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Abstract 

Atrial fibrillation (AF) is the clinically most prevalent rhythm disorder with large impact on quality 

of life and increased risk for hospitalizations and mortality in both men and women. In recent 

years, knowledge regarding epidemiology, risk factors and patho-physiological mechanisms of 

AF has greatly increased. Sex differences have been identified in the prevalence, clinical 

presentation, associated comorbidities and therapy outcomes of AF. Although it is known that 

age-related prevalence of AF is lower in women than in men, women have worse and often 

atypical symptoms and worse quality of life as well as a higher risk for adverse events such as 

stroke and death associated with AF. 

In this review, we evaluate what is known about sex differences in AF mechanisms - covering 

structural, electrophysiological, and hormonal factors - and underscore areas of knowledge 

gaps for future studies. Increasing our understanding of mechanisms accounting for these sex 

differences in AF is important both for prognostic purposes and the optimization of (targeted, 

mechanism-based, and sex-specific) therapeutic approaches. 
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1.  Introduction  

Atrial fibrillation (AF) is the clinically most prevalent rhythm disorder with large impact on quality 

of life and increased risk for hospitalizations and mortality in both men and women.1, 2 In recent 

years, knowledge regarding epidemiology, risk factors and patho-physiological mechanisms of 

atrial fibrillation has greatly increased.3 Sex differences have been identified in the prevalence, 

clinical presentation, associated comorbidities and therapy outcomes of AF.4-7 Although it is 

known that age-related prevalence of AF is lower in women than in men8, women have worse 

and often atypical symptoms and worse quality of life as well as a higher risk for adverse events 

such as stroke and death associated with AF.9, 10 This is also reflected in the current AF risk 

algorithms such as the CHA2DS2VASc score.3 Despite the advances in the treatment of AF, 

women are more prone to AF recurrences compared to men.6, 10 While the exact mechanism for 

these sex differences remains to be elucidated, the importance of structural, 

electrophysiological and hormonal factors have been proposed.6 Data regarding sex differences 

in the mechanisms of AF is scarce and a better understanding is important both for prognostic 

purposes and the optimization of therapeutic approaches.  

Based on a thorough electronic literature search conducted using PubMed, this review 

evaluates what is known about sex differences in AF mechanisms and underscores areas of 

knowledge gaps for future studies. 

 

2.  Epidemiology:  Sex differences in AF prevalence, age of onset, clinical  

 presentation and co-morbidities 

Atrial fibrillation (AF) is more common in men (0.06%) than in women (0.04%).11 In 

observational studies in Western countries, women have 30-50% lower age-adjusted incidence 

and prevalence of AF, indicating that the substrate for AF develops less readily in women. In 

East/Asian countries, overall AF prevalence is lower than in Western countries for which reports 

regarding sex distribution have been less consistent varying from equal to lower prevalence in 
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women than in men.12 In general, AF incidence increases with age for both sexes. Given the 

higher life expectancy of women, the absolute numbers and lifetime risk (~23%) for AF are 

similar in both sexes.13 The prevailing mechanisms predisposing to AF, however, differ between 

men and women (Table 1), as highlighted in the following chapters.  

Women are more likely to present with persistent AF and atypical symptoms (weakness and 

fatigue) and to report a worse quality of life than men.5 Although asymptomatic AF is less 

common among women,14 atypical symptoms may delay diagnosis and therapy and may 

contribute to the worse outcomes seen in women.15   

 

2.1  Sex differences in AF subtypes  

2.1.1 Idiopathic AF and genetic AF  

Genetic predisposition has been attributed to individuals with familial aggregation of early-onset 

idiopathic AF, but data on sex-specific differences in idiopathic AF have been controversial.16 

Mothers of patients with AF or atrial flutter and women with ≥2 affected siblings have higher AF 

risk than their male counterparts.17 Similarly, a small study observed that more women had 

familial idiopathic AF.18 This is in contrast to a large registry, which showed that men with a 1st 

degree relative with idiopathic AF have 37% higher AF risk than women.19 The genetic basis of 

these differences is not known, but X-linked variants of the protective KCNE5 gene and a 

deletion in the EMD gene have been proposed as contributing factors.20, 21 

 

2.1.2  Exercise-associated AF and autonomic AF  

Pronounced sex differences exist in the connection between exercise and AF: Moderate 

exercise reduces the risk of AF in women (-8.6%) and intense exercise is able to reduce AF risk 

in women even more by 30%. In male patients, moderate exercise also reduces AF risk. Strong 

exercise, however, increases the risk for AF in men, pointing towards a U-shape relation in 

men.22-26 Excessive endurance sports (e.g., more than 1500 hours of sports/year) increases the 
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risk of AF three times in men. These patients also have higher recurrence rates after pulmonary 

vein isolation.27-29  

Male athletes show more marked concentric ventricular and atrial remodeling with altered 

diastolic function, which associates with a higher blood pressure during exercise as well as a 

higher sympathetic tone compared to female athletes.30 This atrial remodeling might be a 

reason for the higher rate of AF in sportsmen.30 In addition, studies in rat models revealed that 

long-term endurance exercise causes a combination of structural remodeling and (central and 

end-organ) vagal enhancement,31 which may further promote reentry by causing spatially 

heterogeneous shortening of atrial refractoriness.32 Indeed, despite the observation of an overall 

higher sympathetic tone during exercise,30 in (male) athletes, paroxysmal AF occurs three times 

more often in situations of high vagal tone (such as rest, sleep or postprandial) than in non-

athletes.33 In line with these observations, a low heart rate has generally been associated with 

an increased risk for AF.34  

While in young male athletes, these vagal triggers predominate; in post-menopausal women an 

increased predominant sympathetic tone is observed.35, 36 This increased 

sympathetic/parasympathetic balance has generally been associated with a high risk of AF34 

and is particularly often associated with AF in organic heart disease and post-cardiac 

surgeries.37 

 

2.1.3  Co-morbidity-associated AF  

Women often develop AF at an older age than men.38 In the Framingham Heart Study, for 

example, 74% of women with AF were aged ≥70 years compared to only 58% of men, strongly 

suggesting that more comorbidity may be present and possibly causative in women with AF1 

(Table 1). 

All classic cardiovascular risk factors, except for diabetes, are predictive of AF in both sexes. 

High body mass index has been shown to be the strongest predictor for AF with a higher hazard 
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ratio in men than in women. Moderate alcohol intake increases the risk for AF only in men, while 

high alcohol intake is associated with a heightened AF risk in both sexes 39, 40. No sex specific 

differences have been consistently demonstrated for other risk factors such as 

hyperthyroidism.24, 38, 40-42 

Several comorbidities, however, are differently associated with AF in men and women: Women 

with heart failure have a 14-fold risk and men a 8.5-fold risk of developing AF.43 In addition, AF 

is an independent risk factor for new onset heart failure with preserved ejection fraction in 

women but not in men.44 Although over the past 50 years the prevalence of valvular heart 

disease has generally decreased in women with AF in high income countries, there is still a 

higher prevalence of valvular heart disease and hypertension and lower prevalence of coronary 

heart disease in women than in men with AF.1, 8, 45  

 

2.2 Sex hormone effects on AF  

2.2.1 AF in menopausal and postmenopausal women  

The incidence of AF in premenopausal women is low but the incidence increases after 

menopause particularly at ages over 50 years, suggesting a beneficial effect of estrogen and/or 

a harmful effect of postmenopausal hormonal changes - such as the pronounced decrease in 

estrogen - with regards to the development of AF.46 With the decrease of estrogen levels during 

menopause, blood pressure, LDL cholesterol, metabolic syndrome and body mass index 

increase. All these effects are well established risk factors for developing AF47 and their 

increase after menopause may explain the partial catch up in the incidence of AF in post-

menopausal women (Table 1).  

In line with these observations, there is evidence for a higher incidence of AF in patients 

undergoing anti-estrogen treatment and for a lower risk of AF with (estrogen-based) hormonal 

replacement therapy, albeit published data are conflicting.48, 49 50 While estradiol was shown to 

reduce the risk for AF,51 conjugated estrogens alone have been reported to increase AF risk 
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(two-fold compared to estradiol)51, 52 and combined estrogen-progesterone based hormonal 

replacement therapy had either no effect52 or decreased AF incidence,49 suggesting a complex 

interaction and an impact of the hormonal preparation and its estrogen-receptor specificity.  

 

 

2.2.2 AF during pregnancy and postpartum  

Observational studies suggest that pregnancy may exacerbate supraventricular tachycardias in 

general.53 Prevalence of AF in pregnant women, however, is very low (0.05%)54 and is generally 

limited to patients with structural heart disease, in which AF incidence is a little higher (1.3%).55 

Nevertheless, several electrical and electro-mechanical changes have been observed during 

pregnancy such as an increase in P wave duration and dispersion and in atrial electro-

mechanical coupling interval measured by tissue doppler56 that are well known markers for 

increased AF incidence in normal hearts. As these observations were made in patients with 

preeclampsia, however, it is unclear whether these are alterations normally occurring during 

pregnancy or being simply associated with the vascular/atrial susceptibility of an abnormal 

pregnancy. AF during the peripartum period may occur mainly due to drug therapy such as 

terbutaline during tocolysis57, 58 and also as an expression of peripartum cardiomyopathy.59 

  

2.2.3  AF and testosterone  

The epidemiological data on the link between AF and testosterone is conflicting. Data from the 

Framingham study show an association between AF incidence and reduced total testosterone 

levels in men aged 55 years and above, with the strongest association seen in men ≥ 80 years 

of age, with a 3.5-fold increase in AF risk for every standard deviation reduction in testosterone 

levels.60 Similarly, a smaller cross-sectional study demonstrated a similar association between 

reduced testosterone levels and lone AF.61 By contrast, the Multi-Ethnic Study of 

Atherosclerosis study showed that higher levels of endogenous bioavailable testosterone 
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seemed to contribute to AF development.62 The differences in findings may in part be due to 

methodological differences in measuring testosterone (total vs. bioavailable testosterone) but 

may also relate to competing mechanisms of direct and indirect testosterone effects.  

The data on the effects of testosterone replacement are equally conflicting. In a recent study on 

>76,000 individuals, normalization of testosterone levels with replacement therapy was 

associated with a decreased incidence of AF.63 However, preclinical studies have shown the 

opposite effect, with testosterone replacement increasing arrhythmogenesis in pulmonary veins 

and the left atrium, probably by enhancing adrenergic activity.64 

 

3.  Mechanisms underlying sex differences in AF 

 

3.1 Sex differences in electrophysiological properties of atria 

3.1.1 Sex differences in electrophysiology and calcium handling  

Experimental models show sex differences in the electrophysiology of the left atrium. In male 

mice, pulmonary veins (PV) have a higher spontaneous beating rate, increased burst firing and 

more delayed afterdepolarisations (57 vs. 16%).65 Additionally, male mice have slower sino-

atrial impulse-generation activity. Thus, spontaneously higher PV beating rates can compete 

with sino-atrial activity leading to arrhythmias. Sex differences in arrhythmogenesis can also be 

explained by differences in calcium and sodium channel regulation.66 Mouse studies have 

shown that late sodium current, calcium transients and sarcoplasmic reticulum calcium contents 

of the posterior wall of the left atrium were greater in male cardiomyocytes than in females, 

which may contribute to increased ectopic activity.66 Interestingly, no differences were found in 

the right atrium.  

In contrast, a clinical study in women undergoing AVNRT ablation showed shorter atrial 

effective refractory period (AERP) in women rather than longer.67 In a small cohort of patients 

that underwent AF ablation68 these sex differences in AERP were not confirmed, likely due to 
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some electrical (and structural) remodelling present in these patients with paroxysmal AF. This 

small study suggested that the prevalence of non-PVI triggers was significantly more frequent in 

women than in men (16 vs. 8.4%).  

 

3.1.2 Sex hormone effects on electrophysiology and calcium handling  

Cardiac myocytes express estrogen and androgene receptors, strongly suggesting that sex 

hormones may directly affect ion channels and their expression.69, 70  

Most research has focused on sex hormone effects on ion channels/currents expressed in atria 

and ventricles. Testosterone increases repolarizing IKr, IK1, and IKs,71, 72 and acutely reduces 

ICa,L.73 Estrogen exerts complex effects on IKr:74 it blocks IKr directly75 but may also increase IKr by 

promoting HERG trafficking.76 In addition, estrogen reduces IKs by reducing its beta-subunit 

KCNE1,77 reduces Ito,78 and increases ICa,L.79 These alterations of ion currents result in a net 

estrogen-induced prolongation of action potential duration (APD) and QT interval and a net 

testosterone-induced shortening of APD/QT (Figure 1).80 The shortened APD in male atria may 

be pro-arrhythmic by facilitating reentry, while the longer APD in female atria may exert anti-

arrhythmic effects relating to AF (contrasting with its pro-arrhythmic effects in the ventricles). As 

most studies on hormone effects on ion currents were performed in ventricular cardiomyocytes, 

the transferability to the atrial electrical phenotype needs confirmation.  

Only few data are available on sex hormone effects on "atrial" ion channels/currents and most 

were derived from non-cardiac tissue also expressing these channels. During pregnancy (with 

high estrogen levels), If current densities and automaticity are increased in mice.81 Estrogen 

upregulates Ca2+-activated small conductance potassium channels (SK3) in colonic smooth 

muscle cells82 and downregulates two-pore domain K+ channels (TASK-1) in neural cells (Figure 

1).83 A likewise estrogen-induced reduction of TASK-1 in the atria would prolong the atrial APD 

and exert pro-arrhythmic effects, as demonstrated in patients with lone AF harboring loss-of-

function mutations in KCNK3/TASK-1.84 As SK expression has been demonstrated to be 
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particularly high in the pulmonary veins (as compared to the rest of the atria),85 estrogen-

induced changes in SK expression might modulate triggered activity from the pulmonary veins. 

Whether similar estrogen-effects are indeed observed in the atria, however, needs to be 

assessed. 

Sex hormone effects on calcium handling properties can also contribute to atrial 

arrhythmogenesis: Estrogen increases the propensity for triggered activity by increasing ICa,L,79 

NCX activity,86 and RyR2 leakiness.87 Testosterone in contrast reduces triggered activity by 

increasing SERCA activity,79, 88 and decreasing ICa,L (Figure 1).73 In line with these findings, 

testosterone deficiency facilitates atrial arrhythmia by reducing binding of FKBP12.6 to RyR2 

resulting in increased calcium leakage.89 

 

3.1.3 Sex differences in electrical remodelling  

There is little direct evidence on whether sex differences in atrial electrical remodelling play a 

role in sex-differences in  AF risk. Biochemical and histological analysis of atrial tissue obtained 

during cardiac surgery showed that remodelling-induced changes of connexins and collagen in 

AF are broadly similar between men and women, though women exhibited somewhat stronger 

AF-induced increase in Cx40.90 Indirect evidence indicating that sex may be an important 

determinant of the degree of electrical remodelling in the left atrium comes from a study on 

heart failure patients. Analysis of mRNA expression of genes encoding for ion channel subunits 

important in cardiac conduction and arrhythmogenesis in left atria of explanted human hearts 

showed differential remodelling between sexes, with lower expression levels in transcripts 

encoding for K(v)4.3, KChIP2, K(v)1.5, and K(ir)3.1 in the failing female left atrium as compared 

with the male left atrium.91 Differential electrical remodelling between sexes was also seen in a 

study in rabbits on left ventricular hypertrophy with less pronounced APD prolongation in left 

ventricles in females than in males leading to longer APD in males than females - thus reversing 

the sex differences observed at baseline.92 Whether similar sex differences in remodelling also 
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occur in the atria remains to be investigated. 

 

3.2 Sex differences in structure and function of atria  

3.2.1 Sex differences in atrial anatomy, structure and function  

Morphological, structural and functional sex differences in the atria have been described in 

association with AF. Healthy women have smaller maximal left atrial volumes (89±21 ml vs. 

103±30 ml), smaller left atrial anteroposterior diameter, and lower left atrial stroke volumes 

(48±15 ml vs. 58±23 ml).93, 94 In addition, MRI analyses revealed sex differences in atrial 

mechanical function in healthy subjects, e.g. in atrial conduit and booster pump function.95, 96 In 

contrast to the observations in healthy subjects, women referred for AF ablation usually have 

larger atria than men,97 which may be partly due to the facts that these women were older, had 

a longer AF history, more hypertension and more valve disease than the men in the study.  

Tissue fibrosis plays a major role in the development of AF and its progression to a 

persistent/permanent status. Sex differences regarding the degree of fibrosis in the different 

clinical variants of AF were demonstrated by histopathological studies and with MRI.98 It is not 

clear, whether these sex differences in the extent of fibrosis with more pronounced fibrosis in 

women are mainly due to inherent differential expression of fibrosis-related genes and proteins 

or due to the age of men and women with AF (younger age in men with AF).90  

A study looking at pulmonary vein sleeves from patients with and without longstanding 

persistent AF demonstrated increased fibrosis in females with AF.90 These sex differences in 

fibrosis remodelling in longstanding persistent AF were mainly due to the inherent differential 

expression of fibrosis-related genes and proteins, with those related to the TGFβ/Smad3 

pathway being up-regulated in females, suggesting sex-specific aggravation of fibrosis 

remodelling. There is also evidence to suggest that this more extensive left atrial structural 

remodelling leads to greater deterioration in left atrial appendage function in women with high 

calculated risk of stroke in AF compared with men.99 
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3.2.2 Sex hormone effects on atrial mechanical function  

Data on sex hormone effects on atrial function were obtained in animal studies. In rats, 

androgens produce acute vasodilation, increase contractility and increase the sino-atrial 

recovery time by depressing spontaneous depolarization involved in atrial pace-making.100 

Androgens cause a larger response to inotropes in male atria via a postsynaptic increase in 

intracellular cAMP and independently of beta1-adrenoceptors.101 In female mice though, 

estrogens are those that drive the sensitivity to catecholamine by down-regulating the beta1-

receptors, depending on the estrous cycle.102 In female sheep, in contrast, estrogen causes LV 

enlargement and increased stroke volume.103  

Sex hormones also modify the response to volume overload and the secretion of atrial 

natriuretic peptide (ANP) as demonstrated in studies in rats. Estrogen increases the basal 

secretion, but does not influence the stretch-induced ANP secretion. By contrast, although 

testosterone does not affect basal secretion, it completely abolishes the stretch-induced 

increase in ANP secretion.104  

 

3.2.3 Sex differences in structural remodelling of the heart the atria  

Animal data suggests sex-specific differences in pathological remodelling. In mouse models of 

myocarditis as well as in models of isoproterenol-induced heart failure, fibrotic responses are 

generally more prominent in male mice, showing higher numbers of TLR4+ CD11b+ monocytes, 

neutrophils, mast cells and dendritic cells, and increased Th1 helper cell responses compared 

to females.105 By contrast, protective Th2 responses, increased B cells, more inhibitory Tim-3+ 

CD4+ T cells, and more T regulatory cells dominate the picture in female animals.105, 106 

Consistent with these findings, intracardiac macrophages from male mice preferentially 

expressed iNOS, IL-12, TNFα, and CD16/32, markers associated with M1 activation,107, 108 while 



13 
 

heart-infiltrating macrophages in females showed a M2 activation pattern including arginase 1, 

IL-10, and Mϕ-MR expression.  

Fibrosis is an event that affects the atria as well as the ventricles, and several lines of evidence 

suggest that estrogens indeed play an important role in attenuating this process of adverse  

remodelling. Thus, it is not surprising that expression of fibrosis-related genes, mainly those 

related to the TGFβ/Smad3 pathway, is up-regulated in postmenopausal women with AF (Figure 

2).109 Nevertheless, the exact mechanisms through which sex modulates structural atrial 

remodelling still remain to be identified.110 

 

3.3 Sex differences in cardiac autonomic modulation and neuro-humoral responses 

3.3.1 Sex differences in cardiac autonomic activity  

The autonomic nervous system (ANS) including the sympathetic and parasympathetic system 

and the intrinsic neuronal network - and its alterations - plays an important role in the 

pathogenesis of AF.111-113 Both parts of the ANS are involved in the initiation and maintenance 

of AF. The role of the parasympathetic system in AF is mainly attributed to the shortening in 

APD and increased dispersion of refractoriness in the atrial myocardium facilitating initiation and 

maintenance of AF.32 Vagal activation exerts these effects mostly via acetylcholine activated K+ 

channels.114 Sympathetic stimulation can also promote AF by increasing Ca2+ release; thereby 

causing afterdepolarisation formation as a trigger for AF (Figure 3). 

When compared to men of the same age, women seem to have more dominant vagal tone 

indexed by measures of heart rate variability,115, 116 although this sex difference disappears with 

aging (and consecutive changes in hormones).117 

Sex hormones influence the autonomic tone. As the adrenergic tone influences conduction 

properties and refractoriness of cardiac tissue,118 these hormone effects on the autonomic 

system may contribute to sex differences in the electrophysiological properties of the heart.119 

Low levels of estrogen and elevated levels of progesterone increase catecholamine levels and 
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there is higher sympathetic activity in the luteal phase of the menstrual cycle (which is 

characterized by low estrogen and high progesterone levels).120, 121 Similarly, in post-

menopausal women an increased predominant sympathetic tone is associated with reduced 

estrogen levels.35, 36 

 

3.3.2 Sex differences in neuro-humoral responses  

A complex nervous system controls the cardiovascular system, and affects the arterial pressure, 

heart rate and cardiac contractility. This neural control of the heart and vascular system is 

related to the sympatho-vagal balance and is regulated by vascular feedback. The renin-

angiotensin system and natriuretic peptides, for example, contribute to the regulation of the 

cardiovascular system, partially acting as cardiac hormones. 

Physiologically, women have a lower responsiveness of the mechanisms regulating arterial 

pressure.122 In addition, women have higher values of natriuretic peptides.123 

Studies evaluating sex differences in neuro-humoral control of the cardiovascular system in 

pathological conditions are scarce. Electrical and structural remodelling in atrial fibrillation does 

not seem to be mediated by changes in autonomic tone.124 But neuro-humoral activation could 

be involved in differences of atrial fibrosis development via the renin-angiotensin-aldosterone 

system thus potentially contributing to differences in AF development.125 

 

 

3.4 Sex differences in impact of co-morbidities 

3.4.1 Sex differences in heart failure with preserved ejection fraction and endothelial  

 dysfunction 

Heart failure with preserved ejection fraction (HFpEF) and diastolic dysfunction are associated 

with a high prevalence of AF.126 This has important implications, as AF is associated with poorer 

outcome in patients with HFpEF in general and women in particular.127 Both, similar risk factors 
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for AF and HFpEF and the hemodynamic consequences of diastolic dysfunction at the atrial 

level likely play a causative role.126 Importantly, it has been shown in different populations that 

women have an increased age-related risk of developing diastolic dysfunction or HFpEF as 

compared to men.127-129 At the atrial level, this is reflected by a greater atrial functional decay 

with age in women, as measured by longitudinal strain rate.130 The age-related higher risk of 

diastolic dysfunction in women suggests a relation with estrogen deficiency after menopause. 

Indeed, animal studies indicate a number of pathways, by which estrogen deficiency can 

modulate diastolic dysfunction, including enhanced cardiac remodeling, left ventricular 

hypertrophy and increased arterial stiffness.38, 131, 132 In a large human population study, arterial 

stiffness leading to diastolic dysfunction has also been shown to be greater in women.133 

Despite the fact that hormone replacement therapy does not result in survival benefit in large 

studies, it does lead to improvement of diastolic function in postmenopausal women,134, 135  

which may contribute to the reduced AF incidence observed with estrogen replacement therapy. 

These studies confirm the role of estrogen deficiency in the etiology of diastolic dysfunction and 

HFpEF (Table 1).  

Women also have a higher rate of microvascular disease compared to men. Most of these 

patients with microvascular disease are in the peri-menopausal age range (45-60 years), 

suggesting a similar relation with estrogen deficiency. Patients with microvascular disease are 

known to have a high prevalence of AF.136 Interestingly, treatment with ranolazine, which exerts 

anti-anginal effects but also impacts on cardiac electrophysiology, can reduce the burden of AF 

in these patients.136 

 

3.4.2 Sex differences in pro-inflammatory signaling, role of epicardial fat  

Several lines of evidence suggest an association between epicardial fat and AF.137 Epicardial fat 

correlates with a higher prevalence of AF, a progression to atrial fibrosis and permanent AF and 

even a higher recurrence rate after ablation.138, 139 Moreover, the extent of epicardial atrial tissue 
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is associated with lower bipolar voltage and electrogram fractionation in electro-anatomic 

mapping during sinus rhythm.140 It has been demonstrated that the secretome from human 

epicardial adipose tissue induces myocardial fibrosis through the secretion of adipo-

fibrokines.141,142 Tissue fibrosis reflects a chronic inflammatory process. In fact, accumulation of 

fat tissue triggers a chronic low-grade activation of the innate immune system. Epicardial 

adipocytes are able to release pro-inflammatory adipokines and activate the chemotactic 

monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathways to 

promote inflammatory macrophage accumulation (Figure 2). The crosstalk between adipocytes 

and inflammatory cells depends on  the release of cytokines (IL-1, IL-6 and TNF-a) by fat tissue 

macrophages.141 Other pro-inflammatory adipokines like leptin and resistin are also associated 

with incident AF in women.143 Menopausal hormonal changes are related to an increase in 

epicardial fat and metabolic syndrome incidence,144 risk factors for AF development and 

prognosis.145 Taken together, the association between increased epicardial fat and hormonal 

changes in postmenopausal women on one hand, as well as the causal link between epicardial 

fat, chronic inflammation, atrial fibrosis, and AF burden on the other hand, all point to a 

protective role of female sex hormones against AF development and progression (Figure 2).  

  

 

4.  Clinical implications for future therapies and research  

4.1 How can we use the known mechanistic findings for future sex-specific  

 diagnostic and therapeutic strategies?  

Based on the mechanistic findings discussed above, several sex-specific therapeutic strategies 

might complement our current "general" treatment approaches. In the following, we will highlight 

a few. As many repolarizing ion currents are lower and APD prolonged in female atria and 

ventricles (section 3.1.2), class III drugs further prolonging APD  might be anti-arrhythmic at the 

atrial level at lower dosages compared to men but carry an inherent more pronounced risk of 
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ventricular pro-arrhythmia in women even when used at low dose. Non-pulmonary triggered 

activity is more often found in women (section 3.1.1), suggesting that the success of AF ablation 

in women might be increased if other triggers apart from pulmonary vein triggers are additionally 

tackled. As women demonstrate more pronounced AF-associated fibrotic remodelling due to an 

upregulation of the TGFβ/Smad3 pathway (sections 3.2.1/3.2.3), antifibrotic drugs (such as 

angiotensin receptor blockers or spironolactone) might be beneficial in women - particularly if 

specifically targeting this pathway. Similarly, the fact that epicardial adipocyte infiltration and 

consecutive pro-inflammatory signalling increase in postmenopausal women (section 3.4.2) 

indicates that complementing classical anti-arrhythmic therapies with anti-inflammatory 

treatment approaches might be beneficial in older women. Generally, co-morbidities such as 

microvascular diseases or diastolic dysfunction are more often encountered in women with AF 

than in men (sections 2.1.3/3.4.1), suggesting that drugs affecting these co-morbidities might be 

particularly efficient in women, when added to classical anti-arrhythmic therapies. As estrogen 

has a beneficial / protective effect and the lack of estrogen after menopause a harmful effect on 

several factors predisposing to AF (Table 1), estrogen-based hormone replacement therapy in 

postmenopausal women may reduce AF incidence by reducing HFpEF and HFpEF-related AF, 

by impacting on electrical features and on structural remodeling and might therefore reduce AF 

burden in this population. However, the exact hormonal preparation might be important for anti-

arrhythmic / protective effects as a reduced AF incidence has only been observed with estradiol 

and estrogen+progesterone but not with conjugated (equine) estrogens.52 

 

4.2 What are current gaps of knowledge that we need to close to reach this aim?  

As highlighted above, epidemiological and experimental evidence suggests that sex-specific 

differences in physiological, electrical and structural characteristics of the atria and, particularly, 

in pathological remodelling of cardiac tissue in atrial fibrillation exist. It is still unclear, however, 

a) to what extent sex differences are due to direct effects of female sex hormones, b) to what 
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extent they are mediated by male sex hormone effects, or c) whether they mainly reflect the lack 

of female sex hormones in a postmenopausal population of women causatively linked to 

changes in co-morbidities thereby indirectly impacting on AF risk. Epidemiologic data indeed 

point to a direct protective role for estrogens in this context, but mechanistic concepts are still 

based on observational reports and insights from animal studies. Here, more detailed 

mechanistic studies - ideally directly performed in human atrial tissue and cells - are warranted 

to increase our patho-physiological understanding and to reveal important pathways. This is 

mandatory to develop targeted, mechanism-based, pathway- and sex-specific therapies - either 

based on drugs, or on a combination of drugs with more specific ablation strategies.  
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Tables 
 
 
Table 1: Sex differences in prevailing mechanisms / diseases predisposing to AF 
 
 Men Women 
Prevailing risk factors / 
diseases predisposing to AF 

Coronary heart disease and 
cardiovascular risk factors 

Heart failure, particularly diastolic 
heart failure (HFpEF) 

 Excessive sports (vagal AF) Hypertension and left ventricular 
hypertrophy 

  Valvular heart disease 
 High BMI / metabolic disease 

(increased epicardial fat) 
High BMI / metabolic disease / 
epicardial fat 

 Potential pro-arrhythmic 
mechanisms increasing AF 
prevalence in men 

Potential anti-arrhythmic 
mechanisms reducing AF 
prevalence in pre-menopausal 
women 

Hormonal effects impacting 
on AF prevalence  

Detrimental testosterone-effects 
on atherosclerosis / CAD 

Beneficial estrogen-effects on 
cardiovascular risk factors  

 Pro-arrhythmic testosterone-
effects on atrial electrical features 
(shorter APD facilitating reentry) 

Anti-arrhythmic estrogen-effects on 
atrial electrical features (longer 
atrial APD) 

 More pronounced fibrotic 
remodeling in male animals 
(testosterone-effect?) 

Beneficial estrogen-effects on 
structural remodeling (attenuation 
of fibrosis) 

  Beneficial estrogen-effects on 
diastolic function 

  Reduction of epicardial fat (by 
estrogen? indirect evidence: more 
epicardial fat in post-menopausal 
women) 

 
Table legend:  

AF, atrial fibrillation; HFpEF, heart failure with preserved ejection fraction, BMI, body mass 

index; CAD, coronary artery disease; APD, action potential duration  
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Figure 1: 

A. Schematic figure indicating sex hormone effects on cardiac ion channels / currents and 

calcium handling proteins in cardiomyocytes. Effects on ion channels that have thus far only 

been demonstrated in non-cardiac tissues are indicated in the left corner separated by orange 

dotted lines. Estrogen-induced changes are colour-coded in red, testosterone-induced changes 

in light blue. B. Illustration of  resulting effects on cardiac repolarization and arrhythmogenic 

mechanisms. ↑, indicates an increase/prolongation, ↓, indicates a decrease/abbreviation. 

EST, estrogen; DHT, testosterone; + + +, increase; - - -, reduction; SR, sarcoplasmic reticulum; 

APD, action potential duration; AERP, atrial effective refractory period; EAD, early 

afterdepolarisation; TdP, Torsade-de-Pointes; HERG/IKr; KvLQT1/IKs, Kir2.1/IK1; SCN5A/INa; 

Cav2.1/ICa,L; SK3; TASK-1 
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Figure 2: 

Schematic figure indicating effects of menopause-associated reduction in estrogen on epicardial 

fat and related (pro-inflammatory) signalling pathways and fibrotic remodeling mechanisms.  

↑, indicates an increase/activation, ↓, indicates a decrease; ROS, reactive oxygen species. 
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Figure 3: 

Schematic figure indicating electrophysiological effects of vagal and sympathetic activity on 

action potential duration and triggered activity and their changes by endurance sport and 

menopause. + + +, increase; - - -, reduction; APD, action potential duration; AERP, atrial 

effective refractory period; ↑, indicates an increase/prolongation, ↓, indicates a 

decrease/abbreviation. 

 


