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Abstract

We give a survey of recent result regarding scaling limits of systems from

statistical mechanics, as well as the universality of the behaviour of such systems

in so-called cross-over regimes. It transpires that some of these universal objects

are described by singular stochastic PDEs. We then give a survey of the recently

developed theory of regularity structures which allows to build these objects

and to describe some of their properties. We place particular emphasis on the

renormalisation procedure required to give meaning to these equations.

These are expanded notes of the 20th Takagi lectures held at Tokyo University

on November 4, 2017.
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1 Scaling limits

One major achievement of probability theory has been the construction of a number

of universal objects that arise naturally as scaling limits of a great number of natural

probabilistic models. Let us start by going through a number of examples in order

to build some intuition on what scaling limits are, in what context they arise, and

what are their properties.

1.1 The Wiener process

One of the simplest and most ubiquitous such objects is the Wiener process, which

is a random continuous functionW : R+ → R with the property that any two non-

overlapping increments are independent and that for any t > s ≥ 0, W (t) −W (s)
is a centred Gaussian random variable with variance t− s. We further impose that

W (0) = 0.

The Wiener process arises naturally as a scaling limit in the following way.

Consider an i.i.d. sequence of random variables {Xn}n≥0 that are centred with

finite variance σ > 0 and consider the partial sums S(n) =
∑n

k=0
Xk for n ≥ 0.

We extend S to all arguments in R+ in a continuous way by linear interpolation:

S(t) =
(

⌊t⌋
∑

k=0

Xk

)

+ (t− ⌊t⌋)X⌈t⌉ . (1.1)

We also introduce a family of rescaling operators

(S(α)
λ f)(t) = λ−αf (λt) .

The following is then classical [Don51]:



Scaling limits 3

Theorem 1.1 The family of random functions Sλ = S
(1/2)

λ S converges in law on

C(R+) to a Wiener process as λ→ ∞.

Observe that we start from a fixed model (the random function S) on which we

perform a simple rescaling operation to obtain a family of models Sλ depending

on a scale λ. This scale is then sent to infinity in order to obtain a scaling limit.

It follows immediately that W itself is invariant under the action of the rescaling

S
(1/2)

λ since

S
(1/2)

λ W = lim
µ→∞

S
(1/2)

λ S(1/2)
µ S = lim

µ→∞
S

(1/2)

λ+µ S =W ,

where all limits and identities are in law. The exponent 1/2 appearing in this

expression is called the scaling exponent of W . Another important feature of W
is that it exhibits a form of stationarity, or translation invariance. Indeed, the

partial sums S(n) are such that, for any fixed k ≥ 0, the random sequence S̃(n) =
S(k + n) − S(k) is equal in law to the random sequence S itself. It immediately

follows that W satisfies the analogous property, namely that W (· + s) −W (s) is

equal in law to W itself, for every s ≥ 0. A final and equally crucial property

enjoyed by the Wiener process W is the Markov property: for any time interval

I ⊂ R+, the law of W ↾I , conditional on W ↾Ic, only depends on the values of W
on the boundary of I . This is again a simple consequence of the fact that S satisfies

a similar property, but with fattened boundaries. More precisely, for [a, b] ⊂ R+,

the law of S↾[a, b], conditional on S↾[a, b]c, only depends on the values of S on

[a− 1, a] ∪ [b, b+ 1].

1.2 Critical percolation

Scaling limits are of course not restricted to functions and, as a matter of fact,

several major recent results concern scaling limits of more sophisticated objects.

Let us briefly describe two of these results, namely critical percolation and the

construction of the “Brownian plane”. In the first example, our starting point is

the infinite regular triangular lattice, together with an assignment of a random

variable ωx ∈ {0, 1} for every vertex x of the lattice. We assume that the ωx are

i.i.d. Bernoulli random variables with parameter p.
There are two different ways in which we can take a scaling limit in this case.

The first “naïve” one, similarly to (1.1), is to extend ω to the whole plane by some

local interpolation procedure that respects the symmetries of the lattice. (Local in

the sense that the value at a given point x only depends on the values of ωy for those

vertices y that intersect a neighbourhood of x of some fixed radius.) This yields a

random function ω : R2 → R and we can ask whether this random function admits

a scaling limit. A variant of Theorem 1.1 shows that this is indeed the case, and



Scaling limits 4

we have the convergence in law

lim
λ→∞

S(−1)
λ (ω − p) = ξ , (1.2)

where ξ is a “white noise”. This time, the limit is not a random function, but a

random Schwartz distribution: for any collection of test functions ϕk, the random

variables ξ(ϕk) are jointly centred Gaussian and one has

Eξ(ϕ)ξ(ψ) = 〈ϕ, ψ〉 ,

where the scalar product is taken in L2. In particular, if δε is an ε-approximation of

a Dirac mass, one has Eξ(δε)
2 ∼ ε−2, which shows that there is no hope to be able

to find a continuous version of ξ. The fact that white noise can only be realised as

a random distribution is directly linked to the fact that it arises as a scaling limit

(1.2) with a negative exponent.

However, while this white noise scaling limit does describe the large-scale

behaviour of local averages of the random variables ωx, it does not tell us anything

about the large-scale behaviour of many interesting observables that are naturally

built from ω. In particular, one would like to be able to give a description of the

large-scale geometry of the subset {x : wx = 1} of the triangular lattice, together

with the connectivity structure induced by that of the underlying lattice. One

possible way of encoding this connectivity structure is by viewing it as a collection

of “quads” (i.e. homeomorphisms Q : [0, 1]2 → R2), where we keep precisely

those quads Q such that there exists a percolation cluster intersecting the two

opposite edgesQ({0}× [0, 1]) andQ({1}× [0, 1]). (We can view the percolation

clusters as closed subsets of the plane by for example linking neighbouring open

sites with a line segment. The precise way in which this is done is irrelevant for

what follows.) Writing Q for the space of all quads, which can be endowed with

a natural distance function, a percolation configuration is therefore encoded by a

random subset Sω ⊂ Q satisfying furthermore a number of natural consistency and

monotonicity properties. The space X of all such subsets can itself be endowed

with a natural topology. The is furthermore a natural scaling operationSλ : Q → Q

on the space of quads by setting

(SλQ)(x) = λQ(x) .

This in yields a map Sλ : X→ Xon subsets of Q which preserves the consistence

and monotonicity properties alluded to above. It was then shown by Schramm and

Smirnov [SS11] that if one sets p = pc =
1

2
(the critical value for percolation on the

triangular lattice [Kes80]), then the laws of the sequence of random sets SλSω is

tight in Xas λ→ ∞ and its accumulation points are non-degenerate. The limiting

X-valued random variable S̃ (which is conjectured to be unique) has again natural
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scale invariance, translation invariance, and Markov properties. In this particular

case, it is furthermore rotation invariant and actually conformal invariant.

It is interesting to note that the information encoded in the scaling limit ξ
and that encoded in the scaling limit S̃ are completely different, although both

S(−1)
λ w and SλSω encode the exact same information for any fixed λ > 0. What

“completely different” means in this context is that the noise (in the sense of

Tsirelson [Tsi04]) generated by ξ is “white” while that generated by S̃ is “black”

[SS11].

1.3 The Ising model

Another example of scaling limit was recently obtained by [CGN15, CGN16] for

the 2D Ising model at criticality. Recall that the Ising model in a domain Λ ⊂ Z2

is given by the measure on {±1}Λ assigning to each configuration σ a probability

proportional to exp(−βH(σ)), where the Hamiltonian is given by

H(σ) = −
∑

x∼y

σxσy .

Here, x ∼ y if and only if x and y are nearest neighbours in Z2 and the values of

σ outside of Λ are considered to be fixed. It is well-known that the Ising model

exhibits a phase transition: there exists a value βc > 0 such that, for β ≤ βc, there

exists a unique probability measure on {±1}Z2

with the property that, for every

Λ ⊂ Z2 finite, the conditional measure on {±1}Λ is as above. For β > βc however,

while such measure do still exist, they are not unique anymore. In fact, there are

two such measures, one in which a majority of spins take the value +1, and one

in which a majority of spins take the value −1. At criticality (i.e. for β = βc),
local averages of spins exhibit a non-trivial scaling limit in the sense that if we

extend σ to all of R2 in a way similar to above, then S
(−1/8)

λ σ converges in law to a

non-trivial measure Pc on the space of distributions on R2. Unlike in the previous

examples of this type, the measure Pc is not Gaussian, in fact its tails are lighter

than Gaussian. Again, the measure Pc is scaling invariant (with exponent −1/8),

translation invariant, and satisfies the spatial Markov property.

1.4 Interface fluctuations

Our final example of scaling limit is the closest one to the type of problems

considered in these notes, and this is also the only example of scaling limit in

which one considers models that depend on both space and time. Consider a

model of one-dimensional interface growth where the interface is modelled as the

graph of a function h : Z → Z. We furthermore restrict the state space to those

functions h such that h(x+1)−h(x) ∈ {±1} for every x ∈ Z. A simple dynamic

on such functions is given by the following. To each site x ∈ Z, we then assign a
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Poisson process t 7→ Nx(t), with all the Nx’s being i.i.d. and having the same rate

(say 1). This allows us to build a dynamic on the space of height functions h in

the following way. Whenever one of the processes Nx jumps, we update h in the

following way. If ht has a local minimum at x, then we set ht+(x) = ht(x) + 2. If

ht has a local maximum at x, then we set ht+(x) = ht(x) − 2, but only with some

fixed probability q ∈ [0, 1], independently of the processes Nx. If ht has neither a

local minimum, nor a local maximum at x, then we leave it unchanged. Note that

the case q = 1 is special since in this case h and −h have the same distribution.

It is possible to show [Lig85] that this dynamic is indeed well-defined (this is

not completely obvious since infinitely many of the processes Nx perform a jump

in any given time interval). Depending on the literature, this process is referred

to as the height function for the asymmetric simple exclusion process (symmetric

in the case q = 1) or as the SOS (Solid On Solid) model. This process has the

property that, for any given value of q, the simple random walk is an invariant

measure for it. This suggests that, in order to obtain a scaling limit, the initial

condition h0 should be chosen such that S
(1/2)

λ h0 converges in law to some limit

h̃0. In this situation, since time and space play different roles, there is no reason a

priori to consider time scales of the same order as the spatial scale, so we consider

scaling operators with two scaling exponents like so:

(S(α,β)

λ h)(x, t) = λαh(λx, λβt) .

In the symmetric case q = 1, one then has the following result [DMIPP84, Rav92]:

Theorem 1.2 For q = 1, let hλ0 be a sequence of initial conditions for the sym-

metric SOS model such that S
(1/2)

λ hλ0 converges to a limit h0 in Cb(R). Then, the

process S
(1/2,2)

λ h converges in law as λ→ ∞ to the solution to the stochastic heat

equation with initial condition h0:

∂th = ∂2xh+ ξ , (1.3)

where ξ denotes space-time white noise.

Note again that the process h satisfies the (space-time) Markov property as

a consequence of the fact that it has a purely local specification. In the case

of interface fluctuation models, it turns out that symmetric models behave very

differently at large scales from asymmetric ones. Indeed, the following has very

recently been shown in [MQR17].

Theorem 1.3 For q = 0, let hλ0 be a sequence of initial conditions for the totally

asymmetric SOS model such that S
(1/2)

λ hλ0 converges to a limit h0 in Cb(R). Then,

the processS
(1/2,3/2)

λ h converges in law as λ→ ∞ to a limiting non-trivial Markov

process h.
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Note that the time-scaling exponent appearing here is different from the one

appearing in the symmetric case. Furthermore, [MQR17] give a full character-

isation of the transition probabilities of the limiting process h, which shows in

particular that it is not Gaussian. Unlike in the symmetric case, the scaling limit

in the totally asymmetric case (also called the “KPZ fixed point”) is not described

as the solution to a stochastic PDE. It does however have a characterisation via

a type of noisy Lax-Oleinik formula [CQR15], although this characterisation is

not complete. (There are only tightness results and partial characterisations of the

“Airy sheet” which acts as a driving noise.)

1.5 General features and open problem

Despite the impression the reader may obtain from these various examples, these

scaling limits are rigorously much less understood than one would think. For

example, the Ising model admits two very natural dynamics preserving its Gibbs

measure: the Glauber dynamic in which one randomly flips spins and then rejects

some moves in order to enforce the correct invariant measure and the Kawasaki

dynamic, where the elementary moves are given by exchanging neighbouring spins.

It is then natural to ask whether there is a scaling limit for the process (t, x) 7→ σx(t)
induced by these dynamics at the critical parameter βc. It is conjectured that

this is indeed the case, but one does not even have a conjecture for the correct

value of the corresponding dynamical scaling exponents! Similarly, one does

not know what the correct scaling α is which guarantees that S(−α)
λ σ converges

to a non-trivial limit for σ given by the 3D Ising model at criticality, although

recent breakthrough results [ESPP+12, ESPP+14] yield a constructive, albeit non-

rigorous, way of approximating this exponent (the best known approximation to

date is about 0.51815 which does not appear to be a rational number with small

denominator).

Another feature of these scaling limits that still lacks rigorous mathematical

understanding is their universality. In all of the examples given above, we have

mathematical theorems exhibiting scaling limits for one specific model, typically

one that is exactly solvable. It is (loosely) conjectured that in all cases, the same

scaling limit arises when starting from any model that exhibits the same broad

features as the specific model we consider. This is only well understood in the first

example of the Wiener process, where the functional central limit theorem was

shown to hold for a very large class of models.

In the case of critical percolation for example, one expects to obtain the same

scaling limit for its connectivity structure, independently of the precise structure of

the underlying graph, provided that it is planar and sufficiently regular. In the case

of the Ising model, one also expects the same results for a large class of underlying

grids, similarly to the case of percolation. (For a different class of observables,

this was indeed shown in [CS12], although the class of grids considered there is
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still rather rigid and interactions are still restricted to nearest-neighbours in order

to enforce a suitable type of integrability.) However, when considering the scaling

limit of the magnetisation as described above, one also expects many continuous

models to fall into the same universality class. For example, the Φ4
2 measure

constructed in [Nel66, GJ87, BFS83] is a measure on distributions on R2 which

can formally be thought of as having density proportional to

exp
(

−
∫

R2

(|∇Φ(x)|2 + Φ4(x) − CΦ2(x)) dx
)

,

with respect to “Lebesgue measure” (which of course does not exist). This models

the same situation as that of the Ising model and depends on a parameter C which

plays a role similar to that of the inverse temperature β. It is natural to conjecture

that, when this parameter is set equal to its critical value, the large-scale behaviour

of the Φ4
2 measure is precisely the same as that of the Ising model.

Finally, in the case of interface fluctuations, one expects the KPZ fixed point

to be the scaling limit of a very large class of asymmetric models. In particular,

one expects it to arise as the scaling limit of the SOS model for any q ∈ [0, 1), but

also as the scaling limit of various other models like the Eden model, the ballistic

deposition model, etc. The only rigorous results in this direction were obtained

for models exhibiting a type of “integrable structure”, for which it is possible to

show that certain observables converge to the corresponding observables of the

KPZ fixed point. See for example [Joh00, TW08, BC14] for some results in this

direction.

All this suggests that answering the following open problem would allow to

make substantial progress.

Open Problem 1 For any d ≥ 2, characterise all pairs (α, η) such that α ∈ R

and η is a random distribution on Rd which is stationary, satisfies S(−α)
λ η = η in

law, and satisfies the spatial Markov property.

Remark 1.4 If α ≥ 0, one cannot in general expect η to be both self-similar with

exponent α and stationary. However, at least for non-integer values, one can still

expect stationarity in a generalised sense where one recenters η in such a way

that its value and the relevant number of derivatives vanish at the origin. This is

precisely what happens in the case of the two-sided Wiener process for example

which is invariant under the action of the group of translations given by

(τsW )(t) =W (t + s) −W (s) .

Remark 1.5 There are many natural variants of this question. For example, it

would be natural to also impose rotation invariance. It would also be natural to add
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time as an additional dimension and to allow the scaling exponent to be different

for time scalings. Finally, it would be natural to impose restrictions on the tail

behaviour of η, for example that η(ϕ) has moments of all orders for every ϕ ∈ C∞
0 .

(In the case d = 1, this property is known to significantly reduce the possible

candidates.)

2 Crossover regimes

We have seen in the previous section that there is a great interest in finding and

characterising scaling limits, as well as the corresponding universality classes.

(The universality class for a given scaling limit η consists of the collection of all

those models that converge to η under a suitable rescaling operation which leaves

η invariant.) Unfortunately, when considering scaling limits of “random field”

type, the only situation that is mathematically well-understood in the sense that

we have a mathematically rigorous understanding of both the scaling limit itself

and of its universality class is the Gaussian case. There are some non-Gaussian

cases that can be characterised by explicit formulae, which include the case of two-

dimensional models (without time-dependence), as well as the KPZ fixed point. In

these cases however, universality statements are restricted to microscopic models

that share some of the integrability properties of their scaling limits.

This suggests that one possible way of improving our understanding of the large-

scale behaviour of random systems is to consider what happens “in the vicinity”

of systems that rescale to a Gaussian scaling limit. More precisely, consider a

family {S(ε)}ε∈D of random functions on Rd depending continuously on ε, where

D ⊂ Rm is some closed set containing the origin (think of D = [0, 1]). Assume

that this family is such that, for some scaling exponent α, S(α)
λ S(0) converges, as

λ → ∞, to a Gaussian scaling limit η. One can then find situations in which this

is no longer the case for ε 6= 0, so that one expects to have some different scaling

exponent β 6= α (or pair of space-time scaling exponents) such that, for fixed

ε 6= 0, S(β)

λ S(ε) converges, as λ → ∞, to some non-Gaussian scaling limit. (It is

usually completely out of reach of current mathematical technology to prove such

a thing. In general, it may also happen that D is further broken into subregions

on which β takes different values.) It is then natural to ask whether it is possible

to prove a non-trivial limiting result for limits of the form S(α)
λε
S(ε) as ε → 0 with

limε→0 λε = ∞.

By a simple diagonal argument, using the continuity of ε 7→ S(ε), if λε diverges

sufficiently slowly, one still has limε→0S
(α)
λε
S(ε) = η. On the other hand, since

β 6= α, one expects S(α)
λε
S(ε) to either converge to 0 or blow up as ε → 0 for λε

diverging sufficiently fast. This suggests the existence of a non-trivial intermediate

regime, called the crossover regime for which some non-trivial limits different from
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η are obtained.

In these notes, we’ll argue that in many cases of interest, the behaviour one

observes is the following. There exists a family ηv of possible limits, parametrised

by v belonging to some closed subset K ⊂ Rm containing the origin for some

m ≥ 0, with η0 = η, the original Gaussian scaling limit. Each element of the

family is typically stationary (possibly in a generalised sense as already described

earlier) and Markovian, but it is this time only the family as a whole which is

scaling invariant and not individual members of the family. More precisely, there

exists an action T of (R+, ·) onto K such that

S(α)
λ ηv = ηT

λv , (2.1)

and such that limλ→0 T
λv = 0 for every v ∈ K. In other words, the family is

invariant under the scaling operations with exponent α and, at small scales, every

member of the family looks like η. Furthermore, the family {ηv}v∈K is universal

in the sense that, for a very large class of models {S(ε)}ε∈D as above, one can find

a map ε 7→ (λε, vε) such that

1. vε is uniformly bounded on ε ∈ D \ {0},

2. there are sequences εn → 0 such that vεn remains uniformly bounded away

from 0,

3. λε → ∞ as ε → 0,

4. one has S(α)
λε
S(ε) → ηvε as ε→ 0.

Note that there is necessarily some indeterminacy here since, if ε 7→ (λε, vε) is one

map satisfying the above properties then it follows from (2.1) that, for any fixed

µ > 0, the map ε 7→ (µλε, T
µvε) also satisfies the same properties.

Remark 2.1 In all the examples below, the underlying space Rd on which our

random distributions are defined naturally breaks into a time component and d− 1
spatial components. In this case, scalings are typically different for these two types

of components, but the discussion above remains unchanged otherwise.

Remark 2.2 There are some situations where major technical difficulties arise due

to the fact that space is unbounded. Although this is very much case-dependent,

there are often natural ways of defining the models S(ε) and ηv on a finite domain

rather than the whole space. In this case, the same discussion usually applies but

with two caveats. First, there may be additional parameters governing boundary

conditions and matching these between S(ε) and ηv may be non-trivial, see [CS16,

GH18]. Second, if we normalise the ηv to be defined on a domain of size 1, then

the models S(ε) have to be defined on a domain of size λε for the third property

above to hold.

We now discuss a couple of concrete examples to illustrate the situation.
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2.1 The KPZ equation

Let us now show how the KPZ equation [KPZ86] fits into the framework described

above. Recall that the KPZ equation is the stochastic partial differential equation

formally given by

∂th = ∂2xh+ (∂xh)2 + ξ ,

where ξ denotes space-time white noise. The reason why this expression is only

formal is that solutions are not differentiable, so the expression (∂xh)2 has no

classical meaning. It is however possible to give an unambiguous notion of

“solution” to this equation, the so-called Hopf-Cole solution, see [BG97, QS15].

As a matter of fact, this gives a meaning the family of equations formally given by

∂th = ∂2xh + c1(∂xh)2 + c2 + ξ , (2.2)

and we write ηc with c = (c1, c2) ∈ R2 for its solutions.

Remark 2.3 There is a rather non-trivial question arising here which is that of the

choice of initial condition. It so happens that it is possible to construct solutions

that are stationary in space-time, modulo recentering, and these are the solutions

that we consider. There is a subtlety here in that these solutions are themselves

not unique since Brownian motion with drift is invariant for the corresponding

Markov process for any value of the drift, see [FQ15]. We lift this ambiguity by

choosing the (unique) solution with zero drift.

Using the scale invariance properties of white noise, it can be verified that, at

least at a formal level, the family of solutions to (2.2) does satisfy (2.1) with

T λ(c1, c2) = (λ1/2c1, λ
3/2c2) . (2.3)

It happens that the Hopf-Cole solutions are such that this identity does indeed hold

for them as well.

Remark 2.4 We could of course also add constants in front of the terms ∂2xh and ξ,
but it can be shown that it is always possible to rescale solutions in such a way that

these constants are equal to 1. As a matter of fact, even the constants c1 and c2 can

be eliminated by performing first a rescaling to set c1 to 1 by (2.3) and then perform

a height shift, i.e. considering transformations of the type h(t, x) 7→ h(t, x) − ct,
which allow to set c2 to 0 without loss of generality. This is why we usually talk

about “the” KPZ equation, rather than the family of KPZ equations.

2.1.1 Convergence of the SOS model

Let now S(ε) denote the stationary SOS model with q = 1−√
ε and with fixed time

distribution given by that of the simple random walk. We furthermore perform a
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height shift in order to set the average speed of the interface to zero, so that if h(ε)

denotes the stationary SOS model with q = 1 −√
ε as defined in Section 1.4, we

set

S(ε)(t, x) = h(ε)
t (x) −

√
εt .

It was then shown in [BG97] that if we chooseλε = 1/ε, and consider the processes

h(ε) = S
(1/2,2)

λε
S(ε), rescaled as in the symmetric case mentioned in Section 1.4, then

h(ε) does converge to the Hopf-Cole solution to the KPZ equation.

This can indeed be cast into the framework exposed at the beginning of this

section: We haveD = [0, 1] andK = R2, and the mapping ε 7→ (λε, vε) is simply

given by ε 7→ (ε−1, c), where c denotes the specific value of the constants in the

KPZ equation appearing in the result of [BG97]. In this case, this seems very

much overkill. The interesting fact however is that the limiting object obtained in

the crossover regime, namely the solution to the KPZ equation, is itself universal

in the sense that it arise in many more situations.

2.1.2 A universality result

Consider for example a Gaussian random field ζ : R2 → R with a correlation

function ̺ that is compactly supported and such that
∫

̺ = 1. Then, a simple

calculation shows that S
(−3/2,2)

λ ζ converges to space-time white noise as λ → ∞.

In particular, if we denote by h(0) the solution to

∂th
(0) = ∂2xh

(0) + ζ , (2.4)

then S
(1/2,2)

λ h(0) converges in law as λ → ∞ to the solution to the stochastic heat

equation (1.3). Consider now perturbations of (2.4) of the type

∂th = ∂2xh+ P (∂xh) + ζ , (2.5)

where P is an even polynomial of some fixed degree 2m. The rationale for

restricting ourselves to even polynomials is that it is natural for interface growth

models to be symmetric under the exchange x ↔ −x. Furthermore, the rationale

for considering perturbations depending only on ∂xh and not on h itself is that the

environment in which our interface moves is homogeneous.

This again fits the framework described above, but this time it is the polynomial

P itself which plays the role of the parameter ε, so that one has D ≈ Rm+1, with

the identification between polynomials and Rm+1 given by

P = Pε , Pε(u) =
m
∑

p=0

εpu
2p .
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What behaviour does one expect for the large-scale behaviour of (2.5) for small P ?

Note that while (2.4) only admits a stationary solution in a generalised sense, its

spatial derivative ∂xh
(0) admits a genuine stationary solution. Since it is Gaussian,

this means that there exists a centred Gaussian measure ν0 such that ∂xh
(0)(t, x)

has law ν for any fixed (t, x).

It is then not unreasonable to expect that the effective behaviour of P (∂xh) in

(2.5) is close to that of the constant
∫

P (u) ν(du). Indeed, it is not difficult to show

that this is the case in the sense that if we choose for example

λε = |Pε|−2/3 , (2.6)

where |Pε| =
∑

p |εp|, then S
(1/2,2)

λε
h(Pε) is uniformly close for |Pε| small to the

solution to

∂th = ∂2xh + cε + ξ , cε
def
= λ3/2ε

∫

P (u) ν(du) . (2.7)

Here, we wrote h(P ) for the solution to (2.5). Since (2.6) guarantees that cε is

uniformly bounded, this is indeed a result of the type described above, but it

is somewhat disappointing. Indeed, as already mentioned, the solution to (2.7)

differs from that of (1.3) by a simple shift, so that we really haven’t obtained a

different object at all.

Instead, we should focus on what happens when
∫

P dν vanishes, in which

case cε vanishes, so that we have a chance of being able to look at larger scales.

It turns out that a more interesting choice of scale λε which leads to non-trivial

behaviour is given by

λ−1
ε = |Pε|2 +

∣

∣

∣

∫

P (u) ν(du)

∣

∣

∣

2/3

. (2.8)

We see that if
∫

P dν is of the same order as |Pε|, then this scale is of the same

order as that in (2.6). If however
∫

P dν is much smaller, then this scale is much

larger than the previous one.

Remark 2.5 The precise form of λε does not matter as long as it satisfies the

bounds λε . |Pε|−2 and λε . |
∫

P dν|−2/3.

The main result of [HQ15] can then be loosely formulated as follows.

Theorem 2.6 There exists a trilinear form F : P 7→ F (P, P, P ) such that, with

the choice (2.8), S
(1/2,2)

λε
h(Pε) is uniformly close for |Pε| small to the Hopf-Cole

solution to (2.2) with

c1 =
λ
1/2
ε

2

∫

P ′′(u) ν(du) , c2 = λ3/2ε

(

∫

P (u) ν(du) + F (P, P, P )
)

.
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Similar results have recently been obtained in [GP16], where the authors also

allow for non-polynomialP , but with the caveat that they are restricted to a slightly

different class of models for which the invariant measure is explicitly known. The

work [HX18b] also extends the above results to general P , this time for the same

model as (2.5).

Remark 2.7 The formulation of Theorem 2.6 is not complete as it leaves out the

question of the initial condition. Furthermore, the results just mentioned only hold

for (2.5) defined on a torus of size λε instead of the whole real line. The reason

is that, on the whole real line, it is not even clear for which initial conditions (2.5)

admits local solutions!

These results suggest the following conjecture which would be a very strong

universality statement for the KPZ equation.

Open Problem 2 Show that the solution to the KPZ equation is the unique contin-

uous stationary (in the generalised sense) space-time Markov process h invariant

under x ↔ −x which has the property that S
(1/2,2)

λ h converges to the solution to

the stochastic heat equation as λ → 0 and S
(1/2,3/2)

λ h converges to the KPZ fixed

point as λ→ ∞.

2.2 The dynamical Φ4
3 model

This is a family of models which should formally be thought of as the solutions to

the stochastic PDEs

∂tΦ = ∆Φ + c1Φ− c2Φ
3 + ξ , (2.9)

where ξ again denotes space-time white noise, but the spatial variable now takes

values in R3. This time, the model with c = (c1, c2) = 0 is invariant under the

action of the scaling operators S
(−1/2,2)

λε
. A formal calculation suggests that this

family of models satisfies (2.1) with the action T λ given by T λc = (λ3/2c1, λ
1/2c2).

This is incorrect however, instead it is the case that it does satisfy (2.1), but with

the modified action

T λc = (λ3/2(c1 + ac32 logλ), λ1/2c2) ,

where a is some fixed explicitly computable constant. (One readily verifies that

this action satisfies the semigroup property T λT µ = T λµ.)

This time, while the constant c2 can always be set to 1 by a simple rescaling

operation, there is no way in general to adjust the value of c1 by a simple local

transformation, so we do genuinely have a one-parameter family of distinct models

indexed by c2. This parameter plays a role similar to that of the temperature in

the Ising model, and the two models are expected to fall into the same universality
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class in the sense that one expects there to exist a critical value for c2 at which

(2.9) admits a scaling limit which coincides with the scaling limit for the Glauber

dynamic of the critical 3D Ising model. Let us reiterate again that although this

is an accepted fact in the physics literature, from a mathematical perspective it is

highly speculative. In particular, neither of these scaling limits is known to exist,

and there does not even exist a precise conjecture for the corresponding scaling

exponents.

It was shown in [HX18a] that, if one considers models of the type

∂tΦ = ∆Φ− V ′(Φ) + ζ , (2.10)

for even polynomials V : R → R of fixed degree and ζ a Gaussian random field

with compactly supported correlations as above, then a result analogous to (2.6)

holds (but with slightly different expressions for c and the scale λ). It was also

shown in [MW17] that the two-dimensional analogue of this model arises in

the crossover regime for the Glauber dynamic of Ising-Kac models, namely spin

models with Hamiltonian

Hε(σ) = −ε2
∑

x,y

σxσyK(ε(x− y)) .

A similar result is expected to hold in the three-dimensional case as well.

3 Singular stochastic PDEs

In the previous section, we have seen singular stochastic PDEs appearing as uni-

versal objects describing the crossover regimes for various models from statistical

mechanics. These equations were singular in the sense that they involved nonlin-

earities that appear to have no canonical meaning since they involve products of

distributions of negative order. For this reason, it is not clear how processes like

the solutions to (2.2,2.9) should be defined and, a fortiori, how universality results

like the ones presented above should be obtained.

3.1 Analysis of the Φ4 model

Let us focus now on (2.9) with c2 = 1 since the KPZ equation has non-generic

additional structure which makes it amenable to alternative techniques [GJ14,

GP18]. We are therefore interested in the study of the family of solutions to

∂tΦ = ∆Φ + cΦ− Φ3 + ξ , (3.1)

with c ∈ R. The problem is that solutions to the stochastic heat equation

∂tX = ∆X + ξ , (3.2)
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in three dimensions (and therefore presumably also solutions to (3.1), whatever

meaning we choose to give to the equation) are random distributions of order

−1/2. In other words, the operation Φ 7→ Φ3 is not closable on any classical space

of functions / distributions containing the solutions to (3.1). The idea then is to

enrich this space in a way that incorporates the minimal amount of information

required in order to be able to realise Φ 7→ Φ3 as a continuous map, but in a way

that remains consistent with the classical interpretation of (2.10), so that one has

hope to be able to obtain the type of universality results mentioned above.

A simple, but surprisingly effective, idea introduced in this context in [DPD02,

DPD03] (but see also [Bou96] for the same idea in a slightly different context) is

to try to solve (3.1) by setting Φ = Ψ +X , where X is given by (3.2), so that it

remains to solve

∂tΨ = ∆Ψ+ c(Ψ+X) − (Ψ3 + 3XΨ2 + 3X2Ψ+X3) . (3.3)

The point here is that ξ no longer appears explicitly in the right hand side, so we

can expect Ψ to be more regular than Φ, hopefully function-valued so that the

terms Ψ2 and Ψ3 are well-defined.

Assume now that X is scaling invariant with some negative scaling exponent

−α (in dimension d, this is the case for the solution to (3.2) with α = d
2
−1). Then,

even though we don’t know a priori how to define its powers, one would expect any

reasonable definition of Xp to be a stationary process which is scaling invariant

with exponent −αp. Under relatively weak moment assumptions, such processes

belong to the negative Hölder spaces Cβ for all β < −αp, which suggests that the

least regular term on the right hand side of (3.3) is the term X3, with regularity

just below −3α, so one would expect by Schauder’s estimate Ψ to have regularity

just below 2 − 3α, which is positive as soon as α < 2/3. Since the product of a

function in Cγ with a distribution in Cβ is well-defined (in the sense that there is a

unique continuous bilinear extension of the usual product) if and only if β+γ > 0,

this shows that, assuming that X2 and X3 are known, (3.3) is well-posed as soon

as 2− 5α > 0, i.e. α < 2/5.

In dimension d = 2, the case treated in [DPD03], this is indeed the case.

However, it is still not clear how the processes X2 and X3 should be defined in

that case. A “naive” construction of these processes would be to try to consider

a regularisation Xε of X and to check whether X2
ε and X3

ε have a limit. Write

for example ξε for a centred Gaussian random field with covariance given by

̺ε(t, x) = ε−3̺(t/ε2, x/ε) for some compactly supported function ̺ integrating to

1 and define Xε by (3.2) with ξ replaced by ξε. It can then be verified that

EX2
ε =

∫

P (t, x)P (s, y) ̺ε(t− s, y − x) dt ds dx dy ,



Singular stochastic PDEs 17

where P is the standard heat kernel. A simple calculation shows that, in dimension

d = 2, one has EX2
ε ∼ log ε, while in dimension d = 3 one has EX2

ε ∼ ε−1, so

that there is no hope that X2
ε converges to a limiting proces as ε→ 0.

However, setting Cε = EX2
ε , it turns out that the Wick powers X⋄p

ε
def
=

Hp(Xε, Cε), where Hp denotes the pth Hermite polynomial do converge to a

limit for p small enough. Indeed, writing Gε for the covariance of Xε, namely

Gε(t, x) = EXε(0, 0)Xε(t, x) ,

one can verify that the covariance ofX⋄p
ε is simply given byGp

ε. IfX is self-similar

with exponent −α, then its covariance is homogeneous of order −2α, so that Gp
ε

does indeed converge toGp in distribution, provided that 2pα < d+2. (The reason

why we have d + 2 appearing here is that this is precisely the threshold at which

a homogeneous function with parabolic scaling loses integrability at the origin.)

Recalling that α = d
2
− 1, we conclude that X⋄2

ε and X⋄3
ε do indeed converge to

non-trivial limits X⋄2 and X⋄3 in dimension d < 4.

In dimension d = 2, it is therefore natural to define Φε = Ψε + Xε with Ψε

defined as in (3.3), but with X2 and X3 replaced by X⋄2
ε and X⋄3

ε . Standard

continuity estimates then show that Φε converges to some limit Φ, which we

would like to interpret as a “solution” to (3.1). This raises the question of the

interpretation of the resulting process, in particular whether it is possible to obtain

it as a limit of solutions to stochastic PDEs of the type (3.1) with the noise replaced

by a smoothened version. For this, note that Ψε solves

∂tΨε = ∆Ψε + c(Ψε +Xε) − (Ψ3
ε + 3XεΨ

2
ε + 3X⋄2

ε Ψε +X⋄3
ε ) (3.4)

= ∆Ψε + c(Ψε +Xε) − (Ψ3
ε + 3XεΨ

2
ε + 3(X2

ε − Cε)Ψε + (X3
ε − 3CεXε))

= ∆Ψε + (c+ 3Cε)(Ψε +Xε) − (Ψ3
ε + 3XεΨ

2
ε + 3X2

εΨε +X3
ε ) .

This shows that, for any fixed ε > 0, Φε is indeed nothing but the solution to (3.1)

with ξ replaced by ξε and c replaced by c+ 3Cε.

3.2 Renormalisation

Let us step back for a moment and try to give a high-level overview of what’s

happening here. We started from a formal expression (3.1) which hints at the

existence of a family of processes Φc indexed by a parameter c. We then con-

sider some natural approximation Φc
ε of these processes and study it for small ε.

Unfortunately, for every fixed c, the sequence Φc
ε diverges (or rather converges to

something trivial in this particular case [HRW12]) as ε→ 0. However, the family

of processes {Φc
ε}c∈R does converge to a limiting family {Φc}c∈R as ε → 0. This

is so because, when considering the whole family of processes as our object of

interest, we do not care about the way in which it is parametrised. We can therefore
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just as well reparametrise it by viewing it as the family {Φc+Cε
ε }c∈R with Cε as in

the previous section.

This idea first arose in theoretical physics in the earlier part of the 20th century

during the development of quantum field theory. The situation there is similar: one

starts from a family of formal expressions for the Lagrangian of a system and then

tries to use this in order to compute scattering amplitudes. These amplitudes are

expressed as an infinite series of terms, each of which is described by a Feynman

diagram. Some of these diagrams happen to encode diverging integrals and are

therefore not well-defined. The procedure that was eventually devised in order to

“cure” these divergencies can be summarised as follows:

• Construct a familyM c
ε of theories indexed by the same constants c appearing

in the original formal Lagrangian, as well as on some cut-off parameter ε.
These theories are such that they give rise to well-defined Feynman diagrams

for any fixed ε > 0 and they formally appear to approximate to the desired

theory as ε→ 0.

• Find an ε-dependent reparametrisation gε of the parameter space in such

a way that, for every c, Mgεc
ε converges to a non-trivial limiting theory as

ε → 0.

• Show that, modulo reparametrisation of its parameter space, the family of

limits obtained in this way does not depend on the regularisation procedure

used in the first step.

Whenever we are in such a situation, we call the theories M̂ c and M̂ c
ε given by

M̂ c = lim
ε→0

M̂ c
ε , M̂ c

ε =Mgεc
ε ,

the “renormalised theories”. In the context of QFT, the arguments c parametrising

the renormalised theories are called the “effective coupling constants”, while

the corresponding arguments gεc for the regularised theory are called the “bare

coupling constants”.

This turns out to be a rather generic state of affairs which also applies mutatis

mutandis in the context of semilinear stochastic PDEs, where theM c’s are solution

theories to families of such equations.

3.3 A simple example

Before we proceed, let us now give a very simple and self-contained example of

renormalisation. In this example, which does not at all have the pretense to be

connected to physical reality in any sense, a “theory” M is given by a Schwartz

distribution, i.e. a continuous linear map M : S→ R, where S denotes the space
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of Schwartz functions. Assume now that we would like to describe the family of

Schwartz distributions formally given by M c(x) = c1
|x|

− c2δ0(x). This is of course

nonsensical since, for every test function ϕ with ϕ(0) 6= 0, one would then have

M c(ϕ) =

∫

R

c1
ϕ(x)

|x| dx− c2ϕ(0) = ∞ , (3.5)

so that M c really isn’t a Schwartz distribution at all!

Given a continuous function η : [−1, 1] → R with η(−1) = η(1) = 1, we have

a natural way of regularising this theory by replacing the singular function 1/|x|
by the continuous function given by

1

|x|ε
:=

{

1/|x| if |x| ≥ ε,
ε−1η(x/ε) otherwise.

This regularisation procedure then yields a family M c,η
ε of well-defined Schwartz

distributions by simply replacing |x| by |x|ε in (3.5). In order to obtain finite

quantities in the limit ε→ 0, we then set

c1 = ĉ1 , c2 = ĉ1

∫ 1

−1

dx

|x|ε
+ ĉ2 = ĉ1(

∫

η(x)dx− 2 log ε) + ĉ2 .

In this way, we have

M c(ε,η,ĉ),η
ε (ϕ) = ĉ1

∫

|x|≥1

ϕ(x)

|x| dx+ ĉ1

∫

|x|<1

ϕ(x) − ϕ(0)

|x|ε
dx− ĉ2ϕ(0) .

It is now immediate that this expression does indeed have a limit as ε → 0 and

that this limit is indeed independent of the choice of regularisation function η:

M̂ ĉ(ϕ) = ĉ1

∫

R

ϕ(x) − 1|x|<1ϕ(0)

|x| dx− ĉ2ϕ(0) .

(But for this we had to adjust the “bare” parameter c2 in an η-dependent way!)

3.4 Renormalisation of SPDEs

Let us now give an overview of how the procedure explained in Section 3.2 below

is implemented in the context of stochastic PDEs. Consider a family of equations

of the type

∂tui = Lui + F (0)
i (u) +

m
∑

j=1

F (j)
i (u) ξj , (3.6)

where L is a strictly elliptic differential operator with constant coefficients (for

example L = ∆ or L = −∆2), the ξj are finitely many stationary random distri-

butions which, at small scales, are close to scale invariant with exponents αj , and
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the F (j)
i are local functions of u, in the sense that F (j)

i (u)(t, x) only depends on

u and its derivatives evaluated at (t, x). We furthermore assume that this system

of equations is locally subcritical. We do not give a precise definition of what

this means, loosely speaking it means that the scaling behaviour of the non-linear

terms appearing on the right hand side of (3.6) is dominated at small scales by

that of the noise terms, in the sense of formal powercounting. It is a purely com-

binatorial condition, which only depends on the order of L, the exponents αj , and

the degrees of the nonlinearities F (j)
i (with the convention that arbitrary smooth

functions count as polynomials of infinite degree).

For example, in the case of the (2.9), the noise term in the right hand side is ξ,
which is scale invariant (under parabolic scaling) with exponent −d+2

2
in the sense

that

εαξ(t/ε2, x/ε)
law
= ξ(t, x) , α = −d+ 2

2
. (3.7)

On the other hand, the “worst” nonlinear term is Φ3 which is expected to be

dominated at small scales by a scale-invariant behaviour with exponent −3β,

where β = d−2

2
. This is because the solution to ∂tΦ = ∆Φ + ξ displays is self-

similar of order β as a consequence of (3.7) and self-similarity exponents do add

up when multiplying terms. (Or at least they would if these were functions that we

are allowed to just multiply together!)

We see that −3α > −d+2

2
if and only if d < 4, so that this equation is locally

subcritical in dimensions below 4, and we say that its “critical dimension” is d = 4.

Note that this terminology is to some extent compatible with the one found in the

physics literature, according to which the critical dimension of the Ising model is

also 4. Performing the analogous powercounting for the KPZ equation shows that

it is locally subcritical for d < 2. The following is a synthesis of the main results

of [Hai14, BHZ16, CH16, BCCH17]:

Theorem 3.1 Consider (3.6) on a bounded d-dimensional torus and, for any

smooth noise ξ(ε), write M(F, ξ(ε)) for the classical solution to (3.6) with locally

subcritical nonlinearity F and noise ξ.
Then, there exists a finite-dimensional Lie group R acting on the space of

nonlinearities as well as a map ξ 7→ gξ ∈ R defined on centred smooth stationary

noises satisfying suitable moment conditions such that the map

(F, ξ) 7→ M(gξF, ξ) ,

extends continuously to all noises compatible with the scaling exponents αj .

The formulation of this result is somewhat imprecise on purpose. A precise

formulation requires giving a formal definition of local subcriticality, a precise

definition of a class of admissible noises, as well as a topology in which they can
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be approximated. This is surprisingly subtle and technical, so we avoid giving

these details here. For the same reason, we also ignored the question of a suitable

class of initial conditions. In the cases discussed in these notes, one can find α ∈ R

such that solutions exists for all u0 ∈ Cα, and such that these solutions then also

take values in Cα for positive times. This is however not the case in general: there

are situations in which solutions can only be defined for initial conditions that are

“sufficiently close to equilibrium” in a sense that can be made precise. This is the

case for example when considering a model analogous to (2.9), but in “effective

dimension” d = 4 − δ for small enough. One way to set up such a model is to

consider (2.9) in dimension 4, but to replace ξ by space-time white noise convolved

with a kernel of the type (t, x) 7→ (t2 + |x|4) δ−6

4 , where the number 6 refers to the

scaling dimension of 4+1-dimensional parabolic space-time. Finally, this general

result is local in time, i.e. we work in a topology that allows solutions to blow up in

finite time and all approximation results are only relevant up to this blow-up time.

3.5 Structure of proof

Let us now give a short overview of how a result like Theorem 3.1 can be proven.

The first step, which is based on an idea first introduced by Lyons in the nineties in

the context of controlled ODEs (and in particular stochastic differential equations,

see [Lyo98, LCL07, LQ02, FV10, FH14]) is to factorise the classical solution

map M into a map that acts only on the noise and “enhances” it with additional

information and a map that makes uses of this additional information to build the

solution. In the context of ODEs, this enhancement of the noise is called a “rough

path”, while in the present context it is called a “model” for reasons that will

become clearer later on.

For definiteness, let us writeNfor a suitable space of admissible nonlinearities

leading to locally subcritical problems and Y for a suitable space of distributions

including possible blow-up times arising in Theorem 3.1, so that the classical

solution mapMcan be viewed as a mapM: N×B∞ → Y, where the second factor

B∞ is a space of smooth noises. We also write B for the space of all distributions

(ξi)i such that ξi ∈ Cαi−κ for some (small) κ > 0 and every i ∈ {1, . . . , m}, with

αi as in (3.6). We also view B∞ as a subspace of B. From now on we completely

ignore the additional dependence of the solution on the initial condition since this

does not introduce any additional conceptual difficulty.

The first step mentioned above is thus to find a topological space X and maps

L: B∞ → X, π : X→ B and MA : N×X→ Y such that one has the identities

M(F, ξ) = MA(F,Lξ) , π ◦L= id . (3.8)

Without additional constraints, it is of course trivial to do so: just take X= B∞

and L and π to be the identity. It is however highly non-trivial to do this if we

impose the following additional constraints:
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1. The map MA is continuous.

2. The map π is continuous and surjective.

Indeed, these conditions are competing: the smaller the space X, the easier it is

for MA to be continuous, but it needs to be large enough for π to be surjective.

As a matter of fact, it was shown in [Lyo91] that already in very simple cases it is

impossible for any Banach space X to simultaneously satisfy all these constraints!

It was shown in [Hai14] (see also [BHZ16] for a cleaner formulation that

allows for systems of equations and collections of noises with different scaling

exponents) that it is indeed possible to find such a space X in all locally subcritical

situations. The problem is that the map L, although continuous on the space of

smooth functions, does of course not extend in a continuous way to all of B, so

that this is not yet sufficient to give a canonical interpretation to solutions to (3.6):

we would like to find a “canonical” random variable Z with values in X such that

the law of πZ is equal to that of the noise ξ, so that we could then define solutions

to (3.6) to be given by MA(F, Z). Ideally, one would even want these random

variables to be defined on the same probability space, so that Z = L̂(ξ) for some

measurable map L̂ satisfying π ◦ L̂= id, which would then yield a corresponding

notion of “strong solution”.

It was shown in [Hai14] that there exists a finite-dimensional nilpotent Lie

groupR acting on Xin a way that leaves π invariant in the sense that π(gZ) = π(Z)

for every Z ∈ X and every g ∈ R. It is therefore natural to try to build the

random variable Z by considering a regularisation ξ(ε) of the noise ξ and setting

Z (ε) = gεξ(ε). The question is then whether there exist elements gε such that the

Z (ε) converge. In [Hai14], this was shown for two examples on a case-by-case

basis, but a general theory was lacking due to a lack of understanding of the group

R and its action on X.

This was partly remedied in [BHZ16], where an explicit description of R (or

rather a “sufficiently large” subgroup thereof) is given. This allows [CH16] to

show the following:

Proposition 3.2 In the context of Theorem 3.1, there exists a map ξ 7→ gξ ∈ R

defined on centred smooth stationary noises satisfying suitable moment conditions

such that the map

ξ 7→ gξL(ξ) ,

extends continuously to all noises compatible with the scaling exponents αj .

Remark 3.3 Note that this is a probabilistic statement: it is important to consider

random noises ξ that are stationary in space-time. The continuity mentioned in

the statement is not a continuity at the level of samples of this process, but at the
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level of its law. When considering convergences of the type ̺ε ⋆ ξ → ξ for some

mollifier ̺ε, the whole sequence naturally lives on the same probability space and

the result of [CH16] actually yields convergence in probability.

Remark 3.4 The map ξ 7→ gξ is constructed as follows. Given any class of

locally subcritical stochastic PDEs as described above, one first builds a linear

space X̂ as well as a polynomial (in the sense of “finite sum of multilinear”)

map L̂: B∞ → X̂ which is such that it maps stationary processes to stationary

processes under a suitable action of the group of translations on X̂. The actual

(nonlinear) space Xcan then be viewed as a subset of X̂which turns into a Polish

space when endowed with a suitable metric. This metric is not derived from

any norm on X̂ but instead encodes the nonlinear features of X. The map L

mentioned in the proposition then coincides with L̂ and the action of R on X is

actually derived from an action on X̂. The element gξ is then the unique element

of R with the property that

E(gξL̂(ξ))(0) = 0 . (3.9)

The fact that such an element exists, is unique, that the action of R on X̂ leaves X

invariant and that it is continuous in the topology of Xare all non-trivial statements

that are contained in [Hai14] for special cases and [BHZ16] in full generality.

When combining this with the continuity of the map MA, this shows that the

map M̂ defined by

M̂(F, ξ) = MA(F, g
ξL(ξ)) , (3.10)

does indeed have the type of continuity properties with respect to the noise that

are announced in Theorem 3.1. The last missing ingredient in the proof is the fact

that M̂(·, ξ) is really nothing but a reparametrisation of M(·, ξ). This is shown in

full generality in [BCCH17]:

Proposition 3.5 In the context of Theorem 3.1, there exists an action of R onto X

on the right such that, for every Z ∈ Xand every F ∈ N, the identity

MA(F, gZ) = MA(Fg, Z) . (3.11)

holds for every g ∈ R. In particular, it follows that the renormalised solution map

M̂ is related to the classical solution map by M̂(F, ξ) = M(Fgξ, ξ).

4 Regularity structures

In this final section, we give a description of the main ingredients appearing in the

sketch of proof given in the previous section, namely the space X and the group

R.
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4.1 Revisiting the Φ4 equation

Let us first note that the construction given in Section 3.1 is precisely of the type

described in the previous section with the important feature that in this case the

space X itself is linear. Indeed, we can set

X= C−α ⊕ C−2α ⊕ C−3α ,

as well as

L(ξ) = (X,X2, X3) ,

where X is given as the solution to ∂tX = ∆X + ξ. (We ignore the minor

subtleties arising from the fact that such a solution may not necessarily exist. One

way of circumventing this problem is to actually set ∂tX = (∆− 1)X + ξ which

leads to minor modifications in the formulas given below.) Conversely, we set

π(X1, X2, X3) = ∂tX1 −∆X1 .

The “solution map” MA is then given by postulating that, for Z = (X1, X2, X3),

Φ = MA(c, Z) is given by Φ = Ψ+X1, with Ψ solving

∂tΨ = ∆Ψ+ c(Ψ +X1) − (Ψ3 + 3X1Ψ
2 + 3X2Ψ+X3) . (4.1)

Comparing this to (3.3), we immediately conclude that (3.8) does indeed hold.

Let now R = (R2,+) and, for g ∈ R2, define its action on Xby

gZ = (X1, X2 − g,X3 − 3gX1) . (4.2)

The calculation in (3.4) then shows that the identity (3.10) does hold, provided

that the action of R onto the space of right hand sides (which in this case is

parametrised by the constant c) is given by g : c 7→ c + 3g. The map ξ 7→ gξ is

then given by

gξ = EX2(0) , ∂tX = ∆X + ξ .

If we restrict ourselves to symmetric noises, or even just to noises with vanishing

first and third moments, it immediately follows that this choice of gξ does indeed

satisfy (3.9). The fact that it also makes ξ 7→ gξL(ξ) continuous is less obvious

and relies on the particular form of the action (4.2): the constant 3 appearing in

the last component seems somewhat arbitrary, but it serves to seemingly unrelated

purposes. First, if we restrict ourselves to actions of the form (4.2), the value 3
for this constant is the only possible choice which guarantees that there exists a

dual action of R on the space of right hand sides for our equation such that (3.10)

holds. The second consequence of this particular choice is that ξ 7→ gξL(ξ) is

continuous provided that we restrict ourselves to stationary processes satisfying a

natural cumulant bound.
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Although we will not give a proof of this latter fact here, let’s perform a

calculation that makes it plausible, and that simultaneously shows what kind of

probabilistic assumptions one should impose on the noise ξ. Fix a test function ϕ
and consider the random variables

Ŷϕ =

∫

ϕ(z)X(z) dz , Yϕ =

∫

ϕ(z)(X2(z) − EX2(z)) dz ,

with X given by (3.2). Since X is stationary, EX2(z) = EX2(0) and these are

precisely the random variables obtained by testing the first two components of

gξL(ξ) with ϕ.

We now give an example in dimension 3 of a sequence of non-Gaussian

processes ξε so that the corresponding random variables Y (ε)
ϕ and Ŷ (ε)

ϕ converge

to a limit, but so that EX2
ε (z) diverges. For this, let η be a stationary generalised

Gaussian random field with covariance given by Eη(z)η(z′) = K(z − z′) ∼
|z − z′|− 9

4 , with |z| denoting the parabolic norm of z = (t, x). We then set

ηε = ̺ε⋆η, writeKε for the covariance function of ηε, and set ξε(z) = η2ε (z)−Kε(0).

We now introduce a graphical notation for integrals involving Kε, the heat

kernel P , and the test function ϕ. We denote integration variables by nodes of our

graphs, with the origin drawn as a special node . Each line then represents a kernel,

with representing the heat kernel P , representing the covariance Kε,

and representing the test function ϕ. The argument of a kernel is the

difference between the values of the variables represented by the corresponding

target and base nodes. The line representing Kε are not oriented because this

kernel is symmetric, being the covariance of a stochastic process. With this

notation, setting for example

Ŷϕ =

∫

ϕ(z)X(z) dz ,

it follows from the definition of X and Wick’s formula that

EŶ 2
ϕ = 2

∫

ϕ(z1)ϕ(z2)P (z1 − z3)P (z2 − z4)Kε(z3 − z4)2 dz = 2 .

Note now that in dimension 3+1with parabolic scaling, ifKi are kernels behaving

likeKi(z) ∼ |z|−αi (we say that they are self-similar of orderαi) and one hasαi < 5
while α1 + α2 > 5, then K1 ⋆ K2 is a kernel which is again self-similar of order

α1 + α2 − 5. In this particular example, K2
ε is self-similar of order 9

2
, while the

heat kernel is self-similar of order 3, so that the kernel

P̄ ⋆ K2
ε ⋆ P = ,
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where P̄ (z) = P (−z), is self-similar of order 1

2
and therefore locally integrable. A

similar calculation allows to conclude that limε→0 E(Ŷ (ε)
ϕ − Ŷϕ)2 = 0 as claimed.

For this, no renormalisation was necessary. The situation gets a bit more

interesting regarding Yϕ. It follows from Wick’s formula combined with the

definition of ξε that one has

EY 2
ϕ = 8 + 32 + 16 . (4.3)

The main point here is that thanks to the fact that we subtracted EX2(0) in the

definition of the second component, there is no term of the form

(4.4)

appearing in this expression. Instead, all the terms appearing in (4.3) are 2-

connected: one needs to cut at least two edges in order to disconnect them. The

study of the convergence of multiple integrals of this type is a standard ingredient of

perturbative quantum field theory. In this case, one can apply Weinstein’s theorem

[Wei60] (see also [Hai17, Prop. 2.3]) which can be formulated as follows. Assign

to each edge e an exponent ae by setting ae = 0 for edges representing ϕ, ae = 3
for edges representing P , and ae =

9

4
for edges representing Kε. Then, integrals

described by a graph Γ as above converge if, for every subgraph (V̄ , Ē) ⊂ Γ (with

V̄ a subset of the vertices of Γ and Ē a subset of its edges such that the endpoints

of every edge in Ē belongs to V̄ ), one has the bound

∑

e∈Ē

ae < 5(|V̄ | − 1) . (4.5)

One can verify that all the graphs appearing in (4.3) do indeed have this property

while the graph (4.4) does not. (Just take as a subgraph the graph for

which one has
∑

e∈Ē ae = 101

2
> 10.)

What we’ve learned from this calculation is that the key property of the renor-

malisation procedure (3.9) is that it creates cancellations for terms of lower connec-

tivity in the graphical representation for the variances of the random variables Yϕ
and Ŷϕ. In general, one has a decomposition of the type (4.3), but with instances

of 2 replaced by the covariance of ξε and instances of 32 + 16
replaced by its four-point cumulant. It is then natural to impose conditions

on these cumulants that are akin to what we observed above. The key condi-

tion one imposes is that for k = ℓ + m and writing κk for the k-point cumu-

lant, the behaviour of κℓ+m(z1, . . . , zℓ, z
′
1, . . . , z

′
m) is less singular than that of



Regularity structures 27

κℓ(z1, . . . , zℓ)κm(z′1, . . . , z
′
m) as some of the variables zi get close to each other.

In other words, one assumes that cumulants behave “better” than what one can

deduce from their expressions in terms of moments. This is a very natural condi-

tion which, as we have just seen in an example, is verified for very large classes of

random fields.

Remark 4.1 One can also consider noises with non-vanishing third moments, but

this then forces us to consider a slightly larger class of right hand sides, for example

we can consider all equations of the type

∂tΦ = ∆Φ + c0 + c1Φ + c2Φ
2 − Φ3 + ξ . (4.6)

Furthermore, one should then take R = (R2,+) acting on the space Xby

gZ = (X1, X2 − g1, X3 − 3g1X1 − g2) .

In this case, it is a good exercise to show that the dual action on (4.6) for which

(3.10) holds is given by

(c0, c1, c2) 7→ (c0 − c2g1 + g2, c1 + 3g1, c2) .

4.2 Basic definitions

In the above example, the space X is a Banach space and the group R is abelian.

At the level of generality considered in Theorem 3.1, it is typically not possible to

enforce this and a more sophisticated approach is required.

The problem is that in general, the trick of subtracting some fixed process from

the solution in order to improve its regularity properties does not work. The idea

then is to perform a similar procedure, but to proceed locally rather than globally

and to determine these local terms in a self-consistent way. More precisely, the

aim is to provide a local description of the solution by a kind of Taylor expansion

and to then find a fixed point problem for the coefficients of this expansion. The

usual Taylor polynomials won’t do of course since, as we have already seen above,

solutions may not even be function-valued.

Instead, as in the previous subsection, the idea is to build a collection of noise-

dependent objects (in this caseX ,X2 andX3) which are useful in order to describe

both the solution to (3.6) and its right hand side. In general, these objects can be

arranged into a structure that closely mimics that of the usual Taylor polynomials.

Before we proceed, we describe this structure in a very general context that does

not refer to stochastic PDEs at all.

The starting point for our construction is a vector space T that should be though

of as containing the coefficients of our “Taylor-like” expansion at any point. It

is natural to postulate that T is a graded vector space T =
⊕

α∈A Tα, for some
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discrete set A of possible “homogeneities”. For example, in the case of the usual

Taylor expansions, we take for A the set of natural numbers and Tℓ contains the

coefficients corresponding to the monomials of total degree ℓ. In general, we only

assume that the set A is bounded from below and locally finite, and that each Tα
is a real Banach space, although in many examples of interest these spaces will be

finite-dimensional.

A crucial characteristic of Taylor expansions is that an expansion around any

point x0 can be re-expanded around any other point x1, namely simply by making

use of the identity

(x− x0)m =
∑

k+ℓ=m

(

m

k

)

(x1 − x0)k · (x− x1)ℓ . (4.7)

In the general case, we only assume that there are linear maps Γxy transform-

ing the coefficients of an expansion around y into the coefficients for the same

“polynomial”, but this time expanded around x.

In view of the example of Taylor expansions, it is natural to impose that any

such “reexpansion map” Γxy has the property that if τ ∈ Tα, then Γxyτ − τ ∈
⊕

β<α Tβ =: T<α. In other words, when reexpanding a homogeneous monomial

around a different point, the leading order coefficient remains the same, but lower

order monomials may appear, just as is the case in (4.7). Furthermore, one should

be able to compose reexpansions, since taking an expansion around x, reexpanding

it around y and then reexpanding the result around a third point z should be the

same as reexpanding the first expansion around z. In other words, it seems natural

to impose the identity ΓxyΓyz = Γxz. These considerations can be summarised

in the following definition of an algebraic structure which we call a regularity

structure:

Definition 4.2 Let T =
⊕

α∈A Tα be a vector space graded by A ⊂ R (discrete

bounded below) such that each Tα is a Banach space. Let furthermore G be a

group of continuous operators on T such that, for every α ∈ A, every Γ ∈ G, one

has

τ ∈ Tα ⇒ Γτ − τ ∈ T<α . (4.8)

The pair T = (T,G) is called a regularity structure with model space T and

structure group G.

Remark 4.3 We say that an element τ ∈ Tα is “homogeneous of degree α” and

write deg τ = α.

Such a regularity structure is a purely algebraic construct, but its purpose is to

be endowed with some analytic “flesh”: for each point x, we consider a linear map
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Πx : T → S′ (here S is the space of smooth test functions with compact support)

with the property that, for every homogeneous τ of degree α, the distribution Πxτ
satisfies an analytic bound that is homogeneous of degree α around x:

|(Πxτ)(ϕ
λ
x)| . λα , ∀λ ∈ (0, 1] , (4.9)

where ϕλ
x denotes a test function ϕ of size 1, translated so that its support contains

x, and then rescaled so that its integral doesn’t change but the diameter of its

support is of order λ. For a precise definition, see [Hai14, Def. 2.17].

The reexpansion property mentioned above then suggests that we should restrict

our attentions to maps Π as above with the additional property that one can find

elements Γxy ∈ G such that the identity

ΠxΓxy = Πy , (4.10)

holds for any pair of points (x, y). By scaling arguments and by analogy with (4.7)

it is furthermore natural to impose that if τ ∈ Tα and β < α, then the component

of Γxyτ in Tβ should be of size at most O(|x− y|α−β). We call such a pair (Π,Γ)

a “model” for the underlying regularity structure. The space X of all models is

endowed with a natural topology which turns it into a complete separable metric

space, but not a linear space. In the analogy with usual Taylor polynomials, the

regularity structure encodes the algebraic properties of Taylor monomials, while

a model realises them as actual functions defined on some underlying Euclidean

space.

Example 4.4 The usual Taylor polynomials are cast in this framework as follows.

Take for T the space of all polynomials
∑

k akX
k in some abstract indeterminate

X (say there are d indeterminates so we interpret k as a multiindex), with Tm the

subspace spanned by those Xk with |k| = m. The group G is then isomorphic to

Rd, acting on T by GhX
k = (X − h)k for h ∈ Rd. The canonical model for this

polynomial regularity structure is given by setting

(ΠxX
k)(z) = (z − x)k , Γxy = Gy−x .

It is then easy to check that (4.9) and (4.10) do indeed hold.

We can then consider functions f : Rd → T which are interpreted as providing

a “jet” Πxf (x) around every point x. Given a model, there are natural Hölder-type

topology on the space of such functions which allow one to define analogues Dγ

to the usual Hölder spaces Cγ . The way these spaces are defined is completely

analogous to the usual Hölder spaces in the sense that one would like f to be

“approximated by a polynomial up to order γ”. In our context, a “polynomial” is

naturally described by a function p : Rd → T such that

p(x) = Γxyp(y) , (4.11)
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for any two points x and y. This function can be “reconstructed” to a bona fide

distribution on Rd by setting Rp = Πxp(x). Note that, by (4.10) and (4.11), this

is independent of the particular choice of x. (This is of course not to say that the

distribution Rp is constant!)

Given this discussion, it is natural to say that a function f : Rd → T is in Dγ

if (4.11) holds “up to order γ”. More precisely, we impose that

‖f (x) − Γxyf (y)‖α . |x− y|γ−α , α < γ , (4.12)

where ‖ · ‖α denotes the norm of the component in Tα of some element of T .

The reason for the exponent γ − α is that the component of f in Tα should be

thought of as representing a type of “derivative of order α”, again by analogy with

usual Taylor expansions, so that (4.12) is analogous to the fact that if a function

is of class Cγ , then its derivative of order α is of class Cγ−α, provided of course

that α < γ. One fundamental result of the theory of regularity structures is the

following, which is the analogue in this context of the “sewing lemma” of [Gub04]

and states that the operation R defined above on polynomials extends canonically

to all of Dγ provided that γ > 0.

Theorem 4.5 Given a regularity structure endowed with a model Z = (Π,Γ), for

any f ∈ Dγ with γ > 0, there exists a unique distribution Rf such that, for every

x ∈ Rd, the distribution Πxf (x) −Rf vanishes at order γ in the vicinity of x.

Remark 4.6 We will sometimes write R(f, Z) instead to Rf to emphasise the

fact that this depends not only on the element f ∈ Dγ , but also on the underlying

model Z ∈ X.

Remark 4.7 In the case when Πxτ is actually a continuous function for every

τ ∈ T one has the explicit formula (Rf)(x) = (Πxf (x))(x). In general, the right

hand side of this expression makes of course no sense since Πxf (x) might be a

distribution which cannot be evaluated pointwise.

Furthermore, the map (Z, f ) 7→ Rf mapping a “model” Z = (Π,Γ) as

well as a “modelled distribution” f ∈ Dγ onto the Schwartz distribution Rf is

jointly continuous. (The precise continuity statement is somewhat subtle since the

definition of the space Dγ is itself dependent of the model Z, so that the pairs

(Z, f ) really take values in a type of topological vector bundle.) This theorem also

justifies the terminology “model”: the bound given in this theorem states that the

distribution Rf is modelled locally by Π in the same way that a smooth function

is modelled locally by polynomials.

The link to the discussion in Section 3.5 is now the following. The space X

is taken to be a suitable closed subset of the space of all models for a regularity



Regularity structures 31

structure that is canonically associated with a given class of semilinear parabolic

stochastic PDEs. The map MA is then built by mimicking the usual proof of

well-posedness for parabolic PDEs, but in a suitable weighted version of the space

Dγ . This requires to build a whole calculus in these spaces in order to give a

meaning to the various operations appearing there.

4.3 Calculus for regularity structures

Let us now show how one can construct the map MA : N× X → Y alluded

to earlier. Recall that N is a suitable space of right hand sides for the equation

of interest and X will be chosen as the space of models for a suitable regularity

structure. The precise construction of the regularity structure in question is of

course part of the question. The idea is to formulate an SPDE of the type (3.6) as

a fixed point problem in some space Dγ and to then set

MA(F, Z) = R(M̂(F, Z), Z) , (4.13)

where M̂: N× X→ Dγ is the solution to the fixed point problem and R is the

reconstruction operator given by Theorem 4.5.

In order to construct a regularity structure adapted to an equation of the type

(3.6), the idea is to start from the polynomial regularity structure endowed with

its canonical model as described in Example 4.4 and to systematically enlarge it

until it is sufficiently rich to support the operations required to formulate (3.6).

Our first step is to add to the indeterminates Xi additional symbols Ξi on which

the structure group acts trivially. The model (Π,Γ) = L(ξ) is then defined to be

such that ΠxΞi = ξi for every x and every i. The degree αi = degΞi of Ξi is

constrained by the regularity of the generalised random fields ξi for which we want

to build a solution theory in the sense that αi should be sufficiently small so that

the bound (4.9) holds for τ = Ξi. In the case when ξi is white noise for example,

this imposes the constraint αi < −D
2

, where D is the scaling dimension of the

underlying space(-time).

It is natural to also add symbols of the type XkΞi to the collection of basis

vectors of T and to impose that deg(XkΞi) = degXk + degΞi = αi + |k|. The

natural action of Rd on these symbols is given by Gh(XkΞi) = (X − h)kΞi, and

we naturally extend L(ξ) to it by setting (ΠxX
kΞi)(z) = (z − x)kξi(z). It is an

easy exercise to verify that these definitions are compatible with (4.9) and (4.10).

Remark 4.8 In general, there is no reason to introduce symbols of the type ΞiΞj

since products of noises do not naturally appear in (3.6). Furthermore, in many

situations there is no natural way of renormalising the pointwise product ξiξj in a

meaningful way. As a consequence, our structure space T will in general not be

an algebra. Although our notation suggests that it is endowed with a product, this
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has a non-trivial domain of definition so that not any two vectors can be multiplied

with each other.

At this stage, we note that we have enough structure to be able to use our theory

to multiply the distributions ξi with sufficiently regular functions f ∈ Cγ . Indeed,

given f ∈ Cγ , we can canonically lift it to F ∈ Dγ by setting

F (x) =
∑

|k|<γ

f (k)(x)

k!
Xk . (4.14)

Since F (x) lives in the polynomial “sector” of our regularity structure, we can

multiply it by Ξi and define F̂i(x) = F (x)Ξi. The condition F ∈ Dγ implies that

F̂i ∈ Dγ+αi since

F̂i(x) − ΓxyF̂i(y) = (Fi(x) − ΓxyFi(y))Ξi ,

and multiplication by Ξi changes the degree by αi, so that RF̂i is well-defined

as soon as γ is sufficiently large so that γ + αi > 0. This is nothing but the

well-known fact that the product (f, ξ) 7→ f · ξ extends continuously to Cγ × Cα

if and only if γ + α > 0, see [BCD11], so it seems that we haven’t really learned

anything new yet.

However, one verifies that this construction generalises very easily. Indeed,

consider any two subspaces V1, V2 ⊂ T that are invariant under the action of G,

block-diagonal with respect to the decomposition T =
⊕

α Tα, and such that there

exists a bilinear “product” ∗ : V1 × V2 → T with the additional property that, for

every Γ ∈ G and homogeneous τi ∈ Vi, their product is homogeneous and one has

Γ(τ1 ∗ τ2) = (Γτ1) ∗ (Γτ2) , deg(τ1 ∗ τ2) = deg τ1 + deg τ2 . (4.15)

We furthermore set βi ≤ 0 so that Vi ⊂
⊕

α≥βi
Tα. One then has the following

general result, the proof of which is an elementary exercise.

Proposition 4.9 In the above context, given Fi ∈ Dγi with values in Vi and γi > 0,

one has F1 ∗ F2 ∈ Dγ with γ = (β1 + γ2) ∧ (β2 + γ1).

Remark 4.10 In general, for Fi ∈ T<γi one does not have F1 ∗ F2 ∈ T<γ but

only F1 ∗ F2 ∈ T<(γ1+γ2). In order to avoid this, one can define the product

∗ : Dγ1 × Dγ1 → Dγ as

(F1 ∗ F2)(z) = Q<γ(F1(z) ∗ F2(z)) ,

where Q<γ is the projection onto T<γ . It is a slightly lengthier exercise to verify

that Proposition 4.9 still holds with this modified definition, so we will use this

from now on.
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Note here that Fi can be seen as having two distinct “regularities”. Its “descrip-

tive regularity” γi > 0 measures how well RFi can be described in terms of the

underlying model, while its “scaling regularity” βi ≤ 0 measures the behaviour

of RFi around any given point in the sense that (RFi)(ϕ
λ
x) . λβi . Note that the

usual Hölder regularity of a continuous function is its descriptive regularity (with

respect to the polynomial model), while its scaling regularity is always 0. On the

other hand, if we lift a distribution ξ as above to a regularity structure via a suitable

symbol Ξ, then the function F (x) 7→ Ξ satisfying RF = ξ has infinite descriptive

regularity, while its scaling regularity coincides with the usual (negative) Hölder

regularity of ξ. Proposition 4.9 can be interpreted as a rigorous formulation of

the intuition that “multiplication by a distribution of regularity −α behaves like

taking α derivatives”.

Remark 4.11 At the algebraic level, it is not difficult to see that given V1 and V2
it is always possible to extend T to some larger structure space T̃ while keepingG
fixed in such a way that on has a product ∗ : V1× V2 → T̃ and an action of G on T̃
satisfying (4.15). It is however not clear in general how to extend a given model on

T to all of T̃ . It was shown in [Hai14, Prop. 4.11] that it is actually always possible

to do so, but while the construction given there is explicit, it relies on several

arbitrary choices making this extension not canonical, except for homogeneous

elements with degrees adding up to a strictly positive number. For example, in the

situation of Remark 4.8, that construction simply gives ΠxΞiΞj = 0, which is not

very satisfactory at all. In the particular case where the ξi actually happen to be

smooth, one would of course rather like to set ΠxΞiΞj = ξiξj .

At this stage, our construction is already sufficiently rich to allow us to give a

slightly cleaner formulation of the argument in Section 3.1. Indeed, ignoring for

a moment the fact that one would like to impose an initial condition at time 0, we

reformulate (2.9) as an integral equation:

Φ = P ⋆ (cΦ− Φ3 + ξ) = P ⋆ (cΦ− Φ3) +Ψ . (4.16)

If we now consider a regularity structure built from the polynomial one by adding

symbols Ψi for i ≤ 3, we can then formulate this in a very natural way as a fixed

point problem in Dγ :

Φ = L̂(P ⋆R(cΦ− Φ3)) + Ψ , (4.17)

where we write L̂ for the map turning a continuous Cγ function into an element

of Dγ as in (4.14). Under what conditions can we even find a space Dγ which

is mapped into itself by the right hand side of (4.17)? By our definition, any

solution Φ will be of the form Φ = Ψ + R for some remainder R taking values
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in the polynomial sector, so that Φ3 does at least have a natural meaning in our

regularity structure. Furthermore, if degΨ = −α, and Φ ∈ Dγ , we can apply

Proposition 4.9 twice to find that Φ3 ∈ Dγ−2α, so that we certainly want to be able

to take γ > 2α for the argument of R to be sufficiently regular.

On the other hand, it follows from (4.9) and Theorem 4.5 that one typically

has RΦ3 ∈ C−3α but no better so that, by the classical Schauder estimates, L̂P ⋆
RΦ3 ∈ D2−3α but no better. These two conditions can be satisfied simultaneously

provided that 2α < 2−3α, which restricts us toα < 2

5
. However, if ξ is space-time

white noise, then it only belongs to C−β for β > d+2

2
, thus enforcing α > d−2

2

which restricts us to dimensions d < 14

5
. In particular, this construction has no

chance of covering the interesting case d = 3.

The problem is that, in (4.17), we throw away all of the control that we have on

Φ3 the moment we apply the reconstruction operator R. Instead, we would like

to construct an operator Pwhich lifts the operation P⋆ to the setting of modelled

distributions in the sense that

RPF = P ⋆RF , (4.18)

but that furthermore satisfies a type of Schauder estimate that increases both the

descriptive and the scaling regularities by 2 (modulo the limitation that the scaling

regularity can never become strictly positive).

In order to build such an operator, we need to be able to describe the local

behaviour of P ⋆RF up to order γ + 2, provided F ∈ Dγ . Again, this requires

our regularity structure to be sufficiently rich. It is natural to expect that if the

local behaviour of RF involves Πxτ for some τ , then that of P ⋆RF will involve

P ⋆Πxτ . Naïvely, this would suggest that we should consider regularity structures

endowed with a map I such that

degIτ = deg τ + 2 , (4.19)

and only consider models with the property that

ΠxIτ = P ⋆ Πxτ .

Unfortunately, this is not compatible with the bound (4.9): even if deg τ > −2 for

example, there is no reason whatsoever why P ⋆Πxτ should vanish at x, which is

imposed by (4.9). Instead, the idea is to force ΠxIτ to vanish at the right order

by considering models satisfying

ΠxIτ = P ⋆ Πxτ −
∑

|k|<deg Iτ

(· − x)k

k!
(DkP ⋆ Πxτ)(x) . (4.20)

This immediately raises two questions:
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1. Since DkP ⋆ Πxτ is a genuine distribution in general, what does it mean to

evaluate it at x?

2. Is it always possible to construct a regularity structure and model with these

properties and is this sufficient to construct the operator P?

The first question can be addressed by realising that, by self-similarity, there exists

a compactly supported test function ϕ so that the heat kernel P can be written as

DkP =
∑

logλ∈Z

λ2−|k|(Dkϕ)λ0 ,

so that, at least formally, one has

(DkP ⋆ Πxτ)(x) =
∑

logλ∈Z

λ2−|k|(Πxτ)((D
kϕ)λx) .

If we ignore the contributions coming from λ > 1 (one can deal with these

separately or replace the heat kernel by a truncated version), we see that this sum

is guaranteed to converge precisely when α+2− |k| > 0, i.e. when |k| < deg Iτ .

Regarding the second question, it is shown in [Hai14, Sec. 4] that it does indeed

have a positive answer in the following sense.

Theorem 4.12 Given a regularity structure (T,G) extending the polynomial struc-

ture (T̄ , Ḡ) and a subspace V ⊂ T (block-diagonal and invariant under G), one

can further extend (T,G) to a regularity structure (T̃ , G̃) on which there exists a

map I: V → T̃ satisfying (4.19) and such that, for every Γ ∈ G̃ and τ ∈ V , one

has

ΓIτ − IΓτ ∈ T̄ . (4.21)

Furthermore, every model on (T,G) can be canonically and continuously extended

to a model on (T̃ , G̃) satisfying (4.20). Finally, writing Dγ(V ) for the space of Dγ

functions with values in V , one can construct a continuous operator P: Dγ(V ) →
Dγ+2 such that (4.18) holds and such that furthermore

(PF )(x) − I(F (x)) ∈ T̄ .

4.4 Construction of regularity structures for SPDEs

We now have all the ingredients in place to construct the space X and the map

M̂ appearing in (3.8) and (4.13). To construct the regularity structure, start with

symbols 1,X i (one for every space-time coordinate) and Ξj (one for every driving

noise) with degrees given as above. From these, we then build a collection Wof

symbols by inductively postulating that

τ1, τ2 ∈ W ⇒ τ1τ2 ∈ W , deg τ1τ2 = deg τ1 + deg τ2
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τ ∈ W ⇒ I(τ ) ∈ W , deg I(τ ) = 2 + deg τ .

We put on W the equivalence relation ∼ generated by 1τ ∼ τ , τ1τ2 ∼ τ2τ1,
(τ1τ2)τ3 ∼ τ1(τ2τ3), and by also postulating that τ1 ∼ τ2 implies both I(τ1) ∼
I(τ2) and τ1τ ∼ τ2τ . We then write W̃ = W/ ∼ so that W̃ is a graded

commutative monoid endowed with a map I.

The set W̃ is much too large to be a good set of basis vectors for a regularity

structure since the corresponding set of degrees is typically neither discrete nor

bounded from below. One therefore selects the smallest subset F⊂ W̃which is

sufficiently large so that it is possible to formulate the SPDE under consideration

as a fixed point problem in the regularity structure built by taking T = 〈F〉 and

for G the group of all linear operators on T such that ΓX i −X i ∈ 〈1〉, ΓΞi = Ξi,

and satisfying (4.8), (4.15) and (4.21). (The set Fneeds to be chosen sufficiently

large so that any linear map Γ on 〈W̃〉 satisfying all of the above properties maps

〈F〉 to itself.)

An equation is said to be locally subcritical if the corresponding set F is such

that, for every γ ∈ R, there are only finitely many elements τ ∈ Fwith deg τ < γ,

which is a prerequisite for (T,G) as above to fulfil the axioms of a regularity

structure. Let us go back to our running example of the Φ4 model. In this case,

ignoring again the effect of initial conditions, we would like to rewrite (4.16) as a

fixed point problem in some Dγ space as follows:

Φ = P(cΦ− Φ3 + Ξ) . (4.22)

As a consequence of Theorem 4.12, this equation is of the form

Φ = I(cΦ− Φ3 + Ξ) + (. . .) , (4.23)

where (. . .) denotes terms belonging to T̄ . Let us write F0 for the collection of basis

vectors required to describe Φ and F0 for those required to describe Φ3. We then

certainly want Xk ∈ F0 for all k as well as I(Ξ) ∈ F0. Furthermore, whenever

τ ∈ F1, we want to have I(τ ) ∈ F0. Regarding F1, whenever τ1, τ2, τ3 ∈ F0, we

want to have τ1τ2τ3 ∈ F1, so that Φ3 ∈ 〈F1〉 for all Φ ∈ 〈F0〉.
To simplify notations, let us introduce graphical notations where we denote Ξ

by a dot and Iby a line, and where multiplication is denoted by joining graphs by

their roots. For example, we write I(Ξ) = , I(Ξ)2 = , I(I(Ξ)2)I(Ξ)2 = ,

etc. With this notation, we then have

F0 = { , , , , . . .} ,

F1 = { , , , , , , , , . . .} .

If we set degΞ = −α, then we have deg = 2−α, deg = 6−3α, deg = 10−
4α, etc. One can verify that the condition for subcriticality is that deg > degΞ,
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namely that Ξ is the term of lowest degree appearing on the right hand side of

(4.22). This imposes that α > −3 so that, since space-time white noise has scaling

exponent −d+2

2
the critical dimension is indeed 4, which is consistent with the

heuristic presented in Section 3.4.

It should be clear that this procedure is rather robust and allows us to associate

a regularity structure to any locally subcritical stochastic PDE. Furthermore, the

regularity structures built with this procedure are endowed with a canonical lift

L: B∞ → X (recall that X is the space of models for our regularity structure) by

setting

ΠxΞi = ξi , (ΠxX i)(z) = zi − xi ,

and then extending this to all of Fby imposing that

Πx(τ τ̄ ) = (Πxτ ) · (Πxτ̄ ) , (4.24)

as well as (4.20). There is also a natural (essentially unique) way of choosing

Γxy ∈ G such that (4.10) holds and it is possible to verify that this choice of (Π,Γ)

satisfies the bound (4.9) as well as the required analytical bound on Γxy, provided

that ξ is smooth.

5 Renormalisation

Let us quickly summarise the situation so far. Given a class of stochastic PDEs,

we have just seen how to build a regularity structure in which we can use the

calculus developed in Section 4.3 in order to reformulate the equation as a fixed

point problem in some space Dγ . In general, this equation may not have a solution

but, if one considers periodic (in space) situations, it was shown in [Hai14] that it is

possible to define weighted versions of the spaces Dγ in which the right hand side of

(4.22) (or the analogous mild formulation of the SPDE under consideration, taking

furthermore the effect of the initial condition into account) defines a contraction

when restricted to short enough time intervals, so that it admits a solution M̂which

depends continuously on the underlying model Z ∈ X.

Via the reconstruction operator R, M̂ then defines a solution map MA by

(4.13). This construction implements the strategy outlined in Section 3.5: the lift

L is given by the canonical lift as above with the left inverse π given trivially

by (π(Π,Γ))i = Π0Ξi. This is indeed surjective on B provided that we choose

degΞi = αi − κ, since the bound (4.9) is equivalent to the Cα norm cases where

Γxy acts trivially on τ (as it does on Ξi by construction). Furthermore, the identity

(4.24) combined with Remark 4.7 implies that, for smooth models, one has

R(F ·G) = RF ·RG , (5.1)

which in turn, when combined with (4.18), shows that the first identity in (3.8)

holds.
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5.1 Alternative representation of models

The only remaining problem is that, as we have already seen in the calculations

of Section 4.1, the canonical lift ξ 7→ L(ξ) does not extend continuously to all

ξ ∈ B. Instead, we would like to perform a suitable renormalisation procedure

as described in Section 3.5. Before we do this, we note that the canonical lift L

can alternatively be described in a slightly different way. Given a smooth ξ ∈ B∞,

we obtain a representation Π of our regularity structure by setting similarly to

above (Π1)(x) = 1, (ΠXi)(x) = xi, (ΠΞi)(x) = ξi(x), and then extending this

inductively to all of T by

Π(τ τ̄ ) = (Πτ ) · (Πτ̄ ) , ΠI(τ ) = P ⋆Πτ . (5.2)

This is very similar to the construction ofL(ξ) given above, except that we dropped

the polynomial correction term in (4.20). One then has the following alternative

characterisation of L(ξ) which is relatively straightforward to show by induction.

Proposition 5.1 Given ξ ∈ B∞, defineΠ as above. Then, for every x, there exists

an essentially unique Fx ∈ G such that (Dk
ΠFxτ )(x) = 0 for every τ ∈ Fand

every |k| < deg τ . Furthermore, writing L(ξ) = (Π,Γ), one has

Πx = ΠFx and Γxy = F−1
x Fy . (5.3)

Remark 5.2 By “essentially unique”, we mean that Fx is uniquely determined by

Π for generic choices of Π (and therefore ξ). In special cases as when ξ = 0 this

is of course not the case. See [BHZ16, Prop. 6.3] for a more precise formulation.

The condition (Dk
ΠFxτ )(x) = 0 for |k| < deg τ combined with the smoothness

of Π immediately implies (4.9).

Remark 5.3 For arbitrary Π : T → C∞, we can still find a (generically unique)

FΠ

x ∈ G such that the condition (Dk
ΠFxτ )(x) = 0 for |k| < deg τ holds for all τ

of the form τ = I(σ) for some σ ∈ F. This does however not imply in general

that this bound (and therefore (4.9)) holds for arbitrary τ !

Write now X∞ for the collection of all smooth maps

Π : T → C∞ such that ΠI(τ ) = P ⋆Πτ (5.4)

and such that one can find a map x 7→ Fx ∈ G such that (5.3) defines a model

(Π,Γ) ∈ X. While Proposition 5.1 states that the canonical representation Π built

from ξ ∈ B∞ does belong to X∞, it is not the case in general that X∞ contains all

maps Π satisfying (5.4).

Since every smooth model is built from a map Π as in (5.3) (take for example

Π = Π0 and Fx = Γ0,x), we henceforth describe models via such maps. Since the
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mapsΠ are linear, it is natural in view of Section 3.5 to look for a groupR of linear

maps M : T → T acting on X∞ on the right by Π 7→ Π ◦M . We furthermore

want our renormalisation procedure to keep the meanings of the symbols 1,X and

Ξ intact and to preserve the second identity in (5.2). We therefore look for maps

M : T → T satisfying the following properties

1. One has M1 = 1 and MΞi = Ξi for all i.
2. One has MX iτ = X iMτ and MI(τ ) = I(Mτ ) for all τ ∈ T .

3. For every Π ∈ X∞, one has Π ◦M ∈ X∞.

The first two properties are straightforward to verify, but it is much less clear a

priori how the last one can be checked. A group R of linear maps satisfying

all of these properties was exhibited in [BHZ16, Thm 6.28], (it is called G− in

that article) where it was also shown that R is sufficiently large to be able to find

elements gξ ∈ R such that (3.9) holds. (Here, X∞ plays the role of the linear space

X̂ alluded to in Remark 3.4 and L̂ is given by the canonical lift ξ 7→ Π described

above.)

5.2 Description of the renormalisation procedure

We do not give a full description of the groupR here, but rather a slightly simplified

one corresponding to a subgroup of the group G− described in [BHZ16]. The idea

is that each element Mg ∈ R is described by a map g : F− → R, where F− ⊂ F

denotes the subset of F consisting of symbols with strictly negative degree and

not containing any of the symbols X i. As in Section 4.4, we identify elements

of Fwith trees T = (V,E) whose nodes V are endowed with labels describing

the index i of the corresponding term Ξi. If the symbol in question also contains

powers ofX, then we encode these as additional labels on the nodes of the tree, so

that nodes are indexed by elements in Nd × {0, . . . , m} where a noise index of 0
denotes the absence of noise. For example, X2I(Ξ1)I(Ξ2X1) is identified with

the tree , where the two leaves have labels ((), 1) and ((1), 2) respectively, while

the root has label ((2), 0). (We denote multiindices by unordered tuples.)

Given such a labelled tree T, we write T̄ ⊂ T for a subgraph consisting of a

collection of edges Ē ⊂ E, as well as all the vertices V̄ ⊂ V incident to Ē. Given

T̄ ⊂ T, we denote by ι(T̄) the element of the free algebra 〈〈F−〉〉 generated by F−

by identifying each connected component of T̄ with an element of F− (ignoring

the values of the X-component of the labels of the nodes of T̄) and multiplying

them in 〈〈F−〉〉. If one of the connected components of T̄ happens to have positive

degree, we set ι(T̄) = 0. We naturally map the empty subgraph to the unit of

〈〈F−〉〉.
Given T̄ ⊂ T, we also denote by T/T̄ the new element of F obtained by

contracting each connected componentA of T̄ to a single vertex. The label of this

vertex is given by (k, 0), where k is the sum of all the X-labels of vertices of A.
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For example, we have

T, T̄ = ⇒ T/T̄ = ,

where T̄ is the coloured subgraph of T, with the two connected components drawn

in blue and red respectively. If the labels of the red vertices in T are labelled by

(ki, ji), then the label of the single red vertex in T/T̄ is (k, 0) with k =
∑

i ki.
Given g : F− → R, we then also write g for its unique extension to a character

of 〈〈F−〉〉. The above definitions then allow us to define a map Mg : T → T by

MgT =
∑

T̄⊂T

g(ι(T̄))T/T̄ . (5.5)

It is not very difficult to verify that one hasMf◦Mg =Mf◦g, where the composition

rule between maps f, g : F− → R is given by

(f ◦ g)(T) =
∑

T̄⊂T

g(ι(T̄)) f (T/T̄) , (5.6)

again with the conventions that g is extended to all of 〈〈F−〉〉 as above and that

f (T/T̄) = 0 if its argument happens to be of positive degree. Thanks to the fact

that, as soon as T̄ 6= 6#, T/T̄ has strictly less edges than T, each operator Mf

differs from the identity by a (locally) nilpotent operator, so that the Neumann

series for its inverse converges. One can show that this inverse is of the formMf−1

for some character f−1, and that there exists a linear map A: 〈F−〉 → 〈F−〉 such

that f−1 = f ◦ A. (As a matter of fact, this endows 〈F−〉 with a Hopf algebra

structure and (5.5) turns T into a left comodule for 〈F−〉.)

Remark 5.4 Recall that the group R constructed here is in general a proper

subgroup of the full group G− described in [BHZ16] which is required for the

renormalisation procedure to work in general. The full group is constructed

similarly to above, but without the restriction that elements of F− have vanishing

X-labels. In this case however, formula (5.5) has to be replaced by a more

complicated version which includes a suitable action on those labels. Since this

would only distract from the gist of the argument, we refrain from presenting this

here.

5.3 Action on the space of models

Denoting by R the group of all characters of 〈〈F−〉〉 endowed with the composition

rule (5.6), we obtained in [BHZ16, Thm 6.28] the following result.
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Theorem 5.5 The formula (f,Π) 7→ Π ◦Mf yields a (right) group action of R

onto X∞ which extends to a continuous group action on X.

The purpose of this section is to give an idea how the proof of this result works.

Assume for a moment that the map (g, F ) 7→ F g = M−1
g FMg yields a group

action of R onto G by a group automorphisms such that, for every Π : T → C∞

and every g ∈ R, writing FΠ

x for the element of G described in Remark 5.3, one

has

MgF
ΠMg
x = FΠ

x Mg , (5.7)

or equivalently (FΠ

x )g = F
ΠMg
x .

If this were the case then, writing Π
g = ΠMg, we would have the identity

Πg
x

def
= Π

gFΠ
g

x = ΠMg(FΠ

x )g = ΠFΠ

x Mg = ΠxMg . (5.8)

Since, by the definition (5.5), Mgτ − τ ∈ T>deg τ , it immediately follows that

Π ∈ X∞ implies Π
g ∈ X∞. Unfortunately, it turns out that the map (g, F ) 7→

F g =M−1
g FMg does not have these properties in general.

The way around this is to construct a larger regularity structure (T ex, Gex) which

extends (T,G) in the sense that T →֒ T ex, Gex ։ G, and the action of Gex on T ex

leaves T invariant and coincides with that of G there. This extension furthermore

comes with a natural projection π : T ex → T as well as with maps Πex : F ex
x ∈ Gex

such that the collection of maps (Πex
x ,Γ

ex
xy) given by

Πex
x = Π

exF ex
x , Γex

xy = (F ex
x )−1F ex

y ,

form a model for (T ex, Gex) in the case where Πex is of the form Π
ex = Ππ for Π

the canonical lift of a smooth noise ξ. The first step of the proof is then to show

that the map ι : Π 7→ Ππ extends to a continuous injection of X∞ into Xex
∞. The

second step is to show that R also has a natural action g 7→ M ex
g on T ex which is

compatible with that on T in the sense that

πM ex
g =Mgπ . (5.9)

In particular, this implies that ι(ΠMg) = ι(Π)M ex
g . The third step then consists

in verifying that for the extended regularity structure, it is indeed the case that

(5.7) holds, thus yielding a right action of R onto Xex
∞. Finally, one concludes the

argument by showing that this action leaves X∞ (viewed as a subset of Xex
∞ via ι)

invariant.

It remains to describe the extended regularity structure. The idea is to consider

a set W̃ex consisting of all labelled trees like W̃, but this time with labels in

Nd × {0, . . . , m} × R−, i.e. we add an additional “extended” R−-valued label to

each node. We write π : W̃ex → W̃ for the map that simply forgets the extended
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label. Writing βu for the extended label of the node u, we also define the degree

of T ∈ W̃ex by setting

degT = degπT+
∑

u∈V

βu .

Given such a labelled tree T ∈ W̃as well as a subgraph T̄ ⊂ T as above, we then

define ι(T̄) ∈ 〈〈W̃ex〉〉 just as above, but we do keep the values of the extended

labels on the extracted subgraph. We also define T//T̄ as in Section 5.2, but with

the extended label of any new vertex u in T//T̄ corresponding to the contraction

of a connected component A ⊂ T of T̄ given by βu = deg ι(A). We then define

Fex ⊂ W̃ex as the set of all T for which there exists T̂ ∈ Fand T̄ ⊂ T̂ such that

T = T̂//T̄.

The structure space for the extended regularity structure is then defined as

T ex = 〈Fex〉. This space still admits a natural (partial) product obtained by joining

trees by their roots as above and setting the extended label at the root of the resulting

tree to be the sum of the extended labels at the roots of the two factors. Similarly, it

admits a map I in the same way as above, setting the extended label of the newly

created root to 0. We can furthermore introduce maps Lα that act on a labelled

tree T by adding α to the extended label of the root. We then define the group

Gex of all linear operators Γ on T ex such that ΓXi − X i ∈ 〈1〉, ΓΞi = Ξi, and

satisfying (4.8), (4.15) and (4.21). We furthermore restrict Gex to elements such

that ΓLα(T) = Lα(ΓT) whenever T ∈ Fex is such that one also has Lα(T) ∈ Fex.

It is clear by construction that any such map does act as some element of G on the

subspace T ⊂ T ex, so that the resulting regularity structure does indeed extend

(T,G).

This allows us to build an “extended” renormalisation group R
ex exactly as

above, but keeping track of the extended labels. In other words, we define Fex
− ⊂

Fex as the subset of all elements of Fex of strictly negative degree and with

vanishingX-labels (but possibly non-vanishing extended labels). Elements of Rex

are then described by maps g : Fex
− → R and their action on T ex is given as above

by

MgT =
∑

T̄⊂T

g(ι(T̄))T//T̄ . (5.10)

One can verify that the map g 7→ gex = g ◦ π allows to view R as a subgroup of

Rex, thus yielding an action of R on T ex which does indeed satisfy (5.9).

We claim that this action now does satisfy the identity (5.7). The main reason

for this is that, by the definition of the operation // and the degree on Fex, all terms

appearing in the right hand side of (5.10) have the same degree. As a consequence,

one can easily verify that if we define Πg
x = ΠxM

ex
g as in (5.8), then it does satisfy

(4.20). Since the latter determines the characters FΠ

x , one can use this to go

backwards and show that (5.7) does indeed hold.
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5.4 Renormalised equations

In this last section, we show how one constructs the ‘dual’ right action of R onto

the space of equations in such a way that the identity (3.11) holds. Formalising the

space N of “possible right hand sides” is rather heavy notationally, so we restrict

ourselves again to the specific example of the Φ4 model, although the argument is

quite general.

We consider the case of d = 3, so that we can choose α = 5

2
+κ for some suffi-

ciently small κ > 0. In particular, one has deg = −1

2
−κ, so that Proposition 4.9

tells us that we should look for solutions to (4.22) in Dγ for some γ > 1 + 2κ.

Choosing γ = 1 + 3κ and κ small enough, we then note that as a consequence of

(4.23), every solution to the fixed point problem (4.22) is of the form

Φ = + ϕ1 − − 3ϕ + 〈∇ϕ,X〉 , (5.11)

for some continuous functions ϕ and ∇ϕ.

Remark 5.6 By Remark 4.10, the identity (5.11) is exact, not just some approx-

imate identity “up to higher order terms”. The continuous functions ϕ and ∇ϕ
however are unknown and to be determined by the fixed point problem. Note also

that ∇ϕ is not the gradient of ϕ, but can be interpreted as a kind of “renormalised

gradient”. In fact, it follows from (4.12) and (4.20) that for every Φ ∈ Dγ of the

form (5.11), one has the identity

(∇iϕ)(z) = lim
h→0

h−1(ϕ(z+hei)−ϕ(z)− (Πz )(z+hei)−3ϕ(z)(Πz )(z+hei)) ,

with ei the ith unit vector in R3. The mere fact that there even exist functions such

that this limit is finite for every z is not obvious!

As a consequence of (5.11) and Remark 4.10, one has the identity

Φ3 = + 3ϕ + 3ϕ2 + ϕ3
1 − 6ϕ − 3 − 9ϕ + 3〈∇ϕ,X〉 . (5.12)

Again, this is true whatever the underlying model Π, as long as it is admissible

in the sense that the second identity in (5.2) holds, whether it is obtained from

the canonical lift of a smooth noise, or not. Of course the actual function /

distributionRΦ represented by this identity depends very much onΠ, first because

the reconstruction operator R depends on it and second because the function ϕ
(and therefore also ∇ϕ) depends on it.

Consider now the particular case when Π is the canonical lift of some smooth

noise ξ. In this case, it follows from (5.1) that R(Φ3) = (RΦ)3. Let now g be an

element ofR, write Π̂ = Π◦Mg, and write R̂ for the corresponding reconstruction

operator. Making use of the extended model described in the previous subsection,
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combined with Remark 4.7, we can write this renormalised reconstruction operator

as

(R̂U)(z) = (Πex
z M

ex
g U(z))(z) = (RM ex

g U)(z) .

At this point, we choose g : F− → R as

g( ) = −c1 , g( ) = −c2 , (5.13)

and g(τ ) = 0 otherwise. It then follows from (5.5) that one has for example

Mg = −3c1 , Mg = −3c1 , Mg = −3c1−c1 +3c21 −3c2 .

The action ofM ex
g is essentially the same, but with extended decorations with value

−1 − 2κ added on those vertices obtained by contracting an instance of .

Inserting this into (5.12), it follows that one has the identities

M ex
g Φ ∼ Φ , M ex

g Φ3 ∼ Φ3 − (3c1 − 9c2)Φ ,

where we write τ ∼ τ̄ if (Πex
z τ )(z) = (Πex

z τ̄ )(z). We conclude that in this particular

example one has

R̂(Φ3) = (R̂Φ)3 − (3c1 − 9c2)R̂Φ . (5.14)

Take now as our space N of nonlinearities all nonlinearities of the type Fc(Φ) =
cΦ − Φ3 for c ∈ R. It then follows from (5.14) that, at least for the subgroup of

R given by elements of the type (5.13) (which as a group is simply (R2,+)), one

does indeed have the announced identity (3.11) with

Fcg = Fc+3c1−9c2 .

Remark 5.7 In the case c2 = 0 (which is the case in dimension 2), we see that we

recover the calculation performed in (3.4).

Remark 5.8 The observant reader may have noticed that we have

g(Φ3) = −3c1ϕ+ 9c2ϕ ,

which appears coincidentally to be “essentially the same” as the counterterm

−3c1 R̂Φ + 9c2 R̂Φ appearing in (5.14). This is actually not a coincidence but

holds in very wide generality, see [BCCH17]. (Compare Eq. 2.15 with Def. 3.15

and Lemma 4.5, noting that the symmetry factor S(τ ) is generated by the scalar

product appearing in the left hand side of Def. 3.15.) This gives us a very simple

way of deriving the renormalisation procedure for any given class of stochastic

PDEs.
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