
A Generic Domain Pruning Technique for GDL-Based DCOP
Algorithms in Cooperative Multi-Agent Systems

Md. Mosaddek Khan

School of Electronics and Computer

Science, University of Southampton

Southampton, UK

mmk1g14@ecs.soton.ac.uk

Long Tran-Thanh

School of Electronics and Computer

Science, University of Southampton

Southampton, UK

ltt08r@ecs.soton.ac.uk

Nicholas R. Jennings

Departments of Computing and

Electrical and Electronic Engineering,

Imperial College London, London, UK

n.jennings@imperial.ac.uk

ABSTRACT
Generalized Distributive Law (GDL) based message passing algo-

rithms, such as Max-Sum and Bounded Max-Sum, are often used

to solve distributed constraint optimization problems in cooper-

ative multi-agent systems (MAS). However, scalability becomes

a challenge when these algorithms have to deal with constraint

functions with high arity or variables with a large domain size. In

either case, the ensuing exponential growth of search space can

make such algorithms computationally infeasible in practice. To

address this issue, we develop a generic domain pruning technique

that enables these algorithms to be effectively applied to larger and

more complex problems. We theoretically prove that the pruned

search space obtained by our approach does not affect the outcome

of the algorithms. Moreover, our empirical evaluation illustrates a

significant reduction of the search space, ranging from 33% to 81%,

without affecting the solution quality of the algorithms, compared

to the state-of-the-art.

KEYWORDS
Distributed Problem Solving; DCOP; GDL; Maximization Operation

ACM Reference Format:
Md. Mosaddek Khan, Long Tran-Thanh, and Nicholas R. Jennings. 2018. A

Generic Domain Pruning Technique for GDL-BasedDCOPAlgorithms in Co-

operative Multi-Agent Systems. In Proc. of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,
Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are awidely

studied framework for coordinating interactions in cooperative

multi-agent systems. DCOPs have gained such popularity because

of their ability to optimize a global objective function that can be de-

scribed as the aggregation of a number of distributed constraint cost

functions. Each of these functions, representing a local constraint,

can be defined by a set of variables held by the corresponding agents

related to that constraint. In more detail, each agent holds one or

more variables, each of which takes values from a finite domain.

The agent is responsible for setting the value of its own variable(s)

but can communicate with other agents to potentially influence

their choice. The goal of a DCOP solution approach is to set every

variable to a value from its domain and minimize the number of

constraint violations.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

For over a decade, a number of algorithms have been developed

to solve DCOPs, and they have been applied to many real world

applications. These algorithms can be broadly classified into exact

and non-exact approaches. The former always finds a globally opti-

mal solution. However, finding an optimal solution is an NP-hard

problem that exhibits an exponentially increasing coordination

overhead as the system grows [10, 11, 16]. On the contrary, the

latter approaches sacrifice some solution quality for scalability and

have, therefore, been used more in practice [3, 9, 17].

Among the non-exact approaches, Generalized Distributive Law

(GDL) based algorithms, such as Max-Sum [3] and Bounded Max-

Sum (BMS) [13], have received particular attention. Agents in this

class of algorithms calculate and propagate utilities (or costs) for

each possible value assignment of their neighbouring agents’ vari-

ables. Thus, the agents explicitly share the consequences of choos-

ing non-preferred states with the preferred one during inference

through a graphical representation such as factor graphs or junction

trees [4, 6, 7]. Eventually, this information helps these algorithms

to achieve good solution quality for large and complex problems.

Moreover, unlike many other DCOP solution approaches, GDL-

based algorithms explicitly support more than one variable per

agent [2, 4]. As a consequence, these algorithms can easily be de-

ployed to any DCOP setting without depending on an additional

reformulation technique. Furthermore, they make efficient use of

constrained computational and communication resources [3, 13].

This is achieved by following a message passing protocol in which

the agents continuously exchange messages to compute an ap-

proximation of the impact that each of the agents’ actions have

on the global optimization function [6]. This involves building a

local objective function (expounded in Section 2). Once the func-

tion is built, each of the agents picks the value of a variable that

maximizes the function.

Despite these aforementioned advantages, scalability remains a

widely acknowledged challenge for GDL-based algorithms [5, 12].

Specifically, they perform repetitive maximization operations for

each constraint function to select the locally best configuration

of the associated variables, given the local utility function and

a set of incoming messages. To be precise, a constraint function

that depends on n variables having domains composed of d values

each, will need to perform dn computations for a maximization

operation. As the system scales up, the complexity of this step

grows exponentially.

Over the past few years, a number of efforts have tried to im-

prove the scalability of GDL-based message passing algorithms by

reducing the cost of the maximization operator. In particular, [12]

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1595

and [8] reduce the domain size of variables associated with con-

straint functions for task allocation domains where agents’ action

choices are strictly divided into working on a task or not. However,

this method is completely application dependent, because it can

only be applied to a specific problem formulation of task allocation

domain. Moreover, [14] perform a branch and bound search with

constraint functions that ensure the upper and lower bound can be

evaluated with a subset of variable values. However, the bounding

function they propose to achieve this is solely focused on coordi-

nating mobile sensors. Hence, it is not directly applicable to general

DCOP settings. A more general approach to reduce the cost of the

maximization operator, called Generalized Fast Belief Propagation

(G-FBP), is proposed in [5]. In this approach, they select and sort

the top cd
n−1
2 values of the search space, presuming the maximum

value can be found from these ranges. Here, c is a constant. Nev-
ertheless, they also admit that they cannot guarantee in advance

whether the presumption is true or false, and in the latter case

G-FBP incurs a significant penalty in terms of the computational

cost (as we shall see in the empirical results).

Against this background, this paper proposes a Generic Domain

Pruning technique, that we call GDP, that is applicable to all

DCOP settings. To be exact, GDP operates as a part of the maxi-

mization operator, proveably without affecting its solution quality

(see Lemma 3.2). In other words, we improve the computational

efficiency of all GDL-based algorithms by reducing the search space

over which the maximization operation is computed. We empiri-

cally evaluate the performance of our approach, and we observe

a significant reduction of search space, ranging from 33% to 81%

by using this technique. More importantly, we show the relative

performance gain of GDP gets better with an increase in the vari-

ables’ domain size and the constraint functions’ arity, in which the

maximization operator acts on.

The remainder of this paper is structured as follows. We describe

the problem in more detail in the section that follows. Then, in Sec-

tion 3, we discuss the complete process of GDP with a worked ex-

ample. We end this section by providing theoretical analyses. After-

wards, in Section 4, we present the empirical results of our method

compared to the current state-of-the-art, and Section 5 concludes.

2 BACKGROUND AND PROBLEM
FORMULATION

Formally, a DCOP can be defined by a tuple ⟨X ,D, F ,A,δ⟩ [10],
where X is a set of discrete variables {x0,x1, . . . ,xm } and D =
{D0,D1, . . . ,Dm } is a set of discrete and finite variable domains.

Each variable xi can take value from the states of the domain Di . F
is a set of constraint functions {F1, F2, . . . , FL}, where each Fi ∈ F
is a function dependent on a subset of variables xi ∈ X defining the

relationship among the variables in xi . Thus, the function Fi (xi)
denotes the value for each possible assignment of the variables

in xi . Notably, the dependencies between the variables and the

functions generate a bipartite graph, called a factor graph, which is

commonly used as a graphical representation of such DCOPs [6].

In a factor graph, each constraint function Fi (xi) is represented by

a square node and is connected to each of its associated variable

nodes xi (denoted by circles) by an individual edge. Hence, |xi |

F1

F0 x1

x2 x3

x0

Agent A2 Agent A3

Agent A1

Agent A4

Figure 1: A sample factor graph representation of a DCOP,
with two function/factor nodes {F0, F1} and four variable
nodes {x0,x1,x2,x3}, illustrating a global objective function
F (x0,x1,x2,x3). In the figure, variables are denoted by circles,
factors are squares and agents are octagons. Here, the grey
arrows are used to highlight the factor-to-variable messages
of GDL-based algorithms, each of which requires the maxi-
mization operation to be performed.

is the arity of Fi (xi) in this particular graphical representation of

DCOP. The nodes (variables and functions
1
) of a factor graphG are

being held by a set of agents A = {A1,A2, . . .Ak }. This mapping

of nodes to agents is represented by δ : η → A. Here, η stands for

the set of nodes within the factor graph. Each variable/function is

being held by a single agent. However, each agent can hold several

variables/functions. The corresponding agent acts (i.e. generates

and transmits messages) on behalf of the nodes they hold, and is

responsible for assigning values to the variables they hold. Within

the model, the objective of a DCOP algorithm is to have each agent

assign values to its associated variables from their corresponding

domains in order to either maximize or minimize the aggregated

global objective function, which eventually produces the value of

each variable, X ∗ (Equation 1).

X ∗ = argmax

X

L∑
i=1

Fi (xi) ∨ X ∗ = argmin

X

L∑
i=1

Fi (xi) (1)

For example, Figure 1 illustrates the relationship among variables,

functions and agents of a factor graph representation of a sample

DCOP. Here, we have a set of four variables X = {x0,x1,x2,x3}, a
set of two functions/factors F = {F0, F1}, and a set of four agents

A = {A1,A2,A3,A4}. Moreover, D = {D0,D1,D2,D3} is a set of

discrete and finite variable domains, each variable xi ∈ X can take

its value from the domainDi . In this example, agentA1 holds a func-

tion node F0 and a variable node x0. Similarly, nodes F1 and x1 are
being held by agentA3. While agentsA2 andA4 hold variable nodes

x2 and x3, respectively. In this particular setting, four agentsA1,A2

A3 and A4 participate in the optimization process in order to either

maximize or minimize a global objective function F (x0,x1,x2,x3).
Here, the global objective function is an aggregation of two local

functions F0(x0,x1,x2) and F1(x1,x2,x3). In the factor graph, F0 is
associated (i.e. connected) with three variable nodes, and as such,

the arity of the constraint function F0 is 3. Similar to F0, the arity
of constraint function F1 is 3 in this particular example.

1
The term function is also known as factor, and they are used interchangeably through-

out this paper.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1596

In general, GDL-based inference algorithms follow a message

passing protocol to exchange messages among the nodes of the fac-

tor graph representation of the aforementioned DCOP formulation

[1, 3, 6]. Notably, both the Max-Sum and BMS algorithms use Equa-

tions 2 and 3 for their message passing, and they can be directly

applied to the factor graph. Specifically, the variable and function

nodes of a factor graph continuously exchange messages (variable

xi to function Fj (Equation 2) and function Fj to variable xi (Equa-
tion 3)) to compute an approximation of the impact that each of the

agents’ actions have on the global objective function by building

a local objective function Zi (xi). In Equations 2−4, Mi stands for

the set of functions connected to variable xi and Nj represents the

set of variables connected to function Fj . Once the function is built

(Equation 4), each agent picks the value of a variable that maximizes

the function by finding argmaxxi (Zi (xi)).

Qxi→Fj (xi) =
∑

Fk ∈Mi \Fj

RFk→xi (xi) (2)

RFj→xi (xi) = max

xj \xi
[Fj (xj) +

∑
xk ∈Nj \xi

Qxk→Fj (xk)] (3)

Zi (xi) =
∑

Fj ∈Mi

RFj→xi (xi) (4)

As discussed previously, due to the potentially large parameter

domain size and constraint functions with high arity, the maximiza-

tion operator of the factor-to-variable message is the main reason

GDL-based algorithms can be computationally expensive. This can

be visualized from an example where a function node has five vari-

able nodes connected to it, meaning the arity of the function is

n = 5. Here, we assume each of the variables can take its value

from 9 possible options (i.e. states of the domain), implying that

the domain size is d = 9 for each of the variables. In this case, the

function node has to perform 9
5
or 59, 049 operations to generate

a message for one of its neighbouring variable nodes. Now, each

of the function nodes in a factor graph has to generate and send a

single message to each of its neighbours to complete a single round

of message passing [1, 6]. For example, function node F0 of Figure 1
has to send a distinct message (grey arrow) to each of its neighbour-

ing variable nodes x0, x1 and x2. Each of these messages includes

the expensive maximization operator. Under such circumstances,

it is possible to significantly reduce the computational cost of this

step. Meanwhile, it is essential to ensure that this reduction process

does not limit the algorithms’ applicability, as well as not affecting

the solution quality. We deal with the issue that arises from the

trade-off in the section that follows.

3 THE GENERIC DOMAIN PRUNING
TECHNIQUE

GDP (Algorithm 1) works as a part of Equation 3, which represents

a function-to-variable message of a GDL-based algorithm, in order

to reduce the search space over which the maximization needs to

be computed. This algorithm requires as inputs a sending func-

tion node Fj (xj) whose utility depends on a set of variable nodes

(xj) associated with it (i.e. neighbours), a receiving variable node

xi ∈ xj and all the incoming messages from the neighbour(s) of Fj
apart from the receiving node xi , denoted asMxj \xi . Finally, GDP
returns a pruned range of values for each state of the domains of

the variables over which the maximization operation needs to be

performed to generate the message from the function node Fj to
the variable node xi (i.e. RFj→xi (xi)).

In more detail, S stands for a set {s1, s2, . . . , sr} representing
each state of the domains corresponding to xj (line 1 of Algo-

rithm 1). This implies that S is the union (∪) of those sets of states,

each of which corresponds to the domain of a variable in xj . Line 2
sorts the local utility of the sending function node Fj independently
by each state si ∈ S. This sorting can be carried out at runtime of a

message passing algorithm without incurring an additional delay

(discussed shortly in Conjecture 3.1). Then the total number of

incoming messages received by Fj is represented by n (line 3). Note

that, a complete worked example of GDP is depicted in Figure 2

where we use a part of the factor graph of Figure 1 to show a factor-

to-variable (i.e. F1 to x3) message computation (Figure 2a), as well

as the operation of GDP on it (Figure 2b). Here, the local utility of

the sending function node F1 is shown in a table at the left side of

Figure 2a, which is based on three domain states {R,B,G} (for sim-

plicity red, blue and green colours are used to distinguish the values

of the states, respectively) and three neighbouring variable nodes

x1, x2 and x3. Moreover, the direction of two incoming messages

(i.e. n = 2) received by F1, {122, 130, 136} and {90, 81, 75}, from the

variable nodes x1 and x2 respectively, are indicated using the black

arrows. Then, the grey arrow indicates the desired function-to-

variable message RF1→x3 (x3) = {256, 263, 258}, and the complete

calculation is depicted in a table at the right side of Figure 2a.

At this point, line 4 computesm which is the summation of the

maximum values of each of the messagesMk ∈ Mxj \xi received
by the sending function Fj , other than the receiving variable node

xi . Here,Mk is one of the nmessages received by Fj . In the worked

example of Figure 2b, since the maximum of the received messages

{122, 130, 136} (i.e.M1) and {90, 81, 75} (i.e.M2) by F1 are 136 and
90 respectively, the value ofm = 136 + 90 = 226. Now, the for loop

in lines 5−14 generates the range of the values for each state si ∈ S
fromwhere we will always find the maximum value for the function

Fj , and discard the rest. To this end, the function sortedValsi (Fj (xj))
gets the sorted value of si from line 2, and stores them in an array

Vi (line 6). Then, line 7 finds p, which is the maximum of the local

utility values for the state si (i.e. max(Vi)). In the worked example,

the sorted values of domain state R are stored inVR , depicted in

the right side of Figure 2b. Hence, the value of p = max(VR) = 40.

Afterwards, line 8 computes b, which is the summation of the

corresponding values of p from the incoming messages of Fj (i.e.
valp (Mk)). In the example, the values corresponding to p (i.e. 40)

from two incoming messages are 130 and 75, thus the value of

b = 130 + 75 = 205. This can be seen in the first row of the

rightmost table of Figure 2b. The rows related to the computation

for the state R are summarized into this table from the rightmost

table of Figure 2a, which depicts the complete computation of the

function F1 to variable x3 message based on domain states R, B
and G. Having obtained the value ofm and b from lines 4 and 8

respectively, line 9 gets the base case t , which is a subtraction of b
fromm (i.e. t =m − b = 226 − 205 = 21).

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1597

Algorithm 1: Generic Domain Pruning- GDP(Fj (xj), xi ,Mxj \xi)

Input: Fj (xj) - Local utility of the sending function node Fj , where xj is the set of variable nodes associated with Fj ;
xi ∈ xj - the variable node which is going to receive a message from Fj ;
Mxj \xi - Received messages by Fj from all of its neighbouring variable nodes xj , other than xi .

Output: Pruned range of values of the states over which maximization needs to be performed to generate the message from Fj to xi .

1 Let S = {s1, s2, . . . , sr } be the states corresponding to the domains of xj

2 Sort the local utility Fj (xj) independently by each state si ∈ S

3 n← |Mxj \xi |

4 m ←
∑n
k=1 max(Mk), whereMk ∈ Mxj \xi is one of the n messages received by Fj

5 foreach si ∈ S do // for each state corresponding to the variables xj that associate with Fj

6 Vi ← sor tedV alsi (Fj (xj))
7 p ← max(Vi)

8 b ←
∑n
k=1 valp (Mk)

9 t ←m − b

10 q← binarySearch(Vi , λ) where λ = max

c
{c ∈ Vi : c ≤ (p − t)}

11 if q == p − t then
12 result prunedRanдesi ([p, q])
13 else
14 result prunedRanдesi ([p, q))

Line 10 searches for a value λ in the sorted list Vi and stores

it in a variable q. In this context, λ stands for a value c ∈ Vi that
is either equal to the value of p − t or immediately smaller than

p − t . In other words, λ is the maximum of those values inVi that

are not greater than p − t . To this end, we use the binary search

method because the list that needs to be searched is already sorted.

Now, when the value of q is equal to p − t , the desired maximum

value for the state si must always be found by considering the

rows corresponding to the values in the range [p, q], denoted by

prunedRanдesi ([p, q]) (lines 11 − 12)
2
. Otherwise, the value of q

is less than p − t , and the desired maximum value for the state

si must always be found by considering the rows corresponding

to the values in the range [p, q), denoted by prunedRanдesi ([p, q))
(lines 13 − 14)2. In the worked example of Figure 2b, the value of

p − t is 19, given p = 40 and t = 21. The target is to obtain the

value of q from the listVR . In the third column of the rightmost

table that illustrates the computation for the state R, we see that
the value of q is 13 because this is the closest smaller (or equal)

value of 19 (i.e. p − t). Since q is not equal to p − t in this instance,

according to lines 13 − 14 the desired maximization for R must

be found by considering the rows corresponding to the values in

the range [40, 13) or [40, 39]. That means, only considering the top

two rows are sufficient to obtain the desired value of R; hence, it is
not necessary to consider the remaining 7 rows for this particular

instance. To be exact, the value for the state R after maximization

is 256, which is obtained from the row corresponding to the local

utility value of 39. In this way,GDP reduces the computational cost

of the expensive maximization operator. The grey colour is used to

mark the discarded rows of the table. We can see that even for such

2
See Lemma 3.2 and its proof.

a small instance, having domain size d = 3 and arity n = 3, GDP

prunes more than 75% of the search space during the maximization

of a state in computing the function-to-variable message.

As argued above, it is important to ensure that combining GDP

with Equation 3 does not make the computation of a function-to-

variable message prohibitively expensive. Given the sorting opera-

tion of line 2 does not incur an additional delay (see Conjecture 3.1),

the time complexity of GDP involves two parts. This includes the

for-loop of line 5 and the binary search of line 10. Hence, we de-

termine that the overall time complexity of GDP is O(r log |Vi |).
In this context, r stands for the number of states of the variables’

domain associated with the sending function node (line 5). Then,

|Vi | is the size of the arrayVi , hence log |Vi | is the time complexity

to do the binary search of line 10 onVi . Taken together, GDP is

able to reduce the search space significantly at the expense of a

quasi-linear computation cost of its own.

Conjecture 3.1. The sorting operation performed in line 2 of
Algorithm 1 does not incur an additional delay during the computation
of a factor-to-variable message.

Discussion. The message passing protocol followed by GDL-

based algorithms operates directly on a factor graph (acyclic or

cyclic) representation of a DCOP, and it can be classified into the

following two categories [1, 6]:

(1) Synchronous message passing approach. A message is sent
from a node v on an edge e to its neighbouring nodew if and
only if all the messages are received at v on edges other than
e , summarized for the node associated with e . This implies

that a node in a factor graph is not permitted to send a

message to its neighbour until it receives messages from all

its other neighbours. Here, forw to be able to generate and

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1598

Utility (cost) table for the

function node, F1 (x1, x2, x3)

x1 x2 x3 F1
R R R 5

R R B 10

R R G 12

R B R 13

R B B 12

R B G 35

R G R 9

R G B 38

R G G 11

B R R 12

B R B 14

B R G 38

B B R 10

B B B 3

B B G 9

B G R 40

B G B 14

B G G 13

G R R 10

G R B 37

G R G 12

G B R 39

G B B 13

G B G 14

G G R 11

G G B 12

G G G 4

{122,130,136}

F1

x1

x2

x3

{90,81,75}

Qx1àF1(x1) Qx2àF1(x2) F1 RF1àx3(x3)

122 90 5 217

{256,263,258}

122 90 10 222

122 90 12 224

122 81 13 216

122 81 12 215

122 81 35 238

122 75 9 206

122 75 38 235

122 75 11 208

130 90 12 232

130 90 14 234

130 90 38 258

130 81 10 221

130 81 3 214

130 81 9 220

130 75 40 245

130 75 14 219

130 75 13 218

136 90 10 236

136 90 37 263

136 90 12 238

136 81 39 256

136 81 13 230

136 81 14 231

136 75 11 222

136 75 12 223

136 75 4 215

(a) Computation of a factor-to-variable message (i.e. F1 to x3).

Domain pruning of state R during the computation of RF1à x3(x3)

" !#"Computation for state R

Qx1àF1(x1) Qx2àF1(x2) F1 "$%&"
130 75 40 245

136 81 39 256

122 81 13 216

130 90 12 232

136 75 11 222

136 90 10 236

130 81 10 221

122 75 9 206

122 90 5 217

M1 = Qx1àF1(x1) = {122, 130,136} M2 = Qx2 F1(x) = {90, 81,75} VR = sortedValR (F1(x1, x2, x3)) = 40, 39, 13, 12, 11, 10, 10, 9, 5}

 & = &!# (M1) + &!# (M2) = 136 + 90 = 226 (= &!# (VR) = 40;)ℎ-.-/:.-, ; = 130 + 75 = 205

Given & = 226, t = m – b = 226 – 205 = 21

Target – find the row that contains utility value (− >,

if not then closest smaller value of (− >.

Here, (− > = 40 − 21 = 19

Thus, the desired value q is 13, which is in the third

row from the top. Use binary search to find this value

Now, if ? == (− >, then the maximum value for R must be found from the rows within the range [(, ?].

Else If ? < (− >, then the maximum value for R must be found from the rows within the range [p, q).

Here, ? < (− > (i.e. 13 < 19), hence we have to look only for the rows within the range [40, 39] or [40, 13), and discard the rest.

(b) Complete operation of GDP on RF1→x3 (x3).

Figure 2: Worked example of GDP in computing a factor-to-variable message, F1 to x3 or RF1→x3 (x3), within the factor graph
shown in Figure 1. In this example, for simplicity, we show that part of the original factor graph which is necessary for this
particular message computation. In the figure, red, blue and green coloured values are used to distinguish the domain states R,
B andG respectively for each of the variables involved in the computation, and arrows between the nodes of the factor graph
are used to indicate the direction of the corresponding messages.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1599

send messages to all its other neighbours, it depends on the

message fromv . To be exact,w cannot compute and transmit

messages to its neighbours other than v until it has received

all essential messages, including the message from v . In this

process, a single round of the message passing process will

complete once each of the nodes is able to send a message

to all of its neighbours.

(2) Asynchronous message passing approach. Nodes of a factor
graph are initialized randomly, and outgoing messages can

be updated at any time and in any sequence. The message

passing needs to continue for a number of rounds
3
to either

converge or produce an acceptable approximate solution.

Based on both of these versions of the message passing protocol,

the three following cases are seen. We are going to illustrate that,

for all of these cases, Conjecture 3.1 is true.

• Case 1: It is always preferable for acyclic factor graphs to
use the synchronous version of message passing [1, 3]. This

is because it requires only one round of message passing to

generate the optimal solution in such factor graphs. There-

fore, it is redundant to use the asynchronous alternative. In

this case, only a very small number of nodes act (i.e. generate

and transmit messages) initially, while the rest of the nodes

have to wait for their required messages to arrive before they

can start generating message(s). Given a sorting operation is

not computationally expensive, we propose to apply GDP

to those nodes which are not initially active. Thus, they can

utilize the waiting time to complete the sorting operation

without incurring an additional delay.

• Case 2: A key GDL-based DCOP algorithm, namely Bounded

Max-Sum, deals with cyclic factor graph representations of

DCOPs by initially removing the cycles from the original

factor graph using a preprocessing step. During this step, the

agents experience an additional waiting time. Then, it applies

the synchronous version of message passing on the trans-

formed acyclic graph to provide a bounded approximate so-

lution of the problem [13]. In this case, the sorting operation

can be carried out during the agents’ waiting time of the pre-

processing step. Hence it does not incur an additional delay.

• Case 3: The so-called loopy message passing [3] is another

way to deal with the cyclic factor graph representation of

DCOPs. It uses the asynchronous approach as the message

passing protocol. As mentioned above, this version of mes-

sage passing requires several rounds to either converge or

produce an approximate solution. We propose to enforce

the fact that the first round must follow the synchronous

approach, so that the sorting operation can be completed

using the same way as Case 1. The following rounds can then
proceed with the asynchronous message passing approach

without loss of its own characteristics. �

Lemma 3.2. During a function-to-variable message computation,
the desired maximum value for a state si ∈ S must always be found
from the rows corresponding to the values ranging from q to p.

3
A detailed description regarding how many rounds are required is beyond the scope

of this paper. See [3] for more details.

Proof. We prove this by contradiction. Assume there exists a

row ra that resides outside the range from which the maximum

value for si can be found. As we know, a function-to-variable mes-

sage depends on two inputs− the local utility table of the function

and the incoming messages from its neighbours. In this context,

p is the maximum utility corresponding to si, and is within our

proposed range. Therefore, to be able to find ra , we have to rely on

the only remaining input, that is the incoming messages from the

neighbours of the sending function node. To this end, let’s consider

two parameters from this remaining input. The first is the summa-

tion of the maximum values from each of the incoming messages,

denoted as m. The second is the summation of values from the

incoming messages corresponding to p, denoted as b. Given p is

the maximum of the first input, the value t =m − b is significant

because this is the maximum difference the remaining input can

make. In GDP, the value of q is chosen in such a way that it covers

the difference. As a consequence, there exists no such row as ra . �

4 EMPIRICAL EVALUATION

We now empirically evaluate how much speed-up can be achieved

using GDP and compare this with the performance of G-FBP
4
. In

so doing, we run our experiments on two different types of factor

graph representation (i.e. sparse and dense) of a benchmarking

graph colouring problem. Specifically, we consider factor graphs

having a number of function nodes ranging from 10 to 100, and

that each of the factor graphs is generated by randomly connecting

a number of variable nodes per function node. Specifically, this

number of variable nodes connected to each function node, termed

the arity n of a function, has been chosen based on the following

parameters: the value of n for each function node is randomly

chosen from the ranges 1 − 4 and 5 − 10 to generate sparse and

dense factor graphs, respectively. Thus, the differences in the arity

of the function nodes for two different types of factor graphs are

distinguished by the terms sparse and dense in our experiments.

Moreover, we categorize domain size d of the variable nodes into

two distinct classes. On the one hand, for a setting with “small
domain size" we consider the size between 2 to 5 for each of the

variable nodes in a factor graph. On the other hand, we consider

them between 6 to 10 for a setting with “large domain size". This
classification has been done in order to observe the performance

of GDP and G-FBP from a very small (e.g. dn = 2
3
) to a large

(e.g. dn = 10
5
) search space. It is worth noting that we make use

of the Frodo framework [15] to generate local utility tables (i.e.

cost function) for the function nodes of a factor graph. To get the

results based on the aforementioned setting, we initially compute

the percentage of the search space pruned (i.e. speed-up) by the

algorithms for a function node by taking the average of the speed-

ups of all the messages sent by that function node. Afterwards, we

take the average of the speed-ups of all the nodes in a factor graph.

Finally, we report the results of each factor graph averaged over 50

test runs in Figure 3, recording standard errors to ensure statistical

significance. All of the experiments were performed on a simulator

implemented in an Intel i7 Quadcore 3.4GHz machine with 16GB

of RAM. Note, both the algorithms, GDP and G-FBP, operate

4
See Section 1 for the detailed reasoning behind the selection of this benchmark.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1600

0 15 30 45 60 75 90 105

20

40

60

80

100

%
o
f
S
e
a
rc
h
S
p
a
c
e
P
ru
n
e
d

Number of Factor/Function Nodes

GDP: Small Domain Size: (2 - 5)

G-FBP: Small Domain Size: (2 - 5)

(a) Sparse Factor Graphs: Small Domain Size

0 15 30 45 60 75 90 105

20

40

60

80

100

%
o
f
S
e
a
rc
h
S
p
a
c
e
P
ru
n
e
d

Number of Factor/Function Nodes

GDP: Large Domain Size: (6 - 10)

G-FBP: Large Domain Size: (6 - 10)

(b) Sparse Factor Graphs: Large Domain Size

0 15 30 45 60 75 90 105

20

40

60

80

100

%
o
f
S
e
a
rc
h
S
p
a
c
e
P
ru
n
e
d

Number of Factor/Function Nodes

GDP: Small Domain Size: (2 - 5)

G-FBP: Small Domain Size: (2 - 5)

(c) Dense Factor Graphs: Small Domain Size

0 15 30 45 60 75 90 105

20

40

60

80

100
%
o
f
S
e
a
rc
h
S
p
a
c
e
P
ru
n
e
d

Number of Factor/Function Nodes

GDP: Large Domain Size: (6 - 10)

G-FBP: Large Domain Size: (6 - 10)

(d) Dense Factor Graphs: Large Domain Size

Figure 3: Empirical results: GDP vs G-FBP− for the factor graph representations of different instances of the graph colouring
problem. In the figure, we use the terms sparse and dense to indicate the disparity in arity among the function nodes. Error
bars are calculated using standard error of the mean.

only on the function-to-variable messages of a factor graph in

order to reduce the computation cost of the maximization operator.

Therefore, experimenting with other typical DCOP parameters and

metrics, such as communication cost, message size and completion

time, is beyond the scope of this paper [5, 14].

Figures 3a−3b and Figures 3c−3d illustrate the performance of

GDP and G-FBP for sparse and dense factor graphs of 10 − 100

function nodes, respectively. In the figures, the black lines depict

the results of GDP, while the results of G-FBP are shown using

the grey lines. More precisely, the black line of Figure 3a shows the

results of GDP obtained from the factor graphs having variable

nodes with small domain size. For the same algorithm, the results

of the factor graphs having large domain size variable nodes are
shown using the black line of Figure 3b. It can be clearly seen

from those two black lines of both the figures that GDP always

performs better when the variables take their values from a larger

domain size, given that the value of the arity n remains identical.

Moreover, the performance of GDP increases steadily with the

number of function nodes for both the cases. This trend indicates

that GDP performs correspondingly better when the scale of the

factor graph becomes larger. Note that neither all the nodes, nor all

the function-to-variable messages experience similar performance

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1601

3 4 5 6 7 8 9

0

20

40

60

80

R
u
n
ti
m
e
(m
s
)

Domain Size

GDP - Dense Settings

G-FBP - Dense Settings

GDP - Sparse Settings

G-FBP - Sparse Settings

Figure 4: Comparative cost of GDP and G-FBP in terms of
their runtime on top of the maximization operator. Error
bars are calculated using standard error of the mean.

from the proposed approach, due to their differences in the content

of the utility tables and incoming messages.

In more detail, GDP running over sparse factor graphs having

10− 40 function nodes and variables with small domain size prunes
around 33 − 42% of the search space during the computation of the

maximization operation. On the other hand, GDP prunes around

40− 48% in the dense factor graph (Figure 3c) with a similar setting.

This indicates that our approach performs significantly better in

dense factor graphs, where the value of arity n is larger, compared

to the sparse factor graphs. A similar trend is observed in the larger

factor graphs of Figures 3a and 3c. For instance, having 75 − 100

function nodes and small domain size variable nodes, GDP prunes

around 55 − 61% and 60 − 70% of the search space for sparse and

dense factor graphs, respectively. On the other hand, it is observed

from the results reported in Figure 3 that GDP always performs

better when the domain size of the variable nodes are larger, given

the remaining parameters are identical. In the sparse setting, we

observe around 60− 72% reduction of search space by our approach

when applied on the factor graph of 65 − 100 function nodes and

large domain size of the variable nodes (Figure 3b). Notably, the
performance gain from GDP reaches its maximum level (i.e. 70 −

81%) in the dense factor graph with similar setting (Figure 3d). This

is important because it gives us a clear indication that GDP is able

to prune the maximum amount of search space when the values of

n and d becomes larger.

As mentioned already, the grey lines of Figures 3a − 3d illus-

trate the results of G-FBP for the same settings as GDP. It can

be seen from the results that the performance obtained from G-

FBP fluctuates throughout all the cases. The insight behind this

trend is due to the fact that G-FBP is based on an intuition that

the maximum value can be found from the partially sorted top

cd
n−1
2 values (see Section 1 for details). When this presumption is

false, it incurs a significant penalty in terms of the computation

cost (i.e. search space). As a consequence, although we observe

a good reduction of the search space by G-FBP for a number of

nodes in a factor graph, its overall performance for a complete

factor graph is neither guaranteed, nor consistent. Taken together,

the aforementioned results clearly show a significant reduction

of search space by GDP while computing the maximization of

function-to-variable messages within a factor graph. In contrast,

although G-FBP prunes more of the search space for a number

of instances, its overall performance is worse than GDP most of

the time because of the consistency issue. This highlights a key

shortcoming of G-FBP is that it is not consistent in pruning the

search space, while our approach performs better consistently with

the growth of the arity and domain size.

In the final experiment, we analyse whether GDP and G-FBP

are prohibitively expensive in terms of their execution time. We

have to check this because both the algorithms trade this time in

order to generate the pruned search space. To this end, Figure 4

illustrates this result for both the sparse and dense settings defined

in the previous experiment. The results reported in the figure are

generated by taking the average of ten different messages for each

of the domain sizes (d) ranging from 3 to 9. On the one hand, it

can be clearly seen that the runtime of GDP (dotted-light-grey

line) and G-FBP (short-dash-dark-yellow line) are very small and

comparable for all the values of d for sparse settings. On the other

hand, when the value of d is more than 5, GDP (black line) re-

quires comparatively less time than G-FBP (dash-grey line) in the

dense settings. Although GDP’s runtime is smaller, none of the

algorithms incur such delays that would make them prohibitively

expensive to deploy. This is expected because from their complexity

analysis we find that both of them require quasi-linear time (see

previous section and [5]).

5 CONCLUSIONS
We presented a new algorithm, GDP, that significantly reduces the

computation cost of the maximization operator in the widely used

GDL-based DCOP algorithms. We observe a significant reduction in

the search space of around 33%−81% from our empirical evaluation.

This is significant because by reducing the computation cost of

the expensive maximization operator, we are able to accelerate

the overall optimization process of this class of DCOP algorithms.

Moreover, our empirical evidence clearly demonstrates that the

performance of GDP improves with an increase in the parameters

upon which the maximization operator acts. Given this, by using

GDP, we can now use GDL-based algorithms to efficiently solve

large real world DCOPs. In addition, we provide a theoretical proof

regarding the accuracy of our approach, which is also applicable on

generic DCOP settings as opposed to some previous approaches that

tend to be restricted to specific application domain(s). Significantly,

rather than being a preprocessing step, we have incorporated GDP

into a function-to-variable message of GDL-based algorithms so

that they can work jointly. This particular phenomenon provides

an opportunity to use existing application dependent approaches

on top of GDP to further reduce the computational cost of the

maximization operator. This will be investigated in future work.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1602

REFERENCES
[1] S. M. Aji and R.J. McEliece. 2000. The generalized distributive law. IEEE Transac-

tions on Information Theory 46, 2 (2000), 325–343.

[2] J. B. Cerquides, A. Farinelli, P. Meseguer, and S. D Ramchurn. 2013. A tutorial on

optimization for multi-agent systems. Computer Journal 57 (2013), 799–824.
[3] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. 2008. Decentralised co-

ordination of low-power embedded devices using the max-sum algorithm. In

Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Vol. 2. 639–646.

[4] F. Fioretto, E. Pontelli, and W. Yeoh. 2018. Distributed constraint optimization

problems and applications: A survey. Journal of Artificial Intelligence Research 61

(2018), 623–698.

[5] Y. Kim and V. Lesser. 2013. Improved max-sum algorithm for DCOP with n-ary

constraints. In Proceedings of the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 191–198.

[6] F. R. Kschischang, B. J Frey, and H.A. Loeliger. 2001. Factor graphs and the

sum-product algorithm. IEEE Transactions on Information Theory 47, 2 (2001),

498–519.

[7] A. R. Leite, F. Enembreck, and J. A. Barthès. 2014. Distributed constraint opti-

mization problems: review and perspectives. Expert Systems with Applications 41,
11 (2014), 5139–5157.

[8] K. S. Macarthur, R. Stranders, S. D. Ramchurn, and N. R. Jennings. 2011. A

distributed anytime algorithm for dynamic task allocation in multi-agent systems.

In Proceedings of the 25th AAAI Conference on Artificial Intelligence. 701–706.
[9] R. T. Maheswaran, J. P. Pearce, and M. Tambe. 2004. Distributed algorithms

for DCOP: A graphical-game-based approach. In Proceedings of the ISCA 17th

International Conference on Parallel and Distributed Computing Systems (ISCA
PDCS). 432–439.

[10] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. 2005. ADOPT: Asynchronous

distributed constraint optimization with quality guarantees. Artificial Intelligence
161, 1 (2005), 149–180.

[11] Faltings B. Petcu, A. 2005. A scalable method for multiagent constraint opti-

mization. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI). 266–271.

[12] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R. Jennings. 2010. Decen-

tralized coordination in robocup rescue. Computer Journal 53 (2010), 1447–1461.
[13] A. Rogers, A. Farinelli, R. Stranders, and N.R. Jennings. 2011. Bounded approxi-

mate decentralised coordination via the max-sum algorithm. Artificial Intelligence
(2011), 730–759.

[14] R. Stranders, A. Farinelli, A. Rogers, and N. R Jennings. 2009. Decentralised

coordination of mobile sensors using the max-sum algorithm. In Proceedings
of the 21st International Joint Conference on Artificial Intelligence (IJCAI), Vol. 9.
299–304.

[15] L. Thomas, O. Brammert, and S. Radoslaw. 2009. FRODO 2.0: An Open-Source

Framework for Distributed Constraint Optimization. In Proceedings of the IJCAI’09
Distributed Constraint Reasoning Workshop (DCR’09). 160–164. https://frodo-ai.
tech.

[16] W. Yeoh, A. Felner, and S. Koenig. 2010. BnB-ADOPT: An asynchronous branch-

and-bound DCOP algorithm. Journal of Artificial Intelligence Research 38 (2010),

85–133.

[17] R. Zivan, S. Okamoto, and H. Peled. 2014. Explorative anytime local search for

distributed constraint optimization. Artificial Intelligence 212 (2014), 1–26.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1603

https://frodo-ai.tech
https://frodo-ai.tech

	Abstract
	1 Introduction
	2 Background and Problem Formulation
	3 The Generic Domain Pruning Technique
	4 Empirical Evaluation
	5 Conclusions
	References

