the CC class of exact
solutions and elliptic instability in the LANS-a model. We
then examine the class of CC solutions in full generality for
each of the other turbulence closure models in Sec. V. We
summarize our results in Sec. VI. Overall, we conclude that
the study of exact nonlinear CC solutions for these models
defines sharp distinctions among them. For example, the CC
solutions for these models provide detailed comparisons of
their principal critical angles of instability and maximum
growth rates, as functions of their parameters. The CC solu-
tions for these models also determine to what extent each
model preserves the fundamental attributes of the elliptic in-
stability for NS. Thus, elliptic instability analysis allows a
fully nonlinear comparison of turbulence closure models on
the basis of the specific and fundamental physical mecha-
nism of their wave, mean-flow interaction, rather than on the
basis of tensor transformation properties, or other generali-
ties.

II. REVIEW OF CC SOLUTIONS OF THE
NAVIER–STOKES EQUATIONS

We begin with a review of the classic CC results for the
NS equations

] tu1u"“u1¹p12V3u2nDu5F, ~3!

in which preservation of incompressibility, divu50, deter-
mines the pressure,p. Here, F represents the sum of all
external body forces. Clearly,u05S(t)•x1U(t), together
with the pressurep0(x,t)5x•Q(t)•x1p(t)x is a solution in
an unbounded domain. The matrixS(t) is a time dependent
matrix with zero trace such that

dtSi j 1SimSm j12e imkVmSk j5Mi j . ~4!

Here,dt denotes full time derivative, andM (t) is a symmet-
ric matrix defined asMi j 52] i] jP, where

P52Ex
F•dx1p0~x,t !1~dtU1S•U12V3U!•x. ~5!

A typical solution approach is to choose a matrixS(t) for
which the left-hand side of Eq.~4! is symmetric. Then, the
corresponding pressurep0(x,t) is determineda posterioriby
Eq. ~5!. We may nondimensionalize the NS equations by
using the variablesx85x/ l , t85uvut, u5u/uvu l , V8
5V/uvu, wherel is a typical length scale andv5curlu0 is
the vorticity of the flowu0 . After dropping primes from the
notation, Eq.~3! reappears in nondimensional form withn
replaced byn/uvu. Furthermore, in nondimensional form,V is
now interpreted as a signed inverse Rossby number. The
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equations for the amplitudea and the phasec are obtained
upon making the CC substitutionu5u01u1 and p5p0

1p1 into Eq. ~3!, whereu1 andp1 are given in Eq.~1! and
by collecting on terms linear and constant inx, respectively,

] t~k"x!1k"S"x50, ~6!

da

dt
1 i ~dtd1bk"U!a1S T

•a1P3a1Evuku2a2bp11k50,

~7!

p1250, ~8!

a"k50. ~9!

Here, P5curlu012V is the total vorticity of the system,
that is, the vorticity of the base flow, plus that of the rotating
coordinate system, andEv5nb2/uvu is the vorticity-based
Ekman number. Note that we have used the identity curlu0

3a5(S2S T)•a for reasons we explain below. The transver-
sality condition in Eq.~9! arises from the incompressibility
condition. This transversality is why the termu1•“u1 qua-
dratic in the disturbance velocity vanishes. We emphasize
that CC solutions are exact, nonlinear solutions of the NS
equations because the nonlinear wave–wave interaction van-
ishes exactly. This transversality condition fails when one
tries to add two Kelvin waves where the phases are not ra-
tionally related. Without loss of generality, we may choose
the kinematic phase relation,dtd1bk"U50, whereU(t) de-
notes the coordinate-independent contribution ofu0 . By do-
ing this, the termd(t) exactly balances the instantaneous
velocity of the base flow at the origin,U(t). Then, we see
from Eq. ~7! that we can assume thata(t) is a real-valued
function. The equation for the wave vectork(t) obtained
from the phase equation~6! is the transport equation,

dk

dt
1S T

•k50. ~10!

Since dk/dt1S T
•k is the total time derivative ofk in a

Galilean frame moving with the base flowu0 , we see that
the wave vectork is frozen into the base flow. Equation~7!
states that the evolution of the real amplitudea in this frame
undergoes rotation by the total vorticity of the base flow, as it
decays exponentially with viscosity. In fact, the change of
variables

a5ãexpS 2EvE
0

t

uk~ t̂ !u2 d t̂D ~11!

will transform away viscosity from the problem. The pres-
sure termp11 can be expressed in terms ofa andk by taking
the dot product of Eq.~7! with k and recalling thata"k is an
integral of motion. Consequently, one finds the pressure re-
lation,

bp115
a•~S1S T!•k1P3a"k

uku2
. ~12!

Thus, Eq.~7! can be expressed as

da

dt
5N~ t !•a, ~13!

whereN is a 333 matrix which may have some parametric
dependence, as well. Earlier, we noted that bothu0 and the
sum u01u1 are exact solutions to the nonlinear equations.
However, the disturbance velocityu1 by itself is, in general,
only a solution to Eq.~3! linearized aboutu0 . As an impor-
tant exception, in a rotating coordinate system (VÞ0), the
velocity u1 by itself is also an exact solution, since this sce-
nario corresponds tou05R•x in a nonrotating frame, where
R is rigid body rotation about thez axis; cf. Ref. 12. The
specific problem of elliptic instability in the NS equations
using the base flowu05S"x as in Eq.~2! was first investi-
gated by Bayly4 for V50, by Craik11 for VÞ0, and later by
others.12–17 Equation~10! for the wave vectork(t) has an
analytical solution for all elliptical eccentricitiesg, namely

k5@sinu cos~x~ t !!,k sinu sin~x~ t !!,cosu#T, ~14!

wherek25(12g)/(11g), x(t)5tA12g2, andu is the po-
lar anglek makes with the axis of rotation. For circular flow-
lines, g50, Eq. ~7! for the wave amplitudea also has an
analytical solution: a5c1a1(t)1c2a2(t)1c3a3(t), where
c1 ,c2 ,c3 , are constants and

a1~ t !5cos~j~ t !1f!k'11sin~j~ t !1f!k'2 , ~15!

a2~ t !5sin~j~ t !1f!k'12cos~j~ t !1f!k'2 , ~16!

a3~ t !5ez . ~17!

Also, k'15@cosu cos(x(t)),cosu sin(x(t)),2sinu#T, k'2

5@sin(x(t)),2cos(x(t)),0#T, j(t)52t(11V)cosu, and f is
an arbitrary phase. For elliptical flowlines with eccentricity
g, the solution to Eq.~7! for the CC wave amplitudea must
be determined numerically. Because the wave vectork is
periodic, Eq. ~13! for the amplitudea satisfies a Floquet
problem.18 Thus, integration of Eq.~13! over one period ofk
will determine the Lyapunov growth rate ofa, if any such
growth occurs. These growth rates are determined by com-
puting the eigenvaluesr i of the monodromy matrixP(tp),
whereP(0)5diag$1,1,1%,

dP
dt

5N•P, ~18!

andtp is the period ofN; in this case,tp52p/A12g2, the
period ofk. Once computed, the Lyapunov growth rates are
given bysg5maxi@ln(R$r i%)#/tp . The growth rates for the
Euler equations are shown in Fig. 1 forV50. We see from
this figure that the amplitudea has an exponential growth
rate for certain orientations of the wave vector and for all
nonzero eccentricities. We emphasize that the CC solution is
an exact solution to the nonlinear NS equations for all pa-
rameter values. A CC solution is said to be unstable, if the
magnitude of its amplitudea is unbounded ast→`.

CC solutions of NS for circular flowlines: The circular
caseg50 can be treated analytically. One may construct the
monodromy matrix explicitly from the solutions in Eqs.
~15!–~17!. For the initial conditionP(0)5diag$1,1,1%, we
find the monodromy matrix,
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P~tp!

5S cos~j~2p!! cosu sin~j~2p!! 0

2sin~j~2p!!/cosu cos~j~2p!! 0

tanu~12cos~j~2p!!! 2sinu sin~j~2p!! 1
D .

~19!

The eigenvalues arer1,25exp(6ij(2p)), r351, and we con-
clude that traveling waves in circular NS flows are stable.
The parameter values for critical stability, that is, the param-
eter values at which exponentially growing amplitudes will
appear for nonzero values ofg, occur when ur i u51, i
51,2,3, or equivalently,j(2p)5mp, wherem is any inte-
ger. As argued by Bayly,4 the evenness ofbp11k as a func-
tion of k in Eq. ~7! implies that the eigenvalues of the mono-
dromy matrix, if real and unequal, must be positive. This
eliminates the odd choices ofm. The casem50 cannot be
analyzed using Floquet theory since the equations are no
longer periodic. Therefore, the critical stability points are
determined byj(2p)52np, or equivalently,

cosu56
n

2~V11!
, n51,2,3,... . ~20!

The critical angle of cosu51/2 for V50 is seen in Fig. 1.
Since ucosuu<1, it follows from Eq. ~20! that no critical
stability points exist for2 1

2,V11, 1
2. Computation of the

unstable region on an extremely fine grid yields fingers for
V.0 and V,22. These fingers have growth rates about
five or six orders of magnitude smaller than in the principal
region. Figure 2 shows one such simulation for the Euler
equations. The fingers were first discussed by Miyazaki.19

We are certain that the fingers are not numerical artifacts,
since they are not randomly distributed in the parameter
plane. Rather, they follow specific paths. We claim that these
fingers correspond to solutions of Eq.~20! for n.1. The
fingers are numerically resolvable forV.0 and V,22.

This claim is contrary to previous thought.2,4,8,15We empha-
size that these fingers are physically insignificant in the NS
equations. However, they will be of importance in the
LANS-a model discussed in the next section. Finally, one
can determine the average value of the growth rate, to lead-
ing order ing!1, as in Ref. 15 by computing

s̄g[
1

j~2p!
E

0

j(2p) 1

uau2

d

dt S 1

2
uau2Ddt

5
9

16
g3

~312V!2

9~11V!2 1O~g2!. ~21!

III. CC SOLUTIONS FOR ROTATING
NONLINEAR-REACTIVE FLUIDS

A. Navier–Stokes nonlinear-reactive models

The turbulence closure models may be expressed as a set
of partial differential equations for the divergenceless veloc-
ity of the fluid, u(x,t),

du

dt
2nTDu1¹p12V3u1div s50 ~22!

with “"u50. Hered/dt5] t1u"“ is the material time de-
rivative following the resolved flow velocity, or mean veloc-
ity, u, and nT is the eddy viscosity. The nonlinear stress
tensor s we shall consider is a recent extension of the
subgrid-stress tensor for turbulence that was introduced by
Speziale20 to account for Reynolds-stress relaxation effects
and the response to rotational strain rates in turbulence. In
the following reactive closure model for the Reynolds stress,
we introduce a parametera which will later be defined as a

FIG. 1. Parameter plane for elliptic instability in NS equations forV50.
For g50, the Kelvin wave is periodic in time with periodp/cosu; for
values ofg, cosu which fall into the white region forg.0, the Kelvin wave
is quasiperiodic, that is, the periods ofa andk are incommensurate; for the
remaining region, the Kelvin wave has an exponentially growing amplitude.
The maximum growth rate is 0.36 at cosu50.29 andg50.81. FIG. 2. Instability domain forEv50, V51.0 computed on an extremely

fine grid aimed at capturing the predicted fingers. The white background
represents regions for whichsg,10210. The principal finger emanates from
cosu51/@2(11V)#, the second finger clearly emanates from cosu
52/@2(11V)#, and the third finger appears to emanate from cosu
53/@2(11V)#. The remaining few points seen correspond to the fourth and
fifth fingers.
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turbulence correlation length. One obtains the model intro-
duced by Speziale20 for Reynolds-averaged Navier–Stokes
~RANS! modeling of turbulence based on nonlinear consti-
tutive relations, by setting the parametera2→0,

1

C0,2 s i j 5
21

u0
~12a2D!ei j 1C1eikek j

1C2~eikvk j2v ikek j!1C3v ikvk j

1C4~] tei j 1uk]kei j !. ~23!

As usual, one sums over repeated indices. The tensorsei j

andv i j with i , j 51,2,3 are, respectively, the mean strain rate
and mean vorticity,

ei j 5
1
2 ~uj ,i1ui , j !5 1

2 ~¹uT1¹u! i j ,
~24!

v i j 5
1
2 ~uj ,i2ui , j !5 1

2 ~¹uT2¹u! i j .

Suppressing indices, we may rewrite the symmetric
Reynolds-stress tensor~23! as

s

C0,2 52~12a2D!
e

u0
1C1e21C2~e•v2v•e!

1C3v21C4

de

dt
. ~25!

The parametersCm , m51, . . . ,4, in Eq.~25! are four di-
mensionless constants that model nonlinear (C1 ,C3 ,C3) and
reactive (C4) effects in turbulence,u0 is a dissipation time
scale, andC0,2 anda2 are squares of length scales. In the
linear, nonreactive limit,Cm→0, m51, . . . ,4, one recovers
the hyperviscosity model of turbulence fora2Þ0. This, in
turn, becomes the usual eddy viscosity model by also setting
a2→0. When bothC450 anda250, the stress tensor in Eq.
~25! takes the forms i j 5Ai jkl uk,l of an ‘‘anisotropic eddy-
viscosity model’’~whereAi jkl depends algebraically on the
mean-velocity gradients!. WhenC4Þ0 anda250, Eq. ~25!
reduces to the Speziale model, which represents a class of
nonlinear-reactive models, which have wave-number-
independent damping instead of ordinary Navier–Stokes vis-
cosity. For example, setting (C1 ,C2 ,C3)5 (C4/2) (0,1,0)
with a250 in Eq. ~25! yields the stress tensor for second-
grade fluids.21 Thus, both the nonlinear-reactive constitutive
models of Rivlin–Erickson,22 Noll–Truesdell23 and the
RANS turbulence closure models of Speziale20 may be re-
covered by settinga250 in Eq.~25!. The analogies between
the mean turbulent flow of a Newtonian fluid and the laminar
flow of a non-Newtonian fluid have been a perennial subject
of discussion at least since Rivlin.24 One recurring topic in
this discussion has been the question of material frame indif-
ference~MFI!, defined as form invariance of the Reynolds-
stress divergence under arbitrary time-dependent rotations
and translations of the reference frame. In turbulence, MFI is
applied modulo the Coriolis force, so that rotation enters
solely through the total mean vorticity tensor,W̄i j 5v i j

12e i jkVk. The application of MFI restricts the allowable
form of the Reynolds-stress tensors for RANS turbulence
models in Eq.~25! by requiringC25C4/2 andC350. The
remaining parameterC1 is left unrestricted by MFI, because

the strain-rate tensore is invariant under the MFI transfor-
mations. In the present work, we shall consider bothC4Þ0
anda2Þ0 in the reactive stress tensor~25!. In this case, we
emphasize that the parametera2Þ0 corresponds to ordinary
eddy viscosity, not hyperviscosity. Later, we shall obtain a
simplification by relating C4Þ0 and a2Þ0 as a2

5C0,2C4/2. It is immaterial for the motion equation~22!
whether one uses the symmetric stress tensor,s, or its devia-
toric ~traceless! component,s2 1

3Id tr(s), since the differ-
ence merely adjusts the pressure,p, which is determined by
preservation of the divergence-free condition, divu50. The
mass density has been set equal to unity.

We may summarize this discussion of the nonlinear, re-
active and dissipative RANS turbulence closure models rep-
resented by Eq.~22! with Reynolds-stress tensor~25!, by
distinguishing the following subcases.

~1! Navier–Stokes:C050.
~2! Isotropic eddy viscosity:Cm50 anda250.
~3! Anisotropic eddy viscosity:C1 ,C2 ,C3Þ0, C450 and

a250.
~4! Isotropic eddy hyperviscosity:Cm50 anda2Þ0.
~5! Anisotropic eddy viscosity, isotropic hyperviscosity:

C1 ,C2 ,C3Þ0, C450 anda2Þ0.
~6! Speziale:20 CmÞ0 anda250 ~reactive and damped, not

actually viscous!.
~7! Present work:CmÞ0 anda2Þ0 ~reactive, damped and

viscous,not hyperviscous!.

As we have discussed, MFI of the Reynolds-stress tensor
~25! would require certain restrictions among the parameters
Cm . However, to make the analysis that follows of the
Craik–Criminale solutions of Eq.~22! as broad as possible,
we shall leave the parametersCm free and unrestricted.

B. Recasting the Navier–Stokes nonlinear-reactive
models

To facilitate the Craik–Criminale analysis in the next
section, we shall recast the stress tensor in Eq.~25! in terms
of the mean velocity gradient. We begin by rewriting Eq.
~25! equivalently as

s

C0,2 1~12a2D!
e

u0

2C4

de

dt

5C1e21C2~e•v2v•e!1C3v2

5S C1

4
1

C3

4
D¹uT

•¹uT1S C1

4
1

C2

2
2

C3

4
D¹u•¹uT

1S C1

4
1

C3

4
D¹u•¹u1S C1

4
2

C2

2
2

C3

4
D¹uT

•¹u.

~26!

Computing divergences and using divu50 yields the fol-
lowing three useful identities:

div 2e5Du, div~¹uT
•¹uT!5¹ 1

2tr~¹u•¹u!, ~27!

and
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div 2
de

dt

52D
du

dt
1divS ¹u•¹u1

1

2
¹u•¹uT2

1

2
¹uT

•¹uD .

~28!

Hence, the divergence div(¹uT
•¹uT) may be absorbed into

the pressure gradient. The other divergence terms arising
from divs are not gradients, and they may be rearranged into
an equivalent version of the motion equation~22! for
nonlinear-reactive fluids in a rotating frame as

S 12C0,2
C4

2
D D du

dt
5S nT1

C0,2

2u0
~12a2D! DDu2¹p

22V3u2C0,2 div t, ~29!

with div u50 and stress divergence,

div t5div~b1¹u•¹u1b2¹u•¹uT1b3¹uT
•¹u!. ~30!

In components, this stress divergence relation is expressed as

~div t! i5] jt i j 5] j~b1ui ,kuk, j1b2ui ,kuj ,k1b3uk,iuk, j !.
~31!

After absorbing div(¹uT
•¹uT) into the pressure gradient, the

resulting stress tensort is no longer symmetric. However,
one fewer constant is needed in specifying this version of the
nonlinear-reactive fluid model. The relations between con-
stantsbn , n51,2,3, in Eq.~30! andCm , m51,2,3,4, in Eq.
~23! are given by

b15
C1

4
1

C3

4
1

C4

2
, C152b11b21b32C4 ,

b25
C1

4
1

C2

2
2

C3

4
1

C4

4
, C25b22b32

1

2
C4 ,

b35
C1

4
2

C2

2
2

C3

4
2

C4

4
, C352b12b22b32C4 .

~32!

C. Outlook: CC solutions for nonlinear-reactive fluid
motion

In what follows, we shall analyze exact nonlinear CC
solutions of Eq.~29! for incompressible nonlinear-reactive
fluid motion with stress tensor in Eq.~30!. For this, we shall
choose three special cases of the coefficientsCm , m
51, . . . ,4, in stress tensor~25!, or equivalently, the coeffi-
cientsbi , i 51,2,3, in stress tensor~30!, subject to the rela-
tion

a25C0,2C4/2, ~33!

which unifies the Helmholtz operations in Eq.~29!. These
three choices are, as follows, all with¹•u50 and definition
v[(12a2D)u.

~1! LANS-a model: (C1 ,C2 ,C3)5 (C4/2) (0,1,0) and
(b1 ,b2 ,b3)5 (C4/2) (1,1,21) expressed as

]v

]t
1~u•¹!v1~¹u!T

•v12V3u

1¹S p2
1

2
uuu22

1

2
a2u¹uu2D5nDv. ~34!

Leray-a model: (C1 ,C2 ,C3)5 (C4/2) (1,0,21) and
(b1 ,b2 ,b3)5 (C4/2) (1,1,0) expressed as
]v

]t
1~u•¹!v1¹p5nDv. ~35!

Clark-a model: (C1 ,C2 ,C3)5 (C4/2) (21,0,23) and
(b1 ,b2 ,b3)5 (C4/2) (0,1,0) expressed as

~12a2D!S]u

]t
1u•¹u2nDuD1¹p

52a2 div~¹u•¹uT!. ~36!

As a fourth choice, we shall alter the Leray-a model into
the Bardina-a model, as
]v

]t
1~u•¹!u1¹p5nDv. ~37!

These four special cases are chosen for their analytical
regularity. The LANS-a model, the Clark-a model and the
Bardina-a model~the first, third, and fourth choices! all pro-
vide analytical control of theL2 norm of the velocity gradi-
ent, i¹ui . This may be verified by taking the scalar product
of the velocityu with each of these equations and integrating
over the volume of flow, to find the energetics for homoge-
neous boundary conditions,

d

dt E 1

2
uuu21

1

2
a2u¹uu2 d3x

52nE u¹uu2d3x2nE a2uDuu2 d3x. ~38!

This energy equation illustrates the reactive feature of these
four models. The second term in the integrand on the left-
hand side is the reactive term: kinetic energy~the first term!
may be converted into enstrophy~the second term!, not just
into heat~the viscous terms on the right-hand side!. Simi-
larly, the Leray-a model controls theL2 norm of the Laplac-
ian of velocity,iDui , as shown by taking its scalar product
with the other velocity,v. Thus, these models are reactive, as
well as dissipative, and their energetic exchanges involveL2

norms of velocity derivatives. Consequently, their solutions
possess greater analytical regularity than solutions of the NS
equations. We shall analyze the CC solutions for these four
special choices among the nonlinear-reactive fluids as candi-
date turbulence models. The fourth model~Bardina-a! does
not quite fit into the nonlinear-reactive stress tensor scenario
of the first three models. Instead, the Bardina-a model arises
naturally in the context of filtered NS equations for large
eddy simulations. The interpretations ofsolutions of LES
and RANS models are usually considered to be different.
However, from the viewpoint of formal analysis of constitu-
tive relations and elliptic instability, one cannot distinguish
between LES and RANS equations. Therefore, with an apol-
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ogy for our abuse of notation, and since the velocityu may
be regarded as a filtered version of velocityv ~filtered by
inversion of the Helmholtz operator!, we shall regard the
four alpha models above as either RANS or LES models.
Because only the first of these four models satisfies the con-
ditions of MFI, we shall only consider this one, the LANS-a
model, in a rotating frame.

IV. ROTATING CC SOLUTIONS OF THE LANS- a
MODEL

We shall explain the CC solutions of the LANS-a model
in full detail. The LANS-a model was derived by averaging
over fluctuations along particle trajectories in Hamilton’s
variational principal for the Euler equations, then using Tay-
lor’s hypothesis for frozen-in fluctuations as a nonlinear tur-
bulence closure in the framework of the Euler–Poincare´
variational theory, before finally adding Navier–Stokes vis-
cosity. See Ref. 7 and references therein for more details and
subsequent developments. The LANS-a model closure equa-
tions for incompressible turbulence consist of the nonlinear-
reactive fluid equations~29! and~30!, subject to the relation
a25C0,2C4/2 and coefficients (b1 ,b2 ,b3)5 (C4/2) (1,1,
21). The LANS-a equations can be expressed equivalently
as in Eq.~34!,

]v

]t
1~u•¹!v1~¹u!T

•v12V3u

1¹S p2
1

2
uuu22

1

2
a2u¹uu2D5nDv1F, ~39!

with ¹•u50 andv5(12a2D)u. Here,n is a turbulent eddy
viscosity. Thus, the motion equation for the LANS-a model
contains two velocitiesu andv. The transport velocity,u, is
smoother than the transported velocity,v, by the inversion of
the Helmholtz operator, (12a2D).

In constructing CC solutions to the LANS-a equations
~39!, we again focus on base flows in the linear form
u05S(t)•x1U(t) only. In this case, v05u0 and the
LANS-a CC equations for pressure and amplitude corre-
sponding to the NS CC Eqs.~8! and ~7! are given by

p122~Y21!uau250, ~40!

d~Ya!

dt
1 i ~dtd1bk"U!Ya1YS T

•a1P3a

2~b p̂112a2b2a"S"k!k52YEvuku2a. ~41!

Equations ~6! and ~9! for the CC solution properties of
frozen-in phase and transverse amplitude, respectively, re-
main unchanged for the LANS-a model. Here, the LANS-a
CC variables are defined the same as for the classical NS CC
solutions, and the quantityY(t) is given by

Y~ t !511a2b2uk~ t !u2. ~42!

Without loss of generality, we may again set dd/dt1bk"U
50 for the kinematic phase condition, assume thata(t) is a
real-valued function, and obtain Eq.~10! for k(t). We may
also solve the pressure as before to obtain

P̃5
1

uku2 $Yk•~S1S T!•a1P3a"k%, ~43!

whereP̃ is the coefficient ofk in Eq. ~41!. As in the NS case,
viscosity may be transformed out of the problem by consid-
ering the same change of variables as in Eq.~11!. Note that
the termi (dtd1bk"U) was incorrectly placed in the eikonal
equation~6! in Ref. 8. The difference, however, is trivial and
does not affect the results of that investigation.

Insight into the dynamics of the LANS-a CC problem
can be gained by examining Eq.~41! in the asymptotic re-
gimesG!1 andG@1, where for brevity of notation we in-
troduce G5Y21. We shall assume thatuku2 remains
bounded and never vanishes. In these extreme parameter re-
gimes, Eq.~41! becomes

da

dt
1S T

•a52Evuku2a2P3a1
1

uku2 ~k•~S1S T!•a

1P3a"k!k1GS P3a1
1

uku2 $2~k"S"k!a

2~P3a"k!k% D1O~G2!, G!1, ~44!

da

dt
1S T

•a52Evuku2a1
2

uku2 $~k"S"k!a

2~k•~S1S T!•a!k%1OS 1

G D , G@1.

~45!

These equations preserve the wave transversality condition
a"k50 to all orders. However, as we shall explain, care
should be taken in interpreting these LANS-a CC equations
whenn.0, since the Ekman numberEv contains a factor of
b2. The parametera is interpreted as the nondimensional
turbulence correlation length for Lagrangian fluid trajectories
in the LANS-a model anda,1 is typically regarded as a
small, fixed number. In this case, the two limitsG!1 and
G@1 correspond to low and high wave numbers, respec-
tively. The O(1) term in Eq.~44! for low wave numbers is
exactly Eq. ~7! for NS. This is not unexpected, since
LANS-a reduces to NS fora50. We see in Eq.~44! that the
amplitude a decays exponentially with viscosity, while it
stretches with the base shear, and rotates with the vorticity of
the undisturbed system. When the limitG!1 corresponds to
fixed a and lowb, the evolution is essentially inviscid. In the
opposite limit, for G@1, the terms of orderO(1/G), and
smaller, are independent ofEv . In this limit, the amplitude
to leading order still decays with viscosity and stretches with
the base shear as in the low wave-number case, but the ef-
fects of rotation with the total vorticityP are higher order. In
particular, whenG@1 corresponds to fixeda andb→`, the
viscous term on the right-hand side of Eq.~45! is O(b2),
from which we conclude that the amplitude decays exponen-
tially with viscosity to leading order.
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A. Inviscid LANS- a CC solutions

Circular inviscid LANS-a flowlines: For the LANS-a
model, when the flowlines are circular and the flow is invis-
cid, theng50 andEv50. In this case, the elliptic instability
problem can again be solved analytically. Sinceuku51, the
quantity Y in Eq. ~42! becomes constant, which we denote
by Y0511a2b2. Equations~15!–~17! provide three lin-
early independent solutions to Eq.~41! when j(t)52t(1
1V)cosu/Y0. Once again, we may construct the mono-
dromy matrix explicitly, and the eigenvalues are againr1,2

5exp$6ij(2p)%, r351. By the same arguments as before,
the critical stability points are now determined by

cosu56
nY0

2~11V!
, n51,2,3,... . ~46!

Sinceucosuu<1, it follows that there are no critical stability
points for

2 1
2 Y0,V11, 1

2 Y0 . ~47!

The average maximum growth rate for small values of ec-
centricity g!1 may again be calculated as

s̄g5
~21Y0!2

16
g3

~21Y012V!2

~21Y0!2~11V!2 1O~g2!, ~48!

which is valid forY0<2 andV outside the range in Eq.~47!.
Elliptical LANS-a flowlines: For nonzero values of ec-

centricity g, the solution to Eq.~41! for the LANS-a wave
amplitude must be simulated numerically. We find that for
VÞ21 andY0.1, there exists a principal instability region
in the (g,cosu) parameter plane; see Figs. 3 and 4. For non-
zero eccentricityg, and forV satisfying Eq.~47!, we find a
band of eccentricities for which the amplitudea remains
bounded. Thus the flow is stable in this band. In particular,
the entire (g,cosu) parameter plane is stable forV521.
For V outside the range in Eq.~47!, we also find a large
number of fingers which lie above~respectively, below! the
principal instability region for cosu.0 ~respectively, cosu
,0). The fingers are exactly those we saw in the NS equa-
tions. However, forY0.1 these fingers become more sig-
nificant and their widths increase. The growth rates associ-
ated with the fingers also increase. In fact, the maximum
growth rate over the entire parameter plane increases to a
maximum value ofs̄g5g at cosu51, i.e., at Y052(1
1V). As Y0 exceeds this threshhold, a stable band of ec-
centricities appears and the maximum growth rate begins to
decrease. See Fig. 3. Thus, the wave number at which the
growth rate attains a maximum is not only a function of the
turbulence correlation length,a, but it also depends on the
inverse Rossby number,V. For the inviscid case, the results
in the limits a2b2!1 and a2b2@1 are independent of
whethera is fixed andb→`, or vice versa.

Remark: We observed during numerical simulations that
the change of the instability domain for 0<a2b2,` with
V50 is extraordinarily similar to that for21<V<0 with
a2b250. In fact, the two different cases will have the same
principal critical angle when

V5
2a2b2

11a2b2 . ~49!

Although the two instability domains inV anda2b2 do not
overlap exactly, numerical simulations show that where they
do overlap, the difference in the growth rates is small. In
particular, the relative difference of the individual maximum
growth rates, which occur at cosu51, g51 whena2b2>1
~or equivalently,21,V,2 1

2), is less that 1%. Since Eq.
~49! can be rewritten asa2b252V/(11V), valid for 21

FIG. 3. Instability domains for CC solutions in LANS-a model for
Ev50, V55 and various values ofa2b2: ~a! 0.0, ~b! 2.5, ~c! 5.0, ~d! 7.5,
~e! 10.0,~f! 12.5,~g! 15, ~h! 17.5. The white background represents regions
for which sg,10210. As a2b2 increases, the angle of critical stability shifts
according to Eq.~46!. The nonprincipal fingers correspond to critical angles
with n.1. The parametera2b2 shifts the angle of critical stability towards
cosu51 while increasing the maximum growth rate. Asa2b2 exceeds
112V ~f!, a stable band of eccentricities appears and the maximum growth
rate decreases.
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<V<0, we conclude that the effect ofa in the LANS-a
model on elliptic instability is essentially equivalent to
counter rotation of the coordinate system.

B. Viscous LANS- a CC solutions

Landman and Saffman13 extended Bayly’s elliptic insta-
bility analysis to add viscous effects. They found that viscos-
ity decreases the growth rate and introduces a high wave
number cutoff in the (g,cosu) plane. ForY0.1 in the
LANS-a model, viscosity again introduces a high wave
number cutoff. However, for fixedEv , the LANS-a model
destabilizes some~but not all! of the eccentricities asY0

511a2b2 increases from unity to two while shifting the
critical stability angle towards cosu51. Figure 5 shows the
neutral stability surface for the nonrotating case. In particu-
lar, the entire (g,cosu) parameter plane can be stable for
fixed large values ofEv and Y051, then destabilize asY0

increases to two, and then stabilize again@Fig. 5~c!#. To em-
phasize the effects of fixeda and variousb as described by
the asymptotics, Fig. 6 shows a representative surface for
various values ofn/uvu. Finally, in Fig. 7, we show the
growth rates maximized over the (cosu,g) plane.

Rotation intensifies the effects ofY0 , and viscosity
dampens out many of the insignificant fingers. In fact, the
physically insignificant fingers are removed by viscosity
from the contour plots, and we are left with only the main
region. See Fig. 4.

V. CC SOLUTIONS IN FOUR TURBULENCE MODELS,
IN THE ABSENCE OF ROTATION

The field of large eddy simulation~LES! models is
driven by the desire to simulate reliably the motion of the
large scales in turbulent flow, without completely simulating
the smaller scales. A common approach is to introduce a
filter operationL(•) and to examine the evolution of a fil-
tered velocity fieldu which corresponds to an exact velocity
field v by the relationshipu5L(v). Introducing filtering
causes the effects of length scales smaller than the width of
the filter to become negligible. Focusing on nonrotating co-
ordinate systems, the resulting LES equation foru is

] tu1u•¹u2nDu1¹ p̃2F̃2nDu52div t~u!, ~50!

where divu50. The variablesp̃ and F̃ are the filtered pres-
sure and body forces, respectively, andt(u)5L(vv)2uu is
the LES closure for the stress tensor. Just as in RANS mod-
eling, the bulk of the work in LES modeling focuses on
deriving a form fort based on physical assumptions, e.g.,
symmetry, material frame indifference, etc. We apologize
again for conflating these two approaches in a single treat-
ment. However, from the viewpoint of formal analysis of CC
solutions for nonlinear-reactive fluids, based on their consti-
tutive relations, one cannot distinguish between LES and
RANS.

A. LANS- a and other nonlinear-reactive-fluid models
of turbulence

As we discussed earlier, the LANS-a model in Eq.~39!
may be expressed as

~12a2D!~] tu1u•¹u2nDu!1¹p2F52a2 div t
~51!

together with divu50, where divt is the right-hand side of
Eq. ~30!. Comparing Eq.~51! with Eq. ~50!, we see that (1
2a2D)21 div t is equivalent to the divergence of a filtered
stress tensor, for which the filtering is performed by inver-
sion of the Helmholtz operator (12a2D). We emphasize
that the filtering in Eq.~30! is not a modeling choice~as is
the norm in LES modeling!; rather, it is a reformulation of

FIG. 4. Instability domain for CC solutions in LANS-a for Ev50.1,
V55 and various values ofa2b2 ~compare with Fig. 3!: ~a! 0.0, ~b! 2.5,
~c! 5.0, ~d! 7.5, ~e! 10.0, ~f! 12.5, ~g! 15.0, ~h! 17.5. The white background
represents regions for whichsg,10210. The results are similar to those in
Fig. 3 with a stable band of eccentricities introduced by viscosity. Of par-
ticular interest is the introduction of an instability finger emanating from
cosu51, g51 ~d! and merging with the principal finger~e!.
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the LANS-a model. We shall search for CC solutions to Eq.
~51! in full generality and will omit termsa posteriori to
investigate the various models.

CC solutions for the nonlinear-reactive fluids: Let us de-
fine u5u01u1 , p5p01p1 , whereu05S(t)•x1U(t) is an
exact solution to Eq.~51! andp0 is the corresponding pres-
sure as before, and$u1 ,p1% are as in Eq.~1!. Again incom-
pressibility yields wave transversality, as expressed in Eq.
~9!. The resulting equations for the amplitudea, the phasec,
and the pressure terms are obtained as before by collecting
on terms linear and constant inx:

p122b3a2b2uau2uku250, ~52!

] t~k"x!1k"S"x50, ~53!

Y
da

dt
1 iY~dtd1bU"k!a22ia2b2~~dtk1k"S!•k!a

1~Y2b1~Y21!!S"a2b3~Y21!S T
•a1Evuku2Ya

2~bp111b3a2b2~a"S"k!!k

5a2b2~b11b2!~k"S"k!a. ~54!

Here, we are keeping track of the contributions of various
terms in the stress tensor, thereby allowing us to examine all
the models simultaneously. As in the NS case, we set dd/dt
1bk"U50. We take the gradient of Eq.~53! to obtain Eq.
~10! for the evolution ofk. Then the third term in Eq.~54!
vanishes exactly, and we assume thata(t) is a real-valued
function. Again, we remove the effects of viscosity by an
integrating factor. Finally, we use the identity dY/dt
522a2b2k•S•k to obtain

d~Ya!

dt
1~Y2b1~Y21!!S"a2b3~Y21!S T

•a

1Evuku2Ya2 P̃k

5a2b2~b11b222!~k"S"k!a, ~55!

whereP̃ is the coefficient ofk in Eq. ~54!

1. LANS-a

The LANS-a model corresponds to (b1 ,b2 ,b3)5(1,1,
21) in Eqs.~52!–~54!. These are the equations we examined
in Sec. IV.

FIG. 6. Approximation of the neutral stability surface~i.e., sg50.01) for CC solutions in LANS-a for V50, fixeda51.0, and various values ofn/uvu: ~a!
0.1, ~b! 0.5, ~c! 1.0. Notice that the flow behaves inviscidly fora2b2!1 and decays exponentially fast asa2b2 increases as predicted by the asymptotics.

FIG. 5. Approximation of the neutral stability surface~i.e.,sg50.01) for CC solutions in LANS-a for V50, fixedb51.0, and various values ofEv : ~a! 0.1,
~b! 0.5, ~c! 1.0.
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2. Leray- a

Leray25 introduced a class of regularized NS equations,
which for Helmholtz-inversion filtering we call the Leray-a
model. These equations were introduced not as a turbulence
closure model, but rather as a deformation of the NS equa-
tions, for which Leray was able to show global existence and
uniqueness of solutions. The Leray-a model is similar to the
LANS-a model and may be written as

] tv1u•¹v1¹p5nDv, ~56!

with pressure determined by preservation of divu50 andv
5(12a2D)u. The Leray-a model corresponds to
(b1 ,b2 ,b3)5(1,1,0) in Eqs.~52!–~54!. The equations of
motion for the Leray-a CC solutions are Eqs.~9!, ~10!, and

p1250, ~57!

d~Ya!

dt
1S"a2bp11k1Evuku2Ya50. ~58!

The specific case of elliptic instability for the Leray-a
model is similar to the CC analysis for the NS equations. The
wave vectork is given in Eq.~14! with x(t)5tA12g2. For
g50, in the case of circular flowlines, the Leray-a solutions
for the wave amplitudea arise as in Eqs.~15!–~17!, except
with j(t)5t(11Y0)cosu/Y0. For elliptical flowlines with
nonzerog, we again may use Floquet theory.

Figure 8 shows the critical stability surface for elliptic
instability in the Leray-a model. The effects are drastically
different from those of the LANS-a model. The angle of
critical stability shifts according to the formula cosu
5Y0 /(11Y0). Since this quantity is always less than unity in
magnitude, no stable band of eccentricities ever appears. Fur-
thermore, the maximum growth rate has an average value
calculated as before ofs̄g5(112Y0)2g/$4Y0(11Y0)2% to
leading order ing!1 for all values ofa2b2. Thus, asa2b2

increases from zero, the maximum growth ratedecreasesas
a function ofa2b2. However, the parametera2b2 does not
introduce a stable band of eccentric Leray-a flows.

3. Helmholtz-filtered Clark- a model

The Helmholtz-filtered Clark-a model26–28 corresponds
to (b1 ,b2 ,b3)5(0,1,0) in Eqs.~52!–~54!. The resulting CC

equations for the elliptic instability dynamics of the linear
base flowu05S•x1U are Eqs.~8!, ~6!, ~9!, plus

Y
da

dt
1YS•a2bp11k1Evuku2Ya2a2b2~k"S"k!a50.

~59!

Note that the integrating factor

a~ t !5â~ t !expS E
0

t a2b2k~ t̂ !•S~ t̂ !•k~ t̂ !

Y~ t̂ !
d t̂D ~60!

will reduce the problem to that for the Euler equations. Thus,
the growth rate for the Clark-a model is modified by

sg,Clark5sg,Euler1
1

tp
E

0

tp a2b2k~ t̂ !•S~ t̂ !•k~ t̂ !

Y~ t̂ !
d t̂.

For the case of elliptic instability for whichS(t) is given in
Eq. ~2!, the wave vectork(t) is given in Eq.~10! and the

FIG. 7. The maximum growth rates in LANS-a for
different values ofn/uvu and V50.0. In each picture,
the values ofn/uvu are, from top to bottom, 0, 0.1, 0.5,
and 1.0.~a! corresponds to fixedb51.0 and variousa,
and ~b! to fixed a51.0 and variousb.

FIG. 8. Critical stability surface for elliptic instability in the Leray-a model
for 0<a2b2<10, Ev50. Again, Fig. 1 corresponds to the slicea2b250.
The critical angle shifts as predicted, though always touches the sliceg
50.
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period is tp52p/A12g2, the above integral vanishes ex-
actly. Consequently, the Helmholtz-filtered Clark-a model
preserves exactly the NS elliptic instability.

B. Bardina- a model

The Bardina-a model29 is similar to those above, but it
does not arise as a choice in Eq.~30! for the stress tensor.
The motion equation for the Bardina-a model is

] tv1u•¹u1¹p5nDv, ~61!

with pressure determined by preservation of divv50 and
v5(12a2D)u. This model still uses the inverse Helmholtz
filter, albeit with a different stress tensor. As was the case for
all previous models, the elliptical columnar flow is an exact
solution subject to the same conditions. We construct a CC
solution by adding the Kelvin traveling wave to the column
and collecting on terms linear and constant inx. The result-
ing equations of motion for elliptic instability are Eqs.~8!,
~9!, plus

Y] t~k"x!1k"S"x50, ~62!

] t~Ya!1 ia~Y] td1bk"u!1S"a2p11k1nuku2Ya50.
~63!

The first observation is thatY does not factor out of the
equation for the wave vectork as it did before. This is due to
the fact that the model’s nonlinearity is of the formu•¹u,
and notu•¹v as in the previous models. This means that,
upon taking the gradient of Eq.~62!, we obtain the following
nonlinearequation for the evolution ofk:

dk

dt
1

~¹u0!T"k

11a2b2uku2
50. ~64!

That is, the wave vectork(t) is no longer frozen into the
fluid. We shall analyze the specific case of elliptic instability.
Numerical simulations indicate that the components ofk are
periodic. Upon guessing a solution in the form of Eq.~14!,
we find thatx(t) is the solution to the transcendental equa-
tion

S 11a2 cos2 u1
a2 sin2 u

11g
D x~ t !1

a2g sin2 u

2~11g!
sin~2x~ t !!

5tA12g2. ~65!

For the caseg50, we have thatx(t)5t/(11a2) exactly.
For small nonzero eccentricity of the flowlines,g!1, we
may neglect the nonlinear term inx(t) to find

x~ t !'
tA12g2

11a2 cos2 u1a2 sin2 u/~11g!
. ~66!

Although this choice ofx(t) is not an accurate approxima-
tion, numerical simulations show that it is sufficient to deter-
mine the periodicity of the wave vectork for all parameter
regimes. Consequently, the wave amplitudea again satisfies
a Floquet problem, whose period is determined by Eq.~66!.
As before, we assume thata is a real-valued function upon
settingY dd/dt1bk"U50.

Circular Bardina-a flowlines: The caseg50 for the
Bardina-a model can be simplified by considering a change
of time variable tn5t/(11a2). In this new variable, the
equations recover exactly those for the classical Euler case.
Thus, the angle of critical stability is again cosu51/2, and
the average maximum growth rate, under appropriate scal-
ings, is s̄g59g/$16Y0%. Thus, the effect of the Bardina
model on elliptic instability is toreducethe average maxi-
mum growth rate for all values ofa but not shift the angle of
critical stability. See Fig. 9.

VI. DISCUSSION

We have examined the CC class of exact nonlinear so-
lutions for several recently introduced turbulence closure
models that appear in the framework of nonlinear-reactive
fluid dynamics. We find that all these models preserve the
existence of elliptic instability. This is a desired property of
any turbulence model—it should at least preserve the classic
NS instabilities. We emphasize that elliptic instability is gen-
erated by the nonlinear term in the NS equations, via para-
metric resonance mediated by vortex stretching. Thus, the
choice of the nonlinearity plays a crucial role in elliptic in-
stability. In the models we have examined here, the effect of
the nonlinearity choice on the CC class of solutions deter-
mines the presence of the functionY(t) in the amplitude
equation ~54!. For example,Y appears linearly in the
Clark-a model and factors out of the equation, and thus el-
liptic instability is unaltered in this model. In contrast, the
presence ofY(t) in the Bardina-a model leads to a nonlinear
equation for the wave vectork. Since the term quadratic in
the disturbanceu1•¹ u1 vanishes as a result of transversality,
a"k50, the instability is a result of wave-mean-flow interac-
tion, rather than wave–wave interaction. Thus, elliptic insta-
bility is complementary to the triad resonance mechanism,
which results from nonlinear wave–wave interaction gener-
ated by the quadratic disturbance term.

FIG. 9. Critical stability surface for elliptic instability in the Bardina-a
model for 0<a2b2<10, Ev50. Again, Fig. 1 corresponds to the slice
a2b250.
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Our main conclusion is that these models alter the NS
structure of the CC solutions. Detailed results for~i! the criti-
cal instability angle, and~ii ! the average maximum growth
rate for the various turbulence closure models are summa-
rized and compared in Table I and Fig. 10. Perhaps surpris-
ingly, the Bardina-a model is identified in Table I of com-
parisons as preserving more features of the CC solutions for
the NS equation than any of the other models. The model has
the salient features that it decreases the growth rate for high
wave numbers as is expected of LES models without altering
the underlying physics, that is, it does not alter the critical
angle of stability. Bardina-a is a new model, whose analyti-
cal properties, for example, will be considered in detail else-
where.

Cambonet al.30 examined from a statistical viewpoint
the effects of a specific model on elliptic instability, hyper-
bolic instability, and the stability of Taylor–Green vortices.
Our work complements their work in presenting a combina-
tion analytic and numerical results for a variety of turbulence
models whose regularization is based on Helmholtz-
inversion filtering. See Geurts and Holm31 for an extension
of other classes of filters of this regularization approach for
turbulence modeling.
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APPENDIX: VERIFICATION OF THE BARDINA MODEL

The work in Sec. V B relied on approximating the period
of k(t) correctly. As a check of this approximation, we use
the quasiperiodic extension of Floquet theory as demon-
strated in Ref. 32. We use the incompressibility condition Eq.
~9! to eliminate a variable, saya3 , and rewrite the system in
Eq. ~63! as dta'5Ba' , wherea'5(a1 a2)T. By using the
Prüfer transformation

a1~ t !5ed(t) sin@c~ t !#, a2~ t !5ed(t) cos@c~ t !#, ~A1!

we rewrite the ODE in the new variablesc(t) andd(t). The
quantities

I 5 lim
t→`

@d~ t !/t#, W5 lim lim
t→`

@c~ t !#, ~A2!

called the growth rate and winding number, respectively, can
be reliabilty simulated numerically by long time computa-
tions ~say t51000). The growth rateI is equivalent to the
Lyapunov growth rate generated by Floquet theory. We com-
pute these quantities on a coarse grid to verify that the Flo-
quet theory analysis given above is accurate. Although the
period ofk may be only approximate, a numerical investiga-
tion using Floquet theory requires significantly less comput-
ing time than the present quasiperiodic theory.
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