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ABSTRACT 

 

The mixed lineage leukaemia (MLL) gene is frequently the target of chromosomal 

translocation in infant leukaemia.  Translocation results in an in-frame chimeric fusion 

gene which is implicated in both ALL and AML, with particularly poor prognoses.  It is 

widely accepted that MLL has a crucial role in regulating haematopoiesis.  Our lab has 

previously developed a murine model for conditional expression of MLL-fusions to 

establish a list of transcriptional target genes using Affymetrix GeneChip analysis.  In 

order to study the role of MLL-fusion target genes in human leukaemia cells, we 

generated four independent immortalised myeloid cell lines from human cord blood, 

using the MLL-AF9 fusion, by means of lentiviral transduction. The transduced cells 

proliferated exponentially in liquid culture and were found to cause leukaemia upon 

xenotransplantation into immunodeficient mice.  One of the target genes up-regulated 

by the MLL-fusions, RUVBL2, encodes an ATPase belonging to AAA+ family that has 

multiple roles in telomerase and chromatin-remodelling complexes.   In this study, we 

demonstrate that RUVBL2 is also up-regulated by MLL-AF9 in human immortalised 

myeloid cells.  shRNA knock down of RUVBL2 expression in these cells, and in the 

human leukaemia cell line THP-1, results in decreased cell proliferation and clonogenic 

potential, accompanied by an increase in apoptosis and differentiation, as judged by 

CD15 expression.  Furthermore, inhibition of RUVBL2 expression in THP-1 cells leads 

to a reduction in hTERT mRNA expression and telomerase activity.  Together, these 

data demonstrate the requirement of RUVBL2 to mediate MLL-fusion induced 

telomerase activity in human cells, and suggest the possibility of targeting RUVBL2 as 

a potential therapeutic strategy for MLL-fusion associated leukaemia. 
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CHAPTER 1.  INTRODUCTION 

 

1.1. Ontogeny of haematopoiesis 

 

Haematopoiesis refers to a highly organised maturation process of blood cells.  

Haematopoietic diversity originates from haematopoietic stem cells (HSCs), which by 

definition, have the ability to self-renew and to differentiate into multiple progenitor 

cells that eventually terminally differentiate into mature cells [reviewed in  (Orkin, 

2000; Iwasaki and Akashi, 2007)].  Haematopoiesis occurs in two distinct waves.  

Primitive haematopoiesis refers to the initial transient red blood cell production 

necessary to oxygenate the rapidly growing embryo, while definitive haematopoiesis 

refers to production of long-term repopulating HSCs (LT-HSC), that later on replace 

primitive haematopoiesis to generate multipotent haematopoietic progenitors (Cumano 

and Godin, 2001; Orkin and Zon, 2008).  Although most of what we know about 

haematopoiesis is derived from studies in mouse models, there are many similarities 

between mouse and human haematopoiesis, suggesting that this process is highly 

conserved [reviewed in (Marshall and Thrasher, 2001; Tavian and Peault, 2005)].  In 

mice, primitive haematopoietic cells are first observed in the primitive streak after 

gastrulation, at embryonic day seven (E7), and then migrate into the yolk sac where 

primitive haematopoiesis is initiated (Palis et al., 1999) (Figure.1.1).  Definitive 

haematopoiesis, on the other hand, derives from the aorta-gonad-mesonephros (AGM) 

region of the mouse embryo at E10.5 (Muller et al., 1994; Medvinsky and Dzierzak, 

1996; de Bruijn et al., 2000).  The emerging HSC subsequently colonise the placenta, 

foetal liver, thymus, spleen and then the bone marrow (Muller et al., 1994; Medvinsky 
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and Dzierzak, 1996; Gekas et al., 2005).  A diagram summarising mouse and human 

haematopoiesis is shown in Figure 1.1. 

 

In the highly organised hierarchy of haematopoiesis, LT-HSCs give rise to short-term 

repopulating HSCs (ST-HSCs).  Unlike LT-HSC, ST-HSCs have limited self-renewal 

ability (Morrison and Weissman, 1994).  Two distinct lineages then derive from ST-

HSCs. The common lymphoid progenitors (CLPs) generate all lymphoid cells, 

including T cells, B cells and Natural killer (NK) cells (Kondo et al., 1997).  The 

common myeloid progenitors (CMPs) produce granulocyte/monocyte progenitors 

(GMPs) which differentiate into monocytes and granulocytes.  These then mature into 

macrophages, and neutrophils, eosinophils and basophils, respectively (Akashi et al., 

2000). Megakaryotic/erythroid progenitors (MEPs) in contrast, give rise to 

megakaryocytes/platelets and erythrocytes (Akashi et al., 2000).  All of these 

progenitors show a limited self renewing capacity upon transplantation into lethally 

irradiated mice (Akashi et al., 2000).  Finally, dendritic cells (DC) have been reported to 

derive both from CMPs and CLPs (Traver et al., 2000). 

 

1.2. Haematopoietic assays 

 

Several methods have been developed to assay haematopoietic lineages.  In order to 

determine lineage restricted progenitors, a short-term in vitro assay is used, known as 

the colony forming cell (CFC) assay [reviewed in (Coulombel, 2004)].  This assay 

determines the ability of single cells, or colony forming units (CFU), to form colonies in 

semi-solid media. 
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Figure 1.1.  Establishment of primitive definitive haematopoiesis in mouse and 

human embryos [adapted from (Mikkola et al.,2006)] 

The diagram illustrates haematopoiesis in mouse and human embryos at different age 

stages.  Red bars indicate active haematopoietic differentiation, yellow bars represent 

generation of HSCs, and blue bars represent adult LT-HSCs.  Broken yellow bars 

represent de novo HSC generation that has not been experimentally shown. 
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Several types of progenitors including CFU-erythroid (CFU-E), burst-forming unit-

erythroid (BFU-E), CFU-granuclocyte/macrophage (CFU-GM), CFU-

granulocyte/erythoroid/macrophages/megakaryocyte (CFU-GEMM), CFU-preB and 

CFU-megakaryocyte (CFU-Mk), can be observed using this assay (technical manual 

from Stem cells Technology, Sheffield, UK).  This assay can be used to study both 

mouse and human myeloid progenitors (Coulombel, 2004).  The CFC-U assay, 

however, is not appropriate for more immature haematopoietic cells, since the semi-

solid media can only support viable cells for approximately 2 weeks.  This is not 

sufficient for HSC to generate lineage committed progenitor cells and self-renew 

(Coulombel, 2004). 

 

In contrast to the CFC-U assay, the long-term bone marrow culture assay enabled 

immature haematopoietic cells to persist longer in culture by co-culturing them on a 

layer of adherent cells (stromal feeders) isolated from bone marrow.  The adherent cells 

support haematopoietic cell growth and together they recreate some aspects of the 

physiology found in the bone marrow microenvironment (Dexter et al., 1977).  The 

stromal feeder based assay was adapted and modified to detect more primitive 

progenitor cells known as the long-term culture-initiating cells (LTC-IC) (Sutherland et 

al., 1989; Sutherland et al., 1990).  LTC-ICs are immature haematopoietic cells that are 

able to produce CFC-U beyond 5 weeks.  LTC-ICs are detected by co-culturing 

immature hematopoietic cells on pre-irradiated adherent cells from mouse or human 

bone marrow.  The long culture period allows LTC-IC to properly propagate while 

promoting all other committed progenitors to terminally differentiate (Sutherland et al., 

1989).  Another way to assess primitive haematopoietic cells is the cobblestone area-

forming cell (CAFC) assay, in which HSCs integrate into the stromal feeder layer, 
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resulting in the formation of cobblestone-like patches. This formation provides a visual 

indication of immature cell propagation (Ploemacher et al., 1989).  The extended LTC-

IC (E-LTC-IC) assay was used to identify more primitive haematopoietic cells that 

proliferate longer in the culture than the LTC-IC cells.  This assay used human bone 

marrow or cord blood and supplemented the LTC-IC assay with cytokines and had an 

extended culture period beyond 8 weeks.  The immature cells detected using this assay 

were more quiescent than those from LTC-ICs, suggesting that these cells represent 

more primitive haematopoietic cells (Hao et al., 1996).  Overall, these studies indicate 

the importance of stroma based assays to support both mouse and human 

haematopoiesis in vitro.   

 

However, none of these in vitro assays are fully able to recapitulate the bone marrow 

microenvironment.  For this reason, transplantation of isolated mouse haematopoietic 

cells into lethally irradiated recipient mice is the most commonly used method to assess 

HSC activity (Spangrude et al., 1988; Morrison and Weissman, 1994).  This is assessed 

by measuring homing of HSC to the bone marrow, long-term engraftment of HSC and 

multi-lineage repopulation of recipient mice.  Since this technique is not possible in the 

human system, xenotransplantation using immunodeficient recipient mice or foetal 

sheep has been performed to examine the activity of human HSCs [reviewed in (Bonnet, 

2005)].  Initially, severe combined immunodeficiency (SCID) mice were used as 

recipients for engraftment of  human bone marrow  (Kamelreid and Dick, 1988; Lapidot 

et al., 1992) and cord blood cells (Vormoor et al., 1994).  These immature 

haematopoietic cells, that are able to propagate in recipient mice, were termed SCID-

repopulating cells (SRC).  The engraftment efficiency in this model, however, was sub-

optimal due to residual NK cell activity in SCID mice [reviewed in (Bonnet, 2002; 
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Dick, 2008)].  In order to overcome this problem, non-obese diabetic (NOD)/SCID 

mice, that have additional deficiencies in NK cell and macrophage activity, were 

generated, and this strain has been shown to provide higher engraftment of human cells 

(Shultz et al., 1995).  

 

1.3. Mouse haematopoiesis 

 

In mouse haematopoiesis, HSCs were first identified in the bone marrow as being 

negative for the expression of lineage-associated-surface markers (Lin), while 

expressing stem cell angtigen-1 (Sca-1) and c-Kit.  This population is now known as the 

LSK (Lin- Sca-1+ c-Kit+) bone marrow fraction (Spangrude et al., 1988; Ikuta and 

Weissman, 1992).  Approximately 0.05% of mouse bone marrow cells have multi-

lineage differentiation capacity, as shown by in vivo reconstitution assays (Spangrude et 

al., 1988).  Within the LSK fraction, LT-HSCs are found within a fraction of CD34-, 

(Osawa et al., 1996), Thy1.1lo (Morrison and Weissman, 1994) and CD38+ (Randall et 

al., 1996) cells.  In contrast, ST-HSCs are found to reside in the CD34+ (Osawa et al., 

1996) and CD38- fraction (Randall et al., 1996).  Due to the transient repopulating 

activity of ST-HSCs, these cells are also referred to as multipotent progenitors (MPP).  

Despite some attempts to differentiate these two populations, primarily using CD4 and 

CD11b expression (Morrison et al., 1994; Morrison et al., 1997), no distinctive 

functional differences have been reported [reviewed in (Iwasaki and Akashi, 2007)].   

 

The first lineages derived from the LSK fraction are CLPs and CMPs (Kondo et al., 

1997; Akashi et al., 2000).  CLPs were originally isolated by virtue of interleukin-7α 
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receptor (IL-7αR) expression and defined as the IL-7α+ Lin- Sca-1lo c-Kitlo population of 

cells. CLPs  have the ability to give rise to lymphoid cells but are unable to generate 

myeloid progenitrors (Kondo et al., 1997).  CMPs on the contrary, reside in the IL-7Rα- 

fraction (Akashi et al., 2000).  This IL-7Rα- Lin- Sca-1- c-Kit+ population exclusively 

possesses myeloid colony forming potential and can be divided into subgroups using 

expression of the Fcγ receptor II/III (FcγR II/III or CD16/32) and CD34. Thus, CMPs 

are FcγR II/IIIlo CD34+, whereas MEP are FcγR II/IIIlo CD34- and GMP are FcγR 

II/IIIhi CD34+ (Akashi et al., 2000).  The discovery of CMP and CLP led to the classical 

pathway hypothesis that down-stream myeloid and lymphoid progenitors only rise from 

CMP and CLP, respectively (Iwasaki and Akashi, 2007).  A simple diagram illustrating 

this original model is shown in Figure1.2A.  

 

In recent years there have been a number of reports suggesting possible alternative 

haematopoietic pathways and challenging the original classical pathway of 

haematopoiesis.  This was due to the discovery that MPPs/ST-HSCs were in fact more 

heterogeneous in myeloid/lymphoid commitment than originally thought (Adolfsson et 

al., 2005).  Cells within the LSK population with high expression levels of the FMS-

related tyrosine kinase 3 (Flt3) were found to have lost the ability to mature into MEP, 

when compared to a population without Flt3 expression (Adolfsson et al., 2005).  This 

subpopulation of LSK cells with Flt3 expression was named the lymphoid primed 

multipotent progenitor (LMPP), because although this population preferentially 

differentiates into lymphoid progenitors, it still possesses the potential to mature into 

GMP (Adolfsson et al., 2005).   
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Figure 1.2.  Classical model and alternative model of mouse haematopoiesis 

[adapted from (Arinobu et al., 2007)] 

A) The diagram illustrates the classic model for mouse haematopoiesis. LT-HSC, long-

term repopulating haematopoietic stem cells; ST-HSC, short-term repopulating 

haematopoietic stem cells; MPP, multipotent progenitors; CMP, common myeloid 

progenitor; GMP, granulocyte/monocyte progenitor and MEP, megakaryotic/erythroid 

progenitor.  B) The diagram illustrates the alternative model for mouse haematopoiesis. 

LMPP, lymphoid primed multipotent progenitor.   
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This observation suggests that MEP potential is first lost from the ST-HSC/MPP 

population, and this is the first step towards lineage commitment (Adolfsson et al., 

2005).  Arinobu et al further investigated this possible alternative pathway of 

haematopoiesis by analysing expression of the GATA binding factor (GATA-1) and 

PU.1 transcription factors (Arinobu et al., 2007).  PU.1 belongs to the ETS family of 

transcription factors and its expression is essential for HSC renewal and CMP and CLP 

development (Iwasaki et al., 2005).  GATA-1, on the other hand, is a transcription 

factor regulating MEP development (Fujiwara et al., 1996). PU.1+ MPP/ST-HSCs were 

found to give rise to granulocyte/monocyte/lymphoid progenitors (GMLP), that in turn 

are restricted to GMP and CLP production like the LMPP, while GATA-1+ MPP/ST-

HSCs gave rise to both MEPs and GMPs, and were functionally identical to 

conventional CMPs (Arinobu et al., 2007).  The new model of haematopoietic 

differentiation is shown in Figure1.2B.  Note that, unlike the conventional model, this 

new model suggests that GMP development can be achieved from both CMPs and 

GMLPs (Arinobu et al., 2007). 

 

1.4. Human haematopoiesis 

 

Although there are many similarities between haematopoietic pathways in humans and 

mice, considerable differences have also been reported [reviewed in (Iwasaki and 

Akashi, 2007)].  For example, LT-HSCs are found in the CD34-CD38+ population in 

mice, while the CD34+CD38- population marks the LT-HSCs in human haematopoiesis 

(Terstappen et al., 1991; Okuno et al., 2002).  Indeed, CD34 was found to be expressed 

in most CLPs, CMPs, and approximately 30% of MEPs [(Okuno et al., 2002); also 

reviewed in (Iwasaki and Akashi, 2007)].  However, there is some evidence that human 
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LT-HSCs devoid of CD34 expression also show repopulating property in vivo (Goodell 

et al., 1997; Bhatia et al., 1998).  This Lin- CD34- CD38- population showed limited 

clonogenic potential in vitro, unlike CD34+ cells, indicating that it is a distinct subset of 

cells (Bhatia et al., 1998).  This evidence, together with the existence of mouse CD34- 

LT-HSCs, indicates that the Lin- CD34- CD38- subpopulation may represent a more 

immature form of LT-HSC [reviewed in (Bonnet, 2002)]. 

 

In human myelopoiesis, CD34+CD38-CD90+CD45RA- HSCs give rise to CMPs, 

expressing CD38, low CD123, while losing CD90 expression (CD34+CD38-CD90-

CD45RA-CD123lo) (Manz et al., 2002).  CMPs have the ability to differentiate into 

GMPs, which acquire the expression of CD15 and CD45RA 

(CD15+CD34+CD38+CD90-CD45RA+CD123lo).  GMPs then give rise to monoblasts 

and myeloblasts.  Monoblasts are characterised by the expression of CD14 and CD11b 

and the ability to differentiate into monocytes, while myeloblasts, which are CD14 

negative, terminally differentiate into neutrophils.  A schematic diagram of human 

myelopoiesis and expression markers of each stage is shown in Figure 1.3.    

 

1.5. Cancer stem cells (CSC) 

 

Following the discoveries in normal haematopoiesis, it became apparent that normal 

stem cell properties in many ways resemble those of cancer cells.  For example, both 

HSCs and a subpopulation of cancer cells can generate more differentiated progeny, and 

both cells have a prolonged self-renewal ability [reviewed in (Reya et al., 2001)].   
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Figure 1.3. Human myelopoiesis (Adapted from KEGG pathway; http://www. 

genome.jp/kegg/pathway/hsa/hsa04640.html and Manz et al., 2002) 

The diagram illustrates the human myelopoiesis and expression of associated surface 

antigen markers.  LT-HSC, long-term repopulating haematopoietic stem cell; ST-HSC, 

short-term repopulating haematopoietic stem cell; MPP, multipotent progenitor; CMP, 

common myeloid progenitor; GMP, granulocyte/monocyte progenitor and MEP, 

megakaryotic/erythroid progenitor. 
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These observations were brought together into one hypothesis that cancer cells may 

derive from a small population of cancer stem cells (CSC), which have stem cell-like 

properties and can give rise to the entire cancer cell population [reviewed in (Reya et 

al., 2001)].  Evidence for this hypothesis was first observed in leukaemia (Lapidot et al., 

1994; Bonnet and Dick, 1997).  In these studies, only sorted CD34+CD38- cells from 

patient AML samples were successfully engrafted onto SCID (Lapidot et al., 1994) or 

NOD/SCID (Bonnet and Dick, 1997) mice to develop acute myeloid leukaemia (AML), 

and these cells could also be serially transplanted (Bonnet and Dick, 1997).  This was 

consistent regardless of the different AML types analysed.  Based on these observations, 

the term SCID leukaemia-initiating cells (SL-IC) was adapted for the engrafting cells 

(Lapidot et al., 1994).  Moreover, immunophenotype and morphological analysis of 

transplanted mice both suggested that this population gave rise to leukaemia progeny 

that highly resembled the disease from the donor AML patients (Bonnet and Dick, 

1997).  An initial model for leukaemic stem cells (LSCs) proposed that 

leukaemogenesis creates LSC from the most primitive stage of haematopoiesis, the 

CD34+CD38- HSC, and that LSC are generated as a consequence of the HSC acquiring 

transforming mutations (Bonnet and Dick, 1997) (Figure 1.4).  Since then, the LSC 

concept has been adapted to other cancers and CSCs have been discovered in solid 

cancers, such as breast and brain malignancies (Al-Hajj et al., 2003; Singh et al., 2003).  

 

However, accumulating evidence suggests that more committed progenitors are also 

able to undergo transformation to give rise to LSCs [reviewed in (Bonnet, 2005; Huntly 

and Gilliland, 2005)].  Cozzio et al used retroviral transduction of the leukaemic fusion 

gene MLL-ENL to demonstrate that GMPs and CMPs, but not MEPs, could be 

transformed and induce leukaemia (Cozzio et al., 2003). 
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Figure 1.4.  Original cancer stem cell model [adapted from (Bonnet et al., 1997)] 

The diagram illustrates the original model of cancer stem cell organisation.  The model 

proposed that both SCID leukaemia initiating cells (SL-IC) and SCID repopulating cells 

(SRC) are both derived from CD34+CD38- HSC.  During normal haematopoiesis, SRC 

give rise to multipotent progenitors and more committed progenitors.  These cells 

eventually differentiate into different lineages.  Leukaemogenic events in CD34+CD38- 

cells initiate SL-IC.  SL-IC give rise to clonogenic leukaemic progenitors, which 

eventually cause leukaemia. 
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Huntly et al also demonstrated that these committed progenitors can be transformed by 

the MOZ-TIF2 oncogenic fusion gene, but not with BCR-ABL, suggesting that this 

effect does not apply to all oncogenes (Huntly et al., 2004).  In addition, transformation 

of GMP has also been shown using MLL-AF9 (Krivtsov et al., 2006).  These studies 

suggest that it is probable that LSC may arise from more than one population from the 

haematopoietic hierarchy, and this depends on various factors, such as the nature of the 

leukaemia and the oncogenes involved. 

 

1.6. Acute myeloid leukaemia (AML) 

 

Abnormalities in haematopoiesis are implicated in various blood disorders, including 

leukaemia.  Leukaemia develops as a result of the uncontrolled expansion of lymphoid 

or myeloid progenitors and is characterised by a block at particular stages of 

differentiation [reviewed in (Pui, 1995)].  AML is not an exception to this, and these 

phenomena result in haematopoietic insufficiency, such as granulocytopenia, 

thrombocytopenia and anemia together with, or without, leukocytosis [reviewed in 

(Lowenberg et al., 1999)].  The initial diagnosis of AML relies on the finding of 

leukaemic myeloblasts, which are characterised by round or irregular nuclei, distinctive 

nucleoli and a very small area of cytoplasm.  According to the World Health 

Organisation (WHO), the definitive diagnosis following the initial diagnosis of AML 

depends on blast count (with more than 20% blasts identified in the bone marrow), 

lineage commitment and the degree of differentiation of the blasts.  These criteria are 

recognised using morphological, cytochemical and immunophenotypic assays, 

accompanied with analysis of genetic abnormalities (Lowenberg et al., 1999; Harris et 

al., 2000).  AML is a heterogeneous disease displaying various stages of differentiation 
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blocks and hence variability in the leukaemia morphology.  In order to sub-group AML, 

one of the most frequently employed systems is the French-American-British (FAB) 

system.  The FAB system categorises AML into 9 subtypes according to morphological 

appearance of the cells and cytochemistry [reviewed in (Lowenberg et al., 1999; Estey 

and Dohner, 2006)] (Table 1.1).  

 

Table 1.1.  FAB classifications of AML [adapted from (Lowenberg et al,. 1999)] 

 

Identification of any cytogenetic abnormalities associated with a particular AML helps  

predict a patient’s outcome.  More than half of AML patients carry various degrees of 

karyotypic abnormalities at diagnosis and these are often used as independent 

prognostic indicators [reviewed in (Scandura et al., 2002; Estey and Dohner, 2006)] 

(Table 1.2).  For example, the t(8;21) translocation is largely associated with the M2 

subtype of AML and is often correlated with a good prognosis in adults.  The inv(16) 

abnormality is less common, but found in the M4Eo subtype of AML, and is also 

associated with a relatively good outcome [reviewed in (Scandura et al., 2002)].  

Additional information, such as the identification of specific secondary mutations, can 

be used to subdivide these prognostic categories.   

 

FAB

M0
M1
M2
M3
M4
M4Eo
M5
M6
M7

Morphology and common name

Acute myeloblastic leukaemia with minimal myeloid differentiation
Acute myeloblastic leukaemia without maturation
Acute myeloblastic leukaemia with maturation
Acute myeloblastic leukemia
Acute myelomonocytic leukaemia
Acute myelomonocytic leukaemia with abnormal eosinophils
Acute monocytic leukaemia 
Erythroleukaemia
Acute megakaryocytic leukaemia
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Table 1.2.  Common chromosomal aberrations in AML and their associated 

cytogenetic prognosis [modified from (Estey and Dohner, 2006; Scandura et al., 

2002)] 

 

For example, mutations in the KIT gene have been shown to worsen the prognosis of 

both inv(16) and t(8,21) AML.  AML with a normal karyotype is normally categorised 

into an intermediate group.  In contrast, poor prognosis occurs in patients with 

translocations involving inv(3), t(3,3), or del(5q).  These translocations tend to be found 

in older patients and also in secondary AML, presenting an overall survival rate of less 

than 20% over 5 years - suggesting that current therapies are not effective in these cases 

(Lowenberg et al., 1999).  On the whole, the strong association between cytogenetic 

abnormalities and the clinical outcome of patients emphasizes the importance of 

accurate detection of specific cytogenetic abnormalities in order to treat AML 

appropriately. Furthermore, it suggests an urgent need to develop translocation-specific 

molecular therapy. 

 

 

FAB/Leukaemic
subtype

M2

M4Eo

M3

M4, M5

M4, M5

M1, M4, M6

M2, M4

Translocation/inversion

t(8;21)(q22;q22)

inv(16) (p13;q22) or  t(16;16)(p13;q22)

t(15;17)(q22;q11-21)

t(9;11)(p22;q23)

t(6;11)(q27;q23)

Inv(3) (q21q26) or t(3,3)(q21;q26)

t(6;9)(q23;q34)

Genes involved

AML1-ETO

CBFβ-MYHI1

PML-RARAα

MLL-AF9

MLL-AF6

EVI1

DEK-CAN

Cytogenetic 
prognosis

good

good

Good

Poor/intermediate

poor

Poor

Poor 
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1.7. MLL rearranged leukaemia 

 

One of the most common features of acute leukaemia in infants is the chromosomal 

translocation of the mixed lineage leukaemia (MLL) gene.  As its name suggests, 

translocations of the MLL gene are associated with lymphoid leukaemia (ALL), AML, 

and bi-phenotypic leukaemia [reviewed in (Ayton and Cleary, 2001; Daser and 

Rabbitts, 2005)].  MLL rearrangements are only found in approximately 10% of all adult 

and childhood acute leukaemias [reviewed in (Krivtsov and Armstrong, 2007)].  In 

contrast, in infants 60-70% of acute leukaemia cases are caused by MLL rearrangements 

[Reviewed in (Biondi et al., 2000; Krivtsov and Armstrong, 2007)].  Of these MLL-

associated infant leukaemias, 50-80% consist of ALL and 34-50% of AML [reviewed in 

(Felix and Lange, 1999; Biondi et al., 2000)].   

 

The most frequently occurring MLL translocations are with partner genes on 

chromosomes 4q21 (AF4), 9p22 (AF9), 19p13.3 (ENL), 10q12 (AF10) and 6q27 (AF6).  

These give rise to the MLL-AF4, MLL-AF9, MLL-ENL, MLL-AF10 and MLL-AF6 

fusion genes and together account for approximately 80% of MLL-associated leukaemia 

(Huret et al., 2001; Meyer et al., 2006) (Table 1.3).  In terms of lineage distribution, 

fusion partners are strongly correlated with the phenotypes of leukaemia, for instance, 

MLL-AF9 is predominantly found in AML, MLL-AF4 in ALL, and MLL-ENL is found 

in both AML and ALL [reviewed in (Ayton and Cleary, 2001)]. 

 

The early onset of infant leukaemia suggests that the MLL-associated translocations 

occur during pregnancy [reviewed in (Eguchi et al., 2003)]. 
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t(4;11)(q21;q23)

t(9;11)(p22;q23)

t(11;19)(q23;p13.3) 

t(10;11)(p12;q23) 

t(6;11)(q27;q23)

MLL-AF4

MLL-AF9

MLL-ENL

MLL-AF10

MLL-AF6

Most commonly ALL

M4 or M5

Biphenotypic, pre-B ALL, M4 or M5

M4 or M5

M4 or M5 (and T-ALL)

Nuclear

Nuclear

Nuclear

Nuclear

Cytoplasm

Translocation
Resulting 
fusion gene

Localization of 
fusion partner protein

FAB/leukaemic subtype

Table 1.3.  The five most common translocations bearing MLL [modified from 

(Estey and Dohner, 2006; Scandura et al., 2002)] 

 

Evidence for the origin of MLL translocations came from twin studies and the use of 

PCR-based methods to look at DNA from neonatal blood spots (Gurthrie cards) (Ford et 

al., 1993; Gale et al., 1997).  These studies together suggested that MLL rearrangement 

was not inherited but acquired.  In addition, results from three pairs of twins showed 

that the MLL translocation breakpoints were identical in each pair, suggesting that MLL 

rearrangement occurs in utero and that sibling disease is caused by spreading of the 

aberrant clone through a process called intra-placental metastasis (Ford et al., 1993).            

 

1.8. MLL structure and function 

 

The MLL gene was cloned by four independent groups, as the target of leukaemia-

associated 11q23 translocations (Zieminvanderpoel et al., 1991; Djabali et al., 1992; Gu 

et al., 1992; Tkachuk et al., 1992).  Following its cloning, it was discovered that MLL 

was a homolog of the Drosophila Trithorax gene (Trx).  The Trx gene is a family 

member of the trithorax group (trx-G) and is a DNA-binding transcription factor 

implicated in homeoprotein regulated segmentation and early embryogenesis (Mazo et 
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al., 1990).  MLL is widely expressed in various organs and tissues such as brain, spinal 

cord, liver, spleen, thymus, kidney, heart, testis, lungs and skeletal muscles in humans 

(Butler et al., 1997).  In haematopoiesis, MLL is expressed both in adult and foetal 

lymphoid and myeloid progenitor cells, but not in mature erythroid cells, indicating that 

its expression is essential for early maintenance of haematopoiesis, but not for terminal 

differentiation (Hess et al., 1997; Ernst et al., 2004). 

 

The MLL gene is approximately 90kb in size, with 36 exons and around 12kb of coding 

sequence [reviewed in (Eguchi et al., 2003)].  MLL encodes a protein containing 3968 

amino acids with an estimated size of 431kDa.  This large protein is proteolytically 

cleaved in the cytoplasm by a protease called Taspase1, which generates two MLL 

fragments of 320kDa [N-terminal fragment of MLL (MLLN)] and 180kDa [C-terminal 

fragment of MLL (MLLC)] (Yokoyama et al., 2002; Hsieh et al., 2003a).  These two 

post-translationally processed fragments are stabilized by forming a complex through 

interaction of the FYRN domain of the MLLN and the FYRC domain of the MLLC. This 

complex is then co-localized into sub-nuclear compartments of the cell (Hsieh et al., 

2003b).   

 

The MLL protein contains several functional domains.  Adjacent to the N-terminus of 

MLL, there are three AT-hooks which are able to bind to the minor groove of AT-rich 

DNA, by recognizing the DNA structure, rather than binding in a sequence-specific 

manner (Zeleznikle et al., 1994).  Next to these AT hooks, there are two sub-nuclear 

localisation domains (SNL-1, SNL-2), which determine the localisation of MLL protein 

within the nucleus [reviewed in (Hess, 2004; Daser and Rabbitts, 2005)].  A 

transcriptional repression domain is positioned next to SNL-1 and SNL-2.  This 
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repression domain contains two functional sub-units known as repression domain one 

and two (RD-1 and RD-2).  RD-1 displays homology with the cysteine-rich CxxC zinc 

finger motif of DNA methyltransferase (DMNT) (Prasad et al., 1995).  In addition, RD-

1 interacts with the polycomb group proteins (PcG) HPC2 and BMI-1, and the co-

repressor C-terminal-binding protein (CtBP) (Xia et al., 2003).  RD-2 plays a role in 

transcriptional repression via interaction with the histone deacetylases, HDAC1 and 

HDAC2.  There are three plant homeodomain (PHD) zinc finger motifs that are 

homologous to domains in Drosophila TRX.  The third PHD finger interacts with 

nuclear cyclophilin (Cyp33) (Fair et al., 2001).  Cyp33 possesses an RNA recognition 

motif (RRM) and its over-expression is inversely correlated with homeoprotein (hox) 

HOXC8 and HOXC9 mRNA expression (Fair et al., 2001).  Adjacent to the PHD 

domains, there is a bromo-domain.  This domain interacts with the carbonyl-amide 

moiety of acetylated lysine, which may have a role in chromatin association (Schultz et 

al., 2001).  The transactivation domain (TD) is conserved in vertebrates, but is not found 

in Drosophila TRX [reviewed in (Daser and Rabbitts, 2005)].  The TD is known to 

interact with the co-activator CREB-binding protein (CBP), which is an 

acetyltransferase.  This binding is required for correct transcriptional activation of target 

genes (Ernst et al., 2001).  Towards the end of the C-terminus of MLL, there is the 

su(var)3-9, enchancer-of-zeste, trithorax (SET) domain.  The highly conserved SET 

domain possesses MLL histone 3 lysine 4 (H3K4) methyltransferase activity, which is 

associated with transcriptional activation, and was shown to be responsible for H3K4 

methylation of MLL target gene promoters (Milne et al., 2002; Nakamura et al., 2002).  

In addition, the SET domain was also found to interact with the SWItch/Sucrose Non 

Fermentable  (SWI-SNF) chromatin re-modelling complex in yeast and Drosophila, via 

the INI-1 protein, which is implicated in ATP-dependent nucleosome remodelling and 

RNA polymerase activity (Rozenblatt-Rosen et al., 1998).  Overall, MLLN has a net 
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repressive effect on transcription, due to recruitment of PcG and CtBP proteins, as well 

as HDAC1 and 2 (Fair et al., 2001; Yokoyama et al., 2002; Xia et al., 2003).  However, 

when MLLN undergoes heterodimerization with MLLC, the resulting complex then has 

an overall positive effect on transcription due to chromatin remodelling [reviewed in 

(Hess, 2004)].  A schematic diagram of the MLL protein is shown in Figure 1.5.   

 

1.9. Normal function of MLL 

 

A study using Drosophila demonstrated that the trx mutation is embryonic lethal and 

that mutant embryos have abnormal segmentation (Mazo et al., 1990).  Knockout of the 

mouse Mll gene is embryonic lethal between E10.5 and E16.5, and embryos showed 

skeletal malformation and misregulation of Hox gene expression (Yu et al., 1995; Hess 

et al., 1997; Yagi et al., 1998; McMahon et al., 2007).  Mll-/- mice were able to initiate 

correct Hox gene expression, but were unable to sustain this expression during 

embryogenesis, suggesting that MLL has an important role in maintaining Hox gene 

expression.  Indeed, Hox genes are major target genes of MLL, as will be discussed 

later. 

 

The MLL protein was discovered to be a part of macromolecular complexes with 

several different proteins. These complexes were found to be responsible for 

methyltransferase activity and other chromatin modifications involved in transcriptional 

regulation (Nakamura et al., 2002).  Several proteins have been discovered to associate 

with the MLL protein. 
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Figure 1.5.  Schematic diagram of MLL and MLL-fusion proteins 

The MLL protein consists of several domains: From the N-terminus: AT hooks, sub-

nuclear localization 1 and 2 domains (SNL-1, SNL-2), repression domain 1 and 2 (RD1, 

RD2), trithrax plant homeodomain (PHD), bromo-domain (bromo), FYRN domain, 

transactivation domain (TD), FYRC domain, su(var)3-9, enchancer-of-zeste, trithorax 

(SET) domains. The red triangle represents the protelolytic cleavage site which 

produces the MLL complex.  The red dotted line indicates the break cluster region 

(BCR). ENL and AF9 both possess a YEATS (Yaf9, ENL, AF9, Taf14, and Sas5) 

domain, a proline/serine (P) rich region and a hydrophobic region (HydroP).  The MLL-

ENL chimeric fusion is created by the translocation t(11;19)(q23;p13.3). The MLL-AF9 

chimeric fusion protein is created by the translocation t(9;11)(p22;q23). 
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Proteins that associate with MLLc include the H4K16 acetyltransferase, MOF, which 

has a role in neutralising histone charges to unwind chromatin structure (Dou et al., 

2005), and the WDR5 protein, which interacts with Histone 3 to present the lysine 4 

side chain for further methylation to take place (Ruthenburg et al., 2006).  In addition, 

ASH2L and RBBP5 stabilize the active MLL complex to initiate efficient 

methyltranferase function (Yokoyama et al., 2004; Southall et al., 2009).  Collectively, 

this complex induces trimethylation of H3K4, which is required for active transcription.  

MLLN on the other hand, associates with proteins required for targeting the MLL 

complex to specific loci.  The tumour suppressor protein menin, which is a product of 

the Men1 gene, interacts with a region of MLLN between amino acid residues 5 and 44 

(Caslini et al., 2007).  Its physical interaction was shown to be important for MLL-

fusion mediated oncogenic transformation (Yokoyama et al., 2005; Caslini et al., 2007).  

Furthermore, MLL and menin provide a surface for interacting with the lens epithelium 

derived growth factor (LEDGF), which in turn tethers the MLL complex to chromatin 

(Yokoyama and Cleary, 2008).  The MLL macro-complex co-ordinates chromatin 

remodelling through several activities, including methylation and acetylation, in order to 

initiate transcription.  A schematic diagram of the MLL protein is shown in Figure 1.6.  

The recruitment of this complex may be regulated by several transcription factors, for 

example p53 and β-catenin (Dou et al., 2005; Sierra et al., 2006; Wang et al., 2010).   

 

1.10. MLL fusions and their transcriptional targets 

 

Based on sequencing analysis of patients diagnosed with 11q23-associated leukaemia, a 

common target region of MLL rearrangement was found (Gu et al., 1994).  
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Figure 1.6.  The normal function of the MLL complex [adapted from (Slany et al., 

2009)] 

The schematic diagram illustrates the normal function of the MLL complex. The 

proteolytically cleaved MLL forms a macromolecular complex with several other 

proteins. This complex has a role in H3K4 trimethylation and H4K16 acetylation to 

assist chromatin remodelling and transcriptional initiation. LEDGF, lens epithelium 

derived growth factor; PHD, plant homeodomain; MLLN, N-terminal fragment of MLL; 

MLLC, C-terminal fragment of MLL; SET, su(var)3-9, enchancer-of-zeste, trithorax; H, 

histone; Ac, acetylation; CH3, trimethylation; ASH2L, (absent, small, or homeotic)-

like; MOF, males absent on the first; RBBP5, retinoblastoma binding protein 5; WDR5, 

WD repeat domain 5.  
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This 8.3kb breakpoint cluster region (BCR) lies between exons 8 and 13 of the MLL 

gene, next to sequences encoding the PHD zinc finger motifs, and includes 

topoisomerse II cleavage sites (Hars et al., 2006).  Although there is no conclusive 

evidence, the fact that this region contains topoisomerase II cleavage sites indicates that 

double strand breaks may be involved in initiation of the translocation events (Libura et 

al., 2005).  An alternative hypothesis is that the translocation is a result of early 

apoptotic events that preferentially cause breaks in the BCR of MLL.  In cells that 

ultimately survive, these breaks are repaired, but may result in translocations in a small 

fraction of cells (Betti et al., 2001).  In either case, it is likely that non-homologous end 

joining (NHEJ) is involved in this process since the BCR contains filler nucleotides 

which are also present and involved in the generation of T and B cell receptor diversity, 

a process that is known to use the NHEJ pathway (Gillert et al., 1999). 

 

Re-arrangement of the MLL gene is frequently characterised by a balanced in-frame 

translocation between MLL and a fusion partner gene.  Together they produce a fusion 

gene that encodes an MLL-chimeric fusion protein.  Generally, these MLL-fusion 

proteins retain the N-terminus of MLL, with the ATH1-3, SNL1-2 and RD1-2 domains, 

while losing the TAD and SET domains and the rest of the C-terminus.  In addition, all 

the MLL-associated translocations disrupt the Taspase 1 proteolytic cleavage site 

[reviewed in (Daser and Rabbitts, 2005)].  Although there is some evidence that the 

reciprocal fusion product of the MLL-AF4 translocation, the AF4-MLL fusion, may 

contribute to ALL, there is no evidence of any other reciprocal fusion being implicated 

in MLL-associated leukaemia [(Bursen et al., 2010; Benedikt et al., 2011)].   
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It is likely that MLL-fusions exert their effects as a result of a gain-of-function rather 

than a loss-of-function.  There are several lines of evidence to support this.  Firstly Mll-/- 

knockout mice exhibited defective haematopoietic progenitors rather than increased 

numbers (Hess et al., 1997; Yagi et al., 1998; Ernst et al., 2004).  Furthermore, Mll+/- 

mice and truncated MLL-myc(tag) knock-in mice do not exhibit an increase in 

leukaemia incidence (Corral et al., 1996), suggesting that loss of one MLL allele or MLL 

truncation is not sufficient for leukaemogenesis.  However, when the AF9 gene was 

introduced into the Mll locus by homologous recombination, to generate an Mll-AF9 in-

frame knock-in model, the resulting mice developed AML, demonstrating that the 

presence of fusion partner is essential for leukaemia induction (Dobson et al., 1999).  

Collectively, this evidence suggests that oncogenic transformation by MLL-fusions is a 

consequence of gain-of-function activity. 

 

Hox genes are some of the most studied MLL target genes and MLL has been found to 

bind directly to promoter regions of specific Hox genes (Milne et al., 2002).  Hox genes 

are a highly conserved family of transcription factors that are expressed in 

embryogenesis as well as in various adult tissues, such as bone marrow (Pineault et al., 

2002).  There are 39 recognised Hox genes in mice and humans and they are classified 

into 4 different clusters (A, B, C and D) (Pineault et al., 2002).  In haematopoiesis, 

different Hox genes are required for various stages of haematopoiesis, usually being up-

regulated in early stages of haematopoiesis and down-regulated upon differentiation 

(Sauvageau et al., 1994; Lawrence et al., 1996). 
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1.11. MLL fusion partners 

 

To date, at least 73 different MLL translocations have been described and 54 MLL 

fusion partners have been identified [reviewed in (Slany, 2009)].  These fusion partners 

can be grouped into several categories.  The most common fusion partners encode 

nuclear proteins which include AF4, AF9, AF10 and ENL, associated with four of the 

five most common MLL-rearranged leukaemia subtypes [reviewed in (Krivtsov and 

Armstrong, 2007)].  Interestingly, most of these nuclear proteins are themselves also 

involved in transcriptional activation and elongation (Bitoun et al., 2007; Mueller et al., 

2007).  AF9 is a proline/serine rich nuclear protein and is responsible for gene 

activation (Erfurth et al., 2004).  Interestingly, an Af9 knockout study showed that Af9 

expression is required for controlling pattern formation in normal embryogenesis 

(Collins et al., 2002).  AF9 and ENL both have a highly conserved region at their C-

termini, the 84 amino-acid domain and this domain in ENL is enough to cause 

transformation when fused to the N-terminal MLL fragment (Slany et al., 1998).  

Indeed, AF9 and ENL share structural similarity and protein-protein interactions 

[reviewed in (Schulze et al., 2009)].  The C-termini of AF9 and ENL (hydrophobic 

region) were shown to interact with other fusion partners of MLL, such as AF4 and 

AF5q31 (Prasad et al., 1995; Zeisig et al., 2005; Bitoun et al., 2007).  The N-termini of 

AF9 and ENL contain the highly conserved YEATS (Yaf9, ENL, AF9, Taf14, and 

Sas5) domain which is responsible for histone H3 and H1 binding (Zeisig et al., 2005).  

Moreover, AF9 and ENL were both found to be recruited to the SWI-SNF complex and 

ENL was found to participate in a SWI-SNF-like complex, called ENL-associated 

BRG1- or hbrm-associated factors  (EBFAF) (Nie et al., 2003).  AF4 is also a 

proline/serine rich nuclear protein containing a transactivation domain and was shown 

be required for lymphoid development (Isnard et al., 2000).  AF4 belongs to the 
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FMR2/LAF4 protein family together with two other fusion proteins, AF5q31 and LAF4.  

(Erfurth et al., 2004).  In addition, AF4 has been shown to interact directly with AF9, 

affecting subnuclear co-localization of the MLL-AF4 fusion protein (Erfurth et al., 

2004; Zeisig et al., 2005).  AF10 interacts with ENL and the AF9 homolog GAS41, 

which also interacts with SWI-SNF complex (Debernardi et al., 2002).  In addition, 

AF10 was recently found to interact with the histone 3 lysine 79 (H3K79) 

methytransferase, Dot1l, which was shown to be essential for MLL-fusion mediated 

transformation (Okada et al., 2005).  

 

A second group of fusion partners are cytoplasmic proteins, such as AF6, GAS7 and 

EEN.  These cytoplasmic proteins were shown to induce oligomierisation, mediated by 

coiled coil domains, and this is required for MLL-associated transformation by these 

fusions (So et al., 2003).  Septins are a small group of MLL fusion partners, including 

SEPT2, 5 6, 9 and 11.  They are also cytoplasmic proteins and have several functional 

roles such as cell cycle regulation, vehicle trafficking and GTP hydrolysis.  However, 

the functional significance of these activities in MLL-fusion associated 

leukaemogenesis is unknown (Hall and Russell, 2004).  The final group of fusion 

partners includes p300 and CBP, both of which are acetyltransferases and also found to 

interact with normal MLL, via the TD domain, which is lost in the MLL-fusions (Ida et 

al., 1997; Rowley et al., 1997; Taki et al., 1997). 
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1.12. Regulation of transcription by MLL-fusions 

 

Despite the large number of different MLL-fusions, many of the MLL-associated 

leukaemias share a common gene expression signature, suggesting that many of the 

fusions may have a similar mechanism of action (Armstrong et al., 2002).  For the 

nuclear protein MLL-fusions there has been some progress in understanding this 

mechanism, with the discovery that the fusion partners AF9, ENL, AF4 and AF10 could 

interact with each other and that ENL could bind to histone H3.  This suggested that all 

of these fusion partners may have a common chromatin re-modelling function (Zeisig et 

al., 2005).  The complex containing these fusion partners was then named ENL-

associated protein (EAP) and this complex was also discovered to bind the C-terminal 

kinase domain of RNA polymerase II (RNA pol II CTD), the positive transcription 

elongation factor b (pTEFb) and the H3K79 histone methyltransferase Dot1l (Bitoun et 

al., 2007; Mueller et al., 2007).   pTEFb is a heterodimeric complex of cyclin-dependent 

kinase 9 (CDK9) and cyclin T1, which phosphorylates the RNA pol II CTD, and the 

DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF).  This 

process is necessary for efficient elongation (Bitoun et al., 2007).  This evidence 

suggests that these common nuclear fusion partner proteins are essential for H3K79 

methylation during transcriptional elongation.  The model for normal transcriptional 

elongation is shown in Figure 1.7.  In this model, the normal MLL complex is recruited 

to RNA pol II, located at a promoter region, to trimethylate H3K4.  The MLL complex-

associated protein, MOF, acetylates H4K16 to neutralize histone charges, in order to 

unwind the chromatin structure.  The negative elongation factors, DSIF and NELF, are 

also associated with RNA pol II, ensuring its transcriptional arrest  
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Figure 1.7.  The normal function of the MLL complex and EAPs in the 

transcriptional elongation process [modified from (Bitoun et al., 2007)]  

The schematic diagrams illustrate the normal function of the MLL complex in the 

transcriptional elongation process.  The MLL complex is recruited to RNA pol II to 

trimetylate H3K4 and acetylate H4K16, to neutralise histone charges (Top diagram).  

pTEFb is recruited to phosphorylate RNA pol II, DSIF and NELF to release the arrested 

RNA pol II. Meanwhile, ENL-AF9 form a complex with H3 to recruit AF10 to the AF4 

and ENL-AF9 complex. This AF10-ENL-AF9 interaction recruits Dot1l to RNA pol II 

to cause H3K79 methylation (Middle). RNA pol II initiates elongation and MLL and 

other complexes leave the elongation complex (Bottom).  Pol II, RNA polymerase II; 

MLLN, N-terminal fragment of MLL; MLLC, C-terminal fragment of MLL; DSIF, DRB 

sensitivity-inducing factor; NELF, negative elongation factor; P, phosphorylation; 

pTEFb, Positive transcription elongation factor b; Dot1l, Disruptor of telomeric 

silencing-1.  
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When pTEFb, in a complex with AF4 and ENL-AF9, is recruited to the RNA pol II 

complex, it phosphorylates the RNA pol II CTD, DSIF and NELF, to release the 

arrested polymerase.  At the same time, ENL-AF9 dissociates from pTEFb and instead 

complexes with H3, to recruit AF10 to the AF4 and ENL-AF9 complex.  This 

interaction between AF10 and ENL-AF9 results in recruitment of Dot1l to the RNA pol 

II complex.  Dot1l in turn, methylates H3K79 and initiates elongation.  When 

elongation proceeds, MLL leaves the active elongation complex (Bitoun et al., 2007). 

 

However, fusion of MLL to the nuclear partners disrupts this highly organised process.  

The MLL-fusion itself binds to Dot1l and pTEFb, due to the presence of the appropriate 

fusion partner domain within the fusion protein.  This results in aberrant and elevated 

H3K79 methylation and deregulated transcriptional elongation by RNA pol II at MLL-

fusion target loci (Bitoun et al., 2007; Yokoyama et al., 2010) (Figure 1.8). 

 

Recently, wild type MLL was also found to be implicated in the leukemogenic activity 

of MLL-fusions.   Milne et al showed that MLL-fusion proteins are unable to bind the 

Hoxa9 promoter region in the absence of wild type MLL (Milne et al., 2010).  In the 

proposed model, wild type MLL protein is first recruited by the mammalian PAF 

elongation complex (PAF1C) and di- or trimethylates H3K4 at the HoxA9 promoter.  

This recruitment of wild type MLL releases the binding by repressor proteins such as 

the ERG-associated protein with SET domain (ESET), which is an H3K9 

methyltransferase. As a result, the MLL-fusion can then bind to an open chromatin 

conformation (Milne et al., 2010).  This model is also supported by other studies.  Thiel 

et al demonstrated that Menin recruits both wild type MLL and MLL-fusions to the 

Hoxa9 promoter region (Thiel et al., 2010).  
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Figure 1.8.  The proposed abnormal function of MLL-fusions in transcriptional 

elongation 

The schematic diagram illustrates the proposed abnormal function of MLL-fusions in 

transcriptional elongation.  The MLL-fusion binds to Dot1l and pTEFb due to its fusion 

partners.  This abnormal complex causes aberrant H3K79 methylation and deregulated 

transcriptional elongation by RNA pol II at MLL-fusion target loci. Pol II, RNA 

polymerase II; MLLN, N-terminal fragment of MLL; DSIF, DRB sensitivity-inducing 

factor; NELF, negative elongation factor; P, phosphorylation; ; Dot1l, Disruptor of 

telomeric silencing-1.  
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This study also showed that MLL-AF9-transduced mouse bone marrow cells require 

wild type MLL to maintain over-expression of Hoxa9, proliferation, survival and 

transformation (Thiel et al., 2010).  Taken together, all of this evidence indicates that 

the MLL complex is involved in transcriptional initiation and chromatin remodelling in 

a highly regulated manner, and that MLL-fusions, assisted by the wild type MLL 

complex, function by ‘hijacking’ the machinery to cause aberrant regulation of MLL 

target genes, such as the Hox genes.        

 

1.13. Transcriptional down-stream targets of MLL-fusions 

 

Since both the normal MLL complex and the MLL-fusion complex share the N-

terminus of MLL, it is highly probable that they share common target genes.  Indeed, 

this was shown to be the case, at least for HOX genes (Armstrong et al., 2002; 

Yokoyama et al., 2002).  Up-regulation of HOX gene expression, particularly HOXA7, 

HOXA9 and their dimerization partner, mouse ecotropic integration site (MEIS1), are 

consistently observed in 11q23-associated leukaemia (Armstrong et al., 2002).  In 

addition, human patients with MLL-associated leukaemia also frequently have elevated 

expression of HOXA7, HOXA9 and MEIS1 (Yeoh et al., 2002).  Hoxa9 and Meis1 are 

restricted in their expression in early haematopoietic cells (Pineault et al., 2002). 

Several studies using murine MLL-fusion models suggest that Hoxa9 and Meis1 are 

major target genes of MLL-fusions and are required for induction of MLL-associated 

leukaemia (Ayton and Cleary, 2003; Zeisig et al., 2004; Krivtsov et al., 2006; Faber et 

al., 2009; Kumar et al., 2009).  Continued expression of MLL-fusions was also shown to 

be required for maintenance of Hox gene expression in transformed cells (Horton et al., 

2005).  In addition, ectopic expression of Hoxa9 and Meis1 in mouse bone marrow was 
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shown to transform haematopoietic cells and induce AML, with features resembling 

MLL-associated leukaemia (Kroon et al., 1998).  In fact, MLL-ENL binds to promoter 

regions of both Hoxa9 and Meis1, and expression of these two genes substitute for 

MLL-ENL in maintaining transformation (Zeisig et al., 2004; Milne et al., 2005).  These 

studies confirm that Hoxa9 and Meis1 are key transcriptional targets of MLL-fusions.  

Further studies demonstrated that c-Myb was found to be one of the down-stream target 

genes of Hoxa9 and Mies1, suggesting that Hoxa9 and Meis1 mediate leukaemia 

through deregulated c-Myb expression (Hess et al., 2006). 

 

Apart from Hoxa9 and Meis1, MLL-fusions are thought to regulate a large number of 

other genes.  In a mouse model of MLL-rearranged ALL, genome-wide chromatin 

immunoprecipitation (ChIP) analysis showed MLL-AF4 binding to, and increased 

H3K79 methylation in, more than 1000 promoters, indicating deregulated expression of 

many other genes (Krivtsov et al., 2008).  In contrast, ChIP analysis in a human 

leukaemia cell line, suggested that MLL-AF4 bound the promoters of less than 200 

genes (Guenther et al., 2008).  Furthermore, a recent study using a conditional mouse 

model demonstrated that only a small proportion of MLL target genes were bound by 

MLL-fusions, resulting in increased H3K79 methylation and upregulated expression 

(Wang et al., 2011).  This suggests that MLL-fusions may act through the direct 

deregulation of a relatively small number of key target genes, that in turn cause changes 

in the expression of a large number of downstream genes. 
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1.14. Models for MLL-fusion induced leukaemia 

 

In order to understand the molecular pathogenesis of MLL-fusion associated leukaemia, 

several groups have generated murine models, using different approaches (Figure1.9).  

The classical model was generated utilizing homologous recombination in embryonic 

stem (ES) cells, to knock-in the human AF9 gene into exon 8 of the endogenous mouse 

Mll locus, achieving endogenous expression of Mll-AF9 (Corral et al., 1996; Dobson et 

al., 1999; Dobson et al., 2000).  These chimeric ES cells were injected into blastocysts 

and chimeric mice were produced.  The resulting knock-in chimeric mice and their 

heterozygous offspring developed predominantly AML, and occasionally ALL, with 

extended latency, suggesting the possible requirement of secondary mutations for 

leukaemia development.  The advantage of the knock-in model is that Mll-AF9 

expression is driven by the endogenous Mll promoter and the resulting mice contain 

only one wild type Mll allele.  However, using this knock-in approach, the Mll-AF9 

gene is expressed ubiquitously like Mll itself, and is not restricted to haematopoietic 

cells.  

 

In order to achieve tissue-specific expression of the MLL-fusion, the same group 

elegantly used interchromosomal recombination to generate a conditional model of Mll-

Af9 (Collins et al., 2000) and Mll-Enl (Forster et al., 2003) expression.  In this model, 

recombination was mediated by the Cre-loxP system, whereby Cre recombinase 

facilitates de novo site-specific chromosomal recombination of loxP sites, introduced 

into the appropriate chromosomes in the mice.  In addition, the tissue specificity of 

these conditional knock-in mice was achieved by driving Cre recombinase expression 

from the Lmo2 promoter, which is expressed in HSC (Forster et al., 2003).  
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Figure 1.9.  Models for MLL-fusions [modified from (Marschalek., 2011)] 

The schematic diagrams illustrate different models for MLL-fusions in human and mice 

cells.  The models can be classified into transgenic models and retroviral transduction 

models.  Knock-in mouse was generated using homologous recombination. 

Intrerchromosomal recombination was used to generate a conditional knock-in model 

using Cre recombinase.  Retroviral transduction was used to create both constitutive and 

conditional expression of MLL-fusions.  The retroviral transduction system was also 

used to generate a model for MLL-fusions using human cord blood.  TK, herpes 

simplex virus thymidine kinase gene; polyA, simisimian virus 40 (SV40) poly(A) site; 

ES, embryonic stem; LTR, long terminal repeat, tTA-I-E, t tetracycline transactivator-

IRES-EGFP. 
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This model gave rise to rapid AML, with a latency of approximately two to four 

months, suggesting that this rare somatic recombination event is enough, possibly 

without a secondary mutation, to induce leukaemia (Forster et al., 2003). 

 

An alternative approach was used to generate a murine model of MLL-ENL induced 

disease by retroviral transduction of mouse bone marrow haematopoietic progenitor 

cells (Lavau et al., 1997; Slany et al., 1998).  In this model, the transduced cells were 

immortalised in vitro and gave rise to rapid AML upon transplantation into irradiated 

recipient mice.  Several other MLL-fusions have been modelled using this retroviral 

transduction approach, such as MLL-AF9 (Somervaille and Cleary, 2006), MLL-EEL 

(DiMartino et al., 2000; Lavau et al., 2000b) and MLL-CBP (Lavau et al., 2000a).  In 

addition, pro-B cell ALL development was demonstrated using MLL-ENL (Zeisig et al., 

2003).  This approach was also used to show that committed progenitors expressing 

MLL-ENL (Cozzio et al., 2003) and MLL-AF9 (Krivtsov et al., 2006) were able to 

induce AML.  Tamoxifen-inducible retroviral expression models were then generated 

and used to demonstrate the dependence of transformed cells on continued MLL-fusion 

expression (Ayton and Cleary, 2003; Zeisig et al., 2004).  In this system, a mutant 

human estrogen binding domain, which is responsive to 4-hydroxyl-tamoxifen (4-

OHT), was fused with the C-terminus of the MLL-ENL.  As a result, the MLL-ENL 

protein was in an inactive state, due to complex formation with heat shock proteins, and 

only became active once it was released from the complex in the presence of 4-OHT 

(Zeisig et al., 2004). 

 

Our lab has used a modified retroviral approach to generate a conditional murine model 

of MLL-ENL expression, regulated by the ‘Tet-Off’ system (Horton et al., 2005).  In this 
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model, the tetracycline-responsive promoter element (TRE) drives MLL-ENL 

expression, which is dependent on binding of the tetracycline-controlled transactivator 

protein (tTA).  In the presence of doxycycline (dox), tTA undergoes a conformational 

change that prevents it from binding to the TRE and therefore blocks the expression of 

MLL-ENL.  Using this model, it was demonstrated that maintenance of MLL-ENL 

expression is obligatory for the survival and proliferation of immortalized cells in vitro 

and for leukaemia progression in vivo (Horton et al., 2005; Horton et al., 2009).  

Although these mouse models have yielded valuable information on the mechanism of 

MLL-fusion mediated leukaemia, the use of inbred mice has important limitations in 

recapitulating human disease.  Therefore, generation of a human MLL-fusion model 

was necessary to compliment the work with mouse cells.  

 

In contrast to the large body of data using murine MLL-fusion models, there are 

comparatively few publications concerning human models.  The first model to examine 

the consequences of expressing MLL-fusions in human primary cells was generated by 

Barabe et al (Barabe et al., 2007).  This study transduced lineage-depleted human 

umbilical cord blood cells with retroviral vectors expressing MLL-ENL and MLL-AF9. 

Sublethally irradiated immunodeficient mice transplanted with the transduced cells 

developed disease with hallmarks of human acute leukaemia (Barabe et al., 2007).  

Interestingly, only ALL developed from the cells transduced with MLL-ENL, while 

features of both AML and ALL were observed from cells transduced with MLL-AF9.  

The transduced cells expressing MLL-ENL and MLL-AF9 continued to proliferate in 

vitro for approximately 100 and 125 days, respectively (Barabe et al., 2007).   
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Following this study, Wei et al was the second group to generate a human model of 

MLL-AF9 associated leukaemia using retroviral transduction of human CD34+ cord 

blood (Wei et al., 2008).  They also transplanted the transduced cells into sublethally 

irradiated immunodeficient mice to show the induction of acute leukaemia.  

Interestingly, they demonstrated that the generation of ALL or AML by the MLL-AF9 

expressing cells was dependent on the strain of immunodeficient mice used in the 

transplantation experiment. In contrast to the work of Barabe et al, the MLL-AF9 

transduced cells proliferated indefinitely in vitro (Wei et al., 2008).  Together, these two 

studies established the possibility of using human primary cells to generate models that 

can be used to study the leukaemogenic activity of MLL-fusions. 

 

1.15. Telomerase activity and MLL-fusion associated leukaemia 

 

Telomeres are non-coding short repeated DNA sequences at the ends of eukaryotic 

chromosomes that have a role in protecting these regions [reviewed in (Blackburn, 

1991; Blackburn, 2001)].  The mammalian telomere sequence consists of TTAGGG 

tandem repeats and the telomere ends are protected by a 6 protein subunit called 

shelterin [reviewed in (Martinez and Blasco, 2011)].  Shelterin caps and shapes the ends 

of chromosomes into t-loops and this confirmation is important for stabilizing 

chromosome ends and preventing their end-to-end fusion, degradation, chromosomal 

recombination and recognition as damaged double stranded DNA.  Since DNA 

polymerase cannot replicate DNA at the ends of chromosomes, telomeric DNA 

sequence is lost every time cells divide, a phenomenon known as ‘the end replication 

problem’ [reviewed in (Harley, 2008)].  In order to solve this problem, terminal 

telomeres are synthesized by a ribonucleoprotein (RNP) complex called telomerase, to 
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compensate for this loss (Blackburn, 1992).  The major subunits of the telomerase 

complex consist of telomerase reverse transcriptase (TERT) and telomerase RNA 

component (TERC). 

 

In general, telomerase activity is elevated in many cancers.  It is believed that 

telomerase activity is essential for maintaining telomeres and the indefinite proliferation 

of cancer cells.  Leukaemia is not an exception to this.  Indeed, one study showed that 

although elevated telomerase activity in adult AML patients correlated with better 

prognosis and survival, elevated telomerase activity in paediatric AML was associated 

with poor prognosis and survival (Verstovsek et al., 2003).  Several other studies also 

support this data (Ohyashiki et al., 1997; Xu et al., 1998; Engelhardt et al., 2000). 

Another study demonstrated the correlation between complete remission of acute 

leukaemia and decreased telomerase activity. An increase in telomerase activity in 

isolated CD34+ cells from leukaemia patients has also been demonstrated (Ohyashiki et 

al., 1997; Engelhardt et al., 2000).  Furthermore, transduction of cells from AML patient 

samples, with a dominant-negative TERT expression vector, resulted in reduced 

clonogenic potential in colony formation assays and delayed engraftment of leukaemia 

upon xenotransplantation (Roth et al., 2003).  All this evidence supports the idea that 

telomerase activity is important in leukaemia progression. 

 

Two studies reported an association between MLL-fusion induced leukaemia and 

elevated telomerase activity.  Gessener et al showed decreased telomerase activity and 

TERT expression in human leukaemia cell lines upon siRNA-mediated inhibition of 

MLL-AF4 expression (Gessner et al., 2010).  HOXA7 was shown to bind to a region of 

the TERT promoter and HOXA7 knockdown was shown to result in decreased TERT 
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expression and telomerase activity (Gessner et al., 2010).  This suggested that MLL-

fusions may regulate telomerase activity through transcriptional activation of their 

HOXA gene targets.  Wei et al demonstrated elevated telomerase activity in their MLL-

AF9 immortalized human cells (Wei et al., 2008).  However, it is unclear how MLL-

AF9 induced this elevated activity, since no increase in TERT expression was observed 

(Wei et al., 2008).  However, these studies indicate that telomerase activity is highly 

likely to be involved in MLL-fusion associated leukaemia pathogenesis.  

   

1.16. RUVBL1 and RUVBL2 

 

RUVBL1 (also known as Tip49a, NMP238, ECP54, TAP54α, TIH1, Pontin and Rvb1) 

and RUVBL2 (also known as Tip49b, ECP51,CGI-46, INO80J, TIH2 Tip48, Reptin 

and Rvb2) are two related family members of ATPases associated with diverse cellular 

activities (AAA+) [reviewed in (Grigoletto et al., 2011)].  They are involved in many 

cellular processes and take part in the formation of multiple complexes.  One of the 

characteristics of AAA+ proteins is the formation hexameric rings, mediated by the 

AAA+ domains [reviewed in (Huen et al., 2010a)] (Figure 1.10).   

 

RUVBL1 and RUVBL2 contain conserved Walker A and Walker B domains which are 

responsible for ATP binding and ATPase activity (Mezard et al., 1997).  Apart from 

their ATPase activity, RUVBL1 and RUVBL2 have both been suggested to have 

helicase activities [reviewed in (Grigoletto et al., 2011)].     
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Figure 1.10.  Architecture of RUVBL1 and RUVBL2  

A) Domain organisation of human RUVBL1 and RUVBL2. B) 3D structure of the 

human RUVBL1 monomer in a ribbon representation. Red arrow indicates the location 

of Walker A and Walker B motifs.[modified from (Matias et al., 2006; Huen et al., 

2010b)]. C) 3D structure of human RUVBL1 hexamer (side view on the left, top view 

on the right) [B&C adapted from (Matias et al., 2006)].  D) Yeast Rvbl1-Rvbl2 structure 

shown using an electron microscope (adapted from [(Cheung et al., 2010)].  AAA+, 

ATPases belonging to the ATPAse associated with various cellular activities; aa, amino 

acid. N, N-terminal and C, C-terminus. 
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The ATPase and helicase activities of RUVBL1 and RUVBL2 are seen in several 

different protein complexes, involved in chromatin remodelling, transcriptional 

regulation and telomerase assembly (Baek, 2008).  

 

The Ino80 complex is one example of a chromatin remodelling complex containing both 

RUVBL1 and RUVBL2. This complex is conserved from yeast to humans and is 

responsible for nucleosome mobilization as well as DNA repair and replication 

(Conaway and Conaway, 2009).  TIP60 is another complex in which RUVBL1 and 

RUVBL2 are involved. 

 

TIP60 is an evolutionally conserved histone acetyltransferase enzyme (HAT).  The 

HAT activity of TIP60 plays a crucial role in DNA damage repair (Jha et al., 2008).  

DNA damage induces phosphorylation of the histone variant called H2AX, and its 

phosphorylation is required in order to recruit other proteins to amplify the damage 

signal and for damage repair to proceed.  TIP60 and RUVBL1 were shown to be crucial 

in downregulation of phosphoH2AX following completion of DNA repair.  In addition, 

RUVBL1 was suggested to play a role in efficient assembly and regulation of TIP60 

(Jha et al., 2008).   

 

RUVBL1 and RUVBL2 are also known to interact with many transcription factors such 

as c-Myc and β-catenin. Reporter gene assays were used to show that both RUVBL1 

and RUVBL2 not only bound β-catenin, but also regulated its activity.  Interestingly, in 

this study, RUVBL2 was shown to repress β-catenin mediated transcriptional activity, 

while RUVBL1 activates it (Bauer et al., 2000).  The antagonistic function of RUVBL1 
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and RUVBL2 was also apparent in the regulation of the anti-metastatic gene KAI-1 

(Kim et al., 2005).  Thus, RUVBL2 was found to repress KAI-1 transcription by 

forming a complex with TIP60, whilst RUVBL1 activated its transcription by forming a 

complex with β-catenin (Kim et al., 2005). 

 

Recently, RUVBL1 and RUVBL2 were both discovered to be a part of the telomerase 

complex (Venteicher et al., 2008).  RUVBL1 was demonstrated to interact with TERT 

and to recruit RUVBL2 to the resulting complex.  RUVBL1 and RUVBL2 were also 

found to interact with the TERC-binding protein dyskerin.  Also, TERT-RUVBL1-

RUVBL2 association was found to be regulated in a cell cycle-dependent manner, since 

this complex was specifically found in the S phase of the cell cycle (Venteicher et al., 

2008). Depletion of RUVBL1 and RUVBL2 resulted in reduced telomerase activity. 

From these findings, the authors proposed that RUVBL1and RUVBL2 are required for 

assembly and remodelling of the telomerase complex, prior to TERT-TERC-dyskerin 

complex formation (Venteicher et al., 2008) 

 

There are several lines of evidence indicating that RUVBL1 and RUVBL2 expression are 

regulated by c-Myc (Wood et al., 2000; Fan et al., 2010). Wood et al showed decreased 

RUVBL1 and RUVBL2 expression in c-Myc null rat fibroblasts (Wood et al., 2000).  In 

addition, c-Myc binding sites were identified in both RUVBL1 and RUVBL2 promoters, 

suggesting that c-Myc transcriptionally regulates RUVBL1 and RUVBL2 expression 

(Fan et al., 2010).  Interestingly, RUVBL1 and RUVBL2 protein expression have also 

been shown to be interdependent.  Venteicher et al first demonstrated that depletion of 

RUVBL1 by siRNA resulted in co-depletion of RUVBL2 protein expression, and the 

reciprocal result was also obtained upon depletion of RUVBL2 (Venteicher et al., 2008).  
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A similar trend was observed in other cell lines including liver and breast cancer cell 

lines (Haurie et al., 2009).  Haruie et al also found that depletion of RUVBL1 does not 

affect the mRNA level of RUVBL2 and vice versa, suggesting that this co-depletion was 

regulated by a post-translational mechanism, possibly proteasomal degradation (Haurie 

et al., 2009).  Collectively, these studies demonstrate the tight co-regulation of 

RUVBL1 and RUVBL2 expression. 

 

RUVBL1 and RUVBL2 are also implicated in cancer. RUVBL1 was shown to be 

required for c-Myc and β-catenin mediated transformation (Wood et al., 2000; Feng et 

al., 2003).  Recently, RUVBL2 was found to be over-expressed in gastric cancer and the 

clonogenic potential of gastric cancer cells was shown to depend on RUVBL2 

expression (Li et al., 2010).  RUVBL2 function was associated with c-MYC mediated 

transcriptional regulation of TERT expression and resulting telomerase activity.  Other 

studies also showed the importance of RUVBL1 and RUVB2 expression in 

hepatocellular carcinoma (Haurie et al., 2009; Menard et al., 2010).  Together, these 

data have established the importance of RUVBL1 and RUVBL2 expression in several 

human cancers.  
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1.17. Aims and objectives 

 

Using Affymetrix GeneChip expression analysis, our lab recently established a list of 

MLL-fusion target genes critical for oncogenic function in murine cells (Dr Vanessa 

Walf-Vorderwülbecke, PhD thesis).  The aim of the present study was to establish 

whether the identified murine MLL-fusion target genes are also required in human 

immortalised cells.  In order to achieve this, we planned to generate a human model to 

investigate the importance of the MLL-fusion target genes.  Therefore, my objectives 

were: 

 

1. Generate immortalised myeloid cell lines from human cord blood using MLL-fusions 

2. Use patient-derived leukaemic cell lines to study MLL-fusion function 

3. To investigate the role of the MLL-fusion target genes in human leukaemogenesis 
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CHAPTER 2.  MATERIALS AND METHODS 

 

2.1. Transformation of bacteria 

 

Subcloning Efficiency DH5α™ chemically competent cells (Invitrogen, Paisley,UK) 

were used for transforming bacteria.  1µl of DNA (0.5µg/µl) was incubated in pre-

chilled polypropylene round-bottom tubes (BD Bioscience [BD], Oxford, UK) together 

with the competent cells, previously thawed on ice. The mixture was incubated on ice 

for 30 minutes, followed by heat shock for 20 seconds in a 37°C waterbath. The mixture 

was subsequently incubated on ice for 2 minutes.  300µl of pre-warmed SOC outgrowth 

medium (New England Bio Labs [NEB], Ipswich, UK) was added to the mixture and 

shaken at 37°C for one hour at 225 rpm.  The mixture was then plated onto LB agar 

plates containing LB agar (1.5g bacto Agar (BD) per 100ml LB broth (1% w/v Bacto 

Tryptone (BD), 0.5% w/v Bacto Yeast Extract (BD), 1% w/v Sodium Chloride 

(NaCl),[pH 7.0])) and 100µg/ml Ampicillin (Sigma-Aldrich, Dorset, UK) and incubated 

at 37°C overnight.  

 

2.2. Isolation of plasmid DNA  

 

Individual bacterial colonies were inoculated into 3ml LB broth with 100µg/ml 

Ampicillin and incubated in a shaker at 37 °C overnight, at 225 rpm.  The bacterial 

cultures were then used to extract DNA using the QIAprep Spin Miniprep Kit (Qiagen, 

West Sussex, UK) according to the manufacturer’s instructions. 1ml of bacterial culture 

was centrifuged at 300xg and the pellet was resuspended in 250µl buffer P1 and P2, 
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then thoroughly mixed.  350µl of buffer N3 was added to the mixture and then 

centrifuged at 17,900xg for 10 minutes. The supernatant was applied to a QIAprep spin 

column and centrifuged for 60 seconds and flow-through was discarded. The QIAprep 

spin column was washed by adding 0.5ml buffer PB and centrifuged as before, and the 

process repeated with 0.75ml of buffer PE. The QIAprep spin column was centrifuged 

for an additional 1 minute to remove excess buffer and then DNA was eluted with 30µl 

buffer EB.  The concentration of extracted plasmid DNA was determined by measuring 

the absorbance at 260nm using a spectrophotometer (NanoDrop ND-1000, Lebtech 

International, East Sussex, UK). The ratio of absorbance between 260 and 280 was used 

to measure the purity of DNA.  A ratio of approximately 1.8 was considered to be pure 

from protein contamination. 

 

In order to obtain large quantities of plasmid DNA, required for transfections, individual 

bacterial colonies were inoculated into 3ml of LB broth with 100µg/ml Ampicillin and 

incubated in a shaker at 37 °C for 6 hours, at 225 rpm.  This starter culture was then 

added to 250ml LB broth with 100µg/ml Ampicillin and incubated in a shaker at 37 °C 

overnight, at 225 rpm.  The Genopure Plasmid Maxi Kit (Roche, Burgess Hill, UK) was 

used to isolate the plasmid DNA from the bacterial culture according to manufacturer’s 

guidelines.  The bacterial culture was centrifuged for 15 minutes at 15,000xg.  The 

pellet was resuspended with 12ml of resuspension buffer and 12ml of lysis buffer and 

incubated for 2-3 minutes at room temperature.  12ml of neutralisation buffer was added 

to the mixture and incubated for 5 minutes on ice.  The lysate was cleared by 

centrifugation at 15,000xg for 30 minutes and the supernatant was added to a pre-

equilibrated column through a filter.  The column was washed 3 times with 16ml wash 

buffer, then eluted with pre-warmed 15ml elusion buffer.  The eluted plasmid DNA was 
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precipitated with 11ml isopropanol and centrifuged for 10 minutes at 15,000xg 

immediately.  The plasmid DNA was washed with chilled 70% ethanol and centrifuged 

again at 15,000xg for 10 minutes. The DNA pellet was air-dried and re-dissolved in 

distilled water. The concentration of the plasmid DNA was measured using a 

spectrophotometer as per the methods given above. 

 

2.3. Plasmid sub-cloning   

 

2.3.1. Restriction enzyme digests 

Restriction digestion of plasmid DNA was performed according to the manufacturer’s 

instructions.  In general, 10 µg of plasmid DNA was digested with 1µl of 10U/µl 

restriction enzyme, 20µl of 10x restriction enzyme buffer and 2µl of 10µg/µl BSA, in a 

final volume of 200µl, made up with H2O.  This was digested for 1-4 hours depending 

on the restriction enzyme used.  Depending on the size of the fragment, the digested 

products were run on 0.7-1.2% w/v Agarose gels [Agarose (Invitrogen), 1x TAE buffer 

(National diagnostics, Hessle, UK), 0.5% Ethidium Bromide (Sigma)], in order to be 

visualised (UV1doc HD/26M, Cambridge, U) and isolated. 

 

2.3.2. Blunt ending 

Linearised DNA with a 5’ overhang was filled with dNTPs (Promega) by T4 DNA 

polymerase (Promega), to generate fragmented DNA with a blunt end for some of the 

cloning procedures.   Blunting was carried out according to manufacturer’s protocols.  

In general, 2µg of fragmented DNA was filled in with 10 units of T4 DNA polymerase 

(Promega), 200µM of dNTPs and T4DNA polymerase reaction buffer was added to 
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make the final volume 100µl. The mixture was incubated for 15 minutes at 37C° and 

4µl of 0.5M EDTA was added to stop the reaction.  The blunt ended product was 

purified using the QIAquick Nucleotide removal kit (Qiagen) according to the 

manufacturer’s instructions.  

 

2.3.3. Gel extraction 

Isolated digested product was purified from the Agarose gel using QIAquick Gel 

Extraction Kit (Qiagen) according to the manufacturer’s guidelines.  The DNA fragment 

was excised from the agarose gel.  The excised gel fragment was weighed and 3 times 

the weight of buffer QG, to 1 times the weight of gel, was added and incubated at 50°C 

for 10 minutes, or until the gel was completely dissolved.  1 gel volume of isopropanol 

was added to the mix and transferred onto a QIAquick spin column and centrifuged at 

17,900xg for 1 minute.  The QIAquick spin column was centrifuged with 0.5ml of 

buffer QG for 1 minute to remove any trace of agarose, then centrifuged with 0.75ml of 

buffer PE for 1 minute to remove any salt contaminants. The QIAquick spin column 

was centrifuged for an additional 1 minute to completely remove ethanol from buffer 

PE.  DNA was then eluted by centrifuging the QIAquick spin column with 30µl of 

buffer EB (10mM, Tris-Cl [pH8.5]). 

 

2.3.4. Ligation 

Following gel extraction, the linearised DNA fragment and vector were ligated to 

generate plasmid DNA.  Depending on the cloning, the molar ratio between the 

fragment and the vector varied from 1:1, 3:1, and 10:1.  The following formula was 

used to determine the mass of insert required for each ratio. 
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For example, for 3:1 ratio ligation: 

ng insert required = [(50ng vector x kb insert )/kb vector]x3 

 

50ng of vector and the required amount of insert were ligated with 5µl of 2x Rapid 

Ligation Buffer (Promega) and 1 weiss unit of T4 DNA ligase (Promega), in a total 

volume of 10µl, made up with H2O.  The mixture was incubated at room temperature 

for 5 minutes for sticky end ligation and 15 minutes for blunt end ligation, prior to 

transformation (Refer to 2.1). 

 

2.4. Generation of retroviral expression constructs 

 

A schematic diagram of the retroviral expression constructs generated and used is 

shown in Figure 2.1. 

 

2.4.1. pMSCV-PGK-EGFP 

The cDNA of the green fluorescent protein (EGFP) gene was amplified by PCR using 

MSCV-LMP (Open Biosystems, Surrey, UK) as a template.  A 730bp fragment 

encoding EGFP was amplified using a forward primer incorporating a 5’ HindIII site: 5’ 

AGTAAGCTTCACGATGATAATATGGCCAC-3’ and a reverse primer incorporating 

a ClaI site: 5’-ACTATCGATAATTCATTACTTGTACAGCT-3’. pMSCV-puro 

(Clontech, Nottinghamshire, UK) was then digested with HindIII and ClaI to excise the 

650kb puromycin fragment.  The 730bp EGFP gene was then sub-cloned into the 

pMSCV-puro vector.  



73 
 

pMSCV-PGK-EGFP

5’LTR Ψ PGK EGFP AMPr3’LTR

HindIII ClaI

pMSCV-MLL-AF9

5’LTR Ψ PGK EGFP AMPr3’LTR

HindIII ClaI

FLAG MLL        AF9

XhoI

pMSCV-MLL-ENL

5’LTR Ψ PGK EGFP AMPr3’LTR

HindIII ClaI

FLAG MLL       ENL

XhoI

pMSCV-AML1-ETO9a-GFP

5’LTR Ψ IRES EGFP AMPr3’LTRAML1-ETO9a      

pMSCV-LMP

pMSCV-puro

5’LTR Ψ PGK Puror AMPr

HindIII ClaI

5’LTR Ψ PGK EGFP AMPr3’LTRPuror IRES

3’LTR

pMSCV-hCD2

5’LTR Ψ IRES hCD2 AMPr

EcoRI BamHI

3’LTR

pMSCV-neo-mod-MLL-ENL

5’LTR Ψ PGK Neo AMPr3’LTR

ClaI

FLAG MLL       ENL

XhoI

5’LTR Ψ PGK Neo AMPr3’LTR

ClaI

FLAG MLL       AF9

XhoI

pMSCV-neo-mod-MLL-AF9

 

Figure 2.1.  Retroviral expression vectors used in this study 

LTR, long terminal repeat; Ψ, viral packaging signal; PGK, murine phosphoglycerate 

kinase promoter; EGFP, enhanced Green Fluorescent Proteins; AMPr , ampicilin 

resistance gene.  
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2.4.2. pMSCV-PGK-MLL-ENL and pMSCV-PGK-MLL-AF9 

pMSCV-PGK-EGFP was digested with XhoI and ClaI to release the 1,238bp fragment 

consisting of the 508bp PGK promoter and the 730 bp EGFP gene fragments.  This 

1,238bp fragment was then sub-cloned into pMSCV-neo-mod-MLL-ENL, or pMSCV-

neo-mod-MLL-AF9, previously digested with XhoI and ClaI.  

 

2.5. Generation of lentiviral vectors 

 

A schematic diagram of the lentiviral constructs generated and used is shown in Figure 

2.2. 

 

2.6. shRNA  

 

The shRNA vectors used in this study were derived from vectors previously described 

(Silva et al., 2005) . In this system, a specific short hairpin was implanted into the 

transcript of the naturally occurring micro RNA 30 (miR30), which was previously 

demonstrated to increase the efficiency of knock down of the gene expression (Silva et 

al., 2005).  shRNA are delivered by lentiviral transduction and transcribed by RNA 

polymerase II to produce pre-mRNA (Figure 2.3).  This is then cleaved by a 

microprocessor complex containing the RNAase III family enzyme, Drosha. The pre-

mRNA is transferred into the cytoplasm via Exportin 5 and it is then further cleaved by 

Dicer to generate siRNA (Cullen, 2005; Leung and Whittaker, 2005; Rao et al., 2009).  
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Figure 2.2.  Lentiviral expression vectors used in this study  

LTR, long terminal repeat; Ψ, viral packaging signal; PGK, murine phosphoglycerate 

kinase promoter; EGFP, enhanced Green Fluorescent Protein; tGFP, turbo Green   

Fluorescent Protein; AMPr , ampicilin resistance gene; UbiC, Ubiquitin-C promoter; 

WASP, Wriskott Aldrich syndrome promoter;  SFFV, spleen focus-forming virus 

promoter; WRE, Woodchuck hepatitis virus regulatory element. Note that MLL-AF9 

expression in FUGW-V6MA vector is driven by UbiC promoter in reverse direction i.e. 

AF9-MLL.  
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5’LTR Ψ UbiC WASP AMPrFLAG MLL        AF9

FUGW-V6MA

EGFP

5’LTR Ψ UbiC WASP AMPrFLAG

FUGW-V6

EGFP

5’LTR WRE AMPrPuror Mir-30

pGIPZ

IREStGFPCMV

XhoI
PmeI

pSFFV-GIPZ-GFP

Ψ

5’LTR WRE AMPrPuror Mir-30IREStGFPSFFV

XhoI
PmeI

Ψ

pSFFV-GIPZ-DN control

5’LTR WRE AMPrPuror Mir-30IRESSFFVΨ

BamHI NotI

pSFFV-GIPZ-RUVBL1(D302N)

5’LTR WRE AMPrPuror Mir-30IRESRUVBL1(D392N)SFFVΨ

BamHI PmeI

pSFFV-GIPZ-RUVBL2(D302N)

5’LTR WRE AMPrPurorIRESRUVBL2(D392N)SFFVΨ

BamHI PmeI

pSFFV-GIPZ-CD2

5’LTR WRE AMPrPuror Mir-30IREShCD2SFFV

XhoI
PmeI

Ψ

∆u3 R U5

∆u3 R U5

∆u3 R U5

∆u3 R U5

∆u3 R U5

∆u3 R U5

∆u3 R U5

∆u3 R U5Mir-30

shRNA

shRNA

shRNA

shRNA

shRNA

shRNA

NotI

NotI

BamHI NotI

BamHI NotI
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Figure 2.3.  Sturcture of lentiviral shRNA used in this study (Diagram modified 

from OpenBiosystems) 
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siRNA is incorporated into the RNA-induced silencing comlex (RISC) where it 

unwinds and cleaves the target mRNA, and this process causes silencing of the target 

gene.  shRNAs were purchased in the pGIPZ lentiviral vector from the GIPZ lentiviral 

shRNAmir library at UCL, Open Biosystems (Surrey, UK)  (Table 2.1). 

 

2.6.1. SFFV-GIPZ-GFP 

Since the human cytomegalovirus (CMV) promoter contained in the pGIPZ vector was 

previously shown to be inefficient in haematopoetic cells (Sirven et al., 2001), shRNAs 

from the pGIPZ vector were cloned into the SFFV-GIPZ vector, in which the spleen 

focus-forming virus (SFFV) promoter was used to drive the expression of EGFP.  For 

this cloning procedure, the pGIPZ vector with the shRNA of interest was digested with 

PmeI (NEB) and XhoI (Promega) to isolate the 1400bp fragment containing the shRNA 

and part of the vector backbone. This was then sub-cloned into the SFFV-GIPZ vector 

pre-digested with PmeI and XhoI.    

 

2.6.2. SFFV-GIPZ-CD2  

The cDNA was amplified by PCR using the pMSCV-IRES-CD2 vector as a template. 

The human CD2 (hCD2) cDNA used in our experiments is ‘tailless’ hCD2, which codes 

for a truncated CD2 protein, lacking most of its cytoplasmic domain (Deftos et al., 

1998).  A 839bp fragment encoding hCD2 was amplified using a forward primer 

incorporating a 5 BamHI site: 5’-CGGGATCCGCCACCATGGGCTTTCCATG 

TAAATTTGTAGCC AGC-3’ and a reverse primer incorporating a NotI site: 5’ 

CGGCGGCCGCTTAGGAAGTTGCTGGATTCTGAGGG-3’ (refer to 2.28).   
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Gene 
(Asession no)

Sequence (5’-3’)   ( mir-30-sense-loop-antisense-mir-30)

GAPDH
(NM_002046)

HOXA9.4
(NM_152739)

HOXA9.5
(NM_152739)

HOXA9.6
(NM_152739)

MYC.1
(NM_002467)

MYC.2
(NM_002467)

MYC.3
(NM_002467)

MLL.2
(NM_005933)

MLL.5
(NM_005933)

RUVBL1.1
(NM_003707)

RUVBL1.2
(NM_003707)

RUVBL1.3
(NM_003707)

RUVBL2.3
(NM_006666)

RUVBL2.4
(NM_006666)

RUVBL2.5
(NM_006666)

RUVBL2.6
(NM_006666)

RUVBL2.7
(NM_006666)

TGCTGTTGACAGTGAGCGAGCTCATTTCCTGGTATGACAATAGTGAAGCCACAGATGTA
TTGTCATACCAGGAAATGAGCGTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGCCTCCTCCAGTTGATAGAGAAATAGTGAAGCCACAGATGTA
TTTCTCTATCAACTGGAGGAGATGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGATCCCGTGCAGCTTCCAGTCCAAAGTGAAGCCACAGATGTA
TTGGACTGGAAGCTGCACGGGCTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGTCAACAAAGACCGAGCAAAAGTGAAGCCACAGATGTA
TTTGCTCGGTCTTTGTTGATGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGCCCGTCCAAGCAGAGGAGCAAATAGTGAAGCCACAGATGTA
TTTGCTCCTCTGCTTGGACGGATGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGCCGAGAACAGTTGAAACACAAATAGTGAAGCCACAGATGTA
TTTGTGTTTCAACTGTTCTCGTTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGAGGAACTCTTGTGCGTAAGGAATAGTGAAGCCACAGATGTA
TTCCTTACGCACAAGAGTTCCGTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGCCTGCAAGATTGAGAAGAGTAATAGTGAAGCCACAGATGTA
TTACTCTTCTCAATCTTGCAGATGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGCGGAGATAAGATCAAGAAGAAATAGTGAAGCCACAGATGTA
TTTCTTCTTGATCTTATCTCCATGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGACCGGCCAACTTGCTTGCTAAATAGTGAAGCCACAGATGTA
TTTAGCAAGCAAGTTGGCCGGGTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGAAAGACAGAAATCACAGACAAATAGTGAAGCCACAGATGTA
TTTGTCTGTGATTTCTGTCTTCTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGCTACCTGGTGTGTTTTCTATAATAGTGAAGCCACAGATGTA
TTATAGAAAACACACCAGGTATGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGACAGCGAGAAAGACACGAAGCATAGTGAAGCCACAGATGTA
TGCTTCGTGTCTTTCTCGCTGTTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGACACGCAGTACATGAAGGAGTATAGTGAAGCCACAGATGTA
TACTCCTTCATGTACTGCGTGGTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGACCGGAGATCCGTGATGTAACATAGTGAAGCCACAGATGTA
TGTTACATCACGGATCTCCGGGTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGATTCCTCTTCAACGAACTCAAATAGTGAAGCCACAGATGTA
TTTGAGTTCGTTGAAGAGGAAGTGCCTACTGCCTCGGA

TGCTGTTGACAGTGAGCGATCCAGATTGATCGACCAGCAATAGTGAAGCCACAGATGTA
TTGCTGGTCGATCAATCTGGATTGCCTACTGCCTCGGA

 

Table 2.1.  shRNA mir30 sequences used in this study 
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The SFFV-GIPZ vector was digested with BamHI and NotI to release the 698bp 

fragment encoding turbo GFP (tGFP).  The 839bp fragment encoding hCD2 was then 

sub-cloned into the SFFV-GIPZ vector. 

 

2.7. Mutagenesis 

 

Point mutations were introduced within the conserved Walker B sequence both in 

RUVBL1 and RUVBL2 cDNA containing Integrated Molecular Analysis of Genomes 

and their Expression (IMAGE) clones pOTB7 vector [(Source BioScience, Nottingham, 

UK (Wood et al., 2000)].  The QuikChange® Site-Directed Mutagenesis Kit 

(Strategene, Cheshire, UK) was used to introduce a Guanine (G) to Adenine (A) bp 

point mutation, resulting in an Aspartic acid (D) to Asparagine (N) substitution at aa 

residue 302 and 299 in RUVBL1 and RUVBL2, respectively. Mutated RUVBL1 and 

RUVBL2 cDNA were amplified by PCR and these amplified products were digested 

with BamHI (Promega) and NotI (Promega) to release the entire RUVBL1 and RUVBL2 

cDNA fragments, which were 1371bp and 1404bp respectively.  The SFFV-GIPZ 

vector was then digested with BamHI and NotI to release the 698bp fragment encoding 

tGFP.  RUVBL1 and RUVBL2 cDNA fragments were sub-cloned into the SFFV-GIPZ 

vector. Table 2.2 shows the primers used for this mutagenesis. 
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Purpose
Direction 
of the 
primers

Sequence (5’-3’)

mutagenesis

mutagenesis

PCR

PCR

sequencing-1

sequencing-2

sequencing -3

sequencing -4

sequencing -5

forward

reverse

forward

reverse

forward

reverse

forward

forward

forward

GGAGTGCTGTTCATCAACGAGGTCCACATGC

GCATGTGGACCTCGTTGATGAACAGCACTCC

CGGGATCCTTGGTGAGCATCATGGCAAC

CTGCGGCCGCCAGGAGGTGTCCATGGTCTC

TACAGCCACAACCAAAGTCC

CAATCTTCCCTTCCCGGATC

ACGAGATCGACGTCATCAAC

AGATGTGGAGATGAGTGAGG

AAACTGACCCTCAAGACCAC

RUVBL2

Purpose
Direction 
of the 
primers

Sequence (5’-3’)

mutagenesis

mutagenesis

PCR

PCR

sequencing-1

sequencing-2

sequencing -3

sequencing -4

sequencing -5

forward

reverse

forward

reverse

forward

reverse

forward

forward

forward

CGGGTGTGCTGTTTGTTAATGAGGTCCACATGCTG

CAGCATGTGGACCTCATTAACAAACAGCACACCCG

CGGGATCCATGAAGATTGAGGAGGTGAAG

CGGCGGCCGCTCACTTCATGTACTTATCCTGC

AGATTGAGGAGGTGAAGAGC

GACAGCTCTTCCAGCCATTT

CATCCAAGATGTGACCTTGC

ATCCGGACCATGCTGTATAC

TTGGGCTGCGAATAAAGGAG

RUVBL1

 

 

Table 2.2.  Primers used for mutageneis in this study 
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2.8. Cell culture and cell lines 

 

Human leukaemic cell lines (The German Resource Centre for Biological Material, 

DSMZ, Braunschweig, Germany) were cultured in Roswell Park Memorial Institute 

(RPMI) medium (Invitrogen), supplemented with 10% heat-inactivated FCS, 100U/ml 

Penicillin (Invitrogen), 100µg/ml Streptomycin (Invitrogen) and 2mM L-glutamine 

(Invitrogen) (complete RPMI).  Each human leukaemic cell line was seeded at between 

0.1-0.5 x106/ml and sub-cultured every two to three days according to the supplier’s 

instructions (DSMZ).  The MLL-AF9 immortalised myeloid cells derived from human 

CB in this study were cultured in Iscoves Modified Dulbeccos Medium (IMDM) 

(Invitrogen) with 20% FCS, 100U/ml Penicillin, 100µg/ml Streptomycin and 2mM L-

glutamine (complete IMDM), supplemented with 100ng/ml recombinant human (rh) 

Thrombopoietin (TPO) (Miltenyi Biotec), 100ng/ml rh FMS-related tyrosine kinase 3 

ligand (FLT3L) (R&D systems), 100ng/ml rh stem cell factor (SCF) (R&D systems, 

Abingdon, UK), 10ng/ml rhIL-3 (R&D systems ) and 10ng/ml rhIL-6 (R&D systems).  

Human CB cells were seeded at 0.5 x106/ml and sub-cultured every two to three days. 

 

2.9. Culture of packaging cell lines and NIH-3T3 fibroblast cells 

 

The LinXE (Genetica, Hannon et al, 1999), Platinum-GP (Plat-GP) (Cell Biolab, 

Cambridge, UK), GP2-293 (Clontech) and 293FT (Invitrogen) packaging cell lines and 

NIH-3T3 mouse embryonic fibroblast cells (DSMZ), were cultured in Dulbecco’s 

Modified Eagle’s medium (DMEM, Invitrogen), supplemented with 10% heat-

inactivated FCS (Sigma-Aldrich, Dorset, UK), 100U/ml Penicillin (Invitrogen), 

100µg/ml Streptomycin (Invitrogen) and 2mM L-glutamine (Invitrogen) (complete 
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DMEM).  LinXE cells were maintained with 7.5µg/ml Hygromycin (Invivogen).  Plat-

GP cells were maintained with 10µg/ml Blasticidin (Invitrogen).   

 

2.10. Transfection of packaging cell lines 

 

LinXE cells were seeded without Hygromycin at a density of 0.5-0.75x106 per 10cm 

petri dish (Thermo Fisher Scientific, Leicestershire, UK), three days before the 

transfection for production of retrovirus.  A total of 10µg of expression vector was 

incubated in 1.5ml of Optimen (GIBCO) and 36µl of Lipofectamine 2000 reagent 

(Invitrogen) was incubated in 1.5ml of Optimem for 5 minutes at room temperature.  

These two mixtures were then combined and incubated for 20 minutes at room 

temperature. Meanwhile, the packaging cells were harvested and re-suspended at a 

density of 1.2x106 per ml.  5ml of the cells was then plated with 5ml of complete 

DMEM medium and DNA-Lipofectamine 2000 complexes.  Lipofectamine containing 

medium was then replaced with 8ml of complete DMEM medium on the second day of 

transfection.  For retroviral transduction using GP2-293 cells, the cells were seeded at a 

density of 0.5x106 in 10ml medium, three days before the transfection.  For Plat-GP 

cells, the cells were seeded without Blasticidin at a density of 1x106 in 10ml medium, 

three days before the transfection.  8µg of expression vector and 2µg of envelope 

construct were used for both GP2-293 and Plat-GP cells. For lentiviral packaging cell 

line transfection, 293FT cells were seeded at a density of 4x105 in 10ml medium, three 

days before transfection for the production of lentivirus.  For lentiviral transfection, 5µg 

of expression vector, 3.75µg of psPAX2 (kindly supplied by Professor Didier Trono, 

Lausanne, Switzerland) and 1.5µg of envelope construct were used. 
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2.11. Retroviral and lentiviral transduction of human myeloid leukaemic 

cells 

 

Retroviral and lentiviral supernatants were harvested 48 hours after transfection.  For 

human leukaemic cells, 1x104 cells were plated out at 100µl per well in a complete 

RPMI, supplemented with 5µg/ml polybrene, and were transduced by spinoculation at 

700g, for 45 minutes at 25 ºC.  24 hours after the transduction, 100µl per well of 

complete RPMI was added.  In some experiments, the transduced cells were selected 

with 2µg/ml puromycin for 3 days. In all cases, the transduced leukaemic cells were 

used for further experiments 5 days after transduction. 

 

2.12. Isolation of human CD34+ CB cells 

 

Frozen human cord blood mononuclear cells (150x106 cells per sample) (Stem Cell 

Technologies, Sheffield, UK) were thawed and CD34+ cells were purified by magnetic 

activated cell sorting (MACS) (Miltenyi Biotec, Surry, UK) using the human CD34 

microbead kit, according to the manufacturer’s protocol.  Purified CD34+ cord blood 

(CD34+ CB) cells were maintained at a density of 1-2x105 per ml in Hematopoietic 

Progenitor Growth Medium (HPGMTM) (Lonza, Sough, UK) supplemented with 

100ng/ml rhSCF, 100µg/ml rhTPO, and 100ng/ml rhFLT3L. The cells were cultured for 

two days before transduction.  The number of cells isolated and the corresponding 

purity of CD34+ cells after sorting are shown in Table 2.3.  
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CB sample
Number

Total cell count
before sorting

Total cell count
after sorting

% CD34+ cells
(purity)  

A

B

C

1

2

3

4

73x10 6

90x10 6

90x10 6

77x10 6

110x10 6

77x10 6

90x10 6

1x10 6

0.4x10 6

0.4x10 6

0.8x10 6

0.2x10 6

0.6x10 6

2.3x10 6

87%

93%

93%

90%

21%

62%

86%

Cell line
generated

-

-

-

V6.1/V6MA1

V6.2/V6MA2

V6.3/V6MA3

V6.4/V6MA4

 

Table 2.3.  Cord blood samples used in this study 

 

 

2.13. Retroviral and lentiviral transduction of human CD34+ CB cells 

 

One day before transduction, retronectin (Takara Bio Inc, Shiga, Japan) coated plates 

were prepared.  250µl per well of retronectin (80µg/ml) in phosphate buffered saline 

(PBS) was coated onto non-tissue culture treated 48-well plates (Thermo Fisher 

Scientific). The retronectin-coated plate was incubated at 4ºC overnight.  The 

retronectin-coated plate was blocked with PBS containing 0.3mM bovine serum 

albumin (BSA) for 30 minutes at room temperature and then washed with PBS.  

Retroviral or lentiviral supernatant was collected 48 hours after transfection and filtered 

through a 0.45µm filter (Sartorius, Surry, UK).  250µl of filtered virus was added to 

each well of the retronectin-coated plate and the plate was centrifuged at 1,500g for two 

hours at room temperature.  The supernatant was removed and the wells were washed 



86 
 

with PBS twice.  Between 2x104 and 1x105 CD34+ CB cells, in complete IMDM 

supplemented with 100ng/ml rhTPO, 100ng/ml rhFLT3L, 100ng/ml rhSCF, 10ng/ml 

rhIL-3 and 10ng/ml rhIL-6 were then added onto the retronectin-coated plate and 

incubated at 37 ºC overnight.  250µl of complete IMDM supplemented with 100ng/ml 

rhTPO, 100ng/ml rhFLT3L, 100ng/ml rhSCF, 10ng/ml rhIL-3 and 10ng/ml rhIL-6 was 

added to each well the next day. The transduced CD34+ CB cells were maintained at 

0.5-2x106 per ml in a 24 well plate, in IMDM supplemented with 20% FCS, 100U/ml 

Penicillin, 100µg/ml Streptomycin, 2mM L-glutamine 100ng/ml TPO, 100ng/ml 

rhFLT3L, 100ng/ml rhSCF, 10ng/ml rhIL-3 and 10ng/ml rhIL-6, and used for further 

experiments five days after the transduction.   

 

2.14. shRNA delivery 

 

shRNAs were delivered via lentiviral transduction.  Lentiviral supernatant containing 

shNRAs were generated according to 2.11. The Vesicular Stomatitis Virus Glycoprotein 

(VSV-G) envelope was used to coat the lentiviral shRNA particles. Lentiviral 

supernatant was collected 48 hours after transfection and filtered through a 0.45µm 

filter (Sartorius).  For human leukaemic cells, 6x105 cells in complete RPMI, 

supplemented with 5µg/ml polybrene in 1ml medium, were transduced by spinoculation 

at 700g, for 45 minutes at 25ºC.  24 hours after the transduction, 1ml per well of 

complete RPMI was added.  Transduced cells were treated with 2µg/ml of puromycin 

(Invitrogen), two days after transduction, for three days. 
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 For cord blood (CB)-derived immortalised MLL-AF9 cells, 5x104 cells per well, in 

100µl complete IMDM supplemented with 5µg/ml polybrene, 100ng/ml rhTPO, 

100ng/ml rhFLT3L, 100ng/ml rhSCF, 10ng/ml rhIL-3 and 10ng/ml rhIL-6 in a 96-well 

plate, were transduced by spinoculation at 700g, for 45 minutes at 25 ºC. 24 hours after 

the transduction, 100µl per well of complete IMDM supplemented with 100ng/ml rh 

TPO, 100ng/ml rhFLT3L, 100ng/ml rhSCF, 10ng/ml rhIL-3 and 10ng/ml rhIL-6 was 

added. Transduced cells were treated with 1µg/ml of puromycin, two days after 

transduction, for three days.  The transduced cells were used for further experiments 

after five days of transduction. 

 

2.15. Determination of the viral titre 

 

The efficiency of the viral transduction was determined by measuring the percentage of 

tGFP, EGFP or hCD2 expressing cells.  The ecotropic virus titre was determined by the 

transduction of NIH-3T3 cells.  NIH-3T3 cells were seeded at a density of 2x105 per 

4ml medium, 24 hours before the transduction.  24 hours later, serially diluted virus was 

added to the cells, together with 5µg/ml polybrene.  The transduced cells were harvested 

48 hours after transduction. Viral infection per ml was calculated using the following 

formula: 

Inf/ml =  number of cells transduced x  (% of EGFP/CD2 expressing cells )    x  dilution factor

100  
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2.16. Ultracentrifugation 

 

Ultracentrifugation was performed to concentrate retrovirus in some experiments.  

Sorvall 12ml centrifuge tubes (Thermo Fisher Scientific) were washed once with 70% 

ethanol and twice with PBS prior to use, in order to sterilise them.  11.5ml per tube of 

filtered virus was concentrated by ultracentrifugation at 18,000g for 3 hours at 4 ºC 

(Thermo Fisher Scientific, Discovery 100).  The supernatant was discarded and the viral 

pellet was re-suspended in fresh medium with a 40-fold reduction in volume.  The 

concentrated virus was left for 30 minutes on ice to re-suspend prior to use. 

 

2.17. Colony formation assay 

 

For human CD34+ CB cells, between 3x104 and 1x105 transduced cells were washed in 

HPGM and resuspended in 300ul cell resuspension solution (R&D systems).  The cells 

were added to 3ml of human methylcellulose complete media without Epo (R&D 

system), supplemented with 100ng/ml rhTPO, 100ng/ml rhFLT3L, 100ng/ml rhSCF, 

10ng/ml rhIL-3, and 10ng/ml rhIL-6. The cells were cultured for 10 days before re-

plating or harvesting for analysis.  

 

For human leukaemic cells, colony formation was optimised and performed by Mr 

Maurizio Mangolini (MHCB unit, ICH).  1x104 cells were resuspended in 0.6ml of cell 

resuspension solution (R&D systems) and added to 2.7ml of human methylcellulose 

base media (R&D systems).  The cells were cultured for 14 days before harvesting for 

analysis. 
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2.18. Flow cytometry 

 

Cells were washed with 2ml of wash buffer (PBS supplemented with 0.05% v/v sodium 

azide). Cells were pre-incubated with 50µl of human FcR-binding inhibitor 

(eBioscience, Hatfield, UK) containing stain buffer (PBS supplemented with 0.05% v/v 

sodium azide and 0.1% w/v BSA), for 15 minutes on ice, to block non-specific antibody 

binding.  The cells were then stained with florochrome-conjugated antibodies in stain 

buffer, in a total of 100µl, for 30 minutes on ice, and washed with wash buffer prior to 

analysis.  Anti-human antibodies used are listed in Table 2.4.  Appropriate IgG isotype 

control antibodies were used.   Cells were analysed on a Cyan ADP analyser 

(Dakocytomation, Cambridge UK) or LSRII (BD Bioscience) and the data was analysed 

with Summit 4.3 software (Dakocytomation). 

 

2.19. Apoptosis assay 

 

Annexin V and 4', 6-diamidino-2-phenylindole (DAPI) were used to detect apoptotic  

cells.  Annexin belongs to a calcium-dependent phospholipid binding protein family.  It 

binds to phosphatidylserine which is transferred to the extracellular membrane early 

during apoptosis.  DAPI is a fluorescent DNA binding dye which is used to detect dead 

cells.  Together, Annexin V and DAPI are used to detect early (AnnexinV+ DAPI-) and 

late stage (Annexin+ DAPI+) apoptotic cells.  Cells were washed with PBS followed by 

1x binding buffer (50mM Tris [pH7.4], 100nM NaCl, 1% w/v BSA, 0.02% v/v sodium 

azide [eBioscience]).   
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Antibody Dilution

hCD2 PE
(e Bioscience)

CD11b PE
(Biolegend)

CD14 APC
(BD Bioscience)

CD15 APC
(Biolegend)

CD33 PE
(e Bioscience)

CD34 PE
(BD Bioscience)

CD38 APC
(e Bioscience)

1 in 25

1 in 5

1 in 5

1 in 5

1 in 5

1 in 5

1 in 5

Isotype

IgG1κ

IgG1κ

IgG2κ

IgM1κ

IgG1κ

IgG1κ

IgG1κ

 

 

 

 

 

Table 2.4.  Antibodies used for flow cytometric analyses in this study  
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Cells were then re-suspended in 1x binding buffer at a density of 1-5x106/ml and 5µl of 

Annexin V (eBiosciecnes) was added to 100µl of the cell suspension and incubated for 

15 minutes at room temperature.  The cell suspension was washed and re-suspended in 

200µl of 1x binding buffer and 5µl of DAPI was added to the cell suspension prior to 

flow cytometric analysis.    

 

2.20. Preparation of total protein lysate for western blot analysis 

 

Cells were harvested and washed with PBS by centrifugation at 300g for 5 minutes at 

4ºC.  Cell pellets were lysed using 60µl Dithiothreiothreitol (DTT) sample buffer 

(200mM DTT, 2% sodium dodecyl sulphate (SDS), 10% v/v Glycerol, 0.02% v/v 

Bromophenol blue, 125mM Tris-HCL [tris(hydroxymethyl)aminomethane] [pH6.8]) per 

1x106 cells.  The lysate was incubated for five minutes at 100°C in a heating block and 

vortexed for 10 seconds followed by centrifugation at 16,000g for 10 minutes at 4°C.  

The pellet was discarded and the total cell lysate was stored at -20°C. 

 

2.21. Western blot analysis 

 

Western blot analysis was performed using Hoeffer equipment (GE Healthcare). 4% 

Sodium Dodecyl Sulfate (SDS)-polyacrylamide gels (stacking gel) and 5%, 10% or 

12.5% SDS- polyacrylamide gels (resolving gel) were prepared according to Table 2.5.  

Protein samples and rainbow molecular weight marker (Amersham Biosciences) were 

subjected to electrophoresis at 65V overnight at room temperature.   
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30%Acrylamide/Bis Solution (29:1) (BioRad)

Upper Buffer (0.5M TrisHCL[pH6.8] 0.4% w/v SDS)

H2O

Temed (BioRad)

10% w/v Amonium Persulfate (APS, BioRad)

Reagent Required volume

0.8ml

1.6ml

3,8ml

6.25μl

31.3μl

Reagent
Required volume

5ml

7.5ml

17.5ml

20μl

100μl

5% 10% 12.5%

Stacking gel

Resolving gel

30%Acrylamide/Bis Solution (29:1) (BioRad)

Lower Buffer (1.5M TrisHCL[pH8.8] 0.4% w/v SDS)

H2O

Temed (BioRad)

10% w/v Amonium Persulfate (APS, BioRad)

10ml

7.5ml

12.5ml

20μl

100μl

12.5ml

7.5ml

10ml

20μl

100μl

 

 

Table 2.5.  Stacking gel and resolving gel used for western blot analysis 
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1X running buffer (0.192 M Glycine, 25nM TrisHCL[pH8.3], 0.1% w/v SDS) was used 

to perform SDS-polyacrylamide gel electrophoresis (SDS-PAGE).  The samples were 

subsequently transferred onto a polyvinylidenefluoride (PVDF) membrane (Millipore) 

for 6 hours, at 500mA at 4°C in 1x CAPS (9.5mM CAPS [pH11.0]).  Membranes were 

blocked in PBS with 5% non-fat milk and 0.2% v/v Tween-20, and stained with one of 

the primary antibodies listed in Table 2.6 for 1 hour, or overnight, depending on the 

antibody used.  The membrane was washed to remove any excess antibody using PBS 

0.2% v/v Tween-20, six times over a period of one hour.  Proteins were detected using a 

secondary antibody conjugated with horseradish peroxidise (GE Healthcare, London, 

UK), as listed in Table 2.6, and visualised using a chemiluminescent reagent (ECL, GE 

Healthcare), according to the manufacturer’s instructions.  The rainbow molecular 

weight marker was used to estimate the protein size.  The film was pre-flashed using an 

Amersham Sensitize Preflash unit (GE Healthcare) and exposed to the membrane.  

Exposed film was developed using the Xograph CompactX4 developer.   A calibrated 

Densitometer (GS-800, BioRad) was used to scan the film and individual bands were 

quantified using QuantityOne software (BioRad).   
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Table 2.6.  Primary and secondary antibodies used for western blot analysis 

 

Name of antibodies Dilution

Anti-mouse IgG HRP-linked whole 
Antibody (Raised from  Sheep)

Anti-goat IgG HRP-linked whole 
Antibody (Raised from Donkey)

Anti-rabbit IgG HRP-linked whole 
Antibody (Raised from Donkey)

1 in 2000

1 in 6000

1 in 10000

Suppliers

GE Health Care

Santa Cruz Biotechnology

GE Health Care

Name of antibodies Dilution

MLL mouse monoclonal (N4.4)

C-MYB moues polyclonal (C-19)

GAPDH goat polyclonal (v-18)

HSP-90 α/β mouse monoclonal ( F-8)

β - tubulin mouse monoclonal (D-10)

α - actin goat polyclonal (I-19)

RUVBL1 goat polyclonal (N-15)

Clathrin HC mouse monoclonal (TD.1)

RUVBL2 mouse monoclonal (42)

TERT rabbit monoclonal (H-231)

1 in 400

1 in 1000

1 in 1000

1 in 1000

1 in 1000

1 in 6000

1 in 500

1 in 1000

1 in 500

1 in 500

Suppliers

Upstate Milipore

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Primary antibodies

Secondary antibodies
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The relative protein expression was calculated by dividing the values of the protein of 

interest by the value of its loading control.  This value was then normalised to relative to 

control samples.  

 

A membrane was sometimes stripped and re-probed with another antibody.  For 

stripping, the membrane was incubated at 50ºC for 30 minutes with 50ml of stripping 

buffer (100mM 2-mercaptoethanol, 2% w/v SDS, 62.5mM Tirs-HCL [pH6.7]).  The 

membrane was washed with PBS with 5% non-fat milk and 0.2% Tween-20 every 10 

minutes for 30 minutes, before being probed with a primary antibody, as described 

above. 

 

2.22. MLL-fusion western blot analysis 

 

In order to detect MLL or MLL-fusion protein expression, samples were run on a 4% 

SDS-polyacrylamide stacking gel and a 5% SDS- polyacrylamide resolving gel at 70V 

for 9 hours.  The samples were subsequently transferred onto a polyvinylidenefluoride 

(PVDF) membrane (Millipore) overnight, at 300mA at 4°C in 1x CAPS.  The 

membrane was washed as described previously and probed with primary mouse 

monoclonal MLLN4.4 antibody overnight at 4°C.  The membrane was then treated in 

the same way as described in 2.21. 
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2.23. RNA isolation 

 

RNA was isolated from cells using the RNeasy Mini kit (Qiagen) according to the 

manufacturer’s protocol.  During the isolation, samples were also treated with DNAse 

(Invitrogen).  The concentration of extracted RNA was determined by measuring the 

absorbance at 260nm using a spectrophotometer (NanoDrop ND-1000, Lebtech 

International, East Sussex, UK).   The purity of the extracted RNA was estimated by 

measuring the ratio of the absorbance at 260nm and 280nm.  A ratio of between 0.8 -2 

was considered as pure RNA (NanoDrop user’s manual). 

 

2.24. cDNA preparation 

 

Isolated RNA was converted into cDNA using a cDNA synthesis kit (Invitrogen), 

following the manufacturer’s protocol.  For synthesising the complementary DNA 

strand, Moloney Murine Leukaemia Virus Reverse Trasncriptase (M-MLV RT, 

Invitrogen) was used. 

 

2.25. Real-time PCR (QPCR) 

 

A specific primer and probe set that spanned the MLL-AF9 breakpoint region was 

previously designed and optimised (Dr Vanessa Walf-Vorderwülbecke, PhD thesis).  A 

forward primer 5’-CAAGTATCCCTGTAAAACAAAAACCA-3’ (binds to MLL) and 

a reverse primer 5’-CATTCACCATTCTTTATTTGCTTATCTG-3’ (binds to AF9) and 
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Gene

HPRT

ACTB

MYB

MEIS1

TERT

RUVBL1

RUVBL2

MYC

HOXA9

Product code

Hs_99999909_ml

Hs_00357333_gl

Hs_00920556_ml

Hs_00180020_ml

Hs_00972647_ml

Hs_00186558_ml

Hs_01090542_ml

Hs_99999003_ml

Hs_00365956_ml

a probe 5’-TGCTTTGCTTTATTGGACTTTTCACTTCAAGAATCTTT-3’ (which 

spans on the MLL-AF9 breakpoint) were used to detect mRNA expression of MLL-

AF9.  Table 2.7 shows the Taqman primer probe sets used to detect mRNA for all other 

genes (Applied Biosystems, Paisley, UK).  

 

Table 2.7.  Taqman primer probe assays used in this study 

 

2.26. Cytospin analysis 

 

3x104 cells were washed in PBS at 580xg for five minutes at room temperature and re-

suspended in 100µl PBS.  The cell suspension was added drop-wise to a cytospin funnel 

and centrifuged onto a slide at 35xg for five minutes, at low deceleration, using a 

cytospin 3 machine (Shandon, Thermo Fisher Scientific).  The slides were fixed and 

stained with May-Grünwald-Giemsa (MGG) using a Shandon varistain 24-4 automated 
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Gene

MLL A

MLL.B

MLL.C

GAPDH
(Pool of 4)

MYB
(pool of 4)

Targeted  sequences (5’-3’)

TTGGTTTGCGAATAAGACCTT

TTATCCTTTCTGTTGATGGAG

TTTGCTTAGAACTATTGCCAT 

GTCAACGGATTTGGTCGTA
CAACGGATTTGGTCGTATT
GACCTCAACTACATGGTTT
TGGTTTACATGTTCCAATA

CCGAAACGTTGGTCTGTTA
CAGTCAAGCTCGTAAATAC
CCAATTATCTCCCGAATCG
TCCATACCCTGTAGCGTTA

Suppliers

Qiagen

Qiagen

Qiagen

Thermo Scientific

Thermo Scientific

staining machine in the Haematology Department at Great Ormond Street Hospital, 

London.  

 

2.27. Delivery of siRNA 

 

Three specific siRNA against the 5’ sequence of MLL were designed to target both 

endogenous and MLL-fusion proteins.  These were designed by Dr Jasper De Boer 

(MHCB unit, ICH) (Table2.11).  3x106 cells were electroporated in 300µl complete 

RPMI with either 500nM SiGLO RED (Thermo Fisher Scientific) or 100nM siRNAs.  

Electroporation was performed at 330V, for 10 milliseconds (ms) using a pulse 

generator EPI 2500 electroporator (Heidelberg, Germany).  The cells were transferred 

into a 6 well-plate in complete RPMI.  The cells were harvested for further analysis at 

72 hours.  Targeted sequences of GAPDH, MYB and MLL are also shown in Table 2.8. 

Table 2.8.  Sequences of siRNAs used in this study 
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2.28. Polymerase chain reaction (PCR) 

 

PCR was used to amplify the cloned products mentioned in 2.4, 2.7 and 2.30.  The 

typical PCR procedure consisted of 5 steps.  The initialisation step initiates heat 

activation of DNA polymerase.  The denaturation step disrupts hydrogen bonds between 

DNA templates to generate single stranded DNA.  The annealing steps allow primers to 

bind to single stranded DNA via hydrogen bonds.  The polymerisation step allows DNA 

polymerase to synthesize a new DNA strand, which is complementary to the DNA 

template, in a 5’ to 3’ direction from the primer.  The final extension step ensures full 

extension of single stranded DNA by DNA polymerase.  PCR was performed according 

to standard manufacturer protocol (Invitrogen) and the reaction was programmed 

according to Table 2.9. 

 

2.29. Xenotransplantation 

 

All the mice used were maintained in the Western Laboratories animal facilities (UCL 

Biological Services Unit, London, UK) and experiments were performed according to 

institutional guidelines and Home Office regulations.  Xenotransplantation in this study 

was performed by Dr. Owen Williams (MHCB Unit, ICH). Sub-lethally γ-irradiated 

(3.5Gy) NOD.Cg-Prkdcscid Il2rgtm1Wjl/Sz mice were injected intravenously with 10x106 

V6MA cells and recipients were monitored for signs of disease.  Mice were sacrificed 

and bone marrow and spleen were harvested for analysis.  Bone marrow, from the femur 

and tibia, and spleen were isolated to generate single cell suspensions.  
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Step Time (minute) Cycles

Initial denaturation

Denaturation

Annealing

Polymerisation

Final extension

94

94

50

72

72

Temperature (°C)

5

0.5

1

1

5

1

35

1

Step Time (minute) CyclesTemperature (°C)

Step Time (minute) CyclesTemperature (°C)

Initial denaturation

Denaturation

Annealing

Polymerisation

Final extension

95

95

55

72

72

1

30

1

Cloning

Mutagenesis

2

0.5

0.5

1.5

5

Primer elongation

Telomease inactivation

Denaturation

Annealing

Polymerisation

Final extension

Telomerase assay

25

5

0.5

0.5

1.25

10

20

94

94

50

72

72

1

1

20

1

 

Table 2.9.  PCR programmes used in this study 
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Red cells were lysed by incubating cells in Red Cell Lysis buffer (17mM Tris 

(hydeoxymethyl) methylamine (TrisHCL)[pH7.2] and 0.144M Ammonium Chloride 

(NH4CL)) for 10 minutes at room temperature and cells were counted prior to further 

analysis. 

 

2.30. Determination of telomerase activity 

 

Telomerase activity was measured using the Telo TAGGG Telomerase PCR ELISAplus 

kit (Roche) and assays were performed according to the manufacturer’s protocol.  Total 

protein was extracted from 2x105 cells, and lysate from 1x103 cells was used to perform 

a single assay.  Isolated telomerase was used to add telomeric repeats (TTAGGG) to the 

3’ end of biotin labelled synthetic primers and the telomerase mediated elongation 

product was amplified (Table 2.26).  This PCR product was then hybridised to a 

digoxigenin labelled detection probe which is specific to telomeric repeats, immobilised 

to streptavidin coated plates via biotin.  This immobilised product was detected by an 

antibody specific to digozigenin, conjugated with horseradish peroxidase and developed 

with a sensitive hydroxidase substrate.  Colour change was measured using a plate 

reader (Bio Rad 680 Microplate reader, Herts UK) at 450nm, with a reference 

wavelength of 690nm.  The relative telomerase activities (RTA) were calculated using 

the formula (Telo TAGGG telomerase PCR ELISAplus manual): 
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2.31. Determination of fold accumulation of proliferating cells 

 

Fold accumulation of cells was determined and plotted using the following formula: 

Fold accumulation on day (n+x) = Fold accumulation on day (n) x Fold increase on day (n+x)

Where: Fold increase on day (n+x) =   Cell number on day (n+x)
Cell number plated on day (n)

 

 

 

 

 

RTA  =             (A S- A S.0)/A S.IS                    x 100
[(A TS8-A S0)/A TS8.0 ]/A TS8.IS

A S: absorbance of sample
A S.0 : absorbance of heat treated sample
A TS8 : absorbance of Internal standard (IS) of the sample
A TS8.0 : absorbance of Control template 
A TS8.IS : absorbance of Lysis buffer
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CHAPTER 3.   RESULTS - Generation and characterisation of 

human cord blood-derived MLL-AF9 immortalised myeloid cells 

 

3.1. Introduction 

 

The generation of MLL-AF9 immortalised myeloid cells from cord blood (CB) is an 

important step in transfering key findings from murine models to human systems.  So 

far, only two groups have managed to successfully immortalise CB cells using MLL-

AF9 (Barabe et al., 2007; Wei et al., 2008), which demonstrates the technical difficulty 

involved in achieving this process.  To create immortalised myeloid cell lines, we 

decided to set up the conditions required for generating high-titre amphotropic virus.  At 

first, this was done with a control virus, made by transient transfection of packaging cell 

lines with the pMSCV-IRES-EGFP or pMSCV-PGK-EGFP expression vectors, so that 

efficiency of transduction could be followed by the expression of EGFP.  Once this was 

satisfactory accomplished, we planned to generate amphotropic virus produced by 

transiently transfecting a packaging cell line with an MLL-ENL or MLL-AF9 

expression vector.  Subsequently, we could use these viruses to transduce CD34+ CB 

cells.  In addition, human leukaemic cells were also used for some optimisations. 

 

Barabe et al and Wei et al both successfully generated immortalised myeloid cell lines 

using MLL-fusions from human cord blood by retroviral transduction (Barabe et al., 

2007; Wei et al., 2008).  For this reason, retroviral transduction was initially employed 

for our experiments.  Also, some of their transduction strategies were employed in our 

optimisation process. 



104 
 

 

Generating a high titre of retrovirus involves several optimisation steps.  First of all, 

packaging cell lines that allow the production of amphotropic retroviruses need to be 

chosen.  The packaging cells used were derived from human embryonic kidney cells 

and are necessary for the production of replication defective virus particles.  Some of 

these cell lines contain the genes encoding Group Antigens (gag), reverse transcriptase 

(pol) and envelope proteins (env), which are all required for the formation of viral 

particles as well as transduction (Morgenstern and Land, 1990).  The envelope protein 

encoded by the packaging cell lines is vital in viral entry into target cells and determines 

the viral tropism.  For our experiments, it was essential to use packaging cells that did 

not encode the envelope protein, in order to identify the most efficient envelope for the 

transduction of CD34+ CB cells.  Following selection of the appropriate envelope, we 

planned to optimise the ratio of expression vector to envelope construct for the 

transfection. 

 

3.2. Selection of the packaging cell lines 

 

Firstly, we wanted to select a retroviral packaging cell that generates high-titre retroviral 

supernatant, capable of efficient transduction of CD34+ CB cells.  Platinum-GP (Plat-

GP) (Cambridge Biosciences, Cambridge, UK) (Morita et al., 2000) and GP2-293 

(Clontech) packaging cells are both derived from human 293 embryonic kidney cells, 

transfected with the gag and pol genes.  LinXE cells contain the ecotropic env gene as 

well as gag and pol genes, and produce high-titre virus.  Initially we compared the 

packaging ability of Plat-GP and GP2-293 cells to that of LinXE cells by testing their 

ability to generate ecotropic retroviral supernatant.  Plat-GP and GP2-293 cells were 
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transiently co-transfected with the EGFP control retroviral vector (pMSCV-IRES-

EGFP) and the envelope construct which encodes the murine specific envelope (pEco), 

while LinXE cells were transiently transfected with pMSCV-IRES-EGFP only.  NIH-

3T3 cells were used as target cells for retrovirus produced by these packaging cell lines.  

The percentage of cells expressing EGFP was used as an indicator of the efficiency of 

transduction. The retroviral supernatant was serially diluted to obtain a quantitative 

measurement of retroviral titre.  Figure 3.1 shows that Plat-GP cells produced a higher 

titre retroviral supernatant (0.56 x 106 inf/ml) than GP2-293 cells (0.37 x 106 inf/ml).  

However, a further two independent experiments showed that this difference was not 

always obvious. Nevertheless, Plat-GP cells were used in subsequent experiments. 

 

3.3. Selection of the envelope constructs 

 

The envelope gene codes for the viral envelope which is responsible for the target cell 

tropism of the retrovirus.  In order to produce amphotropic virus with Plat-GP cells, an 

envelope construct capable of transducing human cells is required and therefore 

different envelope constructs were tested.  Plat-GP cells were transiently co-transfected 

with the pMSCV-IRES-EGFP vector and envelope constructs coding for the vesicular 

stomatitis glycoprotein (pVSV-G) (Emi et al., 1991), or the envelope protein from the 

feline endogenous virus (pCMV-RD114) (Sandrin et al., 2002).  We initially chose 

these VSV-G and RD114 envelope constructs for testing because they were previously 

employed to generate CB-derived MLL-AF9 immortalised cells by Barabe et al and 

Wei et al, respectively (Barabe et al., 2007; Wei et al., 2008).  CD34+ CB cells were 

purified and transduced with the retrovirus generated using the respective envelope 

constructs.     
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Figure 3.1.  Plat-GP provides more efficient retroviral transduction than Gp2-293 

cells 

The histograms represent the percentage expression of EGFP in transduced 3T3 cells 48 

hours after the transduction.  Plat-GP and Gp2-293 cells were transiently co-transfected 

with pMSCV-IRES-EGFP and pEco.  LinXE cells were transiently transfected with 

pMSCV-IRES-EGFP only.  Filled grey areas represent un-transduced NIH-3T3 cells. 

Serial dilution was used to determine average infection unit per ml (inf/ml).  Similar 

results were observed in two independent experiments.    

LinXE Plat-GP GP2-293
Dilution
factor

1:20

1:6.6

1:2.2
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EGFP

10.5% 8.7%

22.1%

50.0%

6.0%

11.9%

30.2%

25.0%

55.2%

Cell lines Average inf/ml

LinXE

Plat-Gp

Gp-293

0.68x10 6

0.56x10 6

0.37x10 6



107 
 

A higher percentage of cells transduced with RD114 coated retrovirus expressed EGFP 

than those transduced with VSV-G coated retrovirus (Figure 3.2A).  Interestingly, 

CD34+ CB cells transduced with VSV-G coated retrovirus expressed higher levels of 

CD38, which is characteristic of differentiation (Figure 3.2B).  This suggests that the 

VSV-G envelope may induce differentiation of CD34+ CB cells.  This effect is not ideal 

since oncogene activity may be limited to CD34+CD38- HSC.  However, a further two 

independent experiments showed that this difference was not consistently observed.  

Nevertheless, this data suggest that RD114 envelope was at least as good as VSV-G.  

Therefore, the RD114 envelope was chosen for subsequent experiments. 

 

Additionally, Di Nunzio et al showed that a chimeric RD114TR envelope provides 

higher virus titre than the RD114 envelope (Di Nunzio et al., 2007).  This envelope is 

comprised of the RD114 extracellular and transmembrane domains and the Moloney 

murine leukemia virus (MoLV) amphotropic cytoplasmic tail (Di Nunzio et al., 2007).  

We therefore compared the efficiency of virus production using RD114TR and RD114.  

For these experiments, SEMK-2 cells, a human cell line derived from an MLL-AF4 

associated ALL patient sample, were used as target cells (Pocock et al., 1995).  SEMK-

2 cells transduced with RD114TR coated retrovirus expressed a higher percentage of 

EGFP than those transduced with virus coated with RD114 envelope (2.7% versus 

4.7%, data not shown).  Based on this observation, the RD114TR envelope was selected 

for the following experiments. 
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Figure 3.2.  The RD114 envelope construct provides more efficient transduction of 

CD34+ CB cells 

A) The grey areas in the histograms show the percentage expression of EGFP in 

transduced CD34+ CB cells with virus coated with VSV-G (left) or RD114 (right) 

envelopes, five days after the transduction. B) The histograms represent the percentage 

expression of EGFP positive gated CD34 (left) and CD38 (right) in the CD34+ CB cells 

transduced with the virus coated with VSV-G (blue) or RD114 (red) envelopes, five 

days after the transduction.  Filled grey areas represent un-transduced CD34+ CB cells.  

This experiment was carried out a total of three times. 
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3.4. Concentration of retrovirus 

 

So far, all the retroviral transductions were done using un-concentrated MSCV-EGFP 

virus.  One problem with generating immortalised myeloid cell lines from CD34+ CB 

cells, using MLL-ENL and MLL-AF9 fusions, is the size of retroviral inserts in these 

vectors (8.9Kb and 7.3Kb respectively).  The maximum insert capacity of retroviruses is 

between approximately 7 and 8Kb.  Therefore they are both close to the limit of 

efficient packaging capacity of the packaging cell lines, which inevitably results in 

lower retroviral titres (Shin et al., 2000; Walther and Stein, 2000). 

 

 In order to overcome this difficulty, we decided to concentrate the retrovirus and 

examine whether this would increase the retroviral titre.  Initially, size exclusion filter 

columns were used to concentrate the retrovirus (Reiser, 2000; Sena-Esteves et al., 

2004).  However using this approach, there was a loss of virus during the process, 

resulting in insufficient concentration of retrovirus.  A second approach employed was 

ultracentrifugation.  The retroviral supernatant produced from Plat-GP cells transiently 

transfected with pMSCV-PGK-EGFP and pSMV-RD114TR was ultracentrifuged at 

18,000g for 3 hours at 4°C.  The retroviral pellet was then re-suspended in fresh 

medium, resulting in a 40-fold reduction in volume.  The retroviral concentration 

resulted in an increase in transduction of SEMK-2 cells from 2.5% to 37.8%, with an 

increase in mean florescence intensity (MFI), suggesting an increase in the copy number 

of integrated provirus (Figure 3.3 A).  However, when CD34+ CB cells were transduced 

with MSCV-ME (MSCV-ME virus) virus, and concentrated using the same approach, 

only a marginal increase in the percentage of EGFP positive cells was observed (from 

5.9% to 8.9%) (Figure 3.3 B). 
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Figure 3.3.  Ultracentrifugation increases the efficiency of retroviral transduction 

with a control vector but not with the MLL-ENL expression vector 

A) The histograms represent the percentage of EGFP expressing SEMK-2 cells 

transduced with MSCV-PGK-EGFP virus five days after the transduction.  The 

numbers in the histogram represent the percentage expression of EGFP and the numbers 

in parentheses indicate mean fluorescence intensity (MFI). The top histogram shows the 

percentage of EGFP expressing cells transduced with un-concentrated virus and the 

bottom histogram with ultracentrifuged virus (18,000g, 3hours, at 4°C). The pellet of 

the concentrated retrovirus was re-suspended to a concentration of 40-fold.  A similar 

pattern of percentage expression of EGFP was observed in one other independent 

experiment.  B) The histograms show the percentage of EGFP expressing CB cells 

transduced with MSCV-PGK-EGFP or MSCV-PGK-MLLENL virus. The top two 

histograms show the transduction with un-concentrated virus and the bottom two 

histograms with virus concentrated to 40-fold.  This experiment was carried out once. 
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In addition, for unknown reasons, the intensity of EGFP expression decreased from 146 

to 83.  This suggests, that in our hands, ultracentrifugation of MSCV-ME virus did not 

improve the efficiency of CD34+ CB cell transduction.   

 

3.5. Selection of reagents to enhance transduction 

 

Polybrene is a cationic polymer that improves the efficiency of transduction by 

increasing virus adsorption to target cells (Davis et al., 2002).  Retronectin provides an 

alternative approach to increase efficiency of transduction.  It is a recombinant human 

fibronectin fragment that acts as a co-localizer of the virions and the target cells.  Since 

viral particles can be bound by retronectin, inhibitory factors that may be contained 

within the viral supernatant can be removed after binding of the virus onto retronectin 

coated plates (Chono et al., 2001).  In order to compare the efficiency of transduction 

using polybrene and retronectin, we transduced CD34+ CB cells with retrovirus 

produced by transiently transfecting Plat-GP cells with pMSCV-IRES-EGFP (MSCV-

EGFP virus) and pCMV-RD114TR.  Retronectin was found to achieve a higher 

percentage of CD34+ CB cell transduction than polybrene (32.2% versus 12.5%, data 

not shown).  In addition, a further two experiments also showed 1.1-fold and 1.4-fold 

increases in the percentage of CD34+ CB cells transduced using retronectin in 

comparison to polybrene.  For this reason, retronectin was selected for the following 

experiments. 
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3.6. Retroviral transduction of human cord blood 

 

Following this series of optimisations, the most effective conditions were applied to 

retroviral transduction of CD34+ CB cells with expression vectors containing MLL-

fusions.  Plat-GP cells were transiently transfected with pMCV-RD114TR and either the 

control pMSCV-PGK-EGFP or the MLL-fusion expression vectors, pMSCV-MLL-

ENL-PGK-EGFP and pMSCV-MLL-AF9-PGK-EGFP (MSCV-MA).  In addition, we 

also used an expression vector which encodes the AML1-ETO9a fusion protein, pMIG-

AE9a (MIG-AE9a).  Since MIG-AE9a has a smaller insert size (3.3Kb) than MLL-

fusions expression vectors, it was expected to provide higher retroviral titre and be more 

efficient at transducing CD34+ CB cells.  For this reason, it was used as a positive 

control.  The ratio of the retroviral expression construct to the envelope construct used 

was 8 to 2.  A serial transduction method to improve retroviral transduction was 

employed, since ultracentrifugation was not successful in this study.  CD34+ CB cells 

were transduced four times, consecutively, within a 48 hour period, with MSCV-MA 

and MSCV-ME viruses, and only once with MSCV-EGFP and MIG-AE9a viruses, 

since these were both shown to generate high retroviral titre (data not shown).  

Transduced CD34+ CB cells were then plated into methylcellulose culture supplemented 

with TPO (100ng/ml), FLT3L (100ng/ml), SCF (100ng/ml), IL-3(10ng/ml) and IL-6 

(10ng/ml) and serially re-plated every 7 to 10 days.  The number of cells and colonies 

produced in each round, as well as EGFP expression, was analysed.  Figure 3.4 shows a 

schematic diagram of the retroviral transduction steps used for this experiment.  
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Figure 3.4.  Schematic diagram of retroviral transduction used in this study 

The diagram illustrates the retroviral transduction approach.  8µg of expression vector 

and 2µg of envelope construct were used to transfect Plat-GP cells.  Retroviral 

supernatant collected 48 hours after transfection was added to a retronectin-coated plate 

and was centrifuged at 1,500g for two hours at room temperature.  The viral supernatant 

was then removed and 2x104 CD34+ CB cells in complete IMDM supplemented with 

100ng/ml TPO, 100ng/ml rhFLT3L, 100ng/ml rhSCF, 10ng/ml rhIL-3 and 10ng/ml 

rhIL-6, were then added onto the retronectin-coated plate and incubated at 37 ºC.  3x104 

or 1x105 transduced cells were added to 3ml of human methylcellulose complete media 

(without Epo), supplemented with 100ng/ml TPO, 100ng/ml rhFLT3L, 100ng/ml 

rhSCF, 10ng/ml rhIL-3, and 10ng/ml rhIL-6.  The cells were cultured for 7 to 10 days 

before re-plating or harvesting for analysis.  
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The initial percentage expression of EGFP in CD34+ CB cells transduced with MSCV-

EGFP and MIG-AE9a virus was significantly higher than in the cells transduced with 

MSCV-MA and MSCV-ME (Figure 3.5A).  Colony formation by MSCV-EGFP cells 

ceased on the 3rd round of re-plating, whereas the MIG-AE9a culture continued to re-

plate, maintaining a high percentage of EGFP expressing cells (Figure 3.5B).  The 

MSCV-ME and MSCV-MA cells did not become immortalised (Figure 3.5B and C).  

Colony formation ceased by the 3rd round for the MSCV-ME culture and the 4th round 

for the MSCV-MA culture (Figure 3.5B).  However, these cultures still contained live 

cells, which did not proliferate.  It may be possible that these cells require closer contact 

with each other in order to continue to proliferate.  For this reason, the cells were 

transferred into liquid culture at higher density, in complete IMDM supplemented with 

TPO, FLT3L, SCF, IL-3 and IL-6.  EGFP expression and cell growth were monitored.  

Regardless of the close contact between the individual cells, the MSCV-ME and 

MSCV-MA cells failed proliferate despite being EGFP positive (data not shown).  From 

this observation, and four independent experiments with similar results, we reasoned 

that the CD34+ CB cells transduced with MSCV- ME and MSCV-MA virus may have 

become senescent. 

 

3.7. Lentiviral transduction of human cord blood 

 

Since the retroviral vectors expressing MLL-ENL and MLL-AF9 failed to immortalise 

CD34+ CB cells, we decided to switch to using lentiviral vectors, which may be more 

efficient at transducing CD34+ CB cells (Naldini et al., 1996; Naldini, 1998).   
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Figure 3.5.  CD34+ CB cells were not immortalised following retroviral 

transduction 

The graphs represents: A) the percentage expression of EGFP, B) colony number per 

104 cells plated, and C) cell number of CB cells per 104 cells plated.  Transduced CB 

cells were plated into methylcellulose supplemented with TPO, FLT3L, SCF, IL-3 and 

IL-6. Cultures were re-plated approximately every seven days.  Similar results have 

been obtained from four other independent experiments. 
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Unlike retroviruses, lentiviruses do not require a host cell to be in mitosis in order to 

target the nucleus, and for this reason, lentiviruses can integrate into non-dividing cells 

as well as dividing cells (Walther and Stein, 2000).  The lentiviral expression vectors 

FUGW-V6 and FUGW-V6MA were kindly supplied by Dr. Sarah Horton, University of 

Groningen, Netherlands, and Dr. Gianni Morrone, University of Catanzaro Magna 

Graecia, Italy. See Material and Methods for plasmid maps).  For lentiviral transduction, 

293FT packaging cells were used.  293FT cells are a variant of 293 cells and contain the 

SV40 large T antigen, which increases episomal DNA copy number.  Unlike Plat-GP 

cells, these packaging cells do not encode any viral proteins, and therefore co-

transfection of the cells with all the packaging genes is necessary.  The 293FT cells 

were transiently co-transfected with the lentiviral expression vectors, FUGW-V6 or 

FUGW-V6MA, and the pCMV-PAX2 construct, containing the gag and pol elements, 

and either the pCMV-RD114TR or the pVSV-G envelope construct.  Figure 3.6 shows a 

schematic diagram of the lentiviral transduction steps used for this experiment.  The 

number of CD34+ CB cells to be transduced was increased from 2x104 to 1x105 in order 

to provide closer contact between the cells.  CD34+ CB cells were only transduced once 

with FUGW-V6 and four times, serially, with FUGW-V6MA.  A high percentage of 

CD34+ CB cells was transduced with the V6MA vector (Figure 3.7).  The percentage of 

EGFP positive cells increased upon liquid culture of the transduced cells, and reached 

99.5% with V6MA virus coated with VSV-G envelope, and 99.9% with V6MA virus 

coated with RD114TR envelope, by day 40 after the transduction (Figure 3.7).  

Interestingly, the intensity of EGFP expression in CD34+ CB cells transduced with 

V6MA (VSV-G) increased from 61 to 128 (Figure 3.7).  The increase in intensity of 

EGFP expression in cells transduced with V6MA (RD114TR) was even higher, from 77 

to 291 (Figure 3.7).   
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Figure 3.6.  Schematic diagram of lentiviral transduction used in this study 

The diagram illustrates the lentiviral transduction approach system.  5µg of expression 

vector, 1.5µg of envelope construct and 3.75 µg of Pax2 were used to transfect 293FT 

cells.  Lentiviral supernatant was collected 48 hours after transfection, added to 

retronectin-coated plates and was centrifuged at 1,500g for two hours at room 

temperature.   The viral supernatant was then removed and 2x105 CD34+ CB cells in 

complete IMDM supplemented with 100ng/ml TPO, 100ng/ml rhFLT3L, 100ng/ml 

rhSCF, 10ng/ml rhIL-3 and 10ng/ml rhIL-6, were added onto the retronectin-coated 

plate and incubated at 37 ºC.  0.5x106  transduced cells were added to 1ml of complete 

IMDM supplemented with 100ng/ml TPO, 100ng/ml rhFLT3L, 100ng/ml rhSCF, 

10ng/ml rhIL-3 and 10ng/ml rhIL-6.  The cells were re-seeded every two to three days 

at 0.5x106  cell/ml. 
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Figure 3.7.  Enrichment of EGFP positive V6MA cells following transduction of 

CD34+ CB cells 

The histograms show the percentage of EGFP expressing CB cells after transduction 

with V6 or V6MA virus, coated either with VSV-G or RD114TR envelopes. The 

analysis was performed at the indicated times after lentiviral transduction.  The numbers 

in the histograms represent the percentage of EGFP positive cells and the numbers in 

brackets indicate mean fluorescence intensity.  Filled grey areas represent un-transduced 

CD34+ CB cells.  A similar trend was observed in three other independent experiments. 

In total, four different human CB samples were used to generate immortalised myeloid 

cells using MLL-AF9 (V6MA1-4) (Figure 3.8).  The CD34+ CB cells transduced with 
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V6MAr (RD114TR) and V6MAv (VSV-G) continued to proliferate exponentially over 

the time period analysed, while the proliferation rate of GFP control vector and 

untransduced CD34+ CB cells plateaued by approximately day 40 of culturing (Figure 

3.8).  

 

It should be noted that although V6MA cells were successfully immortalised, none of 

the V6MA cells proliferated indefinitely.  V6MA cells eventually ceased to proliferate 

and the length of the proliferation varied depending on the CB samples and the 

particular line. V6MA1v, V6MA1r, V6MA2r, V6MA3v, V6MA3r and V6MA4r 

proliferated up to days 192, 101, 222, 180, 303 and 104, respectively. 

 

3.8. Validation of MLL-AF9 expression in V6MA cells 

 

The protein and mRNA expression of MLL-AF9 was validated in the V6MA cells.  

Untransduced CD34+ CB cells, V6.3 cells and V6MA3r cells were tested for MLL-AF9 

protein expression by western blot analysis, using a monoclonal antibody directed 

against the N-terminus of MLL (Figure 3.9A).   A 170kDa band corresponding to the 

MLL-AF9 protein was detected in V6MA3r cells, while this band was absent in both 

untransduced CD34+ CB cells and V6.3 cells.   
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Figure 3.8.  Accumulation of V6MA cells in vitro 

The plot shows the accumulation in CB cell number following transduction with V6 

virus coated with VSV-G envelope (V6.1v, V6.3v), V6MA virus coated VSV-G 

envelope (V6MA1v, V6MA3v), V6 virus coated with RD114TR envelope (V6.1r, 

V6.2r, V6.4r) and V6MA virus coated with RD114TR envelope (V6MA1r, V6MA2r, 

V6MA3r, V6MA4r).  The numbers after V6 and V6MA represent the CB sample (1-4) 

used in each transduction.  All the cultures were started at a density of 0.5x106 cells per 

ml. 
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Figure 3.9.  Validation of MLL-AF9 mRNA and protein expression in V6MA cells 

A) The figure shows western blot analysis of total lysates from human CD34+ CB cells, 

V6.3v and V6MA3r cells.  A mouse anti-human MLLN4.4 antibody and sheep anti-

mouse IgG HRP were used as primary and secondary antibodies to probe the western 

blot.  An anti Clathrin-HC antibody was used to control for protein loading.  V6.3 and 

V6MA3r cells were in culture for 14 and 59 days respectively.  The same trend of 

protein expression was observed in all other V6MA cells.  B) The bar graphs show the 

relative levels of MLL-AF9 mRNA expression, measured by QPCR in V6, V6MAs and 

AE9A cells.  Values for each cell line were normalised to the expression in V6MA1v 

cells.  Columns represent the mean of quadruplicate measurements and the error bars 

represent the SD.  P-values were calculated using Student’s paired t-test. (***) P≤0.001, 

(na) not applicable.  V6.3v, V6MA1v, V6MA2r and V6MA3r were in culture for 57, 

105, 100 and 57 days respectively.  This experiment was carried out once. 
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Next, we validated the mRNA expression of MLL-AF9 in V6MA cells.  MLL-AF9 

mRNA expression was measured using QPCR primers and a probe designed to span the 

breakpoint of the MLL-AF9 fusion, in V6.3, V6MA1v, V6MA2r, V6MA34 and AE9a2r 

cells.  Figure 3.9B shows the mRNA expression of MLL-AF9 in the V6MA cells.  

Values for each cell line were normalised to the expression in V6MA1v cells.  

Negligible and no expression of MLL-AF9 was observed in V6.3v and AE9a2r cells, 

respectively, while significant MLL-AF9  expression was observed in all the V6AMA 

cells analysed.  Taken together, these data demonstrate the expression of MLL-AF9 at 

both the protein and mRNA levels.  

  

3.9. Validation of MLL-AF9 target genes in V6MA cells 

 

Next, we measured the expression of known MLL-AF9 down-stream target genes in the 

V6MA cells.  HOXA9 and MEIS1 are two of the best characterised down-stream target 

genes of MLL-AF9 (Ayton and Cleary, 2003; Zeisig et al., 2004; Horton et al., 2005; 

Hess et al., 2006; Wong et al., 2007; Faber et al., 2009; Kumar et al., 2009; Somervaille 

and Cleary, 2010).  Therefore, V6, V6MA and AE9a cells were harvested to measure 

HOXA9 and MEIS1 expression by QPCR analysis (Figure 3.10A and B).  Expression of 

both HOXA9 and MEIS1 was significantly higher in all of the V6MA cells, compared to 

that in V6 or AE9a2r cells.  

 

We then measured the expression of other down-stream targets of MLL-AF9, the MYB 

and MYC genes.   
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 Figure 3.10.  HOXA9 and MEIS1 mRNA expression are up-regulated in V6MA 

cells 

The bar graphs show the relative level of A) HOXA9 and B) MEIS1 mRNA expression, 

measured by QPCR in V6, V6MAs and AE9a cells.  Values for each cell line were 

normalised to the expression in V6 cells.  Columns represent the mean of quadruplicate 

measurements and the error bars represent the SD.  P-values were calculated using 

Student’s paired t-test. (***) P≤0.001.  V6.3v, V6MA1v, V6MA2r and V6MA3r were 

in culture for 57, 105, 100 and 57 days respectively.  These experiments were carried 

out once. 
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Their expression has also been found to be increased in the presence of MLL-fusions in 

conditionally immortalised mouse cells in previous work from our group.  In addition, 

Hess et al demonstrated the importance of c-myb as a down-stream target gene of 

HOXA9 and MEIS1 (Hess et al., 2006).  Protein and mRNA expression of MYB were 

analysed in V6MA cells by western blot and QPCR respectively (Figure 3.11A and B).  

Significantly higher expression of MYB protein and MYB mRNA was observed in 

V6MA cells, compared to that in CD34+ CB cells and V6 cells.  A similar expression 

pattern of MYC mRNA was also observed in V6MA cells (Figure 3.11C).   

 

3.10. Immunophenotypic and morphological characterisation of V6MA 

cells  

 

The immunophenotypes of V6MA cells were also determined (Figure 3.12A).  A panel 

of differentiation associated markers was selected to determine at what stage in 

myelopoiesis the V6MA cells were positioned.  V6 cells and V6MA cells generated 

with different envelope constructs (VSV-G and RD114TR) were stained and analysed 

by flow cytometry.  The data shows that most of the V6MA population consisted of 

CD34- and CD33+ cells, with heterogeneous CD38 expression.  In addition, more than 

half of the cells within each V6MA cell line expressed the CD11b and CD14 surface 

markers.  Interestingly, the percentage expression of the CD15 marker was found to be 

higher in CD34+ CB cells transduced with V6MA (RD114TR), than those transduced 

with V6MA (VSV-G).  CD15 is initially expressed on GMPs and early monoblasts, as 

well as throughout granulocyte maturation.  In addition, increases in CD15 expression 

were observed over time in liquid cultures of V6MA1v, V6MA1r, V6MA2r and 

V6MA3v cells. 
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Figure 3.11.  MYB and MYC expression are up-regulated in V6MA cells 

A) The figure shows a western blot analysis of total lysates from human CD34+ CB 

cells, V6.2r and V6MA2r cells. The western blot was probed with a primary rabbit 

polyclonal anti-MYB antibody and a secondary goat anti-rabbit IgG HRP.  An anti-α-

actin antibody was used to control for protein loading.  V6.2r and V6MA2r were in 

culture for 38 days.  The bar graphs show the relative levels of B) MYB and C) MYC 

mRNA expression, measured by QPCR in V6, V6MAs and AE9A cells.  Values for 

each cell line was normalised to the expression in V6 cells.  Columns represent the 

mean of quadruplicate measurements and the error bars represent the SD.  V6.3v, 

V6MA1v, V6MA2r and V6MA3r were in culture for 57, 105, 100 and 57 days 

respectively.  P-values were calculated using Student’s paired t-test.  (***) P≤0.001.  

These experiments were carried once. 
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Figure 3.12.  Immuno and morphological phenotypes of transduced human CB 

cells 

A) The dot plots show flow cytometric analysis of lentivirally transduced CB cells 

(V6.1 and V6MA1) after 40 days of culture.  CD34 and CD38, CD33 and CD15 and 

CD11b and CD14.  Numbers in dot plots represent the percentage of cells within each 

quadrant. Similar patterns of respective expression were observed in all other V6MA 

cells.  B) Pictures of cytospins (magnification of x100) of V6MA2r, V6MA3r and 

V6MA4r cells.  
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The V6MA cells (V6MA2r, V6MA3r and V6MA4r) were also subjected to cytospin 

and morphological analysis (Figure 3.12B).  The data showed that the majority of cells 

within each V6MA line had a myeloblast morphology. 

 

3.11. Xenotransplantation  

 

Xenotransplantation was then performed in order to establish whether the immortalised 

V6MA cells were capable of inducing leukaemia.  NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 

mice (commonly known as NOD scid gamma or NSG), deficient in T, B and NK cells 

and cytokine signalling were used as recipients for transplantation.  Sub-lethally 

irradiated (3.5 Gy) NSG mice were injected with 1-10x106 V6MA cells and recipients 

were monitored for signs of disease (Figure 3.13A).  V6MA2r, V6MA3r and V6MA4r 

cell lines induced AML with a latency of between 51 to 84 days (Figure 3.13B).  The 

leukaemic phenotype of the induced human AML was confirmed by flow cytometric 

analysis (Figure 3.14).  

 

3.12. Discussion 

 

Modelling myeloid leukaemia using human haematopoietic progenitor cells started 

approximately 12 years ago and several fusion genes associated with leukaemia were 

used to generate human immortalised cells [reviewed in (Mulloy et al., 2008)].   
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Figure 3.13.  Xenotransplantation of V6MA cells 

A) The diagram illustrates the in vivo transplantation of V6MA cells.  NSG mice were 

sub-lethally irradiated (3.5Gy) one day before transplantation. V6MA cells were 

injected and recipients were monitored for signs of disease.  B) The table represents a 

list of transplantations performed in this study. *-: no AML was detected more than 6 

months after transplantation 
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Figure 3.14.  Engraftment of V6MA cells in NSG mice 

The flow cytometric analysis shows NSG mouse (control) or NSG mice injected with 

V6MA2R cells (V6MA2R) and scarified 61 days later.  The histograms show the 

percentage of EGFP positive cells in bone marrow and spleen of the NSG mice.  The 

dot plots show flow cytometric analysis of CD15 /CD33, and CD11b/CD14 expression.  

Similar patterns of respective expression were observed in four other mice that were 

sacrificed due to leukaemic symptoms. 
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However, although a number of groups generated murine models of MLL-fusions-

associated leukaemia, there are still relatively few reports of human haematopoietic 

cells immortalized by MLL-fusions (Lavau et al., 1997; Slany et al., 1998; Zeisig et al., 

2003; Horton et al., 2005; Krivtsov et al., 2006; Somervaille and Cleary, 2006; Barabe 

et al., 2007; Wei et al., 2008).   Barabe et al and Wei et al both generated immortalized 

human cells by transducing human CB cells with retroviral vectors expressing MLL-

AF9 (Barabe et al., 2007; Wei et al., 2008).  Barabe et al used the ultracentrifugation 

method to concentrate the retroviral supernatant containing MLL-AF9 and then 

performed four serial transductions of lineage negative CB cells, at 12 hours intervals 

(Barabe et al., 2007).  In addition, this study also used the VSV-G envelope.  They 

cultured MLL-AF9 immortalised CB cells in myeloid conditions, using SCF and IL-3.  

The MLL-AF9 CB cells in this study only proliferated for approximately 125 days in 

liquid culture.  Our data are consistent with Barabe et al, in that, although MLL-AF9 

transduced CB cells proliferated exponentially over the period analysed, the 

proliferation eventually slowed down and ceased (data not shown).  In contrast, Wei et 

al successfully managed to culture the transduced cells indefinitely (Wei et al., 2008).  

Their CB-derived MLL-AF9 cells were cultured for two years or longer and no 

phenotypic changes were observed during this period (Mulloy et al., 2008; Wei et al., 

2008).  In their approach, the retroviral supernatant containing MLL-AF9 was eight-

times concentrated and CD34+ CB cells were transduced using retronectin.  In addition, 

the RD114 envelope was used.  The transduced CB cells were cultured with SCF, TPO, 

FLT3L, IL-3 and IL-6.  Mulloy et al later explained that inclusion of FLT3L in the 

culture of the transduced CB cells was crucial in the immortalisation process (Mulloy et 

al., 2008).  Although we cultured the CB derived MLL-AF9 cells in the same conditions 

as Wei et al, including FLT3L, our cells did not proliferate indefinitely.  Further 

experiments revealed that only around a third of the human CB samples tested could be 
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immortalised by MLL-AF9 (Mulloy et al., 2008). This indicates that the difference in 

CB cell immortalisation by MLL-AF9 in these and our studies may not be completely 

explained by the growth factors used in each case.  

 

In our study, virus coated with the RD114 envelope was shown to give higher viral titre 

on CB cells than virus coated with the VSV-G envelope.  The VSV-G envelope is 

believed to interact with host cells via binding to clathrin (Sun et al., 2005; Roche et al., 

2008; Cureton et al., 2009).  Viral entry is then mediated via the pH-dependent 

endocytotic pathway (Roche et al., 2008).  On the other hand, the RD114 envelope 

specifically interacts with the RD114 receptors, which are particularly abundant on 

CD34+CD38- human cells (Di Nunzio et al., 2007).  A number of studies have shown 

that the RD114 envelope gives more efficient CD34+ CB cell transduction than the 

VSV-G envelope (Kelly et al., 2000; Sandrin et al., 2002; Strang et al., 2004).  This is 

consistent with our experiments.  It was interesting to observe that transduction of CB 

cells using the VSV-G envelope increased CD38 expression.  Increase in CD38 

expression is associated with differentiation (Terstappen et al., 1991).  Since the self-

renewing capacity of human haematopoietic cells resides within the CD34+CD38- 

fraction of the CB sample, we decided to use the RD114 envelope construct in 

subsequent experiments.  There is no report in the literature demonstrating that the 

VSV-G envelope induces CD38 expression or differentiation in human haematopoietic 

cells.  However, it has been reported that human CD34+CD38+ cells were more 

efficiently transduced with retrovirus coated with VSV-G envelope than were CD34+ 

CD38- cells (von Laer et al., 2000).  Therefore, it is possible that the CD34+ CD38+ cells 

were preferentially transduced by retrovirus coated with VSV-G in our study.   
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In our study, CD34+ CB cells were successfully immortalised by lentiviral transduction.  

It is not clear why CD34+ CB cells were not immortalized by retroviral transduction in 

our experiments.  It is possible that the quality of the cord blood may influence the 

outcome of retroviral transduction.  Thus, frozen cord blood was used in our study, 

while fresh cord blood was used in the previously published studies.  Another possible 

reason for the greater efficiency of lentiviral transduction in comparison to retroviral 

transduction is the ability of lentiviruses to integrate into non-dividing cells.  

Furthermore, lentiviruses can package inserts of up to 10 kb in size, which is 

considerably larger than retroviruses (Walther and Stein, 2000).  An increase in EGFP 

expressing transduced CB cells, as well as an increase in EGFP intensity over time 

(Figure 3.7), suggested that immortalised CB cells were outgrowing the cultures due to 

the expression of MLL-AF9.  In addition, the initial intensity of EGFP expression was 

higher in the CB cells transduced with V6MA (RD114TR) than those transduced with 

V6MA (VSV-G) (Figure 3.7).  This indicates that RD114TR was more efficient at 

transducing the CB cells, leading to higher numbers of proviral intergrations.  In 

contrast, although EGFP expression in CD34+ CB cells transduced with V6MA 

(RD114) was higher than those transduced with V6MA (VSV-G), it was lower in 

control V6(RD114) than V6(VSV-G) transductions.  Despite these differences in 

transduction efficiency, immortalised MLL-AF9 expressions cells were generated with 

both RD114 and VSV-G coated lentiviral particles.  

 

Detection of MLL-AF9 protein and mRNA expression in V6MA cells confirmed that 

they did indeed express the fusion.  Variation in the level of MLL-AF9 detected in 

V6MA cells may be explained by heterogeneous genotypes of the different human CB, 

differences in the developmental stage of the transduced cells and/or the viral titres 
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achieved in each of the transductions.  MLL-AF9 expression by the CB cells was found 

to result in up-regulation of HOXA9, MEIS1, MYB and MYC mRNA expression.  

Several studies using murine MLL-fusion models suggest that Hoxa9 and Meis1 are 

major target genes of MLL fusions (Ayton and Cleary, 2001; Zeisig et al., 2004; Horton 

et al., 2005; Wong et al., 2007; Faber et al., 2009; Kumar et al., 2009).   Indeed, Hoxa9 

and Meis1 are both up-regulated in MLL-AF9 and MLL-ENL transformed cells, yet 

they are down-regulated in mature cells such as neutrophils (Milne et al., 2005).  A key 

study performed by Zeisig et al used murine inducible cells in which MLL-ENL 

expression was induced by 4-hydroxy-tamoxifen (4-OHT).  The group showed, using 

this model and microarray analysis, that Hoxa9 and Meis1 are crucial down-stream 

targets of MLL-ENL (Zeisig et al., 2004).  Furthermore, our laboratory has previously 

demonstrated that Hoxa gene expression is reduced upon loss of MLL-ENL, but not 

upon differentiation induced by granulocyte colony-stimulating factor (G-CSF).  This 

work demonstrated that Hoxa genes are targets of MLL-ENL (Horton et al., 2005).  In 

the human model, HOXA9 up-regulation was also found by Wei et al, although mRNA 

was only increased by two-fold in comparison to control cells (Wei et al., 2008).   

 

The up-regulation of MYB protein and mRNA in V6MA cells in our study is in 

agreement with previously published data from Hess et al (Hess et al., 2006).  In this 

study, c-Myb was demonstrated to be a down-steam target gene of HOXA9 and MEIS1, 

which in turn were regulated by the conditionally expressed MLL-ENL (Hess et al., 

2006).  Although c-Myb itself was not sufficient to cause transformation, it was found to 

be necessary for MLL-ENL-mediated transformation (Hess et al., 2006).  Similar up-

regulation was seen with MYC mRNA expression in V6MA cells.  These data are 

consistent with a previous study, showing that c-Myc expression is required for the 
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differentiation block imposed my MLL-ENL (Schreiner et al., 2001).  In summary, we 

confirmed that previously published MLL-fusion target genes were also up-regulated in 

the human system.  

 

Various combinations of antibodies were used to determine the differentiation block in 

V6MA cells.  Our flow cytometric analyses showed that V6MA cells express high 

levels of CD33 and CD14, and were heterogeneous for CD11b, CD15 and CD38 

expression.  Immunophenotypic characterisation of CB-derived MLL-AF9 cells was 

also performed by Wei et al (Wei et al., 2008).  Interestingly, this study used two 

different MLL-AF9 expression constructs, and slightly different immunophyenotypes 

were observed depending on the construct used.  The pREW-MLL-AF9 vector used the 

pREW 5’LTR retroviral promoter to drive expression of EGFP followed by MLL-AF9, 

with 2A peptide links between the two cDNAs.  The pMSCV-MLL-AF9 vector used 

the pMSCV 5’LTR retroviral promoter to drive the expression of MLL-AF9, while the 

PGK promoter was used to drive the expression of the puromycin resistance gene.  The 

immunophentype of our V6MA cells resembles that of MLL-AF9 cells generated using 

the pREW-MLL-AF9 expression construct (Wei et al., 2008).  The FUGW vector used 

in the present study also employs an EGFP expression cassette, similar to the pREW-

MLL-AF9 vector used in Wei et al (Wei et al., 2008).  It is possible that puromycin 

selection, used in the pMSCV-MA transduced cells, may have selected for a highly 

transduced population, compared to our strategy, which relied on monitoring outgrowth 

of immortalised V6MA cells by examining EGFP expression.  For this reason, our 

cultures may have contained more heterogeneous populations than the pMSCV-MA 

transduced cells from Wei et al.  Furthermore, the MLL-AF9 cDNA sequence used in 
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our study differs from both of the sequences used in Wei et al (Wei et al., 2008), which 

may also reflect the difference in immunophenotypes between the two studies. 

 

It was interesting to note that CD15 expression was higher in the V6MA (RD114TR) 

cells, than in the V6MA (VSV-G) cells (Figure 3.12A).  CD15 expression is up-

regulated after the GMP stage of myeloid development, and its expression remains up-

regulated throughout the maturation of granulocytes, while it is lost during monocyte 

maturation (Figure 1.3).  This suggests that the V6MA (RD114TR) transduced cells 

were more mature than the V6MA (VSV-G) cells.  However, it is also possible that the 

latter culture contained more mature monocytes.  In addition, we observed an increase 

in CD15 expression over time in the liquid cultures (data not shown).  Since V6MA 

cells do not proliferate indefinitely, CD15 expression may inversely correlate with the 

proliferation capacity of V6MA cells.  However, how CD15 expression is related to 

proliferation is not clear.  Further phenotypic characterisation will have to be performed 

to clarify these possibilities. 

 

Xenotransplantation experiments confirmed that CB-derived V6MA cells have the 

potential to induce leukaemia in vivo.  Upon injection of 1 x107 V6MA cells, not all of 

the NSG mice came down with leukaemia in our experiments.  These data are in 

agreement with Wei et al (Wei et al., 2008).  Despite the  identical phenotypes and 

morphology of the different lines used, this study found variation in induction of 

leukaemia in vivo, depending on which immortalised MLL-AF9 line was used (Mulloy 

et al., 2008).  It is known that not all AML patient samples, including 11q23 rearranged 

AML, engraft upon xenotransplantation (Pearce et al., 2006). The similarity in 

leukaemia induction between our study and that of Wei et al, suggests that the capacity 



137 
 

of the MLL-AF9 immortalised cells to proliferate indefinitely in vitro may not correlate 

with their ability to cause AML.  These results illustrate the complexity of interpreting 

experiments using heterogeneous human CB samples, in comparison to murine model 

experiments with haematopoietic cells from inbred strains of mice.  Nevertheless, some 

NSG mice did develop leukaemia upon transplantation with V6MA cells.  The technical 

challenges involved in the culture of human primary AML patient samples, make the 

use of CB-derived V6MA cells an attractive alternative in the analysis of MLL-AF9 

function in human cells. 
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CHAPTER 4.  RESULTS – Approaches to gene knock-down in human 

leukaemia cells  

 

4.1. Introduction 

 

Human leukaemic cell lines are valuable models for cancer research.  Derived from 

patient samples under appropriate conditions, these cell lines can be maintained in 

culture for extensive periods of time.  We have successfully generated MLL-AF9 

immortalised human CB-derived (V6MA) cells in the previous chapter.  Since these 

cells are immortalised by expression of MLL-AF9 in the absence of any other genetic 

mutations, they are invaluable in studying the function of this fusion in leukaemia.  

They also allow us to validate information, gained from mouse cell experiments, in 

human leukaemia models.  However, these cells are growth factor dependent, do not 

proliferate indefinitely and are less robust than leukaemia cell lines.  In order to test and 

develop different strategies to knock-down gene expression, we decided to use 

leukaemic cell lines.  Therefore in this chapter, we planned to characterise and study a 

panel of human leukaemic cells prior to using them as a human model.  As a first step in 

analysing MLL-fusion function in human cells, we tested various human leukaemic cell 

lines containing endogenous MLL-rearrangements.  Before we could use the cell lines 

in this way, it was important to verify that they indeed expressed the respective MLL-

fusions.  Following confirmation of this, we planned to knock-down the expression of 

MLL-fusions, to observe the dependence of the cell lines on these oncogenes.  We first 

employed the siRNA to produce knock-down of gene expression, as this technique was 

previously optimised in our laboratory.  This would then allow us to study the roles of 
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MLL-fusion target genes in leukaemogenesis in human leukaemic cells and to extend 

these studies to the CB-derived MLL-AF9 immortalised cells.  

 

4.2. Detection of MLL-fusion expression 

 

A list of human leukaemic cells used for this study is shown in Table 4.1.  Several 

human leukaemic cell lines containing chromosomal translocations involving the MLL 

gene were tested for the expression of the appropriate MLL-fusion protein using a 

monoclonal antibody directed against the N-terminus of MLL (common to all the 

fusions) (Figure 4.1A and B).  Murine MLL-AF9 myeloid cells generated previously in 

our lab were used as a positive control for MLL-fusion expression, and α-tubulin and 

clathrin HC protein expression was measured as a loading control.  We also used 

several human leukaemic cells such as KCL-22, OCI-AML3, YCUB-2 and KASUMI-1 

that are not associated with MLL-fusions, as negative controls.  Bands corresponding to 

MLL-fusions were detected in most of the appropriate cells, such as the 360kDa band 

corresponding to MLL-AF6, the 240kDa band corresponding to MLL-AF4, and the 

170kDa band corresponding to MLL-AF9, except KOPN-8 cells.  KOPN-8 cells are 

described as being derived from a patient with the MLL-ENL fusion (Drexler et al., 

2004).  However, a 220kDa band corresponding to this fusion protein was not detected 

in our experiments.  In addition, the 320kDa band corresponding to the N-terminal MLL 

fragment was also observed in most of the human leukaemic cells.  The clearest band 

corresponding to MLL-AF9 was observed in THP-1 cells.  For this reason, we decided 

to primarily use THP-1 cells to study MLL-AF9-associated leukaemia.  
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Cell line Fusion protein Type of leukaemia

THP-1

NOMO-1

SHI-1

MOLM-13

MONO-MAC-6

MV4-11

KCL-22

OCI-AML3

KASUMI-1

MLL-AF9

MLL-AF9

MLL-AF6

MLL-AF9

MLL-AF9

MLL-AF4

BCR-ABL

NPM mutated

AML1-ETO

human  acute  monocytic leukemia

human  acute  myeloid leukemia

human  acute  myelocytic leukemia

human  acute  myeloid leukemia

human  acute  monocytic leukemia

human  acute  monocytic leukemia

human  chronic  myeloid leukemia in blast crisis

human  acute  myeloid leukemia

human  acute  myeloid leukemia

KOPN-8 MLL-ENL human  B cell  precursor acute lymphoblastic leukemia

SEMK-2 MLL-AF4 human  acute  lymphoblastic leukemia

YCUB-2 E2A-HLF human  B-lineage  acute  lymphoblastic leukemia

 

 

 

 

 

Table 4.1.  A panel of human leukaemic cell lines used in this study 

The list shows a panel of human leumaemic cell lines used in this study.  DSMZ - the 

German Resource Centre for Biological Material, was used as a source for most of the 

cell lines and a source for this information (www.dsmz.de).  
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Figure 4.1.  Human leukaemic cells express their MLL-fusion proteins 

Figures A and B show western blot analyses of total lysates from human leukaemic cell 

lines. Mouse anti-human MLL-N4.4 antibody and sheep anti-mouse IgG HRP were 

used for primary and secondary antibodies to probe the western blot.  Total lysates from 

YCUB-2, KCL-22, OCI-AML3 and KASUMI-1 cells were used as negative controls, 

and murine cells expressing MLL-AF9 were used as a positive control (kindly provided 

by Dr Vanessa Walf-Vorderwülbecke).  Anti-α tubulin and anti-Clathrin HC antibody 

were used to control for protein loading.  MLLN, the N-terminal MLL fragment.  
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Since most of the human leukaemic cells did indeed express their respective MLL-

fusions, mRNA expression of known target genes was then examined (Figure 4.2).  

mRNA expression of HOXA9 and MEIS1 was analysed first, due to the importance of 

these target genes to MLL-fusion function (see chapter 3.9).  All the human leukaemic 

cells expressed HOXA9 and MEIS1 apart from THP-1 cells, in which only a very low 

level of MEIS1 expression was detected, when compared to that of other MLL-

associated leukaemic cells.  HOXA9 and MEIS1 expression was undetectable in YCUB-

2 cells and was negligible in KASUMI-1 cells.  In addition, the highest expression of 

HOXA9 and MEIS1 was observed in NOMO-1 cells.  Moreover, despite undetectable 

MLL-ENL protein expression, HOXA9 and MEIS1 expression was also detectable in 

KOPN-8 cells.   

 

In order to further characterise THP-1 cells, their immunophenotype was then analysed.  

Surface antigen expression by THP-1 cells is documented in the literature (Pession et 

al., 2003).  In order to compare the differentiation state of THP-1 cells to that of V6MA 

cells, we used the same maturation markers as used in Chapter 3, namely CD11b, 

CD14, CD15, CD33, CD34 and CD38 (Figure 4.3).  Flow cytometric analysis showed 

that THP-1 cells expressed high levels of CD15 and CD38, were heterogeneous for 

CD11b expression, and had no or very low expression of CD34 and CD14.     
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Figure 4.2.  mRNA expression of  HOXA9 and MEIS1 in human leukaemic cells 

The bar graphs show the relative levels of A) HOXA9 and B) MEIS1 mRNA expression, 

measured by QPCR in human leukaemic cells.  Values for each cell line were 

normalised to the expression in A) THP-1 cells B) MV4-11 cells.  Columns represent 

the mean of quadruplicate measurements and the error bars represent the SD.  A similar 

pattern of expression was observed in one independent experiment.  The same trend was 

observed in one other experiment. 
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Figure 4.3.  Imunophenotype of THP-1 cells 

A) Dot plots show flow cytometric analysis of THP-1 cells with antibodies against 

CD33 and CD15 (left panel), and CD11b and CD14 (right panel).   Numbers below dot 

plots represent the percentage of cells within each quadrant.  B) Histograms show flow 

cytometric analysis of THP-1 cells with antibodies against CD34 (left) and CD38 

(right). Numbers within the histograms represent the percentage of cells within each 

gate.  Similar patterns of CD33, CD15, CD11b and CD14 expression were observed in 

at least three other experiments. 
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4.3. Optimisation of siRNA delivery  

 

To determine whether the human leukaemic cell lines were dependent on MLL-fusions 

for survival and proliferation, we decided to knock down the expression of the relevant 

MLL-fusion using small interfering RNA (siRNA).  siRNAs are incorporated into an 

RNA-induced silencing complex (RISC), which unwinds and cleaves target mRNA, 

causing the silencing of the target gene (Dykxhoorn et al., 2003; Mittal, 2004).  siRNA 

was delivered by electroporation in our study.  Initially, we used siGLO Red to measure 

how efficiently siRNA was delivered, using the pulse generator EPI 2500 electroporator 

(Heidelberg, Germany).  siGLO Red is a double stranded RNA that is chemically 

labelled with fluorophores and serves as a transfection indicator.  We electroporated 

THP-1, MV4-11, SEMK-2 and YCUB-2 cells, and the expression of siGLO Red was 

monitored after 72 hours by flow cytometry (Figure 4.4).  All electroporated cell lines 

showed an increase in the expression of siGLO Red, except YCUB-2 cells.  The data 

indicates that despite the variation in efficiency between human leukaemic cells, siRNA 

can be delivered efficiently using the pulse generator EPI 2500 electroporator.   

 

Prior to knocking down MLL-fusion expression in human leukaemic cells, we used a 

positive control siRNA to ensure that it was possible to knock down gene expression in 

these cells.  For this experiment, a pool of four siRNAs targeting GAPDH was used as a 

positive control.  This mixture of four validated siRNAs against GAPDH, purchased 

from Dharamcon (Thermo Fisher Scientific Leicestershire, UK), was designed to 

perform more efficient knock-down than a single siRNA.  
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Figure 4.4.  siRNA transfer using electroporation 

A) A schematic diagram illustrates the electroporation process to deliver siRNA used in 

this study.  3x106 human leukaemic cells were transferred into a cuvette with 100nM 

siRNA or 500nM siGLO Red.  The cells were then electroporated at various voltages, 

ranging from 330-900V for 10ms.  The cells were harvested for flow cytometric 

analysis 72 hours later.  B) Histograms show flow cytometric analysis of human 

leukaemic cells before (grey-filled areas) and after (solid lines) siGLO Red delivery 

using electroporation.  Numbers in the histograms indicate the percentage of siGLO Red 

expressing human leukaemic cells.  Human leukaemic cells were electroporated at 330V 

for 10ms with siGLO Red (500nM).  The cells were analysed 72 hours later.  The 

experiment was repeated one other time with THP-1, MV4-11 and KASUMI-1 cells and 

expression of siGLO Red was confirmed using florescence microscopy. 
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A negative control siRNA used for this experiment was designed to have no homology 

to mammalian genes, and this was validated by Dharmacon using Affymetrix GeneChip 

arrays (Thermo Fisher Scientific).  THP-1 cells were electroporated with the GAPDH 

siRNA and harvested 72 hours later.  A western blot analysis showed a 36kDa band, 

corresponding to GAPDH, in THP-1 cells electroporated with negative control siRNA 

(Figure 4.5A).  Electroporation of THP-1 cells with GAPDH siRNA decreased GAPDH 

protein expression down to 0.2 of the negative control.  This result demonstrates that it 

is possible to knock-down target gene expression using electroporation-delivered 

siRNA.  

 

We then tested whether any of the MLL-fusion target genes could be knocked down by 

siRNA.  For this experiment, a pool of four validated siRNAs targeting the MYB gene 

was used.  THP-1 cells were electroporated in the same way as described above and 

protein was harvested 72 hours later for western blot analysis (Figure 4.5B).  Protein 

expression of the 72kDa band corresponding to MYB was detected in THP-1 cells 

transfected with negative control siRNA.  Upon electroporation with siRNA against 

MYB, MYB protein expression showed a modest decrease, down to 0.6 of that of the 

negative control.   These results indicate that although it is possible to perform efficient 

knock-down using siRNA in human leukaemic cells, variation in efficiency occurs, 

depending on the gene being targeted.  
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Figure 4.5.  GAPDH and MYB knock-down using siRNA 

Figures represent western blot analyses of total lysates from electroportated THP-1 cells 

with siRNA against A) GAPDH or B) MYB.  Cells were electroporated at 330V for 

10ms and harvested at 72 hours to make cell lysates.  The western blots were probed 

with a primary goat polyclonal anti-GAPDH or a primary rabbit polyclonal anti-MYB 

antibody and a secondary donkey anti-goat IgG HRP or a secondary goat anti-rabbit 

IgG HRP.  Anti-HSP90 or anti-αTubulin antibodies were used to control for protein 

loading.  Values for protein expression were normalised to THP-1 cells transfected with 

control siRNA.  These experiments were carried out once. 
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4.4. Knock-down of MLL-fusions by siRNA 

 

To perform knock-down of MLL-fusion expression, we used three siRNAs (MLL 

siRNA A, MLL siRNA B and MLL siRNA C).  These siRNAs target 5’ sequences of 

MLL and would therefore be expected to target both the endogenous MLL gene and the 

MLL-fusions.  The THP-1 cell line was electroporated as described previously and 

expression of the MLL-AF9 fusion protein was examined after 72 hours (Figure 4.6A).  

A marked decrease of MLL-fusion protein expression in the THP-1 cells electroporated 

with MLL siRNA A (down to 0.1) and with MLL siRNA B (down to 0.2), was 

observed.  However, during replicate experiments, we noticed that the efficiency of 

knock-down varied considerably.  This experiment (Figure 4.6A) was repeated seven 

times and efficient knock-down was achieved three times.  The voltage of the 

electroporation was increased up to 900V to determine whether this would provide more 

consistent results (Figure 4.6B and Figure 4.6C).  Although use of higher voltage of 

siRNA delivery did achieve efficient knock-down of MLL-AF9 protein expression in 

THP-1 cells in some experiments (Figure 4.6B), consistent results could not be obtained 

(Figure 4.6C).  Furthermore, there was no consistency in the proliferation of THP-1 

cells electroporated with siRNA targeting MLL (Figure 4.7).  We performed two 

additional independent experiments with similar results for proliferation.  Due to this 

inconsistency in siRNA mediated knock-down of gene expression, an alternative 

approach to study the function of MLL-fusions in these cells was undertaken.  
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Figure 4.6.  Knock-down of MLL-fusion protein expression in THP-1 cells 

Figures represent Western blot analyses of total lysates from THP-1 cells electroporated 

with siRNA.  Cells were electroporated in the range of 330V to 900V for 10ms and 

harvested at 72 hours. Western blots were probed with primary mouse anti-human 

MLL-N4.4 antibody and secondary sheep-anti mouse IgG HRP.  An Anti Clathrin-HC 

antibody was used to control for protein loading.  Values for protein expression were 

normalised to THP-1 cells electroporated with control siRNA.  A)-C) Figures represent 

three individual experiments. 
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Figure 4.7.  siRNA targeting MLL does not decrease the proliferation of THP-1 

cells 

The graphs represent the fold-accumulation in THP-1 cell number after electroporation 

with siRNA, against control (red diamonds), MLL A (blue squares) and MLL B (black 

triangles) and MLL C (green triangle) shRNA.  Cells were electroporated at 330V for 

10ms and counted at various time points.  All the cultures started at a density of 0.5x106 

cells per ml.  Viable cell numbers were evaluated using trypan blue exclusion.  No 

consistency in results was observed in two other independent experiments. 
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4.5. Knock-down study by shRNA 

 

As an alternative approach to siRNA delivery to knock-down MLL-AF9 expression, 

lentiviral short hairpin RNA (shRNA) delivery was undertaken.  Unlike siRNA, shRNA 

are delivered by retroviral or lentiviral expression vectors, which provide a stable 

knock-down.  Initially, we tested the efficiency of gene expression knock-down by 

shRNA, by knocking down GPADH.  An shRNA sequence specific for the GAPDH 

gene, embedded within the mir-30 microRNA, was purchased from Open Biosystems 

(Surrey, UK).  This shRNA mir-30 was cloned into the SFFV-GIPZ vector, in which the 

CMV promoter of the GIPZ vector was replaced with the SFFV promoter.  THP-1 cells 

were transduced with shRNA targeting GAPDH, or a negative control which was 

designed to have no homology to mammalian genes, and this was validated by Open 

Biosystems using Affymetrix GeneChip arrays (Open Biosystems).  Transduced THP-1 

cells were selected by puromycin two days later for three days and the transduction 

efficiency was estimated by measuring the percentage of EGFP expressing cells by flow 

cytometry (data not shown).  Figure 4.8 shows that GAPDH mRNA expression in THP-

1 cells transduced with GAPDH shRNA decreased down to 10% of negative control 

shRNA.  This suggests that lentiviral shRNA-mir30 delivery would be an effective 

approach for gene expression knock-down in these leukaemic cells.  

 

This shRNA delivery system was used to perform knock-down of established MLL-

fusion target gene expression. 
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Figure 4.8.  Knock-down of GAPDH expression using shRNA in THP-1 cells 

The bar graph shows the relative levels of GAPDH mRNA expression, measured by 

QPCR in THP-1 cells after lentiviral transduction with shRNA targeting GAPDH.  RNA 

was harvested five days after the transduction.  Values for gene expression were 

normalised to THP-1 cells transduced with control shRNA.  Columns represent the 

mean of quadruplicate measurements and the error bars represent the SD.  P-values 

were calculated using Student’s paired t-test.  (***) P≤0.001.  This experiment was 

carried out once. 
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Initially, we knocked down HOXA9 expression, as it is one of the most critical down-

stream target genes of MLL-fusions, and its expression has been demonstrated to be 

regulated directly by these fusions (Ayton and Cleary, 2001; Zeisig et al., 2004; Horton 

et al., 2005).  shRNA sequences specific for HOXA9, embedded within the mir-30 

microRNA, were purchased from Open Biosystems (Surrey UK).  These shRNA mir-30 

were then cloned into the SFFV-GIPZ vector, as described previously.  THP-1 cells 

were transduced with various shRNAs targeting HOXA9.  RNA was then harvested six 

days after transduction and HOXA9 expression was measured by QPCR (Figure 4.9A).  

The efficiency of knock-down of HOXA9 expression varied depending on the shRNA 

used.  Transduction of THP-1 cells with HOXA9.5 shRNA reduced HOXA9 mRNA 

expression by 69% compared to that of control shRNA, while HOXA9.4 and HOXA9.6 

shRNA only reduced HOXA9 expression by 29% and 24% respectively.  Since MYB 

expression was found to be a down-stream target of HOXA9 and MEIS1 (Hess et al., 

2006), MYB mRNA expression was also measured in THP-1 cells transduced with 

HOXA9.4 and HOXA9.5 shNRAs (Figure 4.9B).  Only HOXA9.5 shRNA was found to 

significantly reduce MYB mRNA, down to 78% of that of the control.  In addition, we 

tested the HOXA9.5 shRNA in MOLM-13 cells, also derived from a patient with the 

MLL-AF9 translocation.  MOLM-13 cells transduced with control or HOXA9.5 shRNA 

were harvested seven days after transduction (Figure 4.9C).  HOXA9.5 shRNA reduced 

HOXA9 mRNA by 27% compared to that of control shRNA.  This reduction was less 

marked compared to that of THP-1 cells (Figure 4.9A).  Next, we knocked-down MYC 

expression in THP-1 cells using the same shRNA approach (Figure 4.9C).  THP-1 cells 

transduced with all three shRNA against MYC reduced MYC mRNA expression 

significantly, by 31%, 59% and 31%.  Taken together, these data suggest that lentiviral 

shRNA mediated knock-down of gene expression can be effective, although the knock-

down efficiency varied depending on the shRNA and type of cell lines used.   
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Figure 4.9.  Knock-down of gene expression using shRNA in THP-1 cells 

The bar graph shows the relative level of A) HOXA9 B) MYB mRNA expression, 

measured by QPCR in THP-1cells and C) HOXA9 in MOLM-13 cells after lentiviral 

transduction with shRNA targeting HOXA9.  RNA was harvested A-B) six and C) seven 

days after the transduction.  Values for gene expression were normalised to THP-1 cells 

or MOLM-13 cells transduced with control shRNA.  Columns represent the mean of 

quadruplicate measurements and the error bars represent the SD. P-values were 

calculated using Student’s paired t-test. (***) P≤0.001, (**) P≤0.01, (ns) not 

significant.  D) The bar graph shows the relative level of MYC expression, measured by 

QPCR, in THP-1 cells after lentiviral transduction with shRNA targeting MYC.  RNA 

was harvested six days after the transduction.  Values for gene expression were 

normalised to THP-1 cells transduced with control shRNA.  Columns represent the 

mean of quadruplicate measurements and the error bars represent the SD.  P-values 

were calculated using Student’s paired t-test. (***) P≤0.001, (**) P≤0.01, (*) P≤0.05.  

These experiments were carried out once. 
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4.6. Discussion 

 

A large number of leukaemic cells have been established and widely used in scientific 

research in the last two to three decades (Drexler et al., 2004).  These cell lines have 

advantages and disadvantages as models to study oncogene function.  The former are 

their robustness in tissue culture, lack of growth factor requirement and relevance to the 

disease being studied.  Disadvantages include the length of time the cells have spent in 

culture, the consequent genetic drift from the original leukaemia and acquisition of 

confounding secondary mutations.  In this chapter, we tested and characterised a panel 

of commercially available human leukaemic cells.  Our study showed that all of the 

human leukaemic cell lines we tested, apart from the KOPN-8 cells, expressed their 

respective MLL-fusions at the protein level.  It is unclear why we could not detect 

MLL-ENL protein expression in the KOPN-8 cell line.  KOPN-8 cells were derived 

from the peripheral blood of a three-month-old girl with B cell precursor acute 

lymphoblastic leukaemia in 1977 (Matsuo and Drexler, 1998).  The expression of MLL-

ENL in KOPN-8 cells was previously validated by QPCR (Drexler et al., 2004).  In 

addition, our result showed that despite the lack of MLL-ENL expression at the protein 

level in KOPN-8 cells, both HOXA9 and MEIS1 mRNA were detectable.  It is possible 

that the expression level of the fusion was too low to detect.  Alternatively, it is possible 

that the KOPN-8 cells lost the expression of MLL-ENL.  In this case, HOXA9 and 

MEIS1 are likely to have lost their dependency on MLL-ENL, possibly due to 

acquisition of further mutations or epigenetic changes during the extended time the cell 

line has spent in culture.  
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The lack of MEIS1 mRNA expression in THP-1 cells was surprising.  THP-1 cells were 

established from the peripheral blood of a one-year-old boy with acute monocytic 

leukaemia in 1980 (Tsuchiya et al., 1980).  MEIS1 and HOXA9 expression is associated 

with MLL-fusion positive leukaemia (Armstrong et al., 2002; Ayton and Cleary, 2003; 

Quentmeier et al., 2004; Zeisig et al., 2004; Wong et al., 2007).  Indeed, HOXA9 and 

MEIS1 are crucial down-stream target genes of MLL-fusions and over-expression of 

these genes by retroviral transduction was sufficient to cause leukaemia, indicating that 

these genes play an important role in the induction and maintenance of MLL-fusion  

(Kroon et al., 1998; Armstrong et al., 2002; Zeisig et al., 2004; Wong et al., 2007).  

There are a couple of studies in the literature describing MEIS1 expression in THP-1 

cells (Quentmeier et al., 2004; Wong et al., 2007).  It is therefore possible that the THP-

1 cells from DMSZ lost MEIS1 expression at some point during the time spent in 

culture, and that down-stream transcriptional regulation of target genes is no longer 

dependent on MEIS1.  Wong et al showed that unlike murine progenitor cells 

transduced with MLL-fusions, human leukaemic cells express MEIS2 as well as MEIS1 

(Wong et al., 2007).  The relative expression ratio of MEIS1 to MEIS2 in THP-1 cells 

was 1:1 in this study.  Previous work from our laboratory also suggested that Meis1 

expression in murine cells with conditional MLL-ENL expression may be substituted by 

Meis2 expression (Horton et al., 2005).  Taken together, this suggests the possibility that 

MEIS2 expression may have substituted the requirement for MEIS1 in the THP-1 cells 

used in the present study.  

 

One apparent problem of using commercially available human leukaemic cells is the 

physiological similarity between these cells and the actual human leukaemia.  Since 

these cells can be maintained in culture for substantial periods of time, one cannot 
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exclude the possibility that the cell lines are no longer dependent on MLL-fusions.  To 

resolve this issue, we decided to knock-down MLL-fusion expression to observe the 

dependency of these cells on MLL-fusions.  siRNA transfer is a widely used technique 

for silencing the gene of interest (Hannon, 2002).  In addition, we chose electroporation 

as a method of siRNA delivery, because other common methods such as the use of 

cationic lipid formulations were reported to be inefficient in suspension cells, especially 

in haematopoietic cells (Walters and Jelinek, 2002; Dunne et al., 2003).  Several studies 

have successfully performed siRNA delivery into leukaemic cells using this approach 

(Dunne et al., 2003; Heidenreich et al., 2003; Scherr et al., 2003).  Electroporation was 

performed using a pulse generator EPI 2500 electroporator in our study (Heidenreich et 

al., 2003), that, unlike conventional electroporators, delivers a high voltage discharge in 

a square-wave pulse, which reduces heat produced in the culture.  siGLO Red delivery 

using the electroporator confirmed that electroporation efficiently transfered siRNA into 

human leukaemic cells. 

 

There are few studies regarding the knock-down of MLL-fusion expression in human 

leukaemic cell lines.  Thomas et al used a similar method to our approach to knock-

down the expression of MLL-AF4, except that their siRNA targeted the fusion sequence 

(Thomas et al., 2005).  Their group used electroporation as a means of siRNA delivery 

and demonstrated a decrease in protein expression of MLL-AF4 after 48 hours.  In our 

study, cells were harvested for analysis 72 hours after electroporation, since no knock-

down was observed at 48 hours (data not shown).  This discrepancy can be explained by 

the different cell lines used and the difference in their proliferation rate.  Pession et al 

and Kawagoe et al both used anti-sense oligodeoxyribonucleotide (ODN) as a method 

for the knock-down of MLL-AF9 expression in THP-1 cells.  These studies showed an 
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increase in apoptosis following ODN delivery (Kawagoe et al., 2001; Pession et al., 

2003).  However, neither terminal differentiation nor immunophenotypic changes were 

observed.  Although siRNA transfer was successfully performed in the first instance in 

our study, we noticed that the knock-down level of MLL-AF9/MLL expression differed 

considerably in subsequent experiments.  Increases in the voltage of electroporation did 

not alter the knock-down efficiency.  Furthermore, there was no consistency in 

proliferation of THP-1 cells electroporated with MLL siRNA, suggesting ineffective 

knock-down of the fusion gene.  Based on these results, we decided to change our 

approach to stable shRNA delivery.  Lentiviral transfer of shRNA overcomes the 

transient nature of siRNA knock-down.  The lentiviral vector used in the present study 

contains the SFFV promoter to drive the expression of the shRNA, embedded within the 

miR-30 sequence, that is then cleaved by the Dicer enzyme to generate siRNA (Leung 

and Whittaker, 2005).  This system enables continuous synthesis of shRNA by the host 

cells, to provide stable knock-down of gene expression.  In addition, a number of 

studies suggest that shRNA is a more efficient method of silencing gene expression than 

siRNA (Leung and Whittaker, 2005; Rao et al., 2009).  In agreement with this, we have 

shown that shRNA targeting GAPDH reduced GAPDH mRNA expression down to 0.1 

of the negative control.  We also knocked down HOXA9 and MYC mRNA expression in 

THP-1 cells, and significant reductions in both genes were observed.  However, we 

noticed that knock-down efficiency varied depending on shRNA used and that only the 

HOXA9.5 shRNA, that knocked-down HOXA9 mRNA expression by 69%, also 

reduced MYB mRNA expression.  This suggests that more than 70% knock-down may 

be necessary in order to study target gene function.  Furthermore, less marked reduction 

of HOXA9 mRNA expression was observed when the same shNRA was used in 

MOLM-13, suggesting that efficiency of gene expression knock-down using shRNA 

may vary depending on the cell lines used.  Based on our data, we decided to employ 



162 
 

stable silencing of MLL-fusion target genes using shRNAs in the rest of our 

experiments and to test a number of shRNAs to obtain high knock-down of gene 

expression. 
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CHAPTER 5. RESULTS - Validation of MLL-AF9 transcriptional 

target genes 

 

5.1. Introduction 

 

We have successfully generated human immortalized myeloid cell lines, using MLL-

AF9, from human CB cells (V6MA cells) and characterised several human myeloid 

leukaemic cell lines in previous chapters.  This enabled us to validate the MLL-fusion 

transcriptional target genes established from a murine conditional MLL-fusion 

expression model (Dr Vanessa Walf-Vorderwülbecke, PhD thesis), in these two human 

systems.  Two of the target genes found to be up-regulated by MLL-fusions, Ruvbl1 

(also known as Tip49a, NMP238, ECP54, TAP54α, TIH1, Pontin and Rvb1) and Rvbl2 

(also known as Tip49b, ECP51,CGI-46, INO80J, TIH2 Tip48, Reptin and Rvb2), 

encode ATPases belonging to the ATPase family associated with various cellular 

activities (AAA+), that have multiple roles in telomerase and chromatin-remodelling 

complexes (Gallant, 2007; Grigoletto et al., 2011).  RUVBL1 and RUVBL2 have been 

demonstrated to interact with telomerase reverse transcriptase (TERT) to form a pre-

telomerase complex and recruit TERT in a cell-cycle dependent manner (Venteicher et 

al., 2008).   

 

Previous studies have identified a possible mechanism for regulation of Ruvbl1 and 

Ruvbl2 by MLL-fusions.  Hess et al identified Ruvbl1 and Ruvbl2 as down-stream 

targets of Hoxa9 and Meis1 transcription factors in conditionally immortalised mouse 

MLL-ENL cells.  In their work, transduction of conditionally immortalised mouse 

MLL-ENL cells with Hoxa9 and Meis1 prevented reduction of both Ruvbl1 and Ruvbl2 



164 
 

expression upon loss of MLL-ENL (Hess et al., 2006).  Evidence from our laboratory 

showed that the expression of Ruvbl1 and Ruvbl2 is decreased by 3.9 and 3.6-fold, 

respectively, upon loss of MLL-fusion expression.  Loss of expression was previously 

demonstrated at the protein and mRNA levels by western blot and QPCR analysis (Dr 

Vanessa Walf-Vorderwülbecke, PhD thesis).  Interestingly, shRNA-mediated knock-

down of either Ruvbl or Ruvbl2 led to a loss of mouse MLL-fusion immortalised cells 

from cell cultures (Dr Vanessa Walf-Vorderwülbecke, PhD thesis).  Through a knock-

down study, RUVBL1 and RUVBL2 were demonstrated to be important in assembly 

and remodelling of the telomerase complex (Venteicher et al., 2008).  Other work also 

suggests both proteins are necessary for telomerase regulation (Li et al., 2010; Menard 

et al., 2010).  This is particularly interesting because CB-derived MLL-AF9 cells have 

been shown to exhibit higher telomerase activity compared to that of untransduced CB 

cells (Wei et al., 2008).  One possibility is that MLL-AF9 alters telomerase activity by 

regulating expression of RUVBL1 and RUVBL2.  Based on these results, and 

previously published work, we decided to study the role of RUVBL1 and RUVBL2 in the 

oncogenic activity of MLL-AF9 in human cells, using the immortalised CB-derived and 

leukaemic cell lines. 

 

5.2. RUVBL1 expression is maintained by MLL-AF9 in conditionally 

immortalised murine cells 

 

Reduced Ruvbl1 expression upon loss of MLL-AF9 in the conditionally immortalised 

mouse myeloid cells may have been a consequence of differentiation, rather than 

regulation, by the MLL-fusion.  In order to distinguish between these two possibilities, 

we treated the conditionally immortalised mouse cells with Granulocyte Colony-
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Stimulating Factor (G-CSF).  G-CSF has previously been shown to cause terminal 

differentiation of mouse MLL-ENL immortalised cell lines (Lavau et al., 1997).  

Previous work from our laboratory has also demonstrated that despite the induction of 

terminal neutrophil differentiation by G-CSF, established MLL-fusion transcriptional 

target genes of the Hoxa cluster remained unchanged in the conditionally immortalised 

cells (Horton et al., 2005).  The murine conditional MLL-AF9 cell lines were generated 

by retroviral delivery of the “Tet-off” expression system (Horton et al., 2005).  In this 

system, the tetracycline-responsive promoter element (TRE) drives the MLL-AF9 

expression, which is dependent on the binding of the tetracycline-controlled 

transactivator protein (tTA).  In the presence of doxycycline (Dox), tTA undergoes a 

conformational change which prevents TRE from binding to tTA and therefore blocks 

the expression of MLL-AF9.  Since the rate of differentiation in the conditional cells 

induced by Dox and G-CSF was comparable (Horton et al., 2005), G-CSF treatment can 

be used to exclude gene expression changes resulting from myeloid differentiation per 

se.  RUVBL1 protein expression was examined in cells treated with Dox or G-CSF.  

The treated cells were harvested after 72 hours for detection of protein expression by 

western blot analysis (Figure 5.1).  A 52kDa band corresponding to the RUVBL1 

protein was detected in untreated cells.  Addition of Dox caused a decrease in RUVBL1 

protein expression, down to 0.3 of that of the untreated control.  However, treatment 

with G-CSF did not cause a similar decrease in expression.  These data suggest that 

MLL-AF9 is indeed required in order to maintain RUVBL1 expression in the 

conditionally immortalised mouse cells.  
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Figure 5.1.  RUVBL1 expression is regulated by MLL-AF9 

The figure shows western blot analysis of total lysates from murine conditionally 

immortalised MLL-AF9 cells (MA4).  Cells were treated with Dox (2µg/ml) or G-CSF 

(10ng/ml) and harvested after 72 hours.  The western blot was probed with a primary 

goat polyclonal anti-RUVBL1 antibody and a secondary donkey anti-goat IgG HRP.  

An anti-Clathrin-HC antibody was used to control for protein loading.  Values for 

protein expression were normalised to untreated MA4 cells.  A similar pattern of 

expression was observed in one independent experiment. 
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5.3. RUVBL1 expression is up-regulated in V6MA cells 

 

The mRNA expression of RUVBL1 was examined in V6MA cells, generated in this 

study (Chapter 3) (Figure 5.2).  QPCR analysis revealed that the expression of RUVBL1 

mRNA was significantly up-regulated in the V6MA cells (V6MA1v, V6MA2r, 

V6MA3r), compared to the expression in control human myeloid cells, transduced with 

the empty lentiviral expression construct FUGW-V6 (V6 cells).  CB cells immortalised 

using the AML-ETO-9a fusion gene were used as a further control, in order to examine 

RUVBL1 expression in non-MLL-fusion immortalised cells.  The expression of 

RUVBL1 in V6MA3r cells was significantly higher than in the AML1-ETO9a cells.  

However, AML-ETO9a cells also expressed high levels of RUVBL1, suggesting 

alternative mechanisms of regulating this gene may exist.  These results validate the 

findings from the mouse immortalised cells and extend them to human cells.  

 

5.4. RUVBL1 is regulated by MLL-AF9 and/or endogenous MLL in THP-

1 cells 

 

In order to further establish the importance of RUVBL1 expression in MLL-AF9 

expressing leukaemia cells, and its dependence on the fusion, we knocked down MLL-

AF9 expression in THP-1 cells.  The shRNAs used target 5’ sequences of the MLL gene 

and therefore both endogenous MLL and MLL-AF9 were subject to inhibition of gene 

expression.  Two independent shRNAs against MLL were used for this experiment, to 

eliminate the possibility of off-target effects.   
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Figure 5.2.  mRNA expression of RUVBL1 is up-regulated in human immortalised 

myeloid cells 

The bar graphs show the relative levels of RUVBL1 mRNA expression, measured by 

QPCR in V6, V6MAs and AE9a cells in two independent experiments.  Values for each 

cell line were normalised to the expression in V6 cells.  Columns represent the mean of 

quadruplicate measurements and the error bars represent the SD.  V6.3v, V6MA1v, 

V6MA2r and V6MA3r were in culture for 57, 105, 100 and 57 days respectively (top).  

V6.2r, V6MA1v, V6MA2r and V6MA3r were in culture for approximately 69, 53, 55 

and 165 days respectively (bottom).  P-values were calculated using Student’s paired t-

test. (***) P≤0.001, (**) P≤0.01, (*), P≤0.05, (ns) not significant. 
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THP-1 cells were chosen because they were previously shown to express high levels of 

the MLL-AF9 protein among the human myeloid leukaemic cells we studied.  THP-1 

cells were harvested five days after transduction with lentiviral shRNA constructs, to 

measure the protein expression of MLL-AF9 by western blot analysis (Figure 5.3A).  

MLL-AF9 protein expression was reduced by approximately 50% following 

transduction of THP-1 cells with the shRNA against MLL, compared to the transduction 

with control shRNA.  The control shRNA was validated to have no homology to any 

mammalian genes by Open Biosystems (Surry, UK).  The inhibition of MLL-AF9/MLL 

expression in THP-1 cells also decreased proliferation of the cells in liquid culture 

(Figure 5.3B).  In addition, mRNA was harvested 22 days (Figure 5.4 A) or five days 

(Figure 5.4 B) after transduction to determine MLL-AF9 target gene expression, in two 

independent experiments (Figure 5.4).  HOXA9 is one of the most critical down-stream 

target genes of MLL-fusions and its expression has been demonstrated to be regulated 

directly by these fusions (Ayton and Cleary, 2001; Zeisig et al., 2004; Horton et al., 

2005).  The expression of HOXA9 would therefore be predicted to decrease if inhibition 

of MLL-AF9 expression was successful.  The expression of HOXA9 mRNA decreased 

to approximately 60% to 40% of control when THP-1 cells were transduced with 

shRNA against MLL.  The mRNA expression of RUVBL1 was also slightly down-

regulated, by 15% in both experiments.  Together, these results suggest that the 

expression of RUVBL1 may be regulated directly or indirectly by MLL-AF9 and/or 

endogenous MLL in THP-1 cells. 
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Figure 5.3.  Inhibition of MLL-AF9 (and/or MLL) expression decreases the 

proliferation of THP-1 cells 

A)  The figure shows western blot analysis of total cell lysates from THP-1 cells.  THP-

1 cells were lentivirally transduced with control, MLL.2 and MLL.5 shRNA.  The cells 

were harvested five days after the transduction.  The western blot was probed with a 

primary mouse anti-human MLL-N4.4 antibody and a secondary sheep anti-mouse 

HRP.  An anti-Clathrin-HC antibody was used to control for protein loading.  Values 

for protein expression were normalised to THP-1 cells transduced with control shRNA.  

Values for endogenous MLL protein expression were 1, 0.5 and 0.5 respectively.  B) 

The plots show the accumulation in THP-1 cell number after lentiviral transduction with 

control shRNA (diamonds), MLL.2 shRNA (squares) and MLL.5 shRNA (triangles). 

All the cultures started at a density of 0.5x106 cells per ml.  Viable cell numbers were 

evaluated using trypan blue exclusion.  In the plot on the left, each point represents the 

mean of triplicate measurements and the error bars represent the SD.  In the plot on the 

right, each point represents a single measurement. 
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Figure 5.4.  Inhibition of MLL-AF9 (and/or MLL) decreases RUVBL1 mRNA 

expression in THP-1 cells 

The bar graphs show the relative level of HOXA9 (light grey) and RUVBL1 (dark grey) 

mRNA expression, measured by QPCR in THP-1 cells after transduction with shRNA 

targeting MLL.  RNA was harvested 22 days A) and five days B) after transduction.  

Values for gene expression were normalised to THP-1 cells transduced with control 

shRNA.  Columns represent the mean of quadruplicate measurements and the error bars 

represent the SD.  P-values were calculated using Student’s paired t-test.  (***) 

P≤0.001, (**) P≤0.01, (*) P≤0.05.   
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5.5. Human leukaemic cell lines require RUVBL1 expression to persist in 

culture 

 

Since RUVBL1 expression appears to be regulated by MLL-AF9 in both human 

immortalised myeloid cells, as well as in THP-cells, it is possible that over-expression 

of this gene plays an important role in mediating part of the MLL-fusion leukaemogenic 

activity.  To assess the role of RUVBL1 expression in human leukaemic cells, its 

expression was inhibited in THP-1 cells using shRNAs.  Various shRNAs that target 

different sequences of RUVBL1 were tested to obtain the highest knock-down of gene 

expression.  mRNAs were harvested from cells five days after transduction to measure 

the expression of RUVBL1 by QPCR analysis (Figure 5.5).  Transduction of THP-1 

cells with all three shRNAs reduced RUVBL1 mRNA expression by at least 60%.  

Next, we examined the effect of inhibiting RUVBL1 expression on the persistence of 

human leukaemic myeloid cells in vitro.  NOMO-1, MV4-11, KASUMI-1, and OCI-

AML3 cells were transduced with shRNA targeting RUVBL1 (RUVBL1.1, RUVBL1.2, 

and RUVBL1.2 shRNAs) and the percentage of transduced EGFP expressing cells in 

these cultures was monitored (Figure 5.6A).  The leukaemic cells transduced with 

RUVBL1.1 and RUVBL1.2 shRNA were gradually lost from the culture, compared to 

that of control shRNA.  The data also showed that the RUVBL1.2 shRNA induced the 

strongest reduction in the percentage of EGFP positive cells in transduced leukaemic 

cells, over the period analysed, among other shRNAs. 

 

The effect of inhibiting RUVBL1 expression on the persistence of a panel of human 

myeloid leukaemic lines, expressing MLL-fusions or distinct fusion, was then analysed. 
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Figure 5.5.  Knock-down of the RUVBL1 expression in THP-1 cells 

The bar graph shows the relative level of RUVBL1 mRNA expression, measured by 

QPCR, in THP-1cells after lentiviral transduction with shRNA targeting RUVBL1.  

RNA was harvested five days after the transduction.  Values for gene expression were 

normalised to THP-1 cells transduced with control shRNA.  Columns represent the 

mean of quadruplicate measurements and the error bars represent the SD.  P-values 

were calculated using Student’s paired t-test.  (***) P≤0.001. 
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Figure 5.6.  Inhibition of the RUVBL1 expression results in loss of transduced cells 

from culture 

A) The graphs represent the persistence of EGFP positive human leukaemic cells 

(NOMO-1, MV4-11 KASUMI-1 and OCI-AML3).  Lentivirally transduced leukaemic 

cells were transduced with control shRNA (blue), RUVBL1.2 shRNA (green), 

RUVBL1.2 shRNA (red) or RUVBL1.3 shRNA (brown).  EGFP expression was 

determined by flow cytometric analysis at the indicated time points.  Cultures were re-

plated approximately every three to four days.  B) The graphs represent the persistence 

of EGFP positive human leukaemic cells.  Lentivirally transduced human leukaemic 

cells were transduced with control shRNA (blue) or RUVBL1.2 shRNA (red). EGFP 

expression was determined by flow cytometric analysis at the indicated time points.  

Cultures were re-plated approximately every three to four days.  Viral supernatant was 

diluted to 6% prior to transduction. 
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The human myeloid leukaemic cells were transduced with RUVBL1.2 shRNA and the 

percentage of transduced EGFP expressing cells in these cultures was monitored (Figure 

5.6B).  RUVBL1.2 shRNA was used to target RUVBL1 in this experiment, since it was 

previously shown to cause the strongest inhibition of leukaemic cell proliferation 

(Figure 5.6A).  The percentage of EGFP positive cells in all the cultures transduced with 

the RUVBL1.2 shRNA declined over the 12 days analysed.  In particular, the strongest 

effect was seen in THP-1 and KASUMI-1 cells.  This data suggests that RUVBL1 

expression is not only important in MLL-fusion associated leukaemia, but may be 

necessary to maintain proliferation and or survival of human myeloid leukaemia cells in 

general. 

 

5.6. The conserved Walker B motif in RUVBL1 is required for normal 

THP-1 proliferation 

 

So far, we have obtained evidence to suggest that the expression of RUVBL1 is 

important for the maintenance of human myeloid leukaemia cells in culture, including 

cell lines expressing different MLL-fusions.  RUVBL1 was previously demonstrated to 

have ATPase activity, which was found to be important for c-Myc mediated oncogenic 

transformation of rat embryonic fibroblasts (Wood et al., 2000).  The Walker B motif 

within RUVBL1 is highly conserved from yeast to humans and is responsible for 

hydrolysing ATP as well as binding to DNA (Mezard et al., 1997).  Introduction of a 

missense mutation within the Walker B motif (DEVH→NEVH) results in a dominant 

negative mutant, capable of inhibiting RUVBL1 activity (Mezard et al., 1997; Wood et 

al., 2000).  The RUVBL1 (D302N) mutant retains the ability to bind c-Myc and to form 

homotypic and heterotypic complexes with RUVBL1 and RUVBL2, respectively.  
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However, this mutant is unable to hydrolyse ATP or to bind DNA (Mezard et al., 1997 

6; Wood et al., 2000).  The D302N point mutation was introduced within the full-length 

cDNA of RUVBL1 and the mutated cDNA was cloned into the SFFV-GIPZ lentiviral 

expression vector, replacing the EGFP cDNA.  The SFFV-GIPZ vector with the EGFP 

cDNA deleted was used as the empty vector negative control in these experiments.  

THP-1 cells were transduced with the RUVBL1 (D302N) expression vector or the 

empty vector negative control.  Two days after transduction, puromycin was added to 

the cultures, to select for transduced cells.  Viable cell counts were then taken at various 

time-points over a 12-day period (Figure 5.7).  THP-1 cells transduced with the negative 

control vector proliferated exponentially, whereas the THP-1 cells transduced with 

RUVBL1 (D302N) showed a marked reduction in their proliferation rate over the period 

analysed.  These data suggest that the Walker B motif, conferring ATP hydrolysis and 

DNA binding, was necessary to maintain proliferation of THP-1 cells.    

 

5.7. RUVBL2 expression is also maintained by MLL-AF9 in mouse cells 

 

Since RUVBL1 and RUVBL2 can function synergistically, as well as antagonistically, 

we also decided to examine the function of RUVBL2 in the MLL-AF9 expressing cells.  

First of all, it was important to establish whether RUVBL2 expression was maintained 

by MLL-fusions, as was found to be case for RUVBL1.  To answer this question, MLL-

AF9 conditionally immortalised mouse cells were treated with Dox or G-CSF, as 

previously described in section 5.1.  Treatment with Dox resulted in decreased 

RUVBL2 expression, down to 0.1 or 0.2 of that of the control, after 72 hours (Figure 

5.8).   
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Figure 5.7.  The Walker B motif of RVBL1 is necessary to maintain proliferation 

of THP-1 cells 

The plot shows the accumulation in THP-1 cell number after lentiviral transduction with 

empty vector (diamonds) and RUVBL1 (D302N) (squares).  Transduced cells were 

selected with purimycin two days later and treated for three days.  All the cultures 

started at a density of 0.5x106 cells per ml.  Viable cell numbers were evaluated using 

trypan blue exclusion.  Each point represents the mean of triplicate measurement and 

the error bars represent the SD. 
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Figure 5.8.  MLL-AF9 regulates RUVBL2 expression in mouse cells 

The figures show two independent western blot analyses of total lysates from 

conditionally immortalised mouse MLL-AF9 cells (MA4).  Cells were treated with Dox 

or G-CSF and harvested after 72 hours.  The western blot was probed with a primary 

mouse monoclonal anti-RUVBL2 antibody and a secondary sheep anti-mouse IgG 

HRP.  An anti-Clathrin-HC antibody or an anti-β-tubulin antibody was used to control 

for protein loading.  Values for protein expression were normalised to untreated MA4 

cells.   
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Although treatment of cells with G-CSF also resulted in a decrease in RUVBL2 protein 

expression in one of the experiments, this was less marked, down to 0.4 of that of the 

control .  In contrast, treatment with G-CSF did not cause a reduction in expression in 

the other experiment.  These data indicate that RUVBL2 expression is a least in part 

regulated by MLL-AF9 in the mouse cells. 

 

5.8. RUVBL2 expression is up-regulated in V6MA cells 

 

RUVBL2 mRNA expression was then examined in V6MA cells (Figure 5.9).  The 

expression of RUVBL2 was significantly up-regulated in V6MA cells compared to that 

in V6 cells.  Expression of V6MA3r cells was also significantly higher than in the 

AE9a2r cells.  These data confirm that mRNA expression of RUVBL2 is also up-

regulated following immortalisation of CB-derived human cells by MLL-AF9. 

 

To determine whether RUVBL2 expression was regulated by MLL-AF9 and/or 

endogenous MLL in these human cells, MLL-AF9 was targeted using shRNA directed 

against 5’ sequences of MLL.  V6MA2r cells were transduced with the same shRNAs 

against MLL as used in section 5.4.  Transduced V6MA2r cells were selected by 

addition of puromycin two days later and transduction was confirmed by flow 

cytometric analysis of EGFP expression.  mRNA was harvested 10 days following 

transduction to examine MLL and RUVBL2 expression by QPCR analysis (Figure 

5.10A).   
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 Figure 5.9.  mRNA expression of RUVBL2 is up-regulated in human immortalised 

myeloid cells 

The bar graphs show two independent measurements of the relative levels of RUVBL2 

mRNA expression, measured by QPCR in V6, V6MAs and AE9A2r cells.  Values for 

each cell line were normalised to the expression in V6 cells.  V6.3v, V6MA1v, 

V6MA2r and V6MA3r were in culture for 57, 105, 100 and 57 days respectively (top).  

V6.2r, V6MA1v, V6MA2r and V6MA3r were in culture for 29, 13, 15 and 125 days 

respectively (bottom).  Columns represent the mean of quadruplicate measurements and 

the error bars represent the SD.  P-values were calculated using Student’s paired t-test.  

(***) P≤0.001 , (**) P≤0.01, (*) P≤0.05, (ns) not significant.   
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Figure 5.10.  Inhibition of MLL-AF9 (and/or MLL) decreases the RUVBL2 mRNA 

expression in human MLL-AF9 immortalised myeloid cells 

A) The bar graph shows the relative level of MLL (light grey) and RUVBL2 (dark grey) 

mRNA expression, measured by QPCR in V6MA2R cells following lentiviral 

transduction with shRNA against MLL and control shRNA.  The transduced cells were 

selected with puromycin two days later and treated for three days.  RNA was harvested 

10 days after the transduction.  Values for gene expression were normalised to V6MA2r 

cells transduced with control shRNA.  V6MA2r cells were in culture for approximately  

66 days after confirmation that the cells expressed 100% EGFP.  Columns represent the 

mean of quadruplicate measurements and the error bars represent the SD.  P-values 

were calculated using Student’s paired t-test.  (*) P≤0.05, (**) P≤0.01.  This experiment 

was repeated with V6MA2r and RNA was harvested 25 days later.  The relative 

expression level of RUVBL2 was 1, 0.8 and 0.92 respectively.  B) The plots show the 

accumulation in V6MA2r (right) and V6MA3r (left) cell number following transduction 

with control shRNA (diamonds), MLL.2 shRNA (squares) and MLL.5 shRNA 

(triangles).  The transduced cells were selected with puromycin two days later and 

treated for four (left) and six (right) days.  All the cultures started at a density of 

0.25x106 cells per ml.  V6MA2r and V6MA3r cells were in culture for approximately  

66 and 73 days respectively.  In the plots, measurement of the fold accumulation started 

on the day the cells came out of puromycin selection.  Viable cell numbers were 

evaluated using trypan blue exclusion.  In the plot on the left, each point represents the 

mean of triplicate measurements and the error bars represents the SD.  In the plot on the 

right, each point represents a single measurement.   
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The shRNAs against MLL reduced MLL expression down to 58% (MLL.2 shRNA) and 

45% (MLL.5 shNRA) in V6MA2r cells, compared to that of V6MA2r cells transduced 

with the control shRNA.  This resulted in decreases of RUVBL2 expression of 12% 

(MLL.2 shRNA) and 53% (MLL.5 shRNA).  These results indicate that expression of 

RUVBL2, as well as that of RUVBL1, is likely to be induced by MLL-AF9 in the human 

immortalised cells.  In order to confirm that reduction of MLL-AF9 expression (and/or 

MLL) was sufficient for functional consequences in the V6MA cells, proliferation of the 

transduced cells was examined.  The proliferation of V6MA2r cells and V6MA3r cells 

transduced with the MLL shRNA was monitored in liquid culture (Figure 5.10B).  

Compared to the accumulation of V6MA2r and VMA3r cells transduced with the 

control shRNA, there was a reduction in the accumulation of V6MA2r and V6MA3r 

cells transduced with the two shRNA against MLL.   

 

5.9. Human leukaemic cell lines require RUVBL2 expression to persist in 

culture 

 

In order to examine whether RUVBL2 expression was necessary for proliferation of 

human myeloid leukaemic cells, as RUVBL1 expression was found to be, RUVBL2 

expression was silenced by shRNAs in THP-1 cells.  THP-1 cells were transduced with 

five shRNAs against RUVBL2 and mRNA was harvested five days (Figure 5.11A left) 

and 14 days (Figure 5.11A right) after transduction to measure RUVBL2 expression by 

QPCR analysis (Figure 5.11A).  The data show that all of the shRNAs tested led to 80% 

reductions in RUVBL2 expression, compared to THP-1 cells transduced with control 

shRNA (Figure 5.11A left).  The same data were also observed when the experiment 

was repeated with RUVBL2.3 and RUVBL2.5 shRNA (Figure 5.11A right).   
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Figure 5.11.  Inhibition of the RUVBL2 expression decreases proliferation rate of 

THP-1 cells 

A) The bar graph shows the relative level of RUVBL2 mRNA expression, measured by 

QPCR in THP-1 cells after lentiviral transduction with control shRNA and several 

different shRNAs targeting RUVBL2.  RNA was harvested five days (left) and 14 days 

(right) after transduction.  Values for gene expression were normalised to THP-1 cells 

transduced with control shRNA.  Columns represent the mean of quadruplicate 

measurements and the error bars represent the SD.  P-values were calculated using 

Student’s paired t-test.  (***) P≤0.001.  B) The plots represent two independent 

experiments measuring the accumulation in THP-1 cell number after transduction with 

control shRNA (diamonds), RUVBL2.3 shRNA (squares) and RUVBL2.5 shRNA 

(triangles).  All the cultures started at a density of 0.5x106 cells per ml.  The transduced 

cells were selected with puromycin two days later and treated for three days.  Viable 

cell numbers were evaluated using trypan blue exclusion.  In the plot, each point 

represents the mean of triplicate measurements and the error bars represent the SD.  
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The effect of RUVBL2 knock-down on the proliferation capacity of THP-1 cells was 

also measured (Figure 5.11B).  RUVBL2.3 and RUVB2.5 shRNAs were used to silence 

RUVBL2 expression for this experiment.  Whereas control THP-1 cells proliferated 

exponentially, THP-1 cells transduced with RUVBL2.3 and RUVBL2.5 shRNA 

accumulated at a significantly slower rate.  Taken together, these data indicate that 

RUVBL2, as well as RUVBL1, expression is necessary for the proliferation of human 

leukaemic cells. 

 

Since the loss of RUVBL2 expression affected the proliferation capacity of THP-1 cells, 

we sought to determine the effect of decreased RUVBL2 expression in other human 

myeloid leukaemic lines.  We first tested all the RUVBL2 shNRAs to determine which 

shRNA causes the strongest effect in THP-1 and NOMO-1 cells (Figure 5.12A).  The 

data showed that RUVBL2.3 shRNA induced the strongest reduction in the percentage 

of EGFP positive cells in transduced NOMO-1 and THP-1 cells over the 12 days 

analysed.  A panel of human myeloid leukaemic cells was then transduced with 

RUVBL2 shRNA and the percentages of EGFP positive leukaemic cells were followed 

over time (Figure 5.12B).  The percentage of EGFP positive cells in all of the leukaemic 

cells transduced with RUVBL2.3 shRNA declined over the 16 days analysed.  In 

particular, the strongest reductions were observed in THP-1, MONO-MAC6 and 

KASUMI-1 cells.  These results suggest that, consistent with a requirement for 

RUVBL1, the expression of RUVBL2 was necessary to maintain proliferation of human 

myeloid leukaemic cells.  
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Figure 5.12.  Inhibition of RUVBL2 expression results in loss of transduced cells 

from culture 

A) The graphs represent the persistence of EGFP positive human leukaemic cells (THP-

1 and NOMO-1).  Lentivirally transduced leukaemic cells (viral supernatant diluted to 

6% and 50% for transducing THP-1 and NOMO-1 cells respectively) were transduced 

with shRNA against control (blue), RUVBL2.3 (red), RUVBL2.4 (green), RUVBL2.4 

(pink), RUVBL2.5 (purple), and RUVBL2.6 (orange). EGFP expression was 

determined by flow cytometric analysis at the indicated time points. Cultures were re-

plated approximately every three to four days.  B) Each graph represents the persistence 

of EGFP positive human leukaemic cells.  Human leukaemic cells were transduced with 

control shRNA (blue) or RUVBL2.3 shRNA (red).  EGFP expression was determined 

by flow cytometric analysis at the indicated time point.  Cultures were re-plated 

approximately every 3 to 4 days.  Viral supernatant was diluted to 6% prior to 

transduction. 
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5.10. The conserved Walker B motif in RUVBL2 is required for normal 

THP-1 proliferation 

 

In order to establish whether the Walker B motif in RUVBL2 is also required for 

proliferation of THP-1 cells, as was the case for RUVBL1, THP-1 cells were transduced 

with the RUVBL2 (D299N) expression lentiviral vector, or the empty vector negative 

control.  Transduced THP-1 cells were selected with puromycin two days after 

transduction.  Cell counts were then taken at various time-points to calculate the fold 

accumulation over 12 days (Figure 5.13).  THP-1 cells transduced with RUVBL2 

(D299N) initially accumulated, but decreased in cell number after five days of culture.  

In contrast, the THP-1 cells transduced with the negative control vector proliferated 

exponentially.  This result suggests that the Walker B motif in RUVBL2 is also 

necessary to maintain the cell proliferation of THP-1 cells.   

 

The protein expression of RUVBL2 was also measured following shRNA transduction 

of THP-1 cells.  Transduced THP-1 cells were selected with puromycin two days after 

transduction.  Protein was then harvested nine days (Figure 5.14 A) and five days 

(Figure 5.14 B) after transduction, in two independent experiments.  Upon inhibition of 

RUVBL2 expression using RUVBL2.3 and RUVBL2.5 shRNA, RUVBL2 protein 

expression decreased to 0.3 and 0.4 of that of the control, respectively (Figure 5.14 A), 

and 0.3 and 0.2 of that of the control, respectively (Figure 5.14 B).  In addition, 

RUVBL1 protein expression was also reduced, to 0.2 and 0.3 upon RUVBL2 inhibition, 

which is consistent with previous studies (Venteicher et al., 2008).    
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Figure 5.13.  The Walker B motif of RUVBL2 is necessary to maintain 

proliferation of THP-1 cells 

The diagram shows the accumulation in THP-1 cell number after lentiviral transduction 

with empty vector (diamonds) and RUVBL2 (D299N) (triangle). The transduced cells 

were selected with puromycin two days after transduction for three days. All the 

cultures started at a density of 0.5x106 cells per ml.  Viable cell numbers were evaluated 

using trypan blue exclusion.  Each point represents the mean of triplicate measurements 

and the error bars represent the SD.  Similar results have since been obtained from two 

independent experiments by others in the laboratory. 
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Figure 5.14.  shRNA causes efficient knock-down of RUVBL2 protein expression 

The figure shows western blot analyses of total lysates from THP-1 cells lentivirally 

transduced with control, RUVBL2.3 or RUVBL2.5 shRNA in two independent 

experiments.  The transduced cells were selected with puromycin two days after 

transduction for three days.  RNA was harvested A) nine and B) five days after 

transduction.  The western blots were probed with either a primary goat polyclonal anti-

RUVBL1 antibody or a primary mouse monoclonal anti-RUVBL2 antibody and either 

with a secondary donkey anti-goat or sheep anti-mouse HRP.  An Anti-Clathrin-HC or 

anti-βTubulin antibody was used to control for protein loading.  Values for protein 

expression were normalised to THP-1 cells transduced with control shRNA.   
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This co-depletion of RUVBL1 and RUVBL2 protein expression suggests that RUVBL2 

silencing destabilises a heterotypic complex formation of RUVBL1 and RUVBL2.  We 

therefore decided to address the function of RUVBL1 and RUVBL2 in human 

leukaemic cells using RUVBL2 shRNA in subsequent experiments.   

 

5.11. Inhibition of RUVBL2 expression decreases cell proliferation in 

V6MA cells  

 

Since RUVBL2 expression is required for normal proliferation in human leukaemic 

cells, the effect of inhibiting RUVBL2 expression in V6MA cells was then addressed.  

V6MA3r and V6MA2r cells were transduced with RUVBL2.3 shRNA and treated with 

puromycin two days after transduction, for three days.  Following the confirmation of 

transduction by cytometric analysis (data not shown), RNA was harvested from the 

transduced cells 22 days (Figure 5.15A right) and 12 days (Figure 5.15A left) later, to 

determine the RUVBL2 expression, in two independent experiments.  QPCR analysis 

showed that RUVBL2.2 shRNA reduced RUVBL2 expression down to 25% in V6MA3r 

(Figure 5.15A left) and to 67% in V6MA2r (Figure 5.15A right) compared to that of 

control shNRA.   The corresponding fold accumulation of V6MA3r and V6MA2r cells 

was then monitored (Figure 5.15B).  While control V6MA3r and V6MA2r proliferated 

exponentially, V6MA cells transduced with RUVBL2.3 shRNA accumulated at a 

significantly slower rate.  Taken together, these data suggest that RUVBL2 expression is 

also essential for the proliferation of CB-derived immortalised MLL-AF9 cells. 
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Figure 5.15.  Inhibition of the RUVBL2 expression decreases proliferation rate of 

human MLL-AF9 immortalised myeloid cells 

A) The bar graphs show the relative levels of RUVBL2 mRNA expression, measured by 

QPCR in V6MA3r cells (left) and V6MA2r cells (right), and after lentiviral 

transduction with control shRNA and RUVBL2.3 shNRA.  RNA was harvested 22 days 

(right) and 12 days (left) after transduction.  Values for gene expression were 

normalised to V6MA cells transduced with control shRNA.  Columns represent the 

mean of quadruplicate measurements and the error bars represent the SD.  P-values 

were calculated using Student’s paired t-test.  (***) P≤0.001.  B) The plots show the 

accumulation in V6MA3r (left) and V6MA4r cell (right) number after transduction with 

control shRNA (diamonds), RUVBL2.3 shRNA (squares).  All the cultures started at a 

density of 0.25x106 cells per ml.  V6MA2r and V6MA3r were in culture for 

approximately  52 and 73 days, after confirmation that these lines expressed 100% 

EGFP expression, respectively.  The transduced cells were selected with puromycin two 

days later and treated for seven (left) and four (left) days.  Viable cell numbers were 

evaluated using trypan blue exclusion.  In the plots, measurement of the fold 

accumulation started on the day the cells came out of puromycin selection.  In the plot 

on the left, each point represents the mean of triplicate measurements and the error bars 

represent the SD.  In the plot on the right, each point represents a single measurement.   
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5.12. Knock-down of RUVBL2 induces apoptosis and differentiation of 

THP-1 cells 

 

To address the functional basis for the decrease in cell proliferation upon inhibition of 

RUVBL2 in human myeloid leukaemic cells, apoptosis was measured in THP-1 cells 

transduced with RUVBL2 shRNA, 19 days after the transduction.  The transduced cells 

were stained with Annexin V and DAPI to detect early (AnnexinV+ DAPI-) and late 

stage (Annexin+ DAPI+) apoptotic cells (Figure 5.16A, 5.16B and 5.16C).  An increase 

in the percentage of Annexin V positive THP-1 cells transduced with the shRNA 

targeting RUVBL2 was observed when compared with THP-1 cells transduced with 

control shRNA.  This result indicates that the inhibition of RUVBL2 expression induces 

apoptosis in THP-1 cells.   

 

CD15 expression was previously analysed in human CB-derived immortalised cells in 

Chapter Three.  V6MA cells generated in this study were found to express intermediate 

levels of CD15 and this expression varied depending on the maturation states of the 

cells.  The expression of CD15 in THP-1 cells was previously used to examine their 

differentiation (Prieto et al., 1994).  For these reasons, we decided to analyse the 

expression of CD15 in THP-1 cells following knock-down of RUVBL2 expression.  

THP-1 cells were transduced with shRNA against RUVBL2 and cultured for 19 days.  

The transduced THP-1 cells were then stained for CD15 expression and analysed by 

flow cytometry (Figure 5.16D and Figure 5.16E).  Knock-down of RUVBL2 expression 

resulted in a uniform increase in average CD15 mean fluorescence intensity in the 

transduced THP-1 cells.   
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Figure 5.16.  Inhibition of the RUVBL2 expression increases apoptosis in THP-1 

cells 

A) The dot plots show flow cytometric analysis of lentivirally transduced THP-1 cells 

with control, RUVBL2.3 or RUVBL2.5 shRNA, 19 days after transduction.  The cells 

were stained with Annexin V and DAPI.  Numbers below represent the percentage of 

cells within each quadrant.  B) The bar graph shows the percentage of Annexin V 

positive THP-1 cells.  Columns represent the mean of triplicate measurements and the 

error bars represent the SD.  P-values were calculated using Student’s paired t-test.  (*) 

P≤0.05, (***) P≤0.001.  C) The bar graph shows the average fold increase over control 

cells of Annexin V positive cells in three independent experiments.  D) The bars 

represent the average mean fluorescence intensity of CD15 expression from the same 

experiment.  Columns represent the mean of triplicate measurements and the error bars 

represent the SD.  P-values were calculated using Student’s paired t-test. (**) P≤0.01. 

E) The histogram shows an example of mean intensity of CD15 expression resulting 

from the control (black), RVBL2.3 (red) and RUVBL2.5 (blue) shRNAs.  Filled grey 

areas represent unstained THP-1 cells. 
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This result indicates that the decreased accumulation of cells associated with inhibition 

of RUVBL2 expression was likely to result from a combination of the induction of 

apoptosis and differentiation. 

 

5.13. TERT expression is up-regulated in V6MA cells 

 

Until recently, the major role of RUVBL1 and RUVBL2 was believed to be that of  

chromatin re-modelling cofactors and transcriptional cofactors for c-Myc and β-catenin 

(Gallant, 2007).  However, another important function of RUVBL1 and RUVBL2 was 

recently discovered when both were found to form part of the telomerase complex 

(Venteicher et al., 2008).  Telomerase is a ribonucleoprotein enzyme complex that 

prevents shortening of telomeres by adding specific DNA sequences at their ends 

(Blackburn, 1991; Blasco et al., 1997; Blackburn, 2001; Venteicher et al., 2008).  The 

mammalian telomere repeat sequence, TTAGGG, is extended by the telomerase 

complex, which consists of telomerase reverse transcriptase (TERT) and telomerase 

RNA (TERC) components (Blackburn, 1991; Blasco et al., 1997; Blackburn, 2001).   

RUVBL1 was shown to interact with TERT and RUVBL2 was also demonstrated to be 

recruited to TERT by RUVBL1 (Venteicher et al., 2008).  Since high levels of 

telomerase activity have previously been demonstrated in CB-derived MLL-AF9 cells 

(Wei et al., 2008), and since we found both RUVBL1 and RUVBL2 to be up-regulated in 

V6MA cells, we examined the expression of TERT in these cells.  mRNA was harvested 

from V6, V6MA and AE9A2r cells and TERT mRNA expression was measured by 

QPCR.  It should be noted that the V6MA cells used for this analysis were in culture for 

different periods of time.  V6MA1v cells were cultured for at least 105 days, V6MA2r 

cells were cultured for 100 days and V6.3v and V6MA3r cells were cultured for 57 
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days, when the RNA was harvested (Figure 5.17A).  TERT expression was also 

measured in an independent experiment in which the V6.3v, V6MA2r and V6MA3v 

cells were culture for 100 days, 195 days and 182 days respectively (Figure 5.17B).  All 

of the V6MA cells expressed higher levels of TERT mRNA compared to V6 control 

cells.  Surprisingly, the expression of TERT in V6MA3r cells was much higher than that 

in the other V6MA cells in one of the experiments (Figure5.17A).   

 

5.14. RUVBL1 and RUVBL2 are required for TERT expression and 

telomerase activity in THP-1 cells 

 

Increased expression of RUVBL1 and RUVBL2 was previously implicated in several 

cancers, including hepatocellular carcinoma, cervical cancer, colorectal cancer and 

gastric cancer (Lauscher et al., 2007; Li et al., 2010; Menard et al., 2010).  Furthermore, 

silencing of RUVBL1 and RUVBL2 expression in cervical and gastric cancer cell lines 

was shown to reduce TERT mRNA expression, and this reduction was accompanied by 

decreased telomerase activity (Li et al., 2010).  Based on this evidence and our results, 

we hypothesized that RUVBL1 and RUVBL2 are required for MLL-fusion induced 

telomerase activity in human immortalised and leukaemic cells.  To test this hypothesis, 

we first measured the mRNA expression of TERT in THP-1 cells following silencing of 

RUVBL2 expression.  THP-1 cells were transduced with shRNA targeting RUVBL2 and 

harvested six days (Figure 5.18A left) and 14 days (Figure 5.18A right) later to measure 

TERT mRNA expression.  We also measured TERT mRNA expression in V6MA3r cells 

following lentiviral transduction with RUVBL2.3 shRNA (Figure 5.18B).  In this 

experiment, transduced V6MA3r cells were harvested 15 days after transduction.   
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Figure 5.17.  TERT mRNA expression is up-regulated in human CB-derived 

immortalised myeloid cells 

The bar graphs show two independent measurements of the relative levels of TERT 

mRNA expression, measured by QPCR in V6, V6MAs and AE9a cells.  Values for 

gene expression were normalised to V6.3v cells. A) V6MA cells exhibited 18–fold 

(V6MA1v), 27-fold (V6MA2r) and 200-fold (V6MA3r) increases in TERT expression 

over control V6 cells.  B) V6MA cells displayed 17-fold (V6MA2r) and 22-fold 

(V6MA3r) increases in TERT expression over control V6 cells (bottom). Columns 

represent the mean of quadruplicate measurements and the error bars represent the SD.  

P-values were calculated using Student’s paired t-test.  (***) P≤0.001 (**) P≤0.01.   
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Figure 5.18.  RUVBL2 knock-down reduces TERT expression in THP-1 cells and 

V6MA cells 

A) The bar graphs show the relative level of TERT mRNA, measured by QPCR in THP-

1 cells following lentiviral transduction with shRNA, targeting RUVBL2, in two 

independent experiments.  The transduced cells were selected with puromycin two days 

later for three days.  RNA was harvested six days (left) and 14 days (right) after 

transduction.  Values for gene expression were normalised to THP-1 cells transduced 

with control shRNA.  Columns represent the mean of quadruplicate measurements and 

the error bars represent the SD.  P-values were calculated using Student’s paired t-test.  

(*) P≤0.05, (**) P≤0.01.  B) The bar graph shows the relative levels of TERT mRNA 

expression, measured by QPCR, in V6MA3r cells following lentiviral transduction with 

shRNA targeting RUVBL2.  V6MA3r cells were in culture for approximately 52 days 

after confirming that EGFP expression was 100%.  The transduced cells were selected 

with puromycin in the same way as described in Figure 5.18A and RNA was harvested 

15 days after transduction.  Values for gene expression were normalised to V6MA cells 

transduced with control shRNA.  (*) P≤0.05.  C) The figure shows western blot analysis 

of total lysates from THP-1 cells lentivirally transduced with control, RUVBL2.3 or 

RUVBL2.5 shRNA.  The transduced cells were selected with puromycin two days later 

for three days.  Cells were harvested five days after transduction.  The western blot was 

probed with a primary rabbit anti-TERT antibody, and with a secondary donkey anti-

rabbit IgG HRP.  An anti-Clathrin-HC antibody was used to control for protein loading.  

Values for protein expression were normalised to THP-1 cells transduced with control 

shRNA.  This experiment was repeated and values for TERT protein expression were 

0.6 and 0.6, to that of control respectively. 
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Consistent with Li et al’s work, a reduction in TERT mRNA expression was observed 

both in THP-1 and V6MA3r cells (Li et al., 2010).  The experiment outlined in Figure 

5.18A was repeated to examine TERT protein expression after silencing of RUVBL2 

expression in THP-1 cells (Figure 5.18C).  In this experiment, the total cell lysates from 

Figure 5.14A were analysed for changes in TERT protein expression (Figure 5.18B 

left).  Consistent with the change in TERT mRNA expression, a decrease in TERT 

protein levels was observed in THP-1 cells transduced with RUVBL2.3 and 5 shRNA, 

compared to the THP-1 cells transduced with control shRNA.  This was confirmed in an 

independent experiment and protein expression after RUVBL2 knock-down was 0.6 and 

0.6 respectively (data not shown).  We then measured the activity of telomerase in THP-

1 cells in which the expression of RUVBL2 was inhibited.  Transduced THP-1 cells 

were harvested 21 days (Figure 5.19 top) or 12 days (Figure 5.19 bottom) later to 

measure the telomerase activity in two independent experiments.  As expected, 

telomerase activity was significantly reduced in THP-1 cells transduced with RUVBL2 

shRNAs, compared to that in THP-1 cells transduced with control shRNA.  These 

results indicate that the expression of RUVBL2 is required for the maintenance of the 

TERT expression and for telomerase activity in THP-1 cells.   

 

5.15. RUVBL2 expression is required in order to maintain the clonogenic 

potential of THP-1 cells 

 

Loss of RUVBL2 and TERT expression was previously shown to affect the clonogenic 

potential of gastric cancer cells (Zhang et al., 1999; Li et al., 2010).    
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Figure 5.19.  Inhibition of RUVBL2 expression results in decreased telomerase 

activity in THP-1 cells 

The bar graphs show the relative telomerase activity (RTA) in THP-1 cells following 

lentiviral transduction with shRNA targeting RUVBL2, in two independent experiments. 

RNA was harvested 21 days (top) and 12 days (bottom) after transduction.  Values for 

RTA were normalised to THP-1 cells transduced with control shRNA.  Columns 

represent the mean of quadruplicate measurements and the error bars represent the SD.  

P-values were calculated using Student’s paired t-test.  (*) P≤0.05, (**) P≤0.01.  A 

similar pattern of RTA was observed in an independent experiment. 
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To determine whether RUVBL2 expression also affected the clonogenic potential of 

human leukaemic cells, colony formation assays were performed with transduced THP-

1 cells.  In three independent experiments, THP-1 cells, transduced with shRNA 

targeting RUVBL2, were transferred into methylcellulose 21 days after transduction 

(Figure 5.20A) and colony formation was measured after a further 14 days (experiment 

performed by Mr Maurizio Mangolini, MHCB Unit, ICH).  Transduction of THP-1 cells 

with RUVBL2 shRNA reduced the average colony number, down to 0.1 compared to 

that of control shRNA.  These data confirm that RUVBL2, and RUVBL1, are essential 

in order to maintain the clonogenic potential of THP-1 cells.  

 

5.16. Discussion 

 

In this chapter, we have presented data suggesting that RUVBL1 and RUVBL2 are 

important key regulators of MLL-AF9 induced leukaemia, in human models.  Several 

studies suggest that RUVBL1 and RUVBL2 also interact with the transcription factor 

MYC (Wood et al., 2000; Dugan et al., 2002; Bellosta et al., 2005; Maslon et al., 2010).  

This interaction was shown to take place via the c-Myc domain box II (MBII) of c-Myc, 

a region critical for the biological activities of c-Myc, including transformation (Wood 

et al., 2000).  C-Myc was found to bind to RUVBL1 in a region between the Walker A 

and B motifs (Wood et al., 2000).  This interaction is evolutionally conserved, also 

having been demonstrated in Drosophila (Bellosta et al., 2005).   
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Figure 5.20.  Knock-down of RUVBL2 expression inhibits the clonological 

potential of THP-1 cells 

A) The pictures show methylcellulose cultures of THP-1 cells transduced with control, 

RUVBL2.3 or RUVBL2.5 shRNA.  THP-1 cells were transduced and puromycin 

selected two days after transduction and plated 21 days later.  The THP-1 colonies were 

stained with p-iodonitrotetrazolim 14 days after plating.  B) The bar graph shows the 

average fold change in duplicate colony numbers of the transduced THP-1 cells with 

shRNA, against control and RUVBL2.3, in three independent experiments.  Values for 

colony numbers were normalised to the mean of THP-1 cells transduced with control 

shRNA.  Columns represent the mean of triplicate measurements and the error bars 

represent the SD.  P-values were calculated using Student’s paired t-test.  (***) 

P≤0.001. 
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Data from a conditional model of c-MYC expression in human Burkitt’s lymphoma 

suggested that RUVBL1 and RUVBL2 were also transcriptionally regulated by c-MYC 

(Fan et al., 2010).  Global gene expression data from our laboratory suggested that 

MLL-fusions may directly or indirectly induce Ruvbl1 and Ruvbl2 expression.  

Furthermore, our data showed that expression of RUVBL1 and RUVBL2, in 

conditionally immortalised murine MLL-AF9 cells, decreased following Dox treatment, 

while this decrease was not apparent (RUVBL1), or was less marked (RUVBL2) (in one 

of the experiments), after G-CSF treatment.  This reduction in RUVBL1 and RUVBL2 

expression following loss of MLL-fusions is in agreement with previous studies (Hess 

et al., 2006).  Hess et al conditionally immortalised murine MLL-ENL cells, which 

were then co-transduced with constitutive murine Meis1 and HoxA9 expression 

constructs, and performed global gene expression analysis following loss of MLL-ENL 

expression (Hess et al., 2006).  This analysis identified genes that were regulated by 

HOXA9 and MEIS1 in MLL-fusion immortalised cells.  Expression of Hoxa9/Meis1 

resulted in a 2.3-and 2.2-fold up-regulation of Ruvbl1 and Ruvbl2 expression, 

respectively, in comparison to control cells, upon loss of MLL-ENL expression.  This 

work suggests that MLL-fusions may induce expression of Ruvbl1 and Ruvbl2 via up-

regulation of HOXA9 and MEIS1.  However, it is still unclear whether HOXA9 and 

MEIS1 can directly induce Ruvbl1 and Ruvbl2 expression, or whether this occurs 

indirectly via induction of other transcription factors, such as MYC or MYB.  

Moreover, our work suggests that MLL-AF9, directly or indirectly, is responsible for 

up-regulation of both RUVBL1 and RUVBL2 in both human and mouse immortalised 

myeloid cells. 
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Knock-out of RUVBL1(pont)  and RUVBL2(rept) in Drosophila was lethal at the early 

larval stage, indicating that their expression is crucial from early development, although 

absence of their expression did not affect embryogenesis (Bauer et al., 2000; Bellosta et 

al., 2005).  Another group over-expressed RUVBL1(pont)  and RUVBL2(rept) in 

Xenopus laevis embryos and showed an increased cell proliferation (Etard et al., 2005).  

Recently, Nerlov’s group generated conditional Ruvbl1 knockout mice using the Cre-

loxP approach.  Their group demonstrated that a conditional knockout of RUVBL1 in 

the haematopoietic system in mice caused rapid lethality, similar to constitutive 

knockout mice, and this effect was due to total bone marrow failure (European 

Haematology Association 16th Congress, 8th-12th June 2011).  We observed that 

RUVBL1 and RUVBL2 expression was important not only for maintaining MLL-AF9 

expressing cells in culture, but was also necessary for the maintenance of other myeloid 

leukaemic cells.  RUVBL1 and RUVBL2 expression has previously been found to be 

important for proliferation of other types of cancer cells, for example, human 

hepatoceullular carcinoma (Haurie et al., 2009; Menard et al., 2010).  Considering 

RUVBL1 and RUVBL2 are involved in different complexes, and function both 

synergistically and antagonistically, it is difficult to say whether they function in 

promoting cancer and/or survival in the same way in all these different cell types.   

 

The Walker B motif of RUVBL1 was also shown to be required for transformation by 

several oncogenes (Wood et al., 2000; Dugan et al., 2002; Feng et al., 2003; Jha and 

Dutta, 2009; Grigoletto et al., 2011).  Wood et al showed an inhibition of MYC 

transforming activity when rat embryo fibroblast cells were co-transfected with c-MYC, 

H-RAS and RUVBL1 (D302N).  A similar observation was also made using E1A and 

β-catenin with RUVBL1 (D302N) (Dugan et al., 2002; Feng et al., 2003).  Although 
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these studies only used the RUVBL1 (D302N) mutant, our results with RUVBL2 

(D299N) suggest that the Walker B motif is also required for RUVBL2 function in 

proliferating human leukaemic cells.  Experiments with the dominant negative forms of 

RUVBL1 and RUVBL2 confirmed the shRNA knock-down data, suggesting that both 

these proteins appear to be of critical importance to immortalisation by MLL-AF9.  

Although our experiments demonstrate the importance of the Walker B motif for 

RUVBL1 and RUVBL2 function in MLL-fusion associated leukaemia, further work is 

required to establish whether this is due to DNA binding, or ATP hydrolysis, or both. 

 

Structural analysis of RUVBL1 and RUVBL2 proteins in yeast suggest that they exist 

as monomers at low concentrations (5µM), whereas high concentrations (40µM)  

promote hetero-hexameric ring formation between RUVBL1 and RUVBL2 (Gribun et 

al., 2008).  In addition, human recombinant RUVBL1 and RUVBL2 complexes were 

shown to exhibit higher ATPase activity than either of the proteins individually (Puri et 

al., 2007).  We observed the co-depletion of RUVBL1 protein upon knock-down of 

RUVBL2.  This reciprocal depletion of RUVBL1 and RUVBL2 is in agreement with the 

study by Venteicher et al (Venteicher et al., 2008).  Their work showed that shRNA 

knock down of RUVBL2 expression led to co-depletion of RUVBL1 protein expression 

in Hela cells, and vice versa upon RUVBL1 inhibition.  Haurie et al made a similar 

observation using the human hepatocarcinoma model (Haurie et al., 2009).  Their 

analysis suggests that this co-depletion does not affect the respective mRNA expression 

levels.  The author suggested that loss of either RUVBL1 or RUVBL2 expression 

causes destabilisation of the hetro-hexameric ring, leading to ubiquitination and 

proteasome-dependent degradation.  The same group also tested this effect on different 

cancer cells, including breast cancer and prostatic cancer cells, to prove that this is not a 
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cell lineage-specific event.  Our data are therefore consistent with previously published 

work, suggesting that RUVBL1 and RUVBL2 exist in an interdependent manner.  

However, these proteins do appear to function antagonistically in some pathways. 

 

We found that the inhibition of RUVBL2 expression in THP-1 cells induced apoptosis 

and differentiation.  Induction of apoptosis was observed in hepatocarcimoma cells 

upon RUVBL2 inhibition by both constitutive and inducible shRNA systems (Rousseau 

et al., 2007; Menard et al., 2010).  In constitutive shRNA knock-down experiments, 

Rousseau et al showed an increase in apoptosis following silencing RUVBL2 in HuH7 

hepatocarcinoma cells, and this increase was associated with induction of pro-apoptotic 

proteins Bad (Bcl-2 antagonist of cell death) and Bid (BH3-interacting domain death 

agonist).  However, whether these members of the pro-apoptotic Bcl-2 family are 

directly targeted by RUVBL2 is not known (Rousseau et al., 2007).  The same group 

also demonstrated that ectopic expression of RUVBL2 de-sensitizes HuH7 cells to 

apoptosis induced by C2 ceramide, indicating that RUVBL2 may have a role in cell 

survival upon exposure to stress (Rousseau et al., 2007).   

 

Several markers have been used to show the differentiation of THP-1 cells.  In the work 

of Kharas et al, differentiation of THP-1 cells was shown by increases in the percentage 

expression of CD16 and CD11b, while CD14 was used to assess THP-1 differentiation 

in Suzuki’s work (Suzuki et al., 2009; Kharas et al., 2010).  In our study, CD15 

expression was used to assess differentiation in THP-1 cells, since its expression was 

found to increase upon differentiation of V6MA cells (Chapter 3).  It was striking to 

observe that RUVBL2 knock-down led to an increase in differentiation measured by 

CD15 expression.  Knock-down of MLL-fusions were previously performed by others, 
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and although inhibition of proliferation was observed, no terminal differentiation was 

associated with the knock-down of MLL-fusions (Pession et al., 2003; Martino et al., 

2006; Suzuki et al., 2009).  In contrast, MYB knock-down in THP-1 cells led to 

terminal differentiation of THP-1 cells (Suzuki et al., 2009).   However, it is not known 

whether RUVBL2 mediates part or all of the MYB-induced differentiation block.  Our 

data demonstrate that knock-down of RUVBL2 expression not only induces apoptosis, 

but also differentiation.  It would therefore be interesting to determine how RUVBL2 

induces apoptosis and differentiation, and whether these two functional consequences 

were results of single or multiple pathways. 

 

Activation of telomerase is a major phenomena in cancer, evident in more than 90% of 

human cancers (Flores et al., 2006).  Since the initial discovery that RUVBL1 and 

RUVBL2 were part of the telomerase complex (Venteicher et al., 2008), two groups 

reported a link between telomerase activity and RUVBL2 function in oncogenesis (Li et 

al., 2010; Menard et al., 2010).  One study in gastric and cervical cancer cells 

demonstrated a requirement of RUVBL2 for constitutive TERT expression and 

telomerase activity (Li et al., 2010).  The same group also showed that this regulation 

was c-MYC dependent.  Another group used an inducible shRNA system against 

RUVBL2 to demonstrate a decrease in telomerase activity upon knock-down, 

accompanied by induction of senescence, in hepatocellular carcinoma cells (Menard et 

al., 2010).  We have established the necessity of RUVBL2 to mediate MLL-fusion 

induced telomerase activity in human leukaemic cells.  In addition, TERT expression 

decreased when RUVBL2 was inhibited in THP-1 cells and V6MA3r cells.  

Furthermore, we provided evidence that TERT expression in CB-derived V6MA cells 

was higher than that in V6 cells.  The presence of telomerase activity in CB-derived 

immortalised MLL-AF9 cells was first shown by Wei et al (Wei et al., 2008).  This 
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group showed that CB-derived immortalised MLL-AF9 cells had higher telomerase 

activity compared to that of untransduced CB cells (Wei et al., 2008).  However, they 

found no change in TERT mRNA expression.  This discrepancy between Wei et al. and 

our work may be due to the different MLL-AF9 expression constructs used in each case, 

the exact fusion used, or the expression levels achieved in each system.  Increased TERT 

expression has been shown to be associated with MLL-AF4 associated leukaemia 

(Gessner et al., 2010).  Using siRNA directed at sequences in the breakpoint of MLL-

AF4 in SEMK-2 and RS4-11 cells, Gessener et al showed that MLL-AF4 knock-down 

resulted in a reduction in TERT expression and telomerase activity (Gessner et al., 

2010).  The same affect was also observed when HOXA7, a down-stream target of 

MLL-AF4, was silenced by shRNA.  Chromatin immunoprecipitation (Chip) analysis 

further confirmed that HOXA7 binds to the promoter region of TERT (Gessner et al., 

2010).  Our data showed that RUVBL2, a direct or indirect down-stream target of MLL-

fusions, regulates the expression of TERT and telomerase activity in THP-1 cells.   

 

So how does RUVBL2 regulate TERT expression and telomerase activity?   One study 

on gastric cancer cells suggests that RUVBL2 may regulate telomerase activity by two 

different mechanisms.  RUVBL2 knock-down leads to a significant decrease in TERT 

promoter activity and mRNA expression (Li et al., 2010).  Chip analysis further 

confirmed that RUVBL2 interacts with the TERT proximal promoter (Li et al., 2010).  

Interestingly, MYC was also shown by Chip analysis to bind to the TERT promoter, 

and this occupancy was diminished upon RUVBL2 depletion, suggesting that RUVBL2 

regulates the transcription of TERT in a MYC dependent manner.  Surprisingly, 

although RUVBL1 knock-down also caused reduced TERT mRNA expression, this may 

have been via an indirect effect on RUVBL2 protein expression levels, since RUVBL1 
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loss slightly increased rather than inhibited TERT promoter activity (Li et al., 2010).  

These data are yet another example of the antagonistic functions of these two proteins in 

some contexts.  These findings, together with our data, suggest that RUVBL2 is a co-

factor directly involved in inducing TERT expression.   

 

Telomerase complexes are dynamic and exist in multiple forms, regulated by the cell 

cycle (Venteicher et al., 2008).  Whereas the highly active form of telomerase contains 

TERT, TERC and Dyskerin (a TERC-binding protein), the TERT-RUVBL1-RUVBL2 

complex is specific to the S phase of the cell cycle and is responsible for maintaining 

low telomearase activity (Baek, 2008; Venteicher et al., 2008).  This complex is thought 

to be a pre-telomerase complex (Venteicher et al., 2008).  RUVBL1 and RUVBL2 were 

also shown to be responsible for the accumulation of TERC and Dyskerin and the 

subsequent assembly of the highly active form of the telomerase complex (Baek, 2008; 

Venteicher et al., 2008).  Therefore, loss of RUVBL1 or RUVBL2 may deplete the pre-

telomerase complex from leukaemic cells and this in turn may result in lower levels of 

the active telomerase complex.  It is therefore possible that RUVBL2 contributes to 

increased telomerase activity by influencing both transcriptional regulation of TERT and 

telomerase complex assembly. 

 

Our data demonstrate that RUVBL2 expression is required for maintenance of 

transformation by MLL-AF9.  This result is consistent with the findings of the study by 

Li et al, that RUVBL2 expression was essential for clonogenic potential of human 

gastric cancer cells (Li et al., 2010).  In addition, increased colony formation was also 

shown by over-expression of RUVBL2 in HuH7 hepatocarcinoma cells (Rousseau et 

al., 2007).  It is possible that inhibition of transformation upon RUVBL2 silencing was 
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a direct consequence of the reduction in TERT expression and telomerase activity.  Use 

of dominant negative mutant forms of TERT in LoVo cells (colon cancer cells), causes 

growth arrest and apoptosis in a telomere length dependent manner, and this is a direct 

consequence of chromosomal damage due to telomere shortening (Hahn et al., 1999; 

Zhang et al., 1999).  The same group also showed that this TERT mutant inhibits the 

colony forming potential of 293 cells (Zhang et al., 1999).  However, there is also 

evidence that apoptosis and growth arrest upon TERT inhibition in human prostate 

cancer cells occurs before the shortening of telomeres, suggesting that telomere 

shortening may not be the only mechanism to explain our results (Folini et al., 2005).  

In agreement with this, dominant negative mutant TERT, with no telomerase enzymatic 

activity, can inhibit apoptosis in breast cancer cells (Cao et al., 2002).  Massard et al 

also showed that TERT inhibition sensitises HCT116 colon cancer cells to induction of 

cell death via BCL-2-associated X (Bax) activation, by a post-translational mechanism, 

rather than as a consequence of telomere shortening (Massard et al., 2006).  Finally, 

TERT deficient mice were used to confirm that TERT mRNA expression has an 

alternative anti-apoptotic role that is independent of telomerase activity (Lee et al., 

2008).  These data suggest that several mechanisms are likely to be involved in the 

induction of apoptosis and inhibition of clonogenic potential following RUVBL2 

knock-down in our experiments. 

 

Telomerase activity has been considered to be a potential target for cancer therapy since 

its discovery (Harley, 2008).  Several approaches have been developed to target the 

enzymatic activity of telomerase and TERT expression.  However, ongoing clinical 

trials have encountered difficulty in targeting the enzymatic activity of telomerase and 

consequently this has led to some disappointing results (De Cian et al., 2008).  One of 
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the major problems of telomerase inhibition is the considerable delay in the anti-cancer 

activity of the drug following administration, indicating that this therapy should only be 

used to compliment other more potent cancer targeting drugs.  Our study shows that 

RUVBL1 and RUVBL2 represent promising alternative candidates for cancer therapies, 

including treatment of acute myeloid leukaemia.  Since RUVBL2 knock-down induces 

apoptosis as well as telomerase inhibition, its therapeutic targeting may have 

considerable advantages over direct telomerase inhibition.  Furthermore, although the 

data in this chapter suggest that RUVBL1 and RUVBL2 expression are induced by MLL-

fusions, they also suggest that targeting these proteins will be effective against several 

forms of acute myeloid leukaemia. 
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CHAPTER 6.  CONCLUSION 

 

In this study, we have explored various human models to study MLL-AF9 associated 

myeloid leukaemia.  This step is essential to translate and validate key findings from the 

mouse system to human systems.  Using these systems, we validated down-stream 

target genes of MLL-fusions.  

 

The lentiviral gene transfer approach was used to generate human CB-derived MLL-

AF9 immortalised myeloid cells (V6MA).  Four V6MA cell lines were generated from 

independent CB samples and all of these cells outgrew untransduced cells in culture and 

proliferated exponentially in medium supplemented with SCF, TPO, FLT3L, IL-3 and 

IL-6.  Protein and mRNA expression of MLL-AF9 were both confirmed in V6MA cells 

by western blot and QPCR analysis.  In addition, MLL-fusion down-stream target 

genes, HOXA9, MEIS1, MYB and MYC were also measured and observed to be over-

expressed in V6MA cells.  Morphological analysis revealed that V6MA cells displayed 

myeloblastic phenotypes.  Immunophenotypic analysis showed that V6MA cells were 

CD33+ and CD34- with heterogeneous CD38 expression, and with more than half of the 

cells within each V6MA line expressed the CD11b and CD14 markers.  CD15 

expression varied, depending on the envelope constructs used in the transduction and 

the length of time V6MA had been in cell liquid culture.  Xenotransplantation 

confirmed that V6MA2r, V6MA3r and V6MA4r cell lines were all capable of inducing 

AML in NSG mice, with a latency of between 51 to 84 days.  Flow cytometric analysis 

was used to confirm the phenotype of the resulting leukaemia. 
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In order to develop an efficient gene expression knock-down strategy, human leukaemic 

cell lines, derived from patients with leukaemia, were used.  MLL fusion protein 

expression was detected in all of the cell lines tested, except KOPN-8 cells.  The siRNA 

delivery using a square pulse electroporator was initially employed to knock-down gene 

expression.  The siGLO Red fluorescent siRNA showed that siRNA were efficiently 

delivered using this approach.  siRNA targeting 5’ sequences of MLL was used to 

knock-down expression of MLL/MLL-AF9 in THP-1 cells.  Although knock-down of 

MLL and/or MLL-AF9 was observed in some experiments, the data were inconsistent.  

For this reason, lentiviral shRNA delivery was then used to knock-down gene 

expression.  GADPH mRNA expression was efficiently knocked-down in THP-1 cells 

using this approach.  MLL-fusion down-stream target genes, such as HOXA9 and MYC, 

were also knocked down and consistent knock-down of these genes expression was 

achieved.  Therefore the lentiviral shRNA delivery system was used to knock-down 

gene expression in subsequent experiments.  

 

We studied the novel MLL-fusion down-stream target genes, RUVBL1 and RUVBL2.  

These genes were over-expressed in immortalised myeloid MLL-AF9 cells derived 

from both mouse and human cells, and their expression was shown to be directly or 

indirectly regulated by MLL-fusions.  Expression of these genes was required for 

human myeloid leukemic cell lines to persist in liquid culture.  Knock-down of RUVBL2 

expression decreased RUVBL1 protein expression in THP-1 cells, indicating that these 

proteins exist in an interdependent manner.  In addition, inhibition of RUVBL2 

expression induced apoptosis and differentiation of THP-1 cells.  RUVBL1 and 

RUVBL2 were previously implicated in telomerase activity (Venteicher et al., 2008).  

TERT expression was found to be up-regulated in V6MA cells and knock-down of 
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RUVBL2 expression reduced TERT mRNA expression both in THP-1 cells and V6MA 

cells.  In addition, this reduction of TERT expression was accompanied by a decrease in 

telomerase activity.  Furthermore, maintenance of clonogenic potential of THP-1 cells 

required RUVBL2 expression.   Taken together, the data we have presented in this thesis 

suggest that RUVBL2 can be a potential therapeutic target for myeloid leukaemia, 

which may compliment currently clinically available telomerase inhibitors. 
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