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Abstract 

The paper is concerned with the design of tension laps in reinforced concrete structures. The most 

recent codified design recommendations for reinforcement laps and anchorages are found in fib 

Model Code 2010 (MC2010). These recommendations have heavily influenced the draft revision of 

EN 1992 which is due for publication in 2023. The draft EN 1992 proposal for tension laps is still 

under development with the main point of discussion being the basic multiplier required to achieve 

the level of safety prescribed by EN 1990. This is contentious since laps designed to MC2010 can be 

significantly longer than laps designed to EN 1992 (2004) which many UK designers consider 

excessive in comparison with previous UK practice. The paper examines the safety of tension laps 

and proposes a refined design equation for inclusion in the 2023 revision to EN 1992. The proposed 

design equation achieves the level of safety required by EN 1990 whilst giving lap and anchorage 

lengths more consistent with current practice than MC2010.  
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1 Introduction 

EN 1992 (2004) [1] is undergoing a substantial revision which is due to be published in 2023. The 

draft revision of EN 1992 [2] includes lap and anchorage rules based on the recommendations of fib 

Bulletin 72 [3] and fib Model Code 2010 (MC2010) [4]. By way of background, MC2010 requires 

significantly longer laps than EN 1992 (2004) [1], which Cairns and Elighausen [5] showed to have 

less than the expected margin of safety. Any increase in lap lengths is of concern to UK engineers 

who already find that the reinforcement detailing requirements of EN 1992 complicate construction 

and increase project costs compared with previous UK practice [6, 7].  

The introduction to the paper describes the design provisions for tension laps in EN 1992, fib Bulletin 

72 and MC2010.  Subsequently, it describes a reliability analysis carried out by Mancini et al. [8] to 

determine a suitable safety format for the design of tension laps using equation 3-2 of fib Bulletin 

72. The reliability based method of Mancini et al. [8] is used to develop a refined design equation for 
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tension laps which is suggested for inclusion in the 2023 revision to EN 1992. The refined equation 

proposed in this paper gives full strength lap lengths which are more consistent with current practice 

than MC2010 and shorter than Mancini et al. [8].  The reader’s attention is drawn to Table 6 where 

the various design proposals are summarised and illustrated with a numerical example. 

1.1 EN1992-1-1 [1] 

The current EN-1992 [1] lap and anchorage rules are based on guidance given in CEB-FIP Model Code 

90 (MC90) [9]. The background to the EN 1992 rules is described by Cairns and Elighausen [5] in their  

detailed safety assessment of the rules.  EN 1992 requires adjacent laps to be staggered by 0.3𝑙𝑏𝑑 

where 𝑙𝑏𝑑 is the design lap length which is given by: 

𝑙𝑏𝑑 = 𝛼1𝛼2𝛼3𝛼5𝛼6𝑙𝑏,𝑟𝑞𝑑                                                                                                [1] 

where  𝛼1 = 1.0 for straight bars 

𝛼2 = 1.0 – 0.15(cd-)/  ≥ 0.7 & ≤ 1.0  

𝛼3 = 1.0 – K ≥ 0.7 & ≤ 1.0   

𝛼5 = 1.0 for no confining pressure 

𝛼6 = 1.5 for >50% lapped 

In which 

cd = min(clear bar spacing/2, side cover, bottom cover) 

= (Ast-Astmin)/As 

Ast   cross-sectional area of the transverse reinforcement along the design 

anchorage length 𝑙bd. 

Ast,min   cross-sectional area of the minimum transverse reinforcement =0.25As for 

beams and 0 for slabs. 

As area of a single anchored bar with maximum bar diameter 

K = 0.1 for bar in corner of link, 0.05 if anchored reinforcement is in layer above 

transverse reinforcement and 0 otherwise. 

𝑙𝑏,𝑟𝑞𝑑 =
∅

4

𝜎𝑠𝑑

𝑓𝑏𝑑
                                                                                                                  [2] 

where, = bar diameter, 𝜎𝑠𝑑 = design reinforcement stress and 

 𝑓𝑏𝑑 = 2.25𝜂1𝜂2𝑓𝑐𝑡𝑘/𝛾𝑐      (design bond strength) 

where, 𝜂1= 1.00 for ‘good’ and 0.70 for ‘poor’ casting conditions 

𝜂2 = Min (1.0, (132-)/100) 
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𝑓𝑐𝑡𝑘   = 0.21𝑓𝑐𝑘
2/3 for ≤ C50/60 concrete (𝑓𝑐𝑡𝑘 lower characteristic         

concrete tensile strength, 𝑓𝑐𝑘 characteristic concrete 

compressive strength) 

C  = 1.5  (partial factor for concrete) 

1.2 fib Bulletin 72 [3] 

fib Bulletin 72 [3] provides a detailed review of reinforcement anchorages and laps. It proposes 

equation 3 below [expression 3-2 in the bulletin] for calculating the mean strength of anchorages 

and laps. These are considered to be the same unlike EN 1992 [1] where lap lengths are obtained by 

multiplying anchorage lengths by a coefficient 6 ≥ 1. According to fib Bulletin 72 the mean lap 

strength (≡ mean stress in the bar at lap failure) is given by: 

𝑓𝑠𝑡𝑚 = 54(𝑓𝑐𝑚 25⁄ )0.25(25 𝜙⁄ )0.2(𝑙𝑏/𝜙)0.55[(𝑐𝑚𝑖𝑛 𝜙⁄ )0.25(𝑐𝑚𝑎𝑥 𝑐𝑚𝑖𝑛⁄ )0.1 + 𝑘𝑚𝑘𝑡𝑟]                 [3] 

where 𝑓𝑐𝑚 is the mean concrete strength, 𝑙𝑏 is the lap or anchorage length, ∅ is the bar diameter, 

𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 are the minimum and maximum of the cover and half the clear bar spacing and 

𝑘𝑚𝐾𝑡𝑟 is a factor accounting for transverse confinement.  

𝑘𝑡𝑟 = 𝑛𝑙𝐴𝑠𝑣/(𝑠𝑣∅𝑛𝑏) ≤ 0.05                                                                                                     [4] 

in which 𝑛𝑙 is the number of legs of a link in each group which cross the potential splitting failure 

plane, 𝑠𝑣 is the spacing between groups of links, 𝐴𝑠𝑣  is the cross sectional area of each leg of a link 

and 𝑛𝑏 is the number of individual anchored bars or pairs of laps. 𝑘𝑚 is an effectiveness factor which 

is defined in fib Bulletin 72 as follows: 

𝑘𝑚 = 12 where al ≤ 125 mm or al ≤ 5 in which al is the clear spacing between the lap and the 

nearest vertical leg of a link crossing the splitting plane approximately perpendicularly.  

𝑘𝑚 = 6 where al > 125 mm and al > 5  

𝑘𝑚 = 0 where a splitting crack would not intersect transverse reinforcement either because i) the 

transverse reinforcement is positioned inside the lapped bars or ii) al > 125 mm and al > 5 and the 

clear spacing between pairs of lapped bars is < 4 times the bottom cover to the lapped bars. 

In any one lap or anchorage, the minimum 𝑘𝑚 should be applied. fib Bulletin 72 [3] limits the ratio 

25 𝜙⁄  to a maximum of 2.0 in equation 3 on the basis of “evidence in the database”. Expression 3-2 

in fib Bulletin 72 provides no upper limit to 𝑓𝑠𝑡𝑚. However, equation 3 is also presented in MC2010 

[4] where 𝑓𝑠𝑡𝑚 is limited to the reinforcement yield strength.   
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Equation 3-2 of fib Bulletin 72 was derived by curve fitting the fib tension lap database [10] and is 

valid for: 15 < 𝑓𝑐𝑚 <110 MPa, 0.5 ≤ cmin/ ≤ 3.5, cmax/cmin ≤ 5.0, ktr ≤ 0.05, 𝑙𝑏 ≥ 10The term in square 

brackets accounts for confinement from the concrete cover zone and reinforcement. Consideration 

of equation 3 shows that the bar stress is not proportional to the lap length as assumed in EN 1992 

[1]. Instead, the average bond strength reduces with increasing lap length. Equation (3) can be 

rearranged as follows to give the required mean lap length in terms of the bar stress to be anchored 

(𝜎𝑠): 

𝑙𝑏,𝑚

∅
= (

𝜎𝑠

54
)

1.82
(

𝑓𝑐𝑚

25
)

−0.45

(
25

∅
)

−0.36
[(

𝑐𝑚𝑖𝑛

∅
)

0.25
(

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
)

0.1
+ 𝑘𝑚𝑘𝑡𝑟]

−1.82

                                [5] 

fib Bulletin 72 [3] uses statistical analysis of test data to show that the characteristic lap strength is 

76% of the mean lap strength. With cmax = cmin = and no confinement from reinforcement, this gives 

a characteristic basic lap length of: 

𝑙𝑜,𝑘

𝜙
= 73.5 (

𝜎𝑠

435
)

1.82
(

f𝑐𝑚

25
)

−0.45

(
25

∅
)

−0.36
                                                                                        [6] 

The corresponding average bond stress is given by: 

𝑓𝑏𝑘,𝑜 =
𝜎𝑠

4(
𝑙𝑜,𝑘

𝜙
)
                                                                                                                                         [7] 

Substitution of 𝑙𝑜,𝑘 from equation 6 into equation 7 gives the characteristic basic bond strength 

corresponding to a bar stress of 𝜎𝑠 = 𝑓𝑦𝑑 = 500/(s = 1.15) = 435 MPa as: 

𝑓𝑏𝑘,0 = 1.5 (
𝑓𝑐𝑚

25
)

0.45
(

25

𝜙
)

0.36
                                                                                                                [8] 

The characteristic basic bond strength is adjusted for reinforcement grades other that 500 through 

the multiplier: 

𝜂4 = (
500

𝑓𝑦𝑘
)

0.82

                                                                                                                                     [9] 

Consideration of equation 5, shows that the mean basic bond strength should be multiplied by 

𝛼𝑚
′ = [(

𝑐𝑚𝑖𝑛

∅
)

0.25
(

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
)

0.1
+ 𝑘𝑚𝑘𝑡𝑟]

1.82

to account for the effects of cover, bar spacing and 

confinement from transverse reinforcement. For the calculation of characteristic bond strength, fib 

Bulletin 72 conservatively replaces 𝛼𝑚
′  by [2+3] where: 

𝛼2 = (
𝑐𝑚𝑖𝑛

𝜙
)

0.5
(

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
)

0.15
                                                                                                                 [10] 
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𝛼3 = 𝑘𝑑𝑘𝑡𝑟                                                                                         [11] 

with ktr from equation 4 and kd = 20, 10, 0  for confinement by legs of a link perpendicular to the 

splitting plane, confinement by straight bars in the cover zone or other circumstances [4]. 

Finally after some rounding the characteristic bond strength is given as: 

𝑓𝑏𝑘 = 1.6𝜂4 (
𝑓𝑐𝑚

25
)

0.5
(

25

𝜙
)

0.3
[𝛼2 + 𝛼3]                                         [12] 

The design bond strength is obtained by dividing the characteristic bond strength by c = 1.5. This 

approach was justified [3] by a more detailed statistical analysis in which the target probability of 

failure was set such that “all but 1 in 106 instances reinforcement would reach yield before bond 

failure occurred” (i.e.  = 4.75). The reported justification is questionable since a target probability of 

failure of 1 in 106 [3] is considerably higher than that required by EN 1990 [11] for moderate (β = 3.8) 

and high (β = 4.3) consequences of structural failure.   

1.3 MC2010 [4] 

MC2010 [4] includes equation 3 for 𝑓𝑠𝑡𝑚 as expression 6-1-19 and limits 𝑓𝑠𝑡𝑚 to ≤ 𝑓𝑦 where 𝑓𝑦 is the 

reinforcement yield strength. Lap and anchorage lengths are derived via average bond stress. 

Expression (6.1-25) of MC2010 gives the design lap length (𝑙𝑏𝑑) for bar stress sd as: 

 

𝑙𝑏𝑑

𝜙
=

𝜎𝑠𝑑

4𝑓𝑏𝑑
≥

𝑙𝑏𝑚𝑖𝑛

∅
                                                                         [13] 

where   𝑓𝑏𝑑 = (𝛼2 + 𝛼3)𝑓𝑏𝑑,0 

  where  𝛼2 = represents influence of cover 

    = (cmin/0.5(cmax/cmin)0.15 for ribbed bars 

𝛼3 = represents influence of transverse reinforcement 

 = fn(kmKtr)  or conservatively = 0. 

𝑓𝑏𝑑,0 = 𝜂1𝜂2𝜂3𝜂4(𝑓𝑐𝑘/25)0.5/𝛾𝑐 

 where  𝜂1= 1.75 for ribbed bars 

𝜂2= 1.0 for good bond conditions 

𝜂3= Max (1.00, (25/)0.3) 

𝜂4= 1.00 for Grade 500 reinforcement. 

𝑙𝑏𝑚𝑖𝑛 = max (
0.3𝜙𝑓𝑦𝑑

4𝑓𝑏𝑑
; 10𝜙; 100 𝑚𝑚)  
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Despite appearances, the design equation for bond strength, 𝑓𝑏𝑑,0,  in MC2010 [4] is essentially 

equation 12 divided by a partial factor of safety for bond of b = 1.5. 

1.4 Mancini et al [8] 

Mancini et al. [8] undertook a probabilistic analysis of equation 3 using data from the fib tension 

splice database [10]. The model uncertainty  was defined as the ratio of measured to calculated lap 

strength. Mancini et al. [8] considered the effect on  of variations in i) concrete strength, ii) bar 

diameter 𝜙, iii) normalised lap length 𝑙/𝜙, iv) confinement index ktr, v) cmin/ 𝜙 and vi) cmax/cmin. They 

concluded that “no significant trends of variation are found on the whole database”. They also 

showed that the most likely probabilistic distribution for model uncertainties , for both new and 

existing structures, is lognormal. The calculation methodology used to estimate the fractiles of the 

resistance random variable for equation 3 followed that proposed by Taerwe [12]. The procedure 

has previously been used by Koenig and Fischer [13] to calibrate the design equation in EN 1992 [1] 

for shear in beams without shear reinforcement. The tension lap assessment of Mancini et al. 

confined uncertainties to the concrete compressive strength and the model uncertainty factor . The 

resistance random variable was defined as R(, 𝑓𝑐) where  is the model uncertainty and 𝑓𝑐 is the 

concrete cylinder compressive strength. The coefficient of variation of the concrete compressive 

strength Vfc was assumed to be 0.15 in accordance with references [4] and [14]. The analysis showed 

that the general formulation of a fractile Rj, in the function of the characteristic concrete strength, is 

given by: 

 

𝑅𝑗 = 𝑓𝑠𝑡𝑗 = 𝜁𝑗𝑓𝑐𝑘
0.25𝐴                                                                              [14] 

where 

𝜁𝑗 = 𝜇𝜃exp (𝑎1 − 𝑎2𝑗)                                                                          [15] 

 

𝑎1 = 0.25 × 1.645√ln (𝑉𝑓𝑐

2 + 1)                                                         [16] 

𝑎2𝑗 = ℎ𝑗√ln(𝑉𝜃
2 + 1) + 0.0625ln (𝑉𝑓𝑐

2 + 1)                                      [17] 

𝐴 = 54 (
1

25
)

0.25
(

𝑙𝑏

𝜙
)

0.55
(

25

𝜙
)

0.2
[(

𝑐𝑚𝑖𝑛

𝜙
)

0.25
(

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
)

0.1
+ 𝑘𝑚𝐾𝑡𝑟]   [18] 

where 𝜁𝑗 is the probabilistic coefficient for lap and anchorage strength where j = m, k, d with m = 

mean value; k = characteristic value (i.e. fractile 5%) and d = design value in the function of a certain 
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reliability index β. The coefficient 𝜇𝜃 is the mean model uncertainty. The coefficient A equals 𝑓𝑠𝑡𝑚 

from equation 3 divided by 𝑓𝑐𝑚
0.25. 

The coefficients hj are hm = 0 for mean value, hk = 1.645 for characteristic value and hd = R for 

design value where R is the FORM correction factor assumed equal to 0.8 for dominant resistance 

variables and  is the required reliability index.   

Mancini et al. [8] filtered the fib tension splice database into so called new and existing structures 

defined as follows: 

 New structures 20 MPa ≤ 𝑓𝑐𝑚 ≤ 110 MPa; 0.95 ≤ 𝑐𝑚𝑖𝑛/𝜙 ≤ 3.5 and 𝑐𝑚𝑎𝑥/𝑐𝑚𝑖𝑛 ≤ 5;           

𝑙𝑏 ≥ 15𝜙; Ktr ≤ 0.05 

 Existing structures 10 MPa ≤ 𝑓𝑐𝑚 ≤ 110 MPa; 0.5 ≤ 𝑐𝑚𝑖𝑛/𝜙 ≤ 3.5 and 𝑐𝑚𝑎𝑥/𝑐𝑚𝑖𝑛 ≤ 5;        

𝑙𝑏 ≥ 10𝜙; Ktr ≤ 0.05 

Mancini et al. [8] determined the statistical properties of the resulting distributions using Bayesian 

inference with a non-informative prior distribution on the sample y where y = lni. Details of the 

procedure used are given by Engen et al. [15].The resulting statistical properties as well as 

probability coefficients j are summarised in Table 1. 

Table 1: Statistical properties of resistance random variable from Mancini et al. [8] 

 Number of 
specimens 

Mean

 

Variance




Covariance 

V 
k d  = 3.8

New 
Structures 

454 0.98 0.016 0.13 0.83 0.69 

Existing 
structures 

677 1.02 0.03 0.17 0.80 0.63 

Equation 14 can be rearranged to give the required anchorage length. Assuming that the lap 

strength fstj equals the bar stress σs that the lap needs to transfer, Mancini et al. [8] show that for 

cmin= cmax = , the fractiles of the required basic anchorage length are given by:  

𝑙𝑏𝑗,0 = 𝜙 (
25

𝑓𝑐𝑘
)

0.45
(

𝜎𝑠

𝜁𝑗54
)

1.82

(
𝜙

25
)

0.36
                                               [19] 

where 𝜁𝑗 is given by equation 15. 

The partial safety factor for bond strength (b) equals the ratio of the design and characteristic basic 

anchorage lengths corresponding to 𝜎𝑠. Consequently, b is given by: 

𝛾𝑏 =
𝑙𝑏𝑑,0

𝑙𝑏𝑘,0
= (

𝜁𝑘

𝜁𝑑
)

1.82
                                                                             [20] 
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For the statistics in Table 1, b is calculated to be 1.4 for new structures with  = 3.8. Accounting for 

the effects of confinement from concrete cover and links, the fractiles of the required lap length for 

bar stress 𝜎𝑠 are given by: 

𝑙𝑏𝑗

𝜙
= 𝐶𝑎𝑛𝑐ℎ𝑗 (

25

𝑓𝑐𝑘
)

0.45
(

𝜎𝑠

435
)

1.82
(

𝜙

25
)

0.36
/𝛼𝑗

′                                                                      [21] 

in which the calibration coefficient Canchj is given by: 

Canchj = (8.06/j)1.82                                                                                                                     [22] 

where j  (see equation 15) depends on whether the mean, characteristic or design lap length is 

sought. For design of new structures with  = 3.8 and d = 0.69 from Table 1 [8], Canch,d =  

(8.06/0.69)1.82 = 88.  Following the approach adopted by fib Bulletin 72 [3], Mancini et al. [8] take the 

design confinement term in equation 21 as 𝛼𝑑
′  = ([(cmin/0.25(cmax/cmin)0.1]1.82

 +3) with 3 from  

equation 11. The term [(cmin/0.25(cmax/cmin)0.1]1.82 simplifies to (cmin/0.46(cmax/cmin)0.18  which fib 

Bulletin 72 rounds to 2 = (cmin/0.5(cmax/cmin)0.15 (see equation 10).  

Rearranging equation 21, and replacing 𝜎𝑠 with 𝑓𝑠𝑡𝑗, gives the lap strength:  

𝑓𝑠𝑡𝑗 = 54𝜁𝑗 (
𝑓𝑐𝑘

25
)

0.25
(

𝑙𝑏

𝜙
)

0.55
(

25

𝜙
)

0.2
𝛼𝑗

′0.55
≤ 𝑓𝑦𝑗                                                              [23] 

In all the analyses presented in this paper, including Mancini et al. [8], 𝛼𝑘
′ = 𝛼𝑑

′ = 𝛼2 + 𝛼3 in which 

𝛼2 and 𝛼2 are given by equations 10 and 11 respectively. However, 𝛼𝑚
′ = [(

𝑐𝑚𝑖𝑛

∅
)

0.25
(

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
)

0.1
+

𝑘𝑚𝑘𝑡𝑟]
1.82

 for equivalence with equation 3. 

Substituting equation 21 into equation 7 gives the average bond stress:  

𝑓𝑏𝑗 =
108.75

𝐶𝑎𝑛𝑐ℎ𝑗
(

435

𝜎𝑠
)

0.82
(

𝑓𝑐𝑘

25
)

0.45
(

25

𝜙
)

0.36
𝛼𝑗

′                                                                            [24] 

in which 𝐶𝑎𝑛𝑐ℎ𝑗 is given by equation 22  

  

2 Discussion and Implications 

The adoption of the Mancini et al. [8] recommendations would lead to significant increases in full 

strength lap (and anchorage) lengths over current EN 1992 [1] requirements. This is undesirable 

since it would make reinforced concrete (rc) construction more expensive through the use of 

additional reinforcement and more complex working practices. The alternative of using couplers also 

increases construction costs except for large diameter bars. Furthermore, increasing lap lengths 
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would cause significant uncertainties within the engineering community about the safety of the 

current stock of rc structures where laps and anchorages, designed to EN 1992 [1] and its precursors, 

have been performing well and without issue. This was substantiated by a straw poll of European 

experts conducted by Goodchild which identified no known failures of laps or anchorages (apart 

from one resulting from gross error).  Bearing all these considerations in mind, a group of European 

experts, convened by Goodchild, deemed it unacceptable to significantly increase lap lengths in the 

2023 revision to EN 1992. This paper addresses the disconnect between assessments of lap safety 

drawn from practice and statistical analysis of databases [3,8]. 

3. Review of tension lap data 

Equation 3 (Exp 3-2 of fib Bulletin 72) was derived by curve fitting a database of around 775 tension 

lap tests. fib Bulletin 72 gives the limits on Exp 3-2 as 15 MPa < 𝑓𝑐𝑚< 110 MPa, 0.5 ≤cmin≤ 3.5, 

cmax/cmin≤ 5.0 and 𝑙𝑏 ≥ 10. As shown by Mancini et al. [8] changing the limits on equation 3 for new 

structures to 20≤𝑓𝑐𝑚≤110, 0.95 ≤cmin≤ 3.5, cmax/cmin≤ 5.0 and and 𝑙𝑏 ≥ 15, significantly reduces 

the scatter in the ratio of measured to predicted lap strength.  

The current authors assessed equation 14 (equation 3 in probabilistic form) for a tension splice 

database consisting of the fib tension splice database plus 17 specimens tested by Micallef and 

Vollum [16, 17]. Of these, 516 specimens (see Table 2 for source) remained after filtering as follows: 

 20 MPa ≤ 𝑓𝑐𝑚 ≤ 90 MPa;  

 cmin/ ≥ 0.95  

These filtering limits are broadly in line with limits applied in EN 1992 [1].  

When applying equation 3 to the experimental database, it is necessary to limit the lap strength to a 

maximum of the reinforcement strength. The lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡) exceeded the reported yield 

strength (𝑓𝑦) in 72 of 516 tests in the filtered database. In these tests, the peak stress was 

dependent on the shape of the stress strain curve of the reinforcement which is not generally 

reported. For example, in tests where the reinforcement has a long yield plateau, like those of 

Micallef and Vollum [16], extensive yielding can occur under almost constant reinforcement stress 

prior to flexural compression failure. In tests like these, limiting the reinforcement stress calculated 

with equation 3 to 𝑓𝑦  seems reasonable. On the other hand, for reinforcement without a well-

defined yield point the reinforcement stress continually increases after first yield until either lap or 

flexural failure occurs. Consequently, the limit to apply on the maximum bar stress calculated with 

equation 3 is unclear.  However, it should be noted that the mean lap strength (𝑓𝑠𝑡𝑚) is limited to a 
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maximum of the reinforcement yield strength (𝑓𝑦) in MC2010. In an initial assessment of equation 3, 

the mean calculated lap strength (𝑓𝑠𝑡𝑚) was limited to a maximum of 1.05𝑓𝑦 compared with 𝑓𝑦 in 

MC2010. The results of the analysis are plotted in Figure 1 which shows the influence of measured 

lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡) on 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑚  (where 𝑓𝑠𝑡𝑚 is the mean lap strength calculated with equation 

3).  

Table 2: Summary of filtered tension specimens considered in analysis 

No of tests 

fib 
database 
reference 

[10] 

Investigators [10] 

17  Micallef and Vollum 2017 [16,17] 

27 1 Chinn, Ferguson, and Thompson 1955  

6 2 Chamberlin 1958  

27 4 Ferguson and Breen 1965 

12 5 Thompson, Jirsa, Breen, and Meinheit 1975  

15 6 Ferguson and Thompson 1965  

17 8 Hester, Salamizavaregh, Darwin, and McCabe  1991, 1993 

8 9 Choi, Hadje-Ghaffari, Darwin, and McCabe 1990, 1991 

32 10 Rezansoff, Konkankar and Fu 1991 

12 11 Zekany, Neumann, Jirsa, and Breen 1981 

7 12 DeVries, Moehle, and Hester 1991 

5 13 Rezansoff, Akanni, and Sparling 1993 

57 15 Darwin, Tholen, Idun, and Zuo 1995 

39 16 Zuo and Darwin 1998  

34 17 Kadoriku 1994  

15 18 Hamad, 1999 

11 20 Azizinamini, Stark, Roller, Ghosh 1993 

13 22 Betzle 1980 

16 24 Hamad, Mansour 1996  

8 25 Hegger, Burkhardt 1998 

8 26 Hwang, Lee, Lee 1994 

10 27 Hwang, Leu, Hwang 1996 

21 28 Olsen 1990 

16 29 Rehm, Eligehausen 1977 

1 30 Stöckl, Menne, Kupfer 1977 

82 31 Tepfers 1973 

Results are shown in Figure 1 for specimens without (no links) and with confining reinforcement 

(links). The trend lines in Figure 1 show that on average 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑚 increases with measured lap 

strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡). This implies that equation 3 from fib Bulletin 72 becomes progressively more 

conservative as the lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡) increases. This increasing conservatism of equation 3 with 

lap strength is not considered in the reliability analysis of Mancini et al. [8]. 



11 
 

 

Figure 1: Influence of fst,test on accuracy of equation 3 for mean lap strength fstm (fib Bulletin 72 

equation 3-2) 

4 Development of improved design method 

The conservatism of equation 3 from fib Bulletin 72 [3] with increasing lap strength (see Figure 1) 

was investigated statistically by separating the tension splice database (see Section 3) into the 

following four stress bands: 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡  < 300 MPa, 300 MPa ≤ 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡< 400 MPa, 400 MPa ≤ 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡< 500 

MPa and 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡  ≥ 500 MPa. The stress 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 is the measured lap strength. Each stress band was 

analysed following the procedure of Mancini et al. [8] described in Section 1.4. In line with Mancini 

et al. [8], the characteristic concrete strength was assumed to have the following lognormal 

distribution: 

𝑓𝑐𝑘 = 𝑓𝑐𝑚exp (−1.645√ln(𝑉𝑓𝑐
2 + 1))                                                                                     [25] 

The coefficient of variation for concrete strength 𝑉𝑓𝑐 was taken as 0.15 as in [8], giving 𝑓𝑐𝑘 = 

0.782𝑓𝑐𝑚 where 𝑓𝑐𝑚 is the reported concrete strength. Probability coefficients k, d  and partial 

bond factor b were calculated separately for each stress band using equations 15 and 20 

respectively. In addition to the filters applied in Section 3, the maximum value of 𝑓𝑠,𝑡𝑒𝑠𝑡/𝑓𝑦 was 

limited to 1.10 which left 491 specimens. Furthermore, calculated lap strengths 𝑓𝑠𝑡𝑚 were limited to 

𝑓𝑦. The results of the analysis are summarised in Table 3 which shows that significant economies can 

be achieved on full strength laps if test data are grouped into stress dependent bands as above. 

Results are also presented for all specimens with calculated lap strength limited to 1.05𝑓𝑦. The latter 
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results are closest to those obtained by Mancini et al. [8] but there is little difference between the 

results obtained with calculated lap strength 𝑓𝑠𝑡𝑚 limited to 𝑓𝑦 and 1.05𝑓𝑦.  

Table 3: Statistical analysis of banded “good bond” tension splice test data ( = 3.8) 

Description Symbol 

Measured lap strength 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡    MPa 
Mancini 

et al. 
[8] 

<300 
 

300-
400 

400-
500 

≥500 All 
𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 

All 
𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 

Number of specimens N 65 159 153 114 491 491 454 

Limit on calculated lap 
strength 

- 𝑓𝑦 𝑓𝑦 𝑓𝑦 𝑓𝑦 𝑓𝑦 1.05𝑓𝑦 - 

Mean, using eqn 3  0.85 0.98 1.02 1.08 1.00 0.99 0.98 

CoV, using eqn 3 V 0.16 0.12 0.09 0.09 0.13 0.13 0.13 

Probabilistic coeff., mean 
(eqn 15) 

m 0.90 1.04 1.08 1.15 1.06 1.05 1.04 

Probabilistic coeff., 
characteristic (eqn 15) 

k 0.70 0.84 0.92 0.97 0.85 0.84 0.83 

Probabilistic coeff., 
design (eqn 15) 

d 0.56 0.70 0.80 0.85 0.70 0.70 0.69 

Partial factor for bond 
(eqn 20) 

b 1.50 1.39 1.29 1.29 1.41 1.41 1.40 

Calibration coeff., char. 
(eqn 22) 

Canch,k 85 61 52 47 60 61 63 

Calibration coeff., design 
(eqn 22) 

Canch,d 128 85 67 60 85 85 88 

Note:  = 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑚 

Table 3 shows that the coefficients Canch,k and Canch,d (see equation 22) reduce significantly with 

increasing reinforcement stress. Significantly, for measured lap strengths between 400 and 500 MPa,   

Canch,k = 52 and Canch,d = 67 compared with Canch,k = 60 and Canchd = 85 for the whole database (with 

𝑓𝑠𝑡𝑚 ≤ 𝑓𝑦). If calculated with d = 0.69 from Mancini et al. [8], Canch,d = 88. Reducing Canch,d from 88 to 

67 for design lap strength 𝑓𝑠𝑑 = 435 MPa, gives a 24% reduction in design lap length. Table 3 also 

shows that Mancini et al. [8] overestimates j for 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 < 300 MPa. This implies that Mancini et al. 

[8] has below the level of safety expected by EN 1990 [11] for measured lap strengths 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 < 300 

MPa.  

4.1 Vollum proposal for good bond  

Based on the statistical analysis in Table 3 for 𝑓𝑠𝑡 between 400 – 500 MPa, it is proposed that the lap 

length for good bond is calculated as follows: 

𝑙𝑏𝑗

𝜙
= 𝑚𝐶𝑎𝑛𝑐ℎ,𝑗 (

25

𝑓𝑐𝑘
)

0.45
(

𝜙

25
)

0.36
/(𝛼2 + 𝛼3)                                                                      [26] 
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in which the probabilistic coefficient 𝜁𝑗,𝐸𝑞 26 used to calculate 𝐶𝑎𝑛𝑐ℎ,𝑗 (see equation 22) is taken from 

Table 3 for 400 ≤ fst,test < 500 MPa. Hence,  𝜁𝑘,𝐸𝑞 26 = 0.92 and 𝜁𝑑,𝐸𝑞 26 = 0.80. Substituting these 

values into equation 22, gives Canch,k = 52 (characteristic) and Canch,d = 67 (design). The coefficients 2 

and 3 are calculated with equations 10 and 11 respectively of fib Bulletin 72 [3].  The multiplier 𝑚 

accounts for the bar stress 𝜎𝑠 transferred by the lap and is given by:  

𝑚 = 𝑀𝑎𝑥 [(
𝜎𝑠

435
) , (

𝜎𝑠

435
)

1.82
]                                                                                                 [27] 

Equation 26 is equivalent to equation 21 for s ≥435 MPa. It assumes a constant average bond 

strength for reinforcement stress 𝜎𝑠 ≤ 435 MPa. This is a simplification because in reality, the 

average bond strength is proportional to (
435

𝜎𝑠
)

0.82
(see equation 24). However, for ease of use, and 

to compensate for increasing Canch at low 𝜎𝑠, the Vollum proposal adopts a constant bond strength 

for 𝜎𝑠 ≤ 435 MPa.  

The average bond strength corresponding to equation 26 is found by substituting 𝑙𝑏𝑜𝑗/𝜙 from 

equation 26 into equation 7. The resulting bond strengths for grade 500 reinforcement (i.e. 𝑓𝑦𝑑  = 

435 MPa) and below are given by:   

𝑓𝑏𝑗 = 2.44𝜁𝑗
182 (

𝑓𝑐𝑘

25
)

0.45
(

25

𝜙
)

0.36
(𝛼2 + 𝛼3)                                                                      [28] 

For k = 0.92 and d = 0.80: 

𝑓𝑏𝑘 = 2.1 (
𝑓𝑐𝑘

25
)

0.45
(

25

𝜙
)

0.36
(𝛼2 + 𝛼3)                                                                                [29] 

𝑓𝑏𝑑 = 1.6 (
1.5

𝛾𝑐
)

0.64
(

𝑓𝑐𝑘

25
)

0.45

(
25

𝜙
)

0.36
(𝛼2 + 𝛼3)                                                                [30] 

For 𝜎𝑠 > 435 MPa, the bond strength should be multiplied by (
435

𝜎𝑠
)

0.82
. 

As explained above, the proposed bond strength is independent of reinforcement stress 𝜎𝑠 for   𝜎𝑠 ≤ 

435 MPa. This is unlike the proposal of Mancini et al. [8], where the design bond strength varies with 

𝜎𝑠 according to equation 24. In normal design c = 1.5. However, lower c are used in design for fire 

and accidental actions. The term (
1.5

𝛾𝑐
)

0.64
 is chosen to make the partial bond factor, b = 𝑓𝑏𝑘/𝑓𝑏𝑑 

increase almost linearly with c between c = 1.0 and c = 1.5 and 𝑓𝑏𝑑 = 𝑓𝑏𝑘  when c = 1.0. For full 

strength laps with 𝜎𝑠𝑑 = 435 MPa, the bond factor 𝛾𝑏 = 𝑓𝑏𝑘/𝑓𝑏𝑑 is 1.3 for c = 1.5 and 1.14 for c = 

1.2 as used for accidental actions.  
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4.3 Theoretical appraisal of Vollum design proposal (equation 26) 

The proposals of Vollum (equation 26) and Mancini et al. [8] (i.e. equation 21 with k = 0.83, d = 

0.69) are illustrated in Figure 2 respectively for 20 mm bars spaced at 160 mm centres with 𝑓𝑐𝑘  = 40 

MPa and 30 mm cover.  Figures 2a and 2b respectively show characteristic and design lap lengths 

corresponding to bar stress s.  Also shown in Figure 2a are characteristic lap lengths calculated 

using equation 21 with k = 0.70 (corresponding to 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 < 300 MPa in Table 3) and k = 0.92 as 

used for Canch,k in equation 26. Figure 2b shows that Vollum gives shorter design lap lengths than 

Mancini et al. [8] for 𝜎𝑠> 340 MPa.   

a) 

 
b) 

 
Figure 2: Comparison of design methods for a) characteristic lap length 𝑙𝑏𝑘/ and b) design lap 
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The reinforcement stress at the intersection of the lines in Figure 2 depicted “equation 21 𝜁𝑗 =  𝜁𝑗
∗ ” 

(where j = k in Figure 2a , j = d in Figure 2b and 𝜁𝑗
∗ is the adopted numerical value of 𝜁𝑗) and “Vollum” 

(equation 26) is found by equating lap lengths calculated with equation 21 (with 𝜁𝑗 = 𝜁𝑗
∗) and 

equation 26 to be: 

𝜎𝑠 = 435 (
𝜁𝑗

∗

𝜁𝑗,𝐸𝑞 26
)

2.22

                                                                                                                [31]       

in which 𝜁𝑗,𝐸𝑞 26 is the probability coefficient adopted in equation 26 for calculation of Canch,j. In the 

Vollum proposal, 𝜁𝑘,𝐸𝑞 26 = 0.92 and 𝜁𝑑,𝐸𝑞 26 = 0.80. Bar stress 𝜎𝑠 and lap strength 𝑓𝑠𝑡𝑗 are 

interchangeable in equation 31 dependent on whether lap length or strength, corresponding to 

given lap length, is being calculated. 

For𝜁𝑘
∗ = 𝜁𝑘 = 0.70 and 𝜁𝑘,𝐸𝑞 26 = 0.92, equation 31gives the stress at the intersection of the lines in 

Figure 2a depicted “Vollum” and “Equation 21 k = 0.7” as 𝜎𝑠  = 237 MPa. Consideration of Figure 2a, 

shows that for 𝜎𝑠   < 237 MPa, Vollum is conservative relative to equation 21 with k = 0.70. For 𝜎𝑠   > 

435 MPa, Vollum also provides a safe estimate of characteristic resistance since it is coincident with 

equation 21 with k = 0.92. However, for 237 < 𝜎𝑠   < 435 MPa, the variation of k implicit in the 

Vollum method requires investigation. Rearranging equation 31 shows that normalised characteristic 

lap lengths 𝑙𝑏𝑘/𝜙 calculated with equation 21 (with 𝜁𝑗 = 𝜁𝑗
∗) and the Vollum proposal are equal if: 

𝜁𝑗
∗ = 𝜁𝑗,𝐸𝑞 26 (

𝜎𝑠

435
)

0.45
≤ 𝜁𝑗,𝐸𝑞 26                                                                                                    [32] 

For the Vollum proposal to have the level of safety required by EN 1990 [11], 𝜁𝑗
∗ from equation 32 

should match 𝜁𝑗 from Table 3 (depicted “𝜁𝑗,𝑇𝑎𝑏𝑙𝑒 3") for 237 < 𝜎𝑠 < 435 MPa. The relationship 

between 𝜁𝑗
∗ from equation 32 (depicted “Equation 32”) and 𝜁𝑗,𝑇𝑎𝑏𝑙𝑒 3  (depicted “Table 3”) is 

illustrated in Figures 3a and 3b respectively for characteristic and design lap strengths.  

Comparison of 𝜁𝑘
∗ (depicted “Equation 32”) and 𝜁𝑘,𝑇𝑎𝑏𝑙𝑒 3 (depicted “Table 3”) in Figure 3a suggests 

that Vollum provides a safe estimate of the characteristic bond strength but statistical verification 

using test data is required due to the stepped variation of 𝜁𝑘,𝑇𝑎𝑏𝑙𝑒 3. In Figure 3b, probability 

coefficients from Table 3 are plotted against the following notional design stress bands: 𝑓𝑠𝑡𝑑  < 300/b 

MPa, 300/b MPa ≤ 𝑓𝑠𝑡𝑑< 400/b MPa and 𝑓𝑠𝑡𝑑 ≥ 400/b MPa. Probability coefficients from Table 3 are 

plotted in Figure 3b for b = 1.29 (400 MPa ≤ 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡< 500 MPa) and b = 1.5 (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡< 300 MPa). By 

inspection, the “Vollum” (equation 32) probability coefficients in Figure 3b are less than the 

corresponding Table 3 coefficients. This indicates that the Vollum proposal (equation 26) achieves 

the required safety level as confirmed with test data in the next section. It is also evident that using 

b = 1.29 in Figure 3b, rather than b = 1.5, is conservative since it minimises 𝜁𝑑,𝑇𝑎𝑏𝑙𝑒 3 for given 𝑓𝑠𝑡𝑑. 
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Figures 3a and 3b also show that, if limited to the minimum value in Table 3, 𝜁𝑗
∗ varies almost linearly 

with lap strength (𝑓𝑠𝑡𝑗) as follows: 

Characteristic lap length 𝜁𝑘
∗

  (depicted “linearly varying k”)                                             [33] 

1. 𝜁𝑘
∗

 = 0.7 for 𝜎𝑠 ≤ 237 MPa 

2. 𝜁𝑘
∗= 0.7 + (0.92-0.7).( 𝜎𝑠-237)/(435-237) for 237 MPa ≤ 𝜎𝑠 ≤ 435 MPa 

3. 𝜁𝑘
∗= 0.92 for 𝜎𝑠 ≥ 435 MPa 

Design lap length 𝜁𝑑
∗  (depicted “linearly varying d”)                                                          [34] 

1. 𝜁𝑑
∗= 0.56 for 𝜎𝑠 ≤ 197 MPa 

2. 𝜁𝑑
∗= 0.56 + (0.80-0.56).( 𝜎𝑠-197)/(435-197) for 197 MPa ≤ 𝜎𝑠 ≤ 435 MPa 

3. 𝜁𝑑
∗= 0.80 for 𝜎𝑠 ≥ 435 MPa 

For assessment of lap strength, 𝜎𝑠 in the above equations for “linearly varying j” should be replaced 

by the lap resistance (𝑓𝑠𝑡𝑗). By definition, lap lengths calculated using equation 21 with 𝜁𝑗
∗ varying 

linearly as described above should coincide with the Vollum proposal for 𝑓𝑠𝑡𝑘 ≥ 237 MPa. This is 

verified in Figures 2a and 2b where the lines depicted 'Equation 21 linearly varying ' (calculated 

assuming  varies linearly as described above) coincides with the Vollum proposal for 𝜎𝑠𝑡𝑘 ≥ 237 

MPa (Figure 2a) and 𝜎𝑠𝑡𝑑 ≥ 197 MPa (Figure 2b).   
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 a) 

 
b) 

 
Figure 3: Variation of probability coefficient j with a) characteristic and b) design lap strength  

 

4.4 Statistical verification of Vollum proposal (equation 26) using test data and comparison with 

Mancini et al. [8]  

As shown in Section 4.3, the Vollum proposal for lap length (equation 26) is equivalent to equation 

21 if 𝜁𝑗 is calculated with equation 32. Equation 23 for lap strength (𝑓𝑠𝑡𝑗)  is obtained by rearranging 

equation 21 for lap length (𝑙𝑏𝑗). Consequently, lap strengths calculated using the Vollum proposal 

for bond strength (equation 28) equal those calculated using equation 23 with 𝜁𝑗 from equation 32. 

As shown in Section 4.3, equation 32 can be linearised as described by equation 33 for 𝜁𝑘 and 

equation 34 for 𝜁𝑑.   
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Characteristic lap strengths were calculated for the filtered database using equation 23 in which k 

was calculated with equation 33. In the discussion below, these strengths are depicted “equation 23 

with linearly varying k”. Above around 240 MPa, strengths depicted “equation 23 with linearly 

varying k” correspond to the Vollum proposal (equation 26) as shown in Figure 2a. The probability 

coefficients given by equations 33 and 34 depend on whether the measured or calculated lap 

strength is used. Probability coefficients are related to the measured lap strength in Table 3 but to 

the calculated lap strength in the Vollum proposal (equation 26).  

For consistency with Table 3, “equation 23 with linearly varying k” was initially assessed using 

probability coefficients calculated with equation 33 in terms of the measured lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡). 

Consequently the bar stress (𝜎𝑠) was taken as 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 in equation 33. The calculated characteristic 

lap strength 𝑓𝑠𝑡𝑘 was limited to a maximum of 1.05𝑓𝑦. This limit controlled the strength of 18 test 

specimens with links and two without links. The results of the analysis are shown in Figure 4 which 

also shows lap strengths calculated in accordance with Mancini et al. [8] (equation 23 with k = 0.83) 

but limited to a maximum of 1.05𝑓𝑦. For Mancini et al., the maximum strength of 1.05𝑓𝑦 governed 

for seven test specimens. Data in Figure 4, which assesses the basis of the Vollum method, are 

grouped into tests without and with confining reinforcement. Strengths calculated using equation 23 

with linearly varying k are depicted “Equation 23” in Figure 4. 

Figures 4a to 4c show the influence of a) lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡), b) concrete strength (𝑓𝑐) and c) 

normalised lap length (𝑙𝑏/𝜙) on the ratio 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘. Results are shown for both “equation 23 with 

linearly varying k” and Mancini et al. [8]. The influence of each parameter on 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘 is 

indicated by the trend lines plotted in Figure 4. As intended, Figure 4a shows that 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘 is 

independent of lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡) for equation 23 with linearly varying k (depicted “Equation 

23”). This is not the case for Mancini et al. (with k = 0.83) where 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘 increases with 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡. 

Figure 4b shows that 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘 is independent of concrete strength for both “Equation 23” and 

Mancini et al. Figure 4c shows that on average 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘 reduces with increasing 𝑙𝑏/𝜙 for 

“Equation 23”. This is not the case for Mancini et al. [8] where 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘 is independent of 𝑙𝑏/𝜙. 

The downwards trend of 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘 with increasing 𝑙𝑏/𝜙 for “Equation 23” arises because 𝑓𝑠𝑡𝑘 is 

frequently limited by reinforcement yield for 𝑙𝑏/𝜙 > 40 as observed experimentally. 
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 a) 

 

b) 

 
c) 

 
Figure 4: Influence of a) measured lap strength fst,test, b) concrete strength fc and c) lb/ on fst,test/fstk  

for equation 23 with linearly varying k (depicted “Equation 23”) and Mancini et al. [8]. 
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Table 4 shows failure rates for the different methods considered. It shows the percentage of 

specimens with measured strength less than characteristic strength calculated with i) equation 23 

with linearly varying k (basis of Vollum proposal), ii) the Vollum bond strength proposal (equation 

29), iii) Mancini et al. [8] (equation 23 with k = 0.83) and iv) EN1992 [1]. Two sets of analyses were 

carried out using equation 23 with linearly varying k.  In analyses depicted “equation 23, k 

(depicted k fst, test) was calculated in terms of the measured lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡). In analyses 

depicted “equation 23(a)”, k (depicted k fstk) was calculated by iteration in terms of the calculated 

characteristic lap strength (𝑓𝑠𝑡𝑘). Lap strengths calculated with equation 23(a) correspond to lines 

depicted “Equation 21 linearly varying k” in Figure 2a. Table 4 also shows the number of specimens 

in each category. Table 5 shows the mean and standard deviation of 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑘  for each method.  

Table 4: Percentage failures for calculated characteristic lap strengths  

Measured lap strength 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡  (MPa) <300 300-400 400-500 >500 All 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 

Number of specimens  65 159 153 114 491 

Number of specimens without links 41 96 66 32 235 

Number of specimens with links 24 63 87 82 256 

Equation 23 (linearly varying k fst, test) 4.62% 2.52% 3.27% 1.75% 2.85% 

Equation 23(a) (linearly varying k, fstk) 4.62% 3.14% 4.58% 1.75% 3.24% 

Vollum (bond stress: equation 29)  
reference fstk 

4.62% 3.14% 4.58% 1.75% 3.46% 

Mancini et al. [8] (equation 23 with k = 0.83) 21.54% 3.77% 0.65% 0.00% 4.28% 

EN 1992 (2004) [1] 9.23% 7.55% 5.23% 7.89% 7.13% 

EN 1992 (2004) no links 12.20% 12.50% 6.06% 15.63% 11.06% 

EN 1992 (2004) links 4.17% 0.00% 4.60% 4.88% 3.52% 

 

Table 5: Characteristic strength statistics for fst,test/fstk  

Measured lap strength 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡  (MPa) Statistic <300 300-400 400-500 >500 All 

Number of specimens  - 65 159 153 114 491 

Equation 23 (linearly varying k fst, test) 
 1.26 1.27 1.20 1.27 1.25 

 0.16 0.16 0.13 0.14 0.15 

Equation 23(a) (linearly varying k fstk) 
 1.32 1.45 1.38 1.31 1.38 

 0.20 0.24 0.25 0.19 0.23 

Vollum (bond stress: equation 29) 
reference fstd 

 1.56 1.53 1.37 1.31 1.43 

 0.35 0.35 0.27 0.18 0.31 

Mancini et al. [8] (equation 23; k = 0.83) 
 1.11 1.26 1.32 1.40 1.29 

 0.17 0.16 0.15 0.16 0.18 

EN 1992 (2004) [1] 
 1.67 1.70 1.65 1.55 1.65 

 0.49 0.51 0.43 0.41 0.46 

Of all the methods, equation 23, (linearly varying k fst, test) is most accurate and consistent between 

stress bands. Equation 23(a), (linearly varying k fstk), is satisfactory but less accurate since k is 

typically underestimated to a varying degree as a result of the calculated lap strength (𝑓𝑠𝑡𝑘) being 

less than measured (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡).  Table 4 also suggests that Mancini et al. [8] (equation 23 with k = 
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0.83) has below the level of safety required by EN 1990 [11] for 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡< 300 MPa but is overly 

conservative for 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 > 400 MPa. The current EN 1992 [1] rules appear satisfactory if confining 

links are provided but have below the expected level of safety without confining reinforcement. 

Additionally, the mean and standard deviation of each band are greatest for EN 1992 [1] indicating 

that the method is imperfect and in need of improvement.  

Figures 5a and 5b respectively show the influence of measured lap strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡) on the 

characteristic lap strength calculated using equation 23 (linearly varying k fst, test) and Mancini et al. 

[8] (equation 23 with k = 0.83). Comparison of Figures 5a and 5b shows that the data points in 

Figure 5a, for equation 23, are grouped more closely around the trend line than in Figure 5b for 

Mancini et al. [8]. The slope of the trend line is also slightly steeper in Figure 5a. These features are 

reflected in the statistical data presented for each method in Tables 4 and 5.  

a) 

 
b) 

 
Figure 5: Comparison of measured and characteristic strengths for a) Equation 23 with linearly 

varying k fst,test and b) Mancini et al. [8] (equation 23 with k = 0.83)  
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Figure 6 compares design and measured lap strengths corresponding to i) equation 23 (linearly 

varying d fst, test), ii) Mancini et al. [8] (equation 21 with d = 0.69) and iii) Vollum (equation 26). The 

maximum lap strength was limited to the measured reinforcement yield strength. Equation 23 with 

linearly varying d fst,test is seen to be most accurate. The Vollum method is less accurate than 

equation 23 since the probability coefficient d implicit in equation 26 depends on the calculated lap 

strength (𝑓𝑠𝑡𝑑) rather than the measured strength (𝑓𝑠𝑡,𝑡𝑒𝑠𝑡).  This increases scatter, as shown in 

Figure 6c, but is conservative since the design strength is always less than measured which reduces 

the probabilistic coefficient d calculated with equation 34 for 𝑓𝑠𝑡𝑑 < 435 MPa.  

4.5 Discussion of safety of Vollum proposal 

The Vollum method (equation 26) takes advantage of the increase in probability coefficient j with 

lap strength 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 evident in Table 3. This increase in j (see equation 15) arises because (where 

depicts mean and 𝜃 = 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡/𝑓𝑠𝑡𝑚) increases and V (where V depicts coefficient of variation) 

reduces with increasing lap strength. Tests by Micallef and Vollum [16,17] on “short”, “long” and 

“very long” laps of the same bar diameter suggest that redistribution of bond stress may explain the 

observed reduction in Vwith increasing 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡.  “Short” laps failed suddenly due to splitting prior to 

bar yield. “Long” laps were designed with equation 3 to have mean lap strength equal to the 

measured reinforcement yield strength. “Long” laps failed due to longitudinal splitting subsequent 

to extensive bar yield. “Very long” laps varied in length between 1.5 and 2.0 times the length of 

“long” laps. Specimens with “very long” laps failed in flexure due to concrete crushing at almost the 

same load as comparable specimens with “long” laps. Despite the difference in failure mode, 

specimens with “long” and “very long” laps developed very large, and similar, plastic displacements 

at peak load. In “very long laps” the strain distribution was fairly uniform over the central part of the 

lap up to peak load. Up to at least 75% of yield, strains were fairly uniform over the central part of 

“long” laps [17]. However, by first yield, the strain distribution along “long” laps was fairly linear 

indicating the occurrence of significant bond stress redistribution between 75% of yield and failure. 

Potential for bond stress redistribution of this type, which increases with lap length, seems a 

possible explanation for the reduction in V with increasing 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 evident in Table 3. The proposed 

approach accounts for the observed behaviour by relating the probability coefficient j, and hence b, 

to lap strength.  
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a) 

 

b) 

 

c) 

 

Figure 6: Comparison of measured and design lap strengths for a) equation 23 with linearly varying 

d fst, test, b) Mancini et al. [8] (equation 23 with d = 0.69) and c) Vollum (equation 26) & equation 

23 with linearly varying d fst, test. 
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4.6 Staggering of laps 

EN 1992 [1] requires adjacent laps to be staggered by 0.3𝑙𝑏,𝑑 where 𝑙𝑏,𝑑 is the design lap length. 

Recent research [16,18] shows that staggering laps has a slight detrimental effect on strength whilst 

having minimal influence on crack width. Therefore, it is proposed that 100% laps be permitted with 

no requirement to stagger adjacent laps as currently required by EN 1992 [1].    

5 Comparison of design methods 

Table 6 summarises the methods described in the paper and compares design lap lengths for a 100% 

lap of 25 mm bars in good bond conditions, bar stress = 𝑓𝑦𝑑 = 435 MPa, in C30/37 concrete, no 

confinement from transverse reinforcement or pressure and cmin = cmax = bar diameter + 10 mm. The 

proposals in fib Bulletin 72 [3], MC2010 [4], and Mancini et al. [8] are seen to represent a circa 40% 

increase in full strength (sd = 435 MPa) lap lengths over current EN1992 [1] lap lengths for 25 mm 

bars in ‘good’ bond conditions in a typical C30/37 concrete. That would equate current good bond 

conditions to future bad conditions which would be unacceptable to industry. In the UK and 

elsewhere, the current EN 1992 [1] lap lengths are already regarded as excessive. Contrary to 

current practice, the anchorage proposals in Mancini et al. [8] relate bond strength (equation 24) to 

the reinforcement stress. This is advantageous for the design of short tension anchorages but less so 

for laps which, in UK practice, are typically designed for 𝑓𝑦𝑑. This is the case even if laps are not 

positioned at points of maximum moment since it is not considered practical or economic to design, 

detail, draw, fix and check each lap for the particular stress in the bars.   

A parametric study was carried out to compare the tension lap design recommendations of EN 1992 

[1], Mancini et al. [8] (equation 21 with Canch,d = 88) and Vollum (equation 26). Figure 7 compares 

design bond strengths calculated for 100% laps with bar diameter  = 20 mm, 𝑓𝑐𝑘 = 30 MPa, cover = 

30 mm, clear bar spacing of 110 mm and ktr = 0. The limiting minimum lap strength 𝜎𝑠𝑑 shown for 

each method is the strength calculated for a minimum allowable lap length of 10 bar diameters. For 

this example, the design bond strengths given by the Vollum method are greater than given by EN 

1992 [1].  Design bond stresses corresponding to the Vollum method (equation 30) and equation 24 

with d from equation 34 (depicted Equation 24 linearly varying d), are equal for 𝑓𝑠𝑡 ≥ 197 MPa since 

in this case the two methods are almost identical as explained in Section 4.3. The Vollum proposal is 

more economic (greater bond stress) than Mancini et al. [8] for design lap strengths above 𝑓𝑠𝑡𝑑  = 320 

MPa. Below 𝑓𝑠𝑡𝑑  = 320 MPa, Mancini et al. [8] is more economic but, according to Table 4, it has 

below the level of safety expected by EN 1990 [11] for 𝑓𝑠𝑡,𝑡𝑒𝑠𝑡 ≤ 300 MPa.  
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Table 6: Comparison of tension lap requirements 

In a typical, simple 100% lap for a 25 mm bar in good bond conditions, bar stress = fyd = 435 MPa, 
in C30/37 concrete, no confinement and cmax = cmin = bar diameter + 10 mm,  the lap length would 
be: 

Ref Calculation (lb/)d

  

EN1992-1-1:2004 
[1]  

Equations 1 and 2 

𝑙bd/  = 1235 6 (/4)(sd/(fbd/C) 

              = 1.0x0.94x1.0x1.0x1.5(1/4)(435/(2.25x1.0x1.0x0.21fck
0.666/1.5))  

              = 486.8/fck
0.666    

 

 

= 50 

fib Bulletin 72 [3]  

Equation 6 and 

c=1.5 

𝑙bd/     = 73.5C (25/fcm)5/11(sd/435)20/11(/25)4/11(/cmin)5/11 

                  = 73.5x1.5x(25/38)5/11(435/435)20/11(25/25)4/11(25/35)5/11  

                  = 110x0.826x1.0x1.0x0.858 

 

= 78 

MC2010 [4]  

Equation 13 

 

𝑙bd/ = sd/[4(2 + 3)(1234(fck/25)0.5/C] 

               = 435/[4x((35/25)0.5+ 0)x(1.75x1.0x1.0x1.0x(30/25)0.5/1.5]  

  = 435/[(4x1.183x1.75x1.095/1.5)] ≥ lb,min/ 

   = 435/6.05 =  

 

 

 

= 72 

Mancini et al. [8] 

Equation 21 (d = 
0.69) 

𝑙bd/ = Canch,d(25/fck)0.45(sd/435)1.82(/25)0.36/(1+2) 

              = 88(25/30)0.45(435/435)1.82(25/25)0.36/((35/25)0.5(35/35)0.15 + 0)  

              = 88x0.921x1.0x1.0/1.18  

 

 

= 69 

Vollum  

Equation 26 

𝑙bd/ = mCanch,d(25/fck)0.45 (/25)0.36/(2+3) 

  = (435/435)x67(25/30)0.45 (25/25)0.36/((35/25)0.5(35/35)0.15 + 0)  

               = 1.0x67x0.921x1.0 / 1.183  

 

 

= 52 

 

 

 

Figure 7: Influence of reinforcement stress on design bond strength 
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Figures 8a to 8f show the influence of: 

 reinforcement stress on the required design lap length for 16 mm, 25 mm and 32 mm 

diameter bars (𝑓𝑐𝑘 = 40 MPa, cover 1.5, clear bar spacing 6, ktr = 0). (see Figures 8a to 8c) 

 concrete strength on the full strength design lap strength of 25 mm diameter bars (𝑓𝑦𝑑 = 435 

MPa, cover 1.5, clear bar spacing 6, ktr = 0). (see Figure 8d) 

 bar centreline spacing on full strength design lap length of 25 mm diameter bars (𝑓𝑦𝑑 = 435 

MPa, 𝑓𝑐𝑘 = 30 MPa, cover 1.5, ktr = 0). (see Figure 8e) 

 Confining reinforcement ktr on full strength design lap length of 25 mm diameter bars 

(𝑓𝑦𝑑  =  435 MPa, 𝑓𝑐𝑘 = 30 MPa, cover 1.5, clear bar spacing 4). (see Figure 8f) 

The coefficient 6 was taken as 1.5 in the calculation of EN 1992 [1] laps which corresponds to 

greater than 50% of bars being lapped at a cross section. Figures 8a to 8f show that the proposed 

Vollum method tends to give the shortest lap lengths for reinforcement stresses above around 300 

MPa. The exceptions are very closely spaced bars and bars of 32 mm or greater diameter where EN 

1992 requires slightly shorter laps (~15%) than the proposed Vollum method (equation 26).  
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a) 
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d) 

 
e) 

 
f) 

  

Figure 8: Comparison of design methods: influence of a-c) bar diameter, d) concrete strength, e) 

bar spacing and f) confining reinforcement index ktr 
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5.1 Considerations for choice of design method 

The choice of design method should ideally be based on accuracy, economy and ease of use. Section 

4.4 shows that the Vollum proposal (equation 26) provides the level of safety expected by EN 1990 

[11] while Section 5 shows that it scores best in terms of economy for highly stressed laps. For 

medium sized bars, the Vollum proposal broadly maintains current EN1992 [1] full strength lap 

lengths for grade 500 reinforcement. Other proposals increase them, sometimes substantially. 

Furthermore, the Vollum proposal provides conforming and acceptable failure rates across all lap 

strengths, whereas Mancini et al. [8] (equation 21 with Canch,d = 88) does not for the considered data 

(see Table 4). For these reasons Vollum (equation 26) is recommended.  

The relative economy of the Vollum method compared with EN 1992 is further explored in Figure 9 

which shows the influence of bar diameter on full strength lap lengths required by these two 

methods for 𝑓𝑐𝑘 = 30 MPa, 𝑓𝑦𝑑 = 435 MPa, min centres 4, cmin = Max(25,+10) and no confinement 

from links. The Vollum proposal is seen to require shorter laps for bar diameters of 20 mm and 

below but slightly greater laps for bars of 25 mm and above.  

Apart from accuracy and economy, ease of use is important. This is somewhat subjective but the 

Vollum proposal scores well in this regard since the design bond strength is independent of 

reinforcement stress for grade 500 reinforcement and below. Overall, the Vollum proposal is seen as 

giving the best outcome on ease of use and economy and is, therefore, advocated.  

 

Note: 𝑓𝑐𝑘 = 30 MPa, 𝑓𝑦𝑑 = 435 MPa, min centres 4, cmin = Max(25,+10), no confinement 

Figure 9: Comparison of full strength lap lengths required by the Vollum proposal and EN1992 [1] 
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6 Conclusions and recommendations 

The paper reviews the background to the MC 2010 design provisions for tension laps as well as the 

statistical calibration of it by Mancini et al. [8]. These recommendations have been broadly adopted 

in the draft revision to EN 1992 due for publication in 2023 [2] but the basic multiplier required to 

achieve the level of safety expected by EN 1990 is still under discussion. The MC2010 design 

provisions for tension laps are derived from equation 3-2 of fib Bulletin 72 [3] which is shown to 

become increasingly conservative with increasing lap strength. The authors use a reliability analysis, 

derived from Mancini et al. [8], to show that the probabilistic coefficient j  used to calibrate 

equation 3-2 [8] increases with lap strength. On the basis of this analysis, Vollum proposes equation 

26 for calculating the required lap length. The Vollum proposal (equation 26) is shown to give 

reasonable estimates of measured strength for the fib tension splice database [10] as well as 17 

specimens tested by Micallef and Vollum [16,17]. It is suggested that the design bond stress for 

Grade 500 reinforcement and below should be based on the design yield strength of Grade 500 

reinforcement which is taken as 435 MPa. The full strength lap lengths given by the Vollum proposal 

(equation 26) are shown to be significantly shorter than calculated using the recommendations of 

Mancini et al. [8] (equation 21 with Canch,d = 88). For medium sized bars, lap lengths calculated with 

the Vollum proposal are comparable with those given by EN 1992 [1].  

6.1 Recommendations 

For design, the Vollum proposal (equation 26) together with values of 67 proven for Canch,d and 

provision to allow  c to vary away from 1.5, is given as equation 33 for anchorage and laps and as 

equation 38 for bond stress. The following formulae are recommended for inclusion in the c2023 

revision of EN1992: 

Anchorage and lap length 

𝑙𝑏𝑑

𝜙
= 67𝑚 (

𝛾𝑐

1.5
)

0.64
(

25

𝑓𝑐𝑘
)

0.45
(

𝜙

25
)

0.36
/(𝛼2 + 𝛼3)  ≥ 10                                    [33] 

Where 

 𝑙𝑏𝑑  = design anchorage or lap length 

    = bar diameter 

𝑚 = Max (𝜎𝑠𝑑/435, (𝜎𝑠𝑑/435)1.82)                                                                                            [34] 

𝛼2 = (
𝑐𝑚𝑖𝑛

𝜙
)

0.5
(

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
)

0.15
                                                                                    [10, 35] 

Where 

cmin, cmax minimum and maximum cover distances according to Figure 6.1-2 of MC2010. 
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𝛼3 = 𝑘𝑑𝐾𝑡𝑟                                                                                                              [11, 36]  

Where 

Transverse confinement factor, 𝐾𝑡𝑟 = 𝑛𝑙𝐴𝑠𝑣/(𝑠𝑣∅𝑛𝑏) ≤ 0.05                       [4,37] 

Effectiveness factor, kd  = 20 for bars less than 125 mm or 5 bar diameters away from the 

nearest vertical leg of a link crossing the splitting plane 

approximately perpendicularly 

= 10 for internal bars confined by straight bars within the cover 

zone with cs > 8(i.e. spacing > 9 centres) 

 = 0 for other circumstances [4]. 

 

Bond stress 

Where bond stress is required, design bond stress may be assumed to be constant for 𝜎𝑠𝑑  ≤ 435 MPa 
and assessed as being: 

𝑓𝑏𝑑 = min (1, (
435

𝜎𝑠𝑑
)

0.82
)1.6 (

1.5

𝛾𝑐
)

0.64
(

𝑓𝑐𝑘

25
)

0.45

(
25

𝜙
)

0.36
(𝛼2 + 𝛼3)           [30, 38] 
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