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Abstract

Optimal trading is a recent field of research which was initiated by Almgren,
Chriss, Bertsimas and Lo in the late 90’s. Its main application is slicing large
trading orders, in the interest of minimizing trading costs and potential per-
turbations of price dynamics due to liquidity shocks. The initial optimization
frameworks were based on mean-variance minimization for the trading costs.
In the past 15 years, finer modelling of price dynamics, more realistic control
variables and different cost functionals were developed. The inclusion of signals
(i.e. short term predictors of price dynamics) in optimal trading is a recent
development and it is also the subject of this work.

We incorporate a Markovian signal in the optimal trading framework which
was initially proposed by Gatheral, Schied, and Slynko [21I] and provide results
on the existence and uniqueness of an optimal trading strategy. Moreover, we
derive an explicit singular optimal strategy for the special case of an Ornstein-
Uhlenbeck signal and an exponentially decaying transient market impact. The
combination of a mean-reverting signal along with a market impact decay is
of special interest, since they affect the short term price variations in opposite
directions.

Later, we show that in the asymptotic limit were the transient market impact
becomes instantaneous, the optimal strategy becomes continuous. This result is
compatible with the optimal trading framework which was proposed by Cartea
and Jaimungal [10].

In order to support our models, we analyse nine months of tick by tick
data on 13 European stocks from the NASDAQ OMX exchange. We show that
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orderbook imbalance is a predictor of the future price move and it has some
mean-reverting properties. From this data we show that market participants,
especially high frequency traders, use this signal in their trading strategies.

1 Introduction

The financial crisis of 2008-2009 raised concerns about the inventories kept by in-
termediaries. Regulators and policy makers took advantage of two main regulatory
changes (Reg NMS in the US and MiFID in Europe) which were followed by the cre-
ation of worldwide trade repositories. They also enforced more transparency on the
transactions and hence on market participants positions, which pushed the trading
processes toward electronic platforms [27]. Simultaneously, consumers and producers
of financial products asked for less complexity and more transparency.

This tremendous pressure on the business habits of the financial system, shifted
it from a customized and high margins industry, in which intermediaries could keep
large (and potentially risky) inventories, to a mass market industry where logistics
have a central role. As a result, investment banks nowadays unwind their risks as fast
as possible. In the context of small margins and high velocity of position changes,
trading costs are of paramount importance. A major factor of the trading costs is the
market impact: the faster the trading rate, the more the buying or selling pressure
will move the price in a detrimental way.

Academic efforts to reduce the transaction costs of large trades started with the
seminal papers of Almgren and Chriss [5] and Bertsimas and Lo [§]. Both models
deal with the trading process of one large market participant (for instance an asset
manager or a bank) who would like to buy or sell a large amount of shares or contracts
during a specified duration. The cost minimization problem turned out to be quite
involved, due to multiple constraints on the trading strategies. On one hand, the
market impact (see [7] and references therein) demands to trade slowly, or at least at
a pace which takes into account the available liquidity. On the other hand, traders
have an incentive to trade rapidly, because they do not want to carry the risk of an
adverse price move far away from their decision price.

The importance of optimal trading in the industry generated a lot of variations
for the initial mean-variance minimization of the trading costs (see [27, [15, 22| for
details). In this paper, we consider the mean-variance minimization problem in the
context of stochastic control (see e.g. [26], [9]). In this approach some more realistic
control variables which are related to order book dynamics and specific stochastic
processes for the underlying price can be used (see [23] and [30] for related work).

In this paper we address the question of how to incorporate signals, which are
predicting short term price moves, into optimal trading problems. Usually optimal
execution problems focus on the tradeoff between market impact and market risk.



However, in practice many traders and trading algorithms use short term price pre-
dictors. Most of such documented predictors relate to orderbook dynamics [29]. They
can be divided into two categories: signals which are based on liquidity consuming
flows [11], and signals that measure the imbalance of the current liquidity. In [2§], an
example of how to use liquidity imbalance signals within a very short trading tactic
was studied. These two types of signals are closely related, since within short terms,
price moves are driven by matching of liquidity supply and demand (i.e. current offers
and consuming flows).

As mentioned earlier, one of the major influencers on transaction costs is the
market impact. Empirical studies have shown that the influence of the market impact
is transient, that is, it decays within a short time period after each trade (see [7] and
references therein). In this paper we will focus on two frameworks which take into
account different types of market impact:

e Gatheral, Schied and Slynko (GSS) framework [21], in which the market impact
is transient and strategies have a fuel constraint, i.e., orders are finished before
a given date T

e Cartea and Jaimungal (CJ) framework [I0], where the market impact is in-
stantaneous and the fuel constraint on the strategies is replaced by a smooth
terminal penalization.

Note that [21] is not the only framework with market impact decay. This kind of
dynamics was originally introduced in [31] and reused in 2] as in some other papers.
We decided to focus on these two frameworks since they are extensively used in the
financial literature. The model and analysis which are developed in this paper, could
be applied also to other optimal trading frameworks.

The main theoretical result of this work deals with the addition of a Markovian
signal into the optimal trading problem which was studied in [2I]. We will argue in
Section that this is modelled mathematically by adding a Markovian drift to the
martingale price process. We formulate a cost functional which consists of the trading
costs and the risk of holding inventory at each given time. Then we prove that there
exists at most one optimal strategy that minimizes this cost functional. The optimal
strategy is formulated as a solution to an integral equation. We then derive explicitly
the optimal strategy, for the special case where the signal is an Ornstein-Uhlenbeck
process. From the mathematical point of view this is the first time that a non mar-
tingale price process is incorporated to a optimal liquidation problem with a decaying
market impact. Therefore the results of Theorems [2.3] and [2.4) extend Proposition 2.9
and Theorem 2.11 of [21], respectively. Later we show that in the asymptotic regime
were the transient market impact becomes instantaneous, the singular optimal strate-
gies which were derived in the (GSS) framework, becomes continuous. Moreover we
show, that asymptotics of the optimal strategy in the (GSS) framework coincide
with the optimal strategy which is obtained in the (CJ) framework (see Remark
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and Section 3). This benchmark between different trading frameworks provides re-
searchers and practitioners a wider overview, when they are facing realistic trading
problems.

The use of predictive signals optimal trading, in the context which was described
above, is relatively new (see [11]). To the best of our knowledge, this is the first time
that a Markovian signal and a transient market impact are confronted. The (GSS)
framework already includes a transient market impact, without using signals. The
(CJ) framework includes only a bounded Markovian signal and not a decaying market
impact. Moreover, our results on optimal trading in the (GSS) framework incorporate
a risk eversion term to the cost functional, which was not taken into account in the
results of [21].

The main contribution of this work is in providing a new framework for optimal trad-
ing, which is an extension of the classical frameworks of [L0] and [2I] among others.
The motivation to use this framework arises from market needs as our data analysis
in Section [4] suggests. From a theoretical point of view, these models of trading with
signals provide some new mathematical challenges. We will describe in short two of
these challenges.

The optimal strategies that we derive in Theorem [2.4] and Corollary (i.e. in the
GSS framework) are deterministic and they use only information on the signal at
time 0. One of the challenging questions which remain open, is how to optimise the
trading costs over strategies which are adapted to the signal’s filtration (see Remark

29).

An interesting phenomenon which arises from our results, is that the optimal strate-
gies may not be monotone once we take into account trading signals (see figure [1]).
It implies that price manipulations, triggered by trading strategies, are possible. An-
other challenge is to establish conditions on the market impact kernel function and
on the signal, that will prevent price manipulations (see Remark .

Another contribution of this paper, is the statistical analysis of the imbalance
signal and its use in actual trading, which we present in Section [4 In order to
validate our assumptions and theoretical results, we use nine months of real data from
nordic European equity markets (the NASDAQ OMX exchange) to demonstrate the
existence of a liquidity driven signal. We focus the analysis on 13 stocks, accounting
for more than 9 billions of transactions. We also show that practitioners are at
least partly conditioning their trading rate on this signal. Up to 2014, this exchange
provided with each transaction the identity of the buyer and the seller. This database
was already used for some academic studies, hence the reader can refer to [36] for more
details. We added to these labelled trades, a database of Capital Fund Management
(CFM) that contains information on the state of the order book just before each
transaction. Thanks to this hybrid database, we were able to compute the imbalance
of the liquidity just before decisions are taken by participants (i.e. sending a market
orders which consume liquidity).



We divide most members of the NASDAQ OMX into four classes: global invest-
ment banks, institutional brokers, high frequency market makers and high frequency
proprietary traders (the classification is detailed in the Appendix). Then, we compute
the average value of the imbalance just before each type of participant takes a deci-
sion (see Figure . The conclusion is that some participants condition their trading
rate on the liquidity imbalance. Moreover, we provide a few graphs that demonstrate
a positive correlation between the state of the imbalance and the future price move.
These graphs also provide evidences for the mean-reverting nature of the imbalance
signal (see Figure . In Figure |§] we preset the estimated trading speed of market
participants as a function of the average value of the imbalance, within a medium
time scale of 10 minutes. The exhibited relation between the trading rate and the
signal in this graph is compatible with our theoretical findings.

This paper is structured as follows. In Section [2] we introduce a model with a mar-
ket impact decay, a Markovian signal and strategies with a fuel constraint (i.e in the
(GSS) framework). We provide general existence and uniqueness theorems, and then
give an explicit solution for the case of an Ornstein-Uhlenbeck signal. The addition
of a signal to market impact decay is the central ingredient of this Section. In Sec-
tion [3| we compare our results from Section [2| to the corresponding results in the (CJ)
framework. We show that the optimal strategy in the (GSS) framework coincides with
the optimal strategy in the (CJ) framework, in the asymptotic limit where the tran-
sient market impact become instantaneous and the signal is an Ornstein-Uhlenbeck
process. In Section [4] we provide an empirical evidence for the predictability of the
imbalance signal and its use by different types of market participants. We also pre-
form a statistical analysis which supports our focus on an Ornstein-Uhlenbeck signal
in the example which is given in Section [2 The last section is dedicated to proofs of
the main results.

2 Model Setup and Main Results

2.1 Model setup and definition of the cost functional

In this section we define a model which incorporates a Markovian signal into the (GSS)
optimal trading framework. Definitions and results from [21] are used throughout this
section.

We consider a probability space (€, F, (F;),P) satisfying the usual conditions,
where Fy is trivial. Let M = {M;};>o be a right-continuous martingale and I =
{I;}+>0 a homogeneous cadlag Markov process satisfying,

T
/ E,[|L|]]dt <oco, forallieR, T >0. (2.1)
0

Here E, represents expectation conditioned on Iy = ¢. In our model I represents a



signal that is observed by the trader.

We assume that the asset price process P, which is unaffected by trading trans-
actions, is given by

dPt = Itdt ‘I‘ th, t Z 0,

hence the signal interacts with the price through the drift term. This setting allows
us to consider a large class of signals. The visible asset price, which is described later,
also depends on the market impact that is created by trader’s transactions.

Let [0, 7] be a finite time horizon and x > 0 be the initial inventory of the trader.
Let X; be the amount of inventory held by the trader at time ¢t. We say that X is an
admissible strategy if it satisfies:

(i) t — X; is left—continuous and adapted.
(ii) t — X} has finite and P-a.s. bounded total variation.
(iii) Xo =z and X; =0, P-a.s. forallt > T.

As in |21l 17, [16], we assume that the visible price S = {S;}:>o is affected by a
transient market impact, and it is given by

s, = R+/ G(t — s)dX,, t>0, (2.2)
{s<t}

where the decay kernel G : (0,00) — [0,00) is a measurable function such that the
following limit exists

G(0) = lim G(¢). (2.3)

10

Next we derive the transaction costs which are associated with the execution of a
strategy X;.

Note that if X, is continuous in ¢, then the trading costs that arise by an infinites-
imal order dX; are S;dX;. When X, has a jump of size AX; at t, the price moves
from S; to S;y = S; + G(0)AX; and the resulted costs by the trade AX; are given by
(see Section 2 of [21])

¢o) (AX,) + S,AX,.

It follows that the trading costs which arise from the strategy X are given by

/S@Xﬁ@z AXt //Idstt // G(t — s)dX,dX,
{s<t}
/ MdX, + T Z (AX,)%.
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From Lemma 2.3 in [21], we get a more convenient expression for the expected trading
costs,

a(0)

t
E[//O Isdstt—i—/ {Kt}G(t—s)dXsttJr/MthtJrTZ(AXt)Q]

t
- E[// 1, dsttJr%//G(\t—s])dXstt] ~ P
0

We are interested in adding a risk aversion term to our cost functional. A natural
candidate is fOT X?dt, which is considered as a measure for the risk associated with
holding a position X; at time ¢; see [4} 19, [35] and the discussion in Section 1.2 of [33].
Hence our cost functional which is the sum of the expected trading costs and the risk
aversion term has the form

t T
E[// IsdsttJr%//G(|t—s|)dXstt+¢/ det} ~ R, (24)
0 0

where ¢ > 0 is a constant.

The main goal of this work is to minimize this cost functional (2.4)) over the class
of admissible strategies. Before we discuss our main results in this framework, we
introduce the following class of kernels.

We say that a continuous and bounded G is strictly positive definite if for every
measurable strategy X we have

//G(|t—s\)dXstt>O, P—as. (2.5)

We define G to be the class of continuous, bounded and strictly positive definite
functions G : (0, 00) — [0, 00).

Remark 2.1. Note that is satisfied for every G € G. A characterization of
positive definite kernels (that is, when the inequality is not strict) is given in
Proposition 2.6 in [21)].

Remark 2.2. An important subclass of G is the class of bounded, non increasing
convex functions G : (0,00) — [0,00) (see Proposition 2 in [3]).

2.2 Results for a Markovian Signal

In this section we introduce our results on the existence and uniqueness of an optimal
strategy, when the signal is a cadlag Markov process. As in Section 2 of [21] we restrict
our discussion to deterministic strategies. The minimization of the cost functional
over signal-adaptive random strategies, will be discussed in Remark [2.9]



We consider the following class of strategies,
E(z) = {X| deterministic admissible strategy with X, = = and support in [0, 7]}.

Note that for any X in =(z), the cost functional (2.4) has the form,

//:EL[ISJ deXt+%//G(H_5|)dXstt+¢/OTXt2dt. (2.6)

In our first main result we prove that there exists at most one strategy which mini-
mizes the cost functional ([2.6)).

Theorem 2.3. Assume that G € G. Then, there exists at most one minimizer to the
cost functional (2.6) in the class of admissible strategies Z(z).

In our next result we give a necessary and sufficient condition for the minimizer

of the cost functional (2.6)).

Theorem 2.4. X* € Z(x) minimizes the cost functional (2.6) over Z(x), if and only
if there exists a constant \ such that X* solves

t t
/ EL[IS]ds—l—/G(\t—s])dX;k—Qqﬁ/ Xids =X, forall0<t<T. (2.7)
0 0

A few remarks are in order.

Remark 2.5. In the special case where the agent does nmot rely on a signal (i.e.
I =0) and there is a zero risk aversion (¢ = 0), Theorems and coincide
with Proposition 2.9 and Theorem 2.11 in [2])].

Remark 2.6. Dang studied the case where the risk aversion term in S MONZero,
but again I = 0. In Section 4.2 of [17], a necessary condition for the existence of an
optimal strateqy is given, when the admissible strategies are deterministic and abso-
lutely continuous. Our condition in coincides with Dang’s result when I = 0 and
the admussible strategies are absolutely continuous. Note however that the question
if the condition in [17] is also sufficient and the uniqueness of the optimal strategy,
remained open even in the special case where I = 0.

2.3 Result for an Ornstein-Uhlenbeck Signal

As mentioned in the introduction, a special attention is given to the case where the
signal [ is an Ornstein—Uhlenbeck process,

d]t = —/}/It dt + Uth, t Z O,

2.8
I=.. (2.8)



where W is a standard Brownian motion and 7,0 > 0 are constants. In the following
corollary we derive an explicit formula for the optimal strategy in the case of zero risk
aversion and when GG has an exponential decay. The following corollary generalizes
the result of Obizhaeva and Wang [31], who solved this control problem when there
is no signal.

Corollary 2.7. Let I be defined as in (2.8). Assume that ¢ =0 and G(t) = kpe™*",
where k,p > 0 are constants. Then, there exists a unique minimizer X* € Z(z) to
the cost functional (@, which s given by

X; = @l 5 { P2 0 = (0 0) )~ (04 ) a0} (29

where

Lm0y + Loy + pt

bo(t) S
by (t) L—e " —by(t)(1 —e ),
ba(t) = Lty +pt —bo(t)(1+ pT),
bs(t) = (bo(t) — Lyspy)e 7.

Note that 1 — by(T+) = 0 and b;(T+) = 0 for ¢ = 1,2, 3, moreover, the optimal
strategy is linear both in x and «¢.

In Figure [1| we present some examples of optimal strategy with the following
parameters: v = 0.9,k = 0.1,T = 10, x = 10. These particular values are compatible
with the empirical parameters which are estimated at the end of Section[4.2] Arbitrary
initial values (-0.5, 0 and +0.5) are taken for the signal . The special case where ¢t = 0
gives similar result to Obizhaeva and Wang [31]. The parameter p, which controls
the market impact decay, cannot be estimated from the data that we have, hence we
take two arbitrary but realistic values (1.0 and 2.5). We observe that for large values
of p, the initial jump in the optimal trading strategy is larger than the corresponding
jump in the small p strategies, but the trading speed tends to have a less variations.
We particularly notice that when the initial signal is at an opposite direction to the
trading (¢ > 0 for a sell order) the trading starts with purchases as expected, and
afterwords the trading speed eventually becomes negative. On the other hand, when
the initial signal is at the same direction to the trading, it is optimal to start selling
immediately and most of the inventory is sold before 7'/2.

In the following remarks we discuss the result of Corollary [2.7]

Remark 2.8. Note that in the limit where p — oo, the market impact term in (@

3 fo fo (|t—s|)dXsdX; formally corresponds to the costs arising from instantaneous
market impact, that is G(dt) = kdy. We briefly discuss the asymptotics of the optimal
strateqy X; = X (p) in when p — oo. It is easy to verify that in the limit, the
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Figure 1: Optimal trading strategies according to fory=09, k=0.1, T =10
and z = 10. We demonstrate different scenarios for selling 10 shares: without a signal,
with a positive signal and with a negative signal. We distinct between a slow decay
of the market impact (solid lines) or fast decay (dashed lines). At the top graph we
show the remaining inventory, at the bottom graph the trading speed (for 0 < ¢ < 10)
is presented.

gumps of X* vanish (see A and D in for the explicit expression of the jumps),
and the limiting optimal strategy X*(oc0) is a smooth function which is given by

L L

(1—e) - oy

X/ (00) =X+ il

2ky?

Motivated by these asymptotic results, in the next section we further explore absolutely
continuous strategies which minimize the trading costs — risk aversion functional. We
will assume there that the market impact is instantaneous, that is G(dt) = kéy and
drop the fuel constraint (Xy = 0 for t > T) from the admissible strategies. Then,
explicit formulas for the optimal strategqy are derived when the risk aversion term is
non-zero.
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Remark 2.9 (An adaptive version of ) Equation gies an optimal solution
for a trader with imventory Xo = x at t = 0, who is observing the initial value of the
signal o = Iy and wishes to minimize (@ for exponentially decaying kernel and
¢ = 0. The cost functional is there given by,

1
U([0,T]) := / / B[L|FV]dsdX, + = / / rpe PTsld X dX
7€[0,T] J s€[0,7] 2 7€[0,T] Js€[0,T

where (F}V)i>o is the natural filtration of I. In this setting, once the trading started, it
s no longer possible to update the strategy while taking into account new information,
i.e. mew values of the signal. This can be compared to simpler frameworks like the
one of Section [3, in which the optimal strategy is updated for any 0 <t < T. We
therefore add a short discussion on an adaptive framework for .

A natural way to update the optimal strategy at any time t, is to define X = {f(s :
t <s<T} as the optimal strateqy of the cost functional

~ 1
U([t,T)) := / / E[I|F]dsdX, + - / / kpe AT ldX dX .
relt,T] Jseltr] 2 Jrem) Jsetm)

Note however that
U0, 7)) =U([0,t]) + A U(t,T) + AU(¢t, T),

where

1
AUt T) = / / E[I|F¥]dsdX, + = / / rpe PTsld X, dX,
T€t,T] J s€[0,7] 2 Telt,T] J s€[0,t]

and .
AU(t,T) = = / / rpe PToldX dX .
2 T€[0,T] J s€t,T)

This implies if X is used in place of X* for some 7 € (t,T), the trader will have an
Fi-adapted control , but it will not be necessarily consistent with X* which minimizes
U([0,T)). Therefore, in practice one can choose between the following options:

e the optimal strategy X*, limited to the information on the signal at t = 0;

e an approzimate strateqy X updated at each time t € (0,7T), which takes into
account the whole trajectory of I;;

e the optimal strateqy which corresponds to a market impact without a decay (as
shown in Section @)

The question which of these strategies gives the best results remains open.

Note that in the cost functional U the time inconstancy is a result of the transient
market impact term. In [34)], time inconsistent optimal liquidation problems were also
studied. However, the inconstancy of the problems in [34] arises from the risk-aversion
term.
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Remark 2.10 (Price manipulation). Market impact models admit transaction-triggered
price manipulation if the expected costs of a sell (buy) strateqy can be reduced by in-
termediate buy (sell) trades (see Definition 1 in [3]). Theorem 2.20 in [21] implies
that transaction-triggered price manipulation are impossible for the cost functional
mn over the class of admissible strategies, in the case where I = 0 and ¢ = 0.
However, Figure |1, shows that adding signals to the same market impact model can
create optimal strategies which are not monotone decreasing, and therefore implies a
possible price manipulation. It would be very interesting to investigate the conditions
on the market impact kernel and the trading signals which ensure no price manipula-
tions. Study of the possible implications of these price manipulations on other market
participants is also of major importance.

3 Optimal strategy for temporary market impact

In this section we study an optimal trading problem which has some common features
to the problem which was introduced in Section 2.1 We consider again a price process
which incorporates a Markovian signal. The main change in this section, is that the
market impact in is temporary, i.e. the kernel is given by G(dt) = rkdy(dt), where
dp is Dirac’s delta measure and x > 0 is a constant. Note that this type of kernel is
not included in the class of kernels G which was introduced in . The main goal
of this section is to show of how to incorporate trading signals in the (CJ) framework
[10]. The results that we obtain could be compared to the results of Section [2| (see
Remark . Recall that we heuristically obtained the optimal strategy when the
kernel G = G, “converges” to Dirac’s delta measure as p — 0.

We continue to assume that [ is a cadlag Markov process as in the beginning of
Section [2] but we add the assumption that

E[L] <C(T)(1+), forallteR, 0<t<T, (3.1)

for some constant C(T") > 0.

For the sake of simplicity we will assume that M, = oW, so that
dP, = Ldt + o"dW,,

where {W;}:>0 is a Brownian motion and o is a positive constant.

In the following example the fuel constraint on the admissible strategies will be
replaced with a terminal penalty function. This allows us to consider absolutely
continuous strategies as in the framework of Cartea and Jaimungal (see e.g. [12] [13]
14]). We introduce some additional definitions and notation which are relevant to
this setting.

Let V denote the class of progressively measurable control processes r = {r;}+>0
for which fOT |r¢|dt < oo, P-a.s.

12



For any x > 0 we define
t
X] :x—/ redt. (3.2)
0

Here X is the amount of inventory held by the trader at time ¢. We will often
suppress the dependence of X in r, to ease the notation.

The price process, which is affected by the linear instantaneous market impact, is
given by
St:Pt—/iT’t, tZO,

where £ > 0. Note that S; here corresponds to (2.2)) when G(dt) = kdo(dt).

The investor’s cash C; satisfies
dCt = St'r’t dt = (Pt — K}Tt)rt dt,
with C[) = C.

For the sake of consistency with earlier work of Cartea and Jaimungal in [12]
13, [14], we will define the liquidation problem as a maximization of the difference
between the cash and the risk aversion. As mentioned earlier, the fuel constraint on
the admissible strategies will be replaced by the penalty function, which is given by
X7 (Pr — 0Xr) where g is a positive constant.

The resulted cost functional is given by

T
Vr(ta L, C, va) - EL,C,J:,p |:CT - ¢/ XSQdS + XT(PT - QXT) ) (33)
t
where ¢ > 0 is a constant and F;, ., , represents expectation conditioned on I; =
1,C=c¢, Xy =x, P, =p,

The value function is

V(t,t,c,x,p) =sup V" (t, t,c,z,p).
rey

Note that this control problem could be easily transformed to a minimization of the
trading costs and risk aversion as in Section [2]

Let £ be the generator of the process I. Then, the corresponding HJB equation
is

1
0=0V 4.0,V + 5(013)26;‘/ + L'V — pa® + sgp {r(p — k1) 0.V — T@IV}, (3.4)
with the terminal condition

V(T7 L, C,:L‘,p) = C"—.Z'(p - QQ?)

Let E}, represent expectation conditioned on I; = ¢. In the following proposition we
derive a solution to (3.4]). The proof of Proposition follows the same lines as the
proof of Proposition 1 in [14].
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Proposition 3.1. Assume that o0 # \/k¢. Then, there exists a solution to which
15 given by
V(t,t,c,x,p) =c—axp+up(t, ) + zvi(t, 1) + 2%va(t), (3.5)

where
14 (e
wlt) = VeI sy
T
n(t) = / L g, (7 s,
Lo
vo(t,t) = R/ By, [vi(s, Iy)]ds,
t

and the constants ¢ and [ are given by

0+
(LB
0—
In the following proposition we prove that the solution to (3.4]) is indeed a an

optimal control to (3.3)).

Proposition 3.2. Assume that o # \/k¢. Then maximizes the cost functional
m . The optimal trading speed r; is given by

The proofs of Propositions [3.1] and [3.2] are given in Section [5.2]
The following corollary follows directly from Propositions [3.1 and 3.2l Note that an
Ornstein-Uhlenbeck process satisfies (3.1]).

Corollary 3.3. Assume the same hypothesis as in Proposition only now let 1
follow an Ornstein-Uhlenbeck process as in (@) Then, there exists a mazrimizer
r* eV to V'(t, i, c,z,p), which is given by

1 T .
rf _ _ﬂ(zw(t)xt + [t/ efv(sft)Jr% Ji vz(ﬂ)dud$>7 0<t<T.
t

In the following remarks we compare between the results of Sections [2] and

Remark 3.4. If we set the risk aversion and penalty coefficients ¢, 0 in
0, then from the proof of Proposition [3.1] it follows that vo = 0. Under the same
assumptions on the signal as in Corollary[3.5, the optimal strategy is given by

I,
2Ky
which is consistent with X;(co) from Remark[2.§

—(1—eT), 0<t<T, (3.6)

Tt:
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Remark 3.5. One can heuristically impose a “fuel constraint” on the optimal strateqgy
in Corollary[3.3, by using the asymptotics of r; when 0 — co. In this case { — 1 and

the limiting optimal speed which we denote by 7"{ 18

1 T S —
rf = —5- (2@2(t)Xt + I / e 0+ ); ”2(“)d“ds>, 0<t<T.
K t

where
1+ 28T

EQ(t) = vV K¢1 — eQﬁ(T*t) .

Remark 3.6. [t is important to notice that gives the optimal strategy on the
time horizon [0,T] in the (GSS) framework, by using only information on the O.U.
signal at t = 0. On the other hand (@, which is the optimal trading speed r; in the
(CJ) framework is using the information on the signal at time t. A crucial point here
is, that if one tries to solve repeatedly the control problem in the (GSS) framework on
time intervals [t,T] for any t > 0, by using I; and S; as an input, the optimal strategy
will not necessarily minimize the cost functional on [0, T]. The reason for that
1s that the control problem in may be is inconsistent. The market impact (and
therefore the transaction costs) which are created on [0,t] affect the cost functional at
[t,T) (see Remark[2.9 for more details). This effect disappears when we set G(dt) = &,

in (3.9).

In Figure 2 we simulate the optimal inventory X* which is resulted by the optimal
trading speed 7* from Corollary [3.3] In the black solid line we present the optimal
inventory in the case where there is no signal, therefore in this case the optimal strat-
egy is deterministic. The red region in Figure 2 is a “heat map” of 1000 realizations
of the optimal inventory X*. The pamperers of the model are v = 0.1, ¢ = 0.1 and
Iy =0forTasin (2.8), and T = 10, K = 0.5, ¢ = 0.1, Xy = 10 and ¢ = 10, for the
cost functional . We observe that the random strategies are a perturbation of
the classical deterministic optimal strategy. In Figure [3]we present the value function
(3.5) at ¢ = 0, under the same assumptions as in Figure 2, that is, assuming that
I is an OU process and that the model parameters are similar. More precisely, we
plot V(0,¢,¢,x,p) — (¢ — xp), hence we omit constants which do not contribute to
the behaviour of the model. We observe that the revenue resulted by the optimal sell
strategy r* is affected by the direction and value of the signal . The revenue of a
sell strategy when the signal positive, which indicates on a potential price increase,
is higher than negative signal scenarios.

4 Evidence for the use of signals in trading

In this section we analyse financial data which is related to the limit order book
imbalance. The data analysis in this section is directed to support the models which
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Optimal Strategy

X- iventory

Figure 2: Simulation of the optimal inventory X* which is resulted by the trading
speed r* from Corollary In the black curve we present the optimal inventory
in absence of a signal. The red region is a plot of 1000 trajectories of the optimal
inventory X*. The pamperers of the model: v = 0.1, ¢ = 0.1, [, = 0, T = 10,
k=0.5,¢0=0.1, Xo =0 and o = 10.

Value function

¢- signal 1 0 X- inventory

Figure 3: Plot of the value function V(0,¢,¢,z,p) — (¢ — xp) from (3.5)), when the
signal is an OU process. The pamperers of the model: v = 0.1, ¢ = 0.1, T" = 10,

k=0.5,9=0.1, Xo =0 and o = 10.
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were introduced in Sections 2l and Bl In Section [4.1] we describe our data base and
provide an empirical evidence for the use of the imbalance signal, which is a liquidity
driven signal. In Section we study the statistical properties of the signal and
motivate our model from Section [2.3) of an Ornstein-Uhlenbeck Signal. Finally in
Section we study the use of this signal during liquidation by different market
participants. Note that in Sections [2| and [3] we also discussed more general signals
which are not necessarily liquidity driven.

4.1 The database: NASDAQ OMX trades

The database which is used in this section is made of transactions on NASDAQ OMX
exchange. This exchange used to publish the identity of the buyer and seller of each
transaction until 2014. To obtain order book data, we use recordings made by Capital
Fund Management (CFM) on the same exchange, which were matched with NASDAQ
OMX trades thanks to the timestamp, quantity and price of each trade. On a typical
month, the accuracy of such matching is more than 99.95%.

The NASDAQ OMX trades were already used for academic studies (see [36] and
[28] for details). We study 13 stocks traded on NASDAQ OMX Stockholm from
January 2013 to September 2013. The purpose of this section is not to conduct an
extensive econometric study on this database; such work deserves a paper of its own.
Our goal here is to show qualitative evidences for the existence of the order book
imbalance signal and to study how market participants decisions depend on its value.

The 13 stocks which are used in this section have been selected for this research,
since High Frequency Proprietary Traders took part in at least 100,000 trades on each
of them during the studied period. More details on the classification of the traders
to different classes are given later in this section.

Table [1] discloses descriptive statistics on the considered stocks in the database.
Stocks are ranked by the average daily traded value (in unites of 10° of the local
currency, the Swedish krona), which can be considered as an indicator of liquidity.
We also included in Table|[l|the average price during the study period, since European
exchanges apply dynamic tick size schedules. The lower the average stock price, the
lower is the tick size (see Chapter 1, Section 3 of [27]). The Minimum tick size is the
smallest tick size which was applied to the stock price during our study period. If
the price changes are large enough, different tick sizes could have been applied during
the study period, therefore we also added the yearly estimated Garman and Klass
volatility to the table (see [20]). Last but not least the average bid-ask spread has to
be compared with the tick size: for all these stocks the bid-ask spread lays between
one and two ticks. All this stocks are therefore liquid and large tick stocks.

The NASDAQ OMX database contains the identity of the buyer and the seller from
the viewpoint of the exchange, that is, the members of the exchange who made the
transactions. Asset managers for example, are not direct members of the exchange.
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Company Daily Avg. Avg. Volatility Min.
Name (code) Traded  Price BA-spread (GK)  tick
Value (109)
Volvo AB (vorvb.st) 431.20  94.87 0.057 15.08%  0.05
Nordea Bank AB (xpast) 384.48  76.09 0.053 15.02%  0.05
Telefonaktiebolaget LM Ericsson (erich.st) 373.20 7841 0.054 15.20%  0.05
Hennes & Mauritz AB (umb.st) 361.66 232.89 0.112 11.37%  0.10
Atlas Copco AB (arcoast) 329.94 175.19 0.110 16.13%  0.10
Swedbank AB (swepasrt) 313.18 151.97 0.108 15.29%  0.10
Sandvik AB (sanp.st) 296.09  90.88 0.067 17.01% 0.05
SKF AB (sxrb.st) 25599 161.11 0.112 16.47%  0.10
Skandinaviska Enskilda Banken AB (seBa.st) 221.23  66.85 0.053 15.56%  0.05
Nokia OYJ (~oxist) 209.77  28.84 0.019 36.89%  0.01
Telia Co AB (Tisn.st) 207.09 45.14 0.014 10.13%  0.01
ABB Ltd (aBBsT) 179.51 144.35 0.108 11.89% 0.10
AstraZeneca PLC (azn.st) 168.06  318.57 0.127 12.09%  0.10

Table 1: Statistics of the 13 studied stocks. Values and prices are in Swedish Krona.

The GK-volatility is yearly estimated. The table is sorted by the average daily traded

value over 180 trading days.

On the other hand, brokers, banks and some other specific market participants are
members. We classify the market members into four types (for more details see

Appendix [A.1)):
e Global investment banks (GIB);
e Institutional brokers (IB);
e High frequency market makers (HFMM);

e High frequency proprietary traders (HFPT).

Table [2| gives some plain statistics about the number of trades on each stock of our
database involving these types of participants. Keep in mind that the database covers
180 trading days. It can be read on the last line that, on average, Global investment
banks are involved in 58% of the trades while High Frequency Traders are involved
into 32% of them, the remaining 10% involve institutional brokers. The percentage of
identified participant is on average 78%, that is, 22% of the trades took place between

two participants which we are not associated with any of our four classes (GIB, IB,
HFMM, HEFPT). Moreover, we had to filter around 2% of the trades (see last column)

because of some cases where we could not match limit orderbook records with the

observed transactions.
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Code Global HF MM Instit. HF Prop. Trades Pct. Pct. LOB

Banks Brokers Count Ident. matched
VOLVb.ST  56.9% 17.1% 10.6% 15.3% 927,467 76.7% 97.4%
NDA.ST 60.7% 10.6% 9.9% 18.7% 694,509 76.8% 97.4%
ERICDb.ST 57.8% 17.6% 7.7% 16.9% 811,931 81.0% 97.2%
HMb.ST 58.5% 16.0% 8.9% 16.6% 716,644 76.8% 97.8%
ATCOa.ST  58.2% 13.7% 10.5% 17.6% 677,981 79.1% 98.0%
SWEDa.ST 61.2% 12.2% 9.5% 17.2% 600,655 74.6% 97.7%
SAND.ST 61.0% 15.2% 10.4% 13.4% 701,961 77.4% 96.9%
SKFb.ST 60.9% 13.8% 10.4% 14.9% 587,088 77.1% 97.0%
SEBa.ST 61.5% 12.1% 8.8% 17.7% 515,743 75.8% 97.8%
NOKI.ST 54.5% 8.1% 8.9% 28.5% 710,173  79.6% 99.2%
TLSN.ST 61.2% 10.0% 10.6% 18.2% 548,602 68.9% 97.8%
ABB.ST 50.1% 15.6% 5.2% 29.2% 359,067 86.2% 98.1%
AZN.ST 51.4% 12.8% 9.0% 26.8% 411,118 89.6% 98.8%
Average 58.3% 13.6% 9.4% 18.7% —  T.T% —

Table 2: Statistics on labelled trades involving each kind of market participant.
Trades Count is the sum of trades involving at least one labeled participant. Pct.
Ident. represents the percentage of trades involving at least one participant of out of
the four types that we focus on. Pct. LOB matched is the percentage of trades for
which we found a matching quote in our LOB database. The average at the bottom
line is calculated over all identified trades.

We expect institutional brokers to execute orders for clients without taking ad-
ditional risks (i.e. act as “pure agency brokers”). Such brokers often have medium
size clients and local asset managers. They do not spend of lot of resources such
as technology or quantitative analysts to study the microstructure and react fast to
microscopic events.

Global Investment Banks can take risks at least on a fraction of their order flow.
Most of them already had proprietary trading desks and high frequency trading ac-
tivities in 2013 (i.e. during the recording of the data). They usually have large
international clients and have the capability to react to changes in the state of the
order-book.

High frequency market makers are providing liquidity on both sides of the order
book. They have a very good knowledge on market microstructure. As market mak-
ers, we expect them to focus on adverse selection, and not to keep large inventories.
On the other hand, high frequency proprietary traders take their own risks in order
to earn money, while taking profit of their knowledge of the order book dynamics.

The data in Table|3]is compatible with our prior knowledge on the different classes
of traders:
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Participant Class  Trade Average Average Pct.

Type imbalance Number
Global Banks Limit -0.41 103,418 48.2%
Market 0.56 111,082 51.8%
HF MM Limit -0.31 30,747 73.0%
Market 0.62 11,818 27.0%
HF Prop. Traders Limit -0.37 28,763 47.2%
Market 0.63 31,858 52.8%
Instit. Brokers Limit -0.56 9,984 33.6%
Market 0.33 19,505 66.4%

Table 3: Descriptive statistics of market participants on an “average stock”. All the
trades are normalized as if all orders were buy orders. The imbalance is positive when
its sign is in the direction of the trade.

e HFMM trade far more with limit orders (73%), than with market orders;
e B use more market orders than limit orders;

e on average, HFPT and GIB have balanced order flows.

Moreover, high frequency participants (HFMM and HFPT) both use market orders
to consume liquidity on the weak size of the book (i.e. buying when the imbalance is
on average 0.60 and selling when it is on average -0.60), and provide liquidity when
the imbalance is less intense than -0.5. The latter observation can be compatible with
HF participant contributing to stabilize the price with their limit orders.

These numbers are only averages, in Figure 4| we give their dispersion across our
13 stocks. It can be seen in Figure [4] that the asymmetry between HFPT and IB is
observed for all stocks (see left panel). Moreover, the left panel suggests that high
frequency participants use market orders and limit orders when the imbalance is in
their favour.

4.2 The Imbalance Signal

The order book imbalance has been identified as one of the main drivers of liquidity
dynamics. It plays an important role in order-book models and more specifically it
drives the rate of insertions and cancellations of limit orders near the mid price (see
[1, 25]). As an illustration of the theoretical results of this paper, we document here
the tmbalance signal and its use by different types of participants. This signal is
computed by using the quantity of the best bid ()5 and the best ask )4 of the order
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Avg. Imbalance Limit (left) and Market (right) Orders

Pet. of Limit Orders Sent

B NOKIST
BN SWEDa.ST
N NDAST
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Instit. Brokersf-
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Figure 4: Use of limit and market orders and state of the imbalance before a trade,
for each type of market participant. On the left panel: average imbalance just before
a limit order (left part, negative), and average imbalance just before a market order
(right part, positive). The dark line with the large dots represents the average over
all trades for all stocks. On the right panel: percentage of trades with limit orders
out of all orders. The dark line is an average over all stocks.

book,

Tmb(r) = 22{0) = Qa(n),
Qp(7) + Qa(7)
just before the occurrence of a transaction at time 7+. Note that our 13 stocks are
considered as “large tick stocks” except from Sandvik AB (SAND.ST) and Telia Co
AB (TLSN.ST) for which the average bid-ask spread is greater than 1.4 times the
tick size. This means that the liquidity at the best bid and ask gives a substantial
information on the price pressure (see [24] for details about the role of the tick size in
liquidity formation). For smaller tick stocks, several price levels need to be aggregated
in order to obtain the same level of prediction for future price moves.

In order to demonstrate the predictive power of the imbalance, we consider the
average mid price move after 10 trades as a function of the current imbalance (see
Figure [5)). Table {4| gives data which is associated to these curves. The column “d
Price” shows the price change re-normalized by the average bid-ask spread on each
stock after 10 trades. This price move is on average close to 0.6 times the imbalance
just before the first of these trades;
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Figure 5: Predictive power of the imbalance: the average price move for the next 10
trades (y-axis), as a function of the current imbalance (z-axis).
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Figure 6: Predictive power of the imbalance for the AstraZeneca stock: the average
price move for the next 10 trades (y-axis), as a function of the current imbalance
(z-axis), with confidence levels of upper and lower 5 precent.

Mean-reversion of the imbalance. Figure[7on the right shows the average value
of the imbalance after AT = 3,5 and 7 trades as a function of its current value. The
colors of the curves represent the same stocks as in Figure 5] The decreasing slopes
around Imb(¢) = 0 are underlined by the last columns 4—6 of Table[d] It demonstrates
the mean reverting property of the imbalance. We will not comment too much on
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I After 7 trades |

Imbalance

Figure 7: Mean-reversion of the imbalance: the average value of the imbalance after
3 (solid lines), 5 (dashed lines) and 7 (dotted lines) trades (y-axis), as a function of
the current imbalance (z-axis). The colors of the lines represent the same stocks as

in Figure

the decreasing slopes for large imbalance values. We will just mention that strong
imbalance may imply on a future price change, which in turn, can create a depletion
of the “weak side of the order-book” (in the sense of [18]). This phenomenon may
cause an inversion of the imbalance, since the queue in second best price level of the
order book, which is now “promoted” to be the first level, could be large. See [25] for
details about queues dynamics in order-books.

To approximately fit Ornstein-Uhlenbeck (OU) dynamics to the imbalance data,
we will use “trade time” instead of “calendar time” (i.e. seconds), in order to compen-
sate on different frequencies of trading for each of our 13 stocks (see columns dt on
Table |§| in the Appendix). This implies a discrete version of an OU,

In—i—An - In =—-7" [nAn +ov An - gn—i-Anv

where An is the number of trades ahead you look at, v is the speed of mean-reversion
parameter and o is the standard deviation of the innovation &, a,. The linear re-
gressions on the last columns of Table [4] are following the model

In—l—An = AAn ° In + 6An * €nt+An-
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d Price R? | Imb. 3t Imb. 5t Imb. 7t TImb. 10t Imb. 100t

VOLVb.ST 0.58 0.16 0.91 0.72 0.49 0.26 0.03
NDA.ST 0.58 0.16 0.90 0.71 0.51 0.30 0.04
ERICb.ST 0.62 0.15 0.93 0.74 0.53 0.30 0.03
HMb.ST 0.59 0.08 0.84 0.62 0.41 0.21 0.02
ATCOa.ST 0.60 0.13 0.85 0.58 0.34 0.13 0.02
SWEDa.ST 0.62 0.14 0.87 0.67 0.45 0.23 0.02
SAND.ST 0.56 0.15 0.81 0.57 0.37 0.20 0.03
SKFb.ST 0.59 0.13 0.76 0.49 0.28 0.13 0.01
SEBa.ST 0.61 0.15 0.91 0.73 0.51 0.28 0.03
NOKI.ST 0.41 0.01 0.18 0.08 0.05 0.03 0.00
TLSN.ST 0.54 0.04 0.43 0.22 0.13 0.08 0.02
ABB.ST 0.59 0.11 0.86 0.61 0.33 0.11 0.03
AZN.ST 0.64 0.04 0.47 0.20 0.09 0.05 0.02

Table 4: Results of linear regressions involving the imbalance. The first column
is the result of a regression of the price move after 10 trades given the imbalance
immediately before the first of these trades. This can also be shown in the slope of
Figure [f] The p-value is very close to zero for all stocks, meaning they are highly
significant. The R? varies between 1% (Nokia) to 16% (Volvo AB and Nordea Bank
AB). Other columns are the result of the regression of future imbalance (respectively
after 3, 5, 7, 10 and 100 trades) with respect to the imbalance immediately before the
first of these trades, given that the imbalance is between -0.5 and 0.5. This regression
corresponds to the slopes at the center of Figure [ All p-values are significant at
more than 99.99%.

This give a simple identification which leads to the following estimators of v and

~ 1-— aAn ~ 5-An
~——— :
T A VAR
Figure 8] shows the frequencies of values of 4 for the 13 stocks over the scales An =

3,5,7,100. Table [§ gives the associated values of these 4’s. In Table [J different
estimates of & are given.

Some numerical values of the model parameters. At a time scale of 35 seconds
or 7 trades, v should be taken close to 0.92 and o close to 0.22. We also provide an
estimator for the instantaneous market impact s using the empirical average of the
mid-price move[| after a trade times the sign of the trade. Table |§| in the Appendix
shows that the average value of k divided by the average bid-ask spread is close to
0.1.

'The mid-price is the middle of the best bid and best ask prices.
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We summarise the main findings of this section:

(i) the imbalance can be considered as a liquidity-driven short term signal,
(ii) this signal has mean-reverting properties,

(ii) Narket participants, especially high frequency traders, take the imbalance into
account while trading (see Table [3| and Figure {)).

4.3 Use of signals by market participants

As previously mentioned, we expect HF Proprietary Traders, HF Market Makers
and Global Investment Banks to pay more attention to order-book dynamics than
Institutional Brokers. However, as market makers, HFMM are expected to earn
money by buying and selling when the mid price does not change much (relying on
the bid-ask bounce). On the other hand, HFPT are typically alternating between
intensive buy and sell phases which are based on price moves.

Our expectations are met in Table [3, where the average imbalance just before a
trade is shown for each type of market participant. All the trades in this table are
normalized as if all orders were buy orders. The imbalance is positive when its sign
is in the direction of the trade, and negative if it is in an apposite direction.

We notice the following behaviour:

e when the transaction is obtained via a market order, the market participant
had the opportunity to observe the imbalance before consuming liquidity.
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e when the transaction is obtained via a limit order, fast participants have the
opportunity to cancel their orders to prevent an execution and potential adverse
selection.

Table [3| underlines that HF participants and GBI make “better choices” on trad-
ing according to the market imbalance. Institutional Brokers seems to be the less
“imbalance aware” when they decide to trade. This could be explained either by the
fact that they invest less in microstructure research, quantitative modelling and au-
tomated trading; or either because they have less freedom to be opportunistic. Since
they act as pure agency brokers, they do not have the choice to retain clients orders,
and it could prevent them from waiting for the best imbalance to trade.

Strategic behaviour. Once we suspect that some participants take into account
the imbalance in their trading decisions; we can look for a relation between the trading
rate and the corresponding imbalance for each type of participant. This is motivated
by the optimal trading frameworks of previous sections, where we used the trading
rate as a control.

In order to learn more about the relation between the imbalance signal and the
trading speed, we compute the imbalance-conditioned trading rate R, and R_ for
each type of market participant, during all consecutive intervals of 10 minutes from
January 2013 to September 2013 (within the trading hours, i.e. 9h00 to 17h30). Note
that in the following analysis the signal, time and trading quantities are discrete.

Definition 4.1 (Imbalance conditioned trading quantities). The Imbalance condi-
tioned trading rate of market participants of type P during the time interval T are
given by

1

Be(T.P | 1) = N(T,P,1) ; O (t)-sign(tmb(e)) () * A¢ - 0p(t) + O rmp(ey (1),

where

o =(t) is the sign of the trade at time t.

° 5€(t).5ign(1mb(t))(j:1) 15 1, if at time t the tmbalance sign times the sign of the trade
15 equal to £1, and O otherwise.

o A, is the traded amount of the trade at time t.

e 0p(t) is 1 if the trade at time t involved a participant of type P, and 0 otherwise.

° S‘Imb(t)‘(L) 1s 1 if the absolute value of the imbalance at time t equals to ¢, and 0
otherwise.
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Figure 9: Renormalized average trading rate in the direction of the imbalance 7 (solid
line) and in the opposite direction 7_ (dotted line), during 10 consecutive minutes,
for each type of participant.

e N(T,P,.) is the of number of trades involving participant P in T when the
imbalance is equals to t.

Qualitatively, Ry have the following interception,

e R.(T,P|1) is an estimate of the amount traded in the direction of the imbal-
ance, when the absolute value of the imbalance is v, by participants of type P
during the time interval interval T,

e R (T,P |1) is an estimate of the amount traded in the opposite direction of
the imbalance, when the absolute value of the imbalance is v, by participants of
type P during interval T .

In order to get the trading imbalance conditioned rates we renormalize R by
A(T | ¢) the traded amount during the interval 7 given the imbalance is ¢

AT 1) =S Ru(T,P |0+ R(T.P|0).
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Then R (T, P | ) divided by A(T | ¢) is an estimate of the probability that a stock is
traded by a participant of type P during interval T in the direction of the imbalance,
given that the imbalance is «. R_(T,P | ) divided by A(T |¢) is an estimate to the
probability that a stock is traded by a participant of type P during interval 7, in an
opposite direction of the imbalance, given the imbalance is ¢.

Let N7 be the number of ten minutes intervals in our data base. We define

1 R(T. P TPI
P 10= Sy P S

which are unbiased estimators for the probability that a participant of type P trades
in the direction (respectively, opposite direction) of the imbalance, given that the
absolute value of the imbalance is ¢.

To be able to put all the stocks on the same graph, we draw

PP | 0) =75 (P | 0)/r<(P]0)
in Figure @ Here 7. (P | 0) is the average of 7% (P | 0) over all stocks k.

Figure |§] shows the variations of 7, (the relative speed of trading in the direction
to the imbalance, in solid lines) and 7_ (the relative speed of trading in the opposite
direction to the imbalance, in dashed lines) with respect to the imbalance ¢ before
the trade, for each type of market participant and for each stock. From this graph
we observe the following:

e High Frequency Market Makers: we observe that the higher the imbalance in
the orderbook, the less they trade. This effect does not seem to be related to the
direction of their trades. It corresponds to an expected behaviour from market
makers.

e High Frequency Proprietary Traders: the higher the imbalance, the more they
trade in the similar direction, and the less they trade in the opposite direction.

e Institutional Brokers do not seem to be influenced by the imbalance. Addi-
tional data analysis shows that they they trade more with limit orders when
the imbalance is intense, this may derive the price to move in the opposite
direction.

e The behaviour of Global Banks seems to be influenced by the imbalance for

part of the stocks in our sample.

Towards a theory for the strategic use of signals. The analysis in this section
suggests that some market participants are using liquidity-driven signals in their
trading strategies. The liquidity imbalance, computed from the best bid and ask
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prices of the order-book for medium and large tick stocks, appears to be a good
candidate. Moreover, its dynamics exhibit mean-reverting properties.

The theory developed in Sections [2/and |3|can be regarded as a tentative framework
to model the behaviour the following participants. Global investment banks who
execute large orders, seem to be a typical example for participants who adopt the
type of strategies that we model. HFPT who are combining slow signals (which
may be considered as execution of large orders) along with fast signals, could also
use our framework. We could moreover hope that thanks to the availability of such
frameworks, Institutional Brokers could optimize their trading, and to increase the
profits for more final investors.

5 Proofs

5.1 Proofs of Theorems [2.3], and Corollary

The proofs of Theorems [2.3] and [2.4] use ideas from the proofs of Proposition 2.9 and
Theorem 2.11 in [21].

Proof of Theorem Let > 0. For any X € Z(x) define
C(X) == Ci(X) + Co(X) + K(X), (5.1)

where

ax) = 5 / / G|t — o) dX, dX,,
T

Cr(X) = ¢/ X2ds,
0

K(X) = //OtEL[IS]dstt.

Note that C'(x) is the cost functional in (2.6)).

Since G is strictly positive definite we have for any X € =(z),

Cy(+) is quadratic in X and therefore we have
Cy(X) > 0. (5.3)

Let X,Y € Z(x). We define the following cross functionals,
1
CLX,Y) = 5//th — §|)dX, v,

T
Co(X)Y) = ¢ / X,Y,ds.

0
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Note that
CZ(X,Y):CI<Y,X), fori:1,2,
and
From ([5.2) it follows that C;(X —Y') > 0 and together with (5.4]) we get
1 1 1 1 1
1 1

Repeating the same steps, using ((5.3)) instead of (5.2)) we get
1 1 1 1
G(3X+5Y) < 50X)+5Ca(Y).
2\5 + 5 =5 2(X) + 7 2(Y)

Since K(X) is linear in X we have

1,1 1 1
K(3X+5Y) = 5K(X) +3K(Y).
From (j5.1)) it follows that
1,1 1 1
C(3X+35Y) < 50(X) +5C(¥).

Let a € (0,1). The claim that
ClaX+(1-a)Y) <al(X)+(1-a)C(Y),

follows from the continuity of C(-), by a standard extension argument. Since C(-) is
strictly convex, we get that there exists at most one minimizer to C'(X) in Z(x).

O
Proof of Theorem First we prove that is necessary for optimality. Let
0 <t <ty <T and consider the round trip
dYs = 4, (ds) — 0,(ds).
For all o € R we have
Ci(X* +aY) = Ci(X*) + a?Cy(Y) + 2aCi(X*)Y), i=1,2, (5.5)
and

K(X*+aY) = K(X*) + aK(Y) (5.6)
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Let Z := X* 4+ oY, and recall that C(Z) = C1(Z) + Co(Z) + K(Z). Using (5.5)) and
(5.6) we can differentiate C'(Z) with respect to o and get
oC(Z)
Oa

=K(Y)+ > 2aC,(Y) +2Ci(X"Y).

i=1,2
From optimality we have C'(X*) < C(Z) and therefore we expect that

oC(2)

= K(Y 2 (X*Y)=0. .
| =K+ i;cx V) =0 (57)
Note that
1
cixy) = 5 [ G- shaxzay,
1 1
= 5 [ Gl = shax: = 5 [ (e - shax:,
T
Co(X*Y) = o / X*Yids
0 o
= —¢/ XZds.
t
and

k) = [ [ Blnasay,

to
_ / B[] ds.
t

We get that (5.7) is equivalent to
to to
/G(|t0—s|)dX;“—2gb/ X;“ds+/ E[)ds
’ t Ot
:/G(|t—5|)dX;k —2¢/ X:ds—i-/ E,[I]ds.
0 0

Since t and t; were chosen arbitrarily this implies (2.7)).

Assume now that there exists X* € =(z) satisfying (2.7), we will show that X*
minimizes C(-). Let X be any other strategy in =(z). Define Z = X — X*. Then
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from ([2.7]) we have

:1//G(|t—s|)dx;*dzt
2/ )\+2¢/ de—/tE[[]ds>dZt

:i(X([o 50)) — X*([0,00)) +¢// X*dstt——// E,[L]ds dZ,

—¢// X! dstt——K(Z)
(5.8)

where we have used the fact that X (][0, 00)) = X*([0,00)) = « in the last equality.

From and we have
Ci(X) = Cl(Z—i—X*)

= Ci(Z)+ Ci(X") — +2¢// XidsdZ,
and

Co(X) = Co(Z + X7)
= C3(Z2) 4 Co(X7) +2C5(X7, Z)

= Cy(Z2)+ Cy(X +2¢/ X Zds.
From the linearity of K(-) we get

K(X) = K(Z)+K(X").
It follows that

C(X) = Y Ci(X)+E(X)

1=1,2

= Ci(X")+ O X"+ K(X")+C1(Z2) + Cy(2)

+2¢//X*dstt+2¢/ X*Z,ds

- +Cl )+CQ

—|—2q5// X*dstt—l—Zgb/ X! Zds.

Racal that Zy = 0 and Z; = 0 for every ¢t > T, hence from integration by parts we

have
¢ T
0://X;‘dstt+/ X[ Z, dt,
0 0



and since for i = 1,2, C;(Z) > 0, we get

O(X) > O(X*).

]

Proof of Corollary From (2.8)) it follows that E,[[;] = te™?*. Since ¢ = 0,
(2.7)) reduces to

T
%(1 —e M)+ /sp/ e Plt=slgxr =\ (5.9)
0

Moreover we have the fuel constraint,

T
/ dX; = —x. (5.10)
0

Motivated by the example in Obizhaeva and Wang [31], we guess a solution of the
from

dX; = Ay + (Be " + C)dt + Dor, (5.11)

where 0, is the Dirac’s delta measure at x and A, B, C, D are some constants.
Note that

t
/ﬁp/ o150 P(t=5) Jg — ﬂ(eﬂt — e,
0 pP—

T
ffp/ e8Pt 1g — kp (6*% _ e*VT*P(T*t))’
t P+

and therefore

T
/fp/ e Pl gx
0

= —PtA L B kp 7 _ Pt L B kp =t _ —T—p(T-1)
Kpe P (e e ") P (e e )
+Cr(1—e ™)+ Cr(1 - e_p(T_t)) + DrpePT=),

From ([5.9) it follows that

)\:2/<;C’+i,
Y
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and together with (5.10) we get the following linear system,

Llet 4Bl vty g P
0! p=" pPrY
Arpe " — B P _e=pt _ et
p—7
_B ’jf) e T=P(T=0) _ Cre Tt 4 Dgpe T
P+

A+§@—67U+CT+D

From the first equation we can get

and then

Azzﬁfp(%;7{@+7)O+ﬂb—ﬁilﬂ—eﬂﬁ)—Ordwfw}—x),

C:pA—Lp+7,
260y
= A — — — T
D=A Qszyﬂp-%vd (p—7)e ™).

The optimal strategy is therefore

B
X =2+ 1A+ Ct+ ;(1 - 67%) + Ly D,

which is equivalent to (2.9)).

5.2 Proofs of Propositions and

(5.12)

Proof of Proposition [3.1I  The proof follows the same lines as the proof of Propo-

sition 1 in [14].

Pluggin in the ansatz V (¢, ¢, ¢, z,p) :== c+ xp + v(t, z,1) we get

0= 0w + LIv + 1z — ¢z’ +sup{ — Kk — r@xv}.

Optimizing over r it follows that
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and we get the following PDE

O+ LM + %(8331))2 + 1z — ¢z® = 0. (5.14)
K

where v(T, x,1) = —ox?.

As in equation (A.2) in [I4], we have a linear and quadratic z-terms in ({5.14))
along with a quadratic terminal condition, hence we make the following ansatz on the
solution:

v(t, 1) = vo(t, 1) + zvi(t, 1) + 2°va(t, 1),

By comparing terms with similar powers of ¢, we get the following system of PDEs,

1
8tv0 + £LU(] + EU% = O, (515)
1
Oy + L'vr + —v9vy +¢ = 0, (5.16)
K
1
Oy + L'vy + —v3 —¢ = 0, (5.17)
K

with the terminal conditions
vo(T,0) =0, v1(T,0) =0, vo(T,1) = —op.

We first find a solution to (5.17)). Note that since the terminal condition is independent
of « we might be able to find a ¢ independent solution, that is vy(t) := ve(t,¢) which
satisfies

1
8t1)2+ EU; —¢ = 0.

This is a Riccati equation which has the following solution (see the proof of Proposi-
tion 1 in [14]),

1+ (e?(TY)
vat) = VRO Ty
where

etV 6
0~ VKd K

Let E;, represent expectation conditioned on [, = ¢.
Using vq, we can find a Feynman-Kac representation to the solution of ,

T -
vi(t,e) = Et,L[/ e%f;”?(“)d”_fsds}
t

T 1 s
= / e i ”Q(U)d“Et,L[Is]ds.

t

¢
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Again by Feynman-Kac formula we derive a solution to (5.15)),

S
vo(t,L) = Et,b[ﬂ vl(s,IS)ds]
t

- L TE (03 (s, I)]ds
4/{ ] t,e|Y1\2y s .

Proof of Proposition Note that V' is a classical solution to[3.4] By standard
arguments (see e.g. Theorem 3.5.2 in [32]), in order to prove that V in (3.5 is the
value function of (3.3)), it is enough to show that r* is admissible and that

V(t,t,c,,p)| <C(L+2++2?+p?), forallt>0, t,c,z,pe R (5.18)
Clearly sup;¢(o 7y [v2(t)| < oo. From our conditions on I we have
E[IL]<C+]), forallteR, 0<t<T,
then we will have

vy (¢, )] Clar| (1 +[e])

<
< C(1+22+2?), forallt>0, 1,7 €R,

lvg(t,0)] < C(144%), forallt>0, t€R.

and ([5.18) follows. To prove that r* is admissible it is enough to show that fOT |ry|dt <
o0. Since vy is bounded we notice that

1 T 1 s d
il < (Ol + [ e g 11 as)
t
< (CQ+01)(1:+T(1+\L|))+01/ 7| ds,
0

where we used (3.2)) in the last inequality. From Gronwall inequality we have
7] < (Co+ Cr)(w + T(L+ |o])) e,

hence r* is admissible. O
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A Tables and complementary statistics

A.1 Composition of market participants groups

High Fequency Traders

Name  NASADQ-OMX | Market Prop.
member code(s) Maker Trader
All Options International B.V. AOI
Hardcastle Trading AG HCT
IMC Trading B.V IMC, IMA Yes
KCG Europe Limited KEM, GEL Yes
MMX Trading B.V MMX
Nyenburgh Holding B.V. NYE
Optiver VOF oprPV Yes
Spire Europe Limited SRE, SREA, SREB Yes
SSW-Trading GmbH IAT
WEBB Traders B.V WEB
Wolverine Trading UK Ltd WLV

Table 5: Composition of the group of HFT used for empirical examples, and the
composition of our “high frequency market maker” and “high frequency proprietary

traders” subgroups.

Global Investment Banks

Name NASADQ-OMX
member code(s)

Barclays Capital Securities Limited Plc
Citigroup Global Markets Limited
Commerzbank AG

Deutsche Bank AG

HSBC Bank plc

Merrill Lynch International

Nomura International plc

BRC
SAB
CBK
DBL
HBC
MLI
NIP

Table 6: Composition of the group of Global Investment Banks used for empirical

examples.
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Institutional Brokers

Name NASADQ-OMX

member code(s)
ABG Sundal Collier ASA ABC
Citadel Securities (Europe) Limited CDG
Erik Penser Bankaktiebolag EPB
Jefferies International Limited JEF
Neonet Securities AB NEO
Remium Nordic AB REM
Timber Hill Europe AG T™MB

Table 7: Composition of the group of Institutional Brokers used for empirical exam-
ples.
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A.2 Complementary Statistics

4 estimates 3 trades b5 trades 7 trades 10 trades 100 trades

VOLVb.ST 0.97 0.94 0.93 0.93 0.99
NDA.ST 0.97 0.94 0.93 0.93 0.99
ERICb.ST 0.98 0.95 0.93 0.93 0.99
HMb.ST 0.95 0.92 0.92 0.92 0.99
ATCOa.ST 0.95 0.92 0.91 0.91 0.99
SWEDa.ST 0.96 0.93 0.92 0.92 0.99
SAND.ST 0.94 0.91 0.91 0.92 0.99
SKFb.ST 0.92 0.90 0.90 0.91 0.99
SEBa.ST 0.97 0.95 0.93 0.93 0.99
NOKI.ST 0.73 0.82 0.86 0.90 0.99
TLSN.ST 0.81 0.84 0.88 0.91 0.99
ABB.ST 0.95 0.92 0.90 0.91 0.99
AZN.ST 0.82 0.84 0.87 0.90 0.99

Table 8: Estimates of the speed of mean reversion ~, using different time scales.

i over dt (sec) o o o o o

spread 3 trades 5 trades 7 trades 10 trades 100 trades
VOLVDb.ST  0.088 5.30 0.25 0.23 0.22 0.19 0.06
NDA.ST 0.098 7.20 0.26 0.24 0.22 0.20 0.07
ERICb.ST 0.092 6.60 0.25 0.23 0.22 0.19 0.06
HMb.ST 0.095 6.68 0.27 0.25 0.22 0.19 0.06
ATCOa.ST  0.109 7.7 0.27 0.25 0.23 0.20 0.06
SWEDa.ST  0.105 7.73 0.27 0.25 0.23 0.20 0.06
SAND.ST 0.101 7.24 0.28 0.25 0.22 0.19 0.06
SKFb.ST 0.108 8.53 0.28 0.25 0.23 0.20 0.06
SEBa.ST 0.099 9.13 0.26 0.24 0.22 0.19 0.06
NOKIL.ST 0.172 10.24 0.33 0.26 0.22 0.19 0.06
TLSN.ST 0.134 7.74 0.31 0.26 0.22 0.19 0.06
ABB.ST 0.113 15.13 0.28 0.26 0.24 0.20 0.07
AZN.ST 0.163 15.51 0.32 0.26 0.23 0.19 0.06

Table 9: Estimate of x divided by the average bid-ask spread, average time between
two trades, and level of noise in the estimated dynamics of liquidity. Each columns of
level of noise o is estimated from a different time scale (i.e. number of trades). The
decay in the estimates of o shows that innovations of the imbalance are sub-diffusive.
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