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A collection of codes (in MATLAB & Fortran 77), and examples, for solving reaction-diffusion
equations in one and two space dimensions is presented. In areas of the mathematical community

spectral methods are used to remove the stiffness associated with the diffusive terms in a reaction-

diffusion model allowing explicit high order timestepping to be used. This is particularly valuable
for two (and higher) space dimension problems. Our aim here is to provide codes, together

with examples, to allow practioners to easily utilize, understand and implement these ideas; we

incorporate recent theoretical advances such as exponential time differencing methods and provide
timings and error comparisons with other more standard approaches.

The examples are chosen from the literature to illustrate points and queries that naturally arise.

Categories and Subject Descriptors: G. 1.8 [Numerical Analysis]: Partial Differential Equations-
Spectral Methods

General Terms: Algorithms

Additional Key Words and Phrases: Fourier transforms, MATLAB, Runge-Kutta methods, Ex-
ponential time differencing

The codes can be downloaded from: https://github.com/roesassi/SpectralCodes

1. INTRODUCTION

The aim of this paper is to provide a suite of practically useful and versatile spectral
algorithms (in both Matlab and Fortran 77) to efficiently solve, numerically, systems
of partial differential equations of the general form:

ut = uxx + uyy + f(u, v), vt = ε(vxx + vyy) + g(u, v) (1)

where g(u, v) and f(u, v) are nonlinear functions of u, v and ε a constant; we could
also consider them to additionally be functions of the first derivatives of u, v, but we
shall not do so here. The methods we describe are applicable to higher dimensions
and further coupled equations, however we shall restrain ourselves to consider two
space dimensions and two coupled equations. Such equations abound in mathe-
matical biology, ecology, physics and chemistry, and many wonderful mathematical
patterns and phenomena exist for special cases. In one space dimension: non-
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2 · R. V. Craster & R. Sassi

dimensional models of epidemiology and mathematical biology, such as,

ut = uxx + u(v − λ), vt = εvxx − uv (2)

emerge from the modelling. In this example, there are parameters λ, ε, where u, v
are the infectives and susceptibles respectively. The parameters λ, ε are a removal
rate and a diffusivity. These types of equation typically yield travelling waves,
[Murray 1993], similar in theory and spirit to that for Fisher’s equation which is
the usual paradigm. Here issues such as the speed selection for travelling waves,
and also accelerating travelling waves are of interest; these are relevant when one
species consumes or invades another; [Fisher 1937] was originally interested in the
propagation of advantageous genes. Reaction diffusion equations also lead to many
other interesting phenomena, such as, pulse splitting and shedding, reactions and
competitions in excitable systems, and stability issues. Later, we shall explicitly il-
lustrate the versatility of the scheme presented here versus a wide range of examples
from the literature.

Our primary interest is not really in 1D simulations, these are relatively easily
undertaken using either method of lines coupled with spatial adaptive schemes
[Blom and Zegeling 1994], or finite element collocation schemes [Keast and Muir
1991], or even just simple Crank-Nicholson and finite difference schemes [Sherratt
1997]. Of these, the adaptive schemes seem preferable, in general, since they cluster
the grid points in areas of sharp solution gradients. As such the Blom & Zegeling
code has been much utilized by one of the authors in a wide variety of different areas
([Balmforth et al. 1999; Balmforth and Craster 2000; Craster and Matar 2000]).
The Matlab spectral code we develop, for one dimension, is given in Appendix A,
and is certainly competitive with all these schemes and often faster and easier to
use.

Unfortunately, in two space dimensions, simulations based upon the more con-
ventional ideas become more time consuming [Pearson 1993; Muratov and Osipov
2001], the latter requiring an hour or so of runtime on an SGI-Cray parallel super-
computer, although the simulations are certainly possible and accurate. It may be
that because of this expensive simulation time, comparisons with two-dimensional
simulations appear less prevalent in the literature than the 1D cases, even though
they are certainly important in modelling pattern creation. However, an idea well-
known in the spectral methods community can be used to remove the stiffness
often associated with reaction diffusion equations, and thereby allow much larger
timesteps to be utilized with an explicit timesolver; consequently the codes run
very quickly even on a standard PC or laptop. We utilize Fast Fourier Transforms
in space utilizing an integrating factor to remove the stiff terms. The time stepping
could be just a standard explicit Runge–Kutta method, and we initially utilize this
method. Later we discuss some refinements that adjust standard Runge-Kutta to
take into account modifications motivated by the spectral scheme.

Other recent articles on numerically simulating two dimensional reaction-diffusion
models utilize wavelet [Cai and Zhang 1998]) or high order finite difference schemes
[Liao et al. 2002]; the spectral method could be thought of as the logical exten-
sion of finite differences to infinite order, a viewpoint advanced by [Fornberg 1998].
Alternatively physicists and mathematicians interested in the actual processes in-
volved, or underlying mathematical phenomena, use operator splitting methods
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Reaction-diffusion equations · 3

[Ramos 2002] (see also Appendix C) or often retreat to finite element simulations
([Tang et al. 1993]) or PDETWO [Melgaard and Sincovec 1981; Davidson et al.
1997] another collocation based scheme. There is only one article that we have
found [Jones and O’Brien 1996] that promotes the spectral viewpoint for reaction
diffusion equations, and we agree wholeheartedly with its philosophy.

Emboldened by the recent article of [Weideman and Reddy 2001], and the books
by [Trefethen 2000], [Boyd 2001], and our experience with using Matlab for other
two-dimensional PDE simulations in other contexts ([Balmforth et al. 2004]), we
primarily utilize Matlab as our numerical vehicle, although for comparative pur-
poses we also coded the routines in Fortran 77 using Fast Fourier Transform routines
from [Fornberg 1998], [Canuto et al. 1988]. Taking advantage of the built-in rou-
tines in Matlab, the resulting Matlab codes are extremely concise, typically a page
long; an example is given in Appendix A and several are in the accompanying elec-
tronic files. Matlab routines are also highly portable between different platforms;
our routines require Matlab 5 or higher.

2. FORMULATION

Spectral methods are extremely valuable for generating numerical methods in al-
most all areas of mathematics. The ability to generate spectrally accurate spatial
derivatives means that there is simply no excuse to differentiate poorly. When this
is coupled with Fast Fourier transforms and an elegant high-level language such as
Matlab it becomes possible to generate versatile and powerful codes. The article
[Weideman and Reddy 2001] and book [Trefethen 2000] are quite inspirational in
showing the range of what is possible with this combination of tools. We shall
present the theory in two space dimensions:

The integrating factor approach that we utilize is to Fourier transform equations
(1) to obtain

Ut(ωx, ωy, t) = −(ω2
x + ω2

y)U(ωx, ωy, t) + F [f(u(x, y, t), v(x, y, t))], (3)

Vt(ωx, ωy, t) = −ε(ω2
x + ω2

y)V (ωx, ωy, t) + F [g(u(x, y, t), v(x, y, t))] (4)

where U, V are the double Fourier transforms of u, v, that is,

F [u(x, y, t)] = U(ωx, ωy, t) =

∫ ∞
−∞

∫ ∞
−∞

u(x, y, t)e−i(ωxx+ωyy)dxdy. (5)

Let us set Ω2 = ω2
x +ω2

y, and explicitly remove the linear pieces of the transformed
equations using integrating factors, setting:

U = e−Ω2tŨ , V = e−εΩ
2tṼ , (6)

such that now

∂tŨ = eΩ2tF [f(u, v)], ∂tṼ = eεΩ
2tF [g(u, v)]. (7)

At this point, in practical terms, we discretize the spatial domain, considering Nx
and Ny equispaced points in the x and y directions. Then we utilize the discrete
FFT so equation (7) becomes a system of ODEs parameterized by the Fourier
modes (distinguished by a couple of indices ij) so

∂tŨij = eΩ2
ijtF [f(uij , vij)], ∂tṼij = eεΩ

2
ijtF [g(uij , vij)], (8)
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4 · R. V. Craster & R. Sassi

where uij = u(xi, yj), vij = v(xi, yj) and Ω2
ij = ω2

x(i) + ω2
y(j). Periodic boundary

conditions are implicitly set at the extremes of the spatial domain. Henceforth we
will suppress the ij indices and consider this discretization understood. In practice
one takes, say, Nx = Ny = N = 128 and utilize 128× 128 Fourier modes.

The spatial derivatives have now disappeared, along with the stiffness that they
had introduced, and the resulting ODEs are now simple to solve with an explicit
solver, say, Runge-Kutta. There are issues that arise at this stage, for instance, the
fixed points of these equations are different from those of the original ones, aliasing
could be an issue and, if we use Runge-Kutta or some other scheme, how does the
local truncation error depend upon Ωij? We leave these issues aside until later in
the article.

Adopting the standard notation for order M Runge-Kutta methods, with time
step ∆t, that is to advance from tn = n∆t to tn+1 = (n + 1)∆t for an ODE yt =

f(t, y): yn+1 = yn+
∑M
i=1 ciki and each ki is ki = ∆tf(tn+ai∆t, yn+

∑i−1
j=1 bijkj).

The ai, ci, bij are given by the appropriate Butcher array; an almost infinite number
of different schemes exist. Two popular ones are given in Numerical Recipes [Press
et al. 1992]: classical fourth order and the Cash-Karp embedded scheme [Cash and
Karp 1990], we utilize these in our numerics.

For our purposes we apply the general explicit Runge-Kutta formula to the equa-
tions (8) for Ũij and Ṽij . Notationally, we denote µi and νi to be the k’s associated

with the Ũ and Ṽ equations respectively. The right-hand sides have slightly un-
settling exponential terms in t and it is convenient to set replacement variables
as

µ̃i = µie
−Ω2tn , ν̃i = νie

−εΩ2tn . (9)

We write the formulae out for U and V since it is simpler to just work with the
transforms of the physical variables rather than the physical variables themselves.
The upshot is that with an M -stage Runge-Kutta scheme,

Un+1 = e−Ω2∆t

[
Un +

M∑
i=1

ciµ̃i

]
, Vn+1 = e−εΩ

2∆t

[
Vn +

M∑
i=1

ciν̃i

]
, (10)

where the modified µ̃i and ν̃i terms are

µ̃i = eΩ2ai∆t∆tF
{
f
[
F−1 (Un+ai) ,F−1 (Vn+ai)

]}
,

ν̃i = eεΩ
2ai∆t∆tF

{
g
[
F−1 (Un+ai) ,F−1 (Vn+ai)

]}
, (11)

and the values of U and V at the intermediate steps are

Un+ai = e−Ω2ai∆t

Un +

i−1∑
j=1

bij µ̃j

 , Vn+ai = e−εΩ
2ai∆t

Vn +

i−1∑
j=1

bij ν̃j

 . (12)

That is, one works entirely in the spectral domain and one inverts a transform to
recover u and v. Clearly a fair amount of Fourier transforming to and from, is
involved and this is the primary numerical cost. Fortunately Matlab has simple to
use multi-dimensional Fast Fourier Transform (FFT) routines, (fft, ifft, fft2,

ifft2) and many routines are available in Fortran (or C).
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The essential point is that by removing the stiffness one can use explicit high-
order timesolvers and rapidly and accurately move forwards in time, this is vastly su-
perior to using implicit schemes particularly in higher dimensions (see Appendix C).
There are some slight deficiencies in the method that can be removed using more
recent ideas and we shall return to the theory in section 3.3.2.

3. ILLUSTRATIVE EXAMPLES

We choose a range of illustrative examples that are of current and recurring interest,
and which cover pitfalls and natural questions that arise.

3.1 One dimensional models

3.1.1 Fisher’s equation: Speed selection. Fisher’s equation

ut = uxx + u(1− u), |x| < L (13)

provides a nice demonstration; there is a detail that is worth investigating: the speed
selection associated with exponential decay of the initial condition. Numerically
this has been an issue for other approaches such as moving mesh schemes ([Qiu
and Sloan 1998]) with some authors recommending that such schemes be used with
caution upon this type of problem ([Li et al. 1998]).

We utilize an initial condition

u(x, 0) =
1

2 cosh δx

that has exponential decay exp(−δ|x|) as |x| → ∞. Theoretically, one expects
travelling waves to develop from such an initial condition on an infinite domain,
which we truncate at some large, but finite, value, say, L ∼ 150, and what is
particularly interesting is that the system then selects the constant velocity at
which the developed fronts propagate, c, and the velocity is a function of the decay
rate of the initial condition:

c = 2 for δ > 1, c = δ +
1

δ
otherwise. (14)

We easily extract the velocity from the simulations, figure 1, and evidently we
recover these theoretical values. It is essential that L is taken to be large enough
that the initial condition is effectively zero at L, here L ∼ 150. The figure shows
the front position, X(t), here taken as the point where u(X, t) = 10−4, versus time,
the slope gives the velocity; for convenience ct is also shown, note the offset in panel
(b) is not relevant as it is the slope that concerns us.

The simulations in Fortran 77 are performed virtually instantaneously, with the
Matlab simulations taking a few seconds.

3.1.2 Gray-Scott: Pulse splitting. Another very interesting feature of many re-
action diffusion equations is pulse splitting or shedding; a propagating pulse is
unstable, and the unstable eigensolutions lag behind the pulse causing a daughter
pulse to break off. This is particularly pronounced in the Gray-Scott equations,
fortunately they have a pleasant and simple nonlinearity in the reaction terms that
makes them amenable to analytical approaches [Doelman et al. 1997; Reynolds
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Fig. 1. Panels (a) and (b) show front positions versus time for various values of δ. In panel (a)
these are shown for δ ≤ 1. Panel (b) shows front positions for δ ≥ 1. Circles show ct, c taken

from (14). Panels (c) and (d) show profiles of u at unit time intervals until t = 10.

et al. 1997]. They also form a tough test upon any numerical scheme as the split-
ting events and subsequent structure must be captured correctly both in space and
time.

The equations (v is the activator and u the inhibitor) are:

ut = uxx − uv2 +A(1− u), vt = εvxx + uv2 −Bv. (15)

A couple of illustrative plots are given in figure 2, these have initial conditions

u = 1− 1

2
sin100(π(x− L)/2L), v =

1

4
sin100(π(y − L)/2L)

where we choose the half domain length, L, to be 50. These are chosen to replicate
a figure from [Doelman et al. 1997]; notably the simulations differ as the boundary
conditions here at ±L are periodic, and eventually a steady spatially periodic state
emerges. The simulations in [Doelman et al. 1997], and reproduced in panel (b) of
figure 2, utilize Dirichlet, that is, fixed values of u, v, conditions and hence there is
a minor discrepancy close to the edges of the domain, this is most noticeable in u.
The Matlab file for this computation is given in Appendix A, and it takes 12 seconds
to run on a 1GHz Pentium 3 Dell Laptop running Linux. Comparative computation
times are probably meaningless as computational power will ever increase, our only
point being that these computations are relatively fast versus competitors even with
modest computing facilities available to all/ most undergraduates. The adaptive
scheme takes a few minutes depending upon the number of grid points utilized,
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(b) Solution at t=1000

x
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v

Fig. 2. Panel (a) shows the outward propagating pulses and the shedding phenomena for v out

to t = 2000. Panel (b) shows both u (solid) and v (dot-dashed) at t = 1000, the dotted lines also
shown come from the adaptive scheme [Blom & Zegeling 1994]. The parameters chosen here are

a = 9, b = 0.4, ε = 0.01 where A = εa,B = ε1/3b.

typically 500 points.

3.1.3 Autocatalysis: Oscillatory fronts. Many reaction-diffusion equations arise
in combustion theory, or in related chemical models. One such model, in non-
dimensional terms, is

ut = uxx + vf(u), vt = εvxx − vf(u), (16)

where

f(u) =

{
um, u ≥ 0,
0, u < 0

(17)

and ε is the inverse of the Lewis number (the ratio of diffusion rates). It arises when
two chemical species U and V react such that mU+V → (m+1)U ; the two species
have different diffusivities, their ratio being ε (ε < 1 is the regime of interest). What
is particularly interesting in this model is that steady travelling waves occur for low
values of m, their speed is a function of m, ε and the fronts steepen dramatically
for large m. In fact, in full nonlinear simulations as m increases a Hopf bifurcation
occurs, and as it increases yet further one gets chaotic behaviour at the wave front.
This behaviour is detailed in [Balmforth et al. 1999], [Metcalf et al. 1994] and similar
features arise in combustion models, see for instance [Bayliss et al. 1989] where f(u)
is replaced by exponential Arrhenius reaction terms. For our verification purposes
we compared with the computations of [Balmforth et al. 1999], and initiated the
computations with

u =
1

2
(1 + tanh(10(10− |y|))) , v = 1− 1

4
(1 + tanh(10(10− |y|)))

that is, a sharp localized disturbance and obtained perfect agreement even for
extremely steep fronts. Figure 3 shows typical results with periodic fluctuations
at ε = 0.1 and m = 9 with more extreme behaviour with m = 11. It is notable
that all the delicate behaviour, rocking fronts and transitions to apparently chaotic

Technical Report. Note del Polo, No. 99, 2006.



8 · R. V. Craster & R. Sassi

Fig. 3. Typical results for the autocatalytic model with ε = 0.1 and m = 9 and m = 11.

behaviour, is accurately captured, together with the very steep fronts; this is a
challenge for any numerical scheme, a minor aside is that our Fortran 77 code had
difficulties with this computation until we imposed symmetry conditions at the end
of every timestep, or zeroed the imaginary part of the inverted result.

This leads us to an algorithmic detail: in the Matlab codes we use separate
variables u and v and transform, and invert, each independently and just use the
real parts of each inverse - automatically zeroing the imaginary parts and thereby
preventing rounding errors mounting up over time. However, this is actually a bit
wasteful as one could combine u and v to be the real and imaginary parts of a
single transform variable and just halve the amount of work; the Fortran codes use
the latter approach. This only seems to cause problems in this particular example
as the extreme powers 11 magnify rounding errors and, for the Fortran code, the
minor modification described above is required to maintain accuracy.

3.2 Two dimensional examples

It is in higher dimensions that the ideas presented here really become of serious
value. We choose to illustrate the numerical algorithms using a couple of non-
trivial examples from the reaction-diffusion equation literature. Stable, labyrinthine
patterns arising in FitzHugh-Nagumo type reaction diffusion equations [Hagberg
and Meron 1994], and pulse splitting from the Gray-Scott equations [Muratov and
Osipov 2001].

3.2.1 Gray-Scott. If we have radial symmetry then many of the 1D schemes
can be utilized in radial coordinates, an adaptive code [Blom and Zegeling 1994]
is particularly convenient as it takes advantage of the [Skeel and Berzins 1990]
discretization that automatically incorporates the coordinate singularity. We can
therefore check the numerical simulations of the 2D spectral code versus these. The
Gray-Scott model has delicate features that are not easy for a numerical scheme to
extract, and it is susceptible to small perturbations generating instabilities.

As noted earlier, the Gray-Scott equations have provided an interesting test bed
for theoreticians exploring pulse splitting and so-called auto-solitons and their sta-
bility [Doelman et al. 1997; Reynolds et al. 1997; Muratov and Osipov 2001; 2002];
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Fig. 4. Panel (a) shows the outward propagating rim and the shedding phenomena for u, v, at

t = 500 for an axi-symmetric initial condition, along a radial line; the barely visible dotted lines

also shown come from the adaptive scheme [Blom & Zegeling 1994]. Panels (b) and (c) shows a
planview of v at t = 500 starting from non-axisymmetric initial data, the two panels show 512 and

128 modes respectively (same parameters as figure 2). For a better display, resolution in panel (c)

was improved using Fourier cardinal function interpolation (see Appendix B).

it is also notable that the model also arises in biological contexts [Davidson et al.
1997]. Different authors prefer different rescalings according to the physics/biology
that they wish to emphasise, we shall not enter that debate here. The equations
we use are

ut = uxx + uyy − uv2 +A(1− u), vt = ε[vxx + vyy] + uv2 −Bv. (18)

The two-dimensional analogue of the pulse-splitting events of figure 2 are shown
in figure 4; using axisymmetric initial conditions for panel (a):

u = 1− 1

2
exp(−r2/20), v =

1

4
exp(−r2/20)

where r2 = x2 + y2, allows us to verify the two-dimensional computations in a non-
trivial way as the system is highly unstable. Although not shown, it is particularly
striking how perfect axisymmetry is retained by these axisymmetric computations.
Altering the initial conditions to break the axisymmetry to the above, but with
r2 = x2/2 + y2 leads to the oval pattern of alternating high and low concentrations
shown in figure 2 panels (b) and (c). What is particularly notable is that using
fewer modes leads to an attractive, but evidently erroneous, pattern.

3.2.2 Labyrinthine Patterns. A striking and interesting group of patterns that
emerge in models of catalytic reactions are growing labyrinthine patterns [Hagberg
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and Meron 1994; Meron et al. 2001]. Starting from a non-axisymmetric initial
condition strongly curved portions move more rapidly and the pattern lengthens.
Regions of high concentrations repel and, hence from the periodicity of the domain,
the patterns turn inward until an equilibrium is reached. An illustrative simulation
is given in figure 5. The computation utilizes 128×128 Fourier modes on a 200×200
grid. Doubling the number of Fourier modes makes no discernable difference; more
detailed numerical error discussions are in a later section.

The governing equations are that

ut = u− u3 − v +∇2u, vt = δ(u− a1v − a0) + ε∇2v (19)

where u, v represent activator and inhibitors. The parameters a0, a1 , ε, δ lead one
from one regime to another, see [Hagberg and Meron 1994] for details. We begin
the simulation in figure 5 from initial conditions

u = a1v− + a0 − 4a1v−e
−0.1(x2+0.01y2), v = v− − 2v−e

−0.1(x2+0.01y2). (20)

This being an elliptical mound of chemical concentrations of sufficient magnitude
to trigger the reaction. Here v− = (u− − a0)/a1 is found from, u−, which is the
smallest real root of the cubic a1u

3 + u(1− a1)− a0 = 0. This (u−, v−) state being
stable. As one notes from the figure, the evolution is non-trivial and the edges
of the concentrations are sharp and steep, all features that test the robustness of
the scheme. Verification follows from comparison with the adaptive scheme for
axisymmetry, and since a stationary state emerges one can also generate the final
shape from a boundary value problem; all computations agree. Figure 5 only shows
the evolution of u, that of v is qualitatively similar.

It is worth noting that other behaviours are possible for these equations in other
parameter regimes than those chosen here.

3.3 Refinements

All of the figures shown are generated using a fixed time step, and the classical
standard fourth order Runge-Kutta scheme; this was 0.1 in all cases except the
autocatalytic problem with large m where we took a timestep of 0.02. This is
deliberate to demonstrates that sophisticated algorithms are not vital, however
it is not pleasant to have no error control or indeed no idea of how accurate the
solution actually is at each time step. An overly enthusiastically large choice for the
time step could lead to numerical instabilities and accumulated error. The results
we present are all generated using Matlab; the Matlab codes that we present in
the appendices are efficient as teaching tools, and, to a certain extent as research
tools; the high level language gives short and easily understandable code. However,
traditional languages such as Fortran or C, C++ will often run much faster, at
least versus interpreted Matlab code, and to complement the Matlab codes we also
provide the source codes in Fortran 77.

3.3.1 Adaptive time stepping. Adaptive time stepping based upon embedded
5th order Runge-Kutta schemes in the usual manner, see for instance [Cash and
Karp 1990; Press et al. 1992], is easily implemented and we do so. The user can
replace these weights with their favourite scheme [Dormand and Prince 1980], say,
but this will change little in practice. These codes incorporate an error tolerance
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Fig. 5. Panels (a) to (d) show the emerging labyrinthine pattern for u at times t =

200, 400, 600, 1000. Panels (e) and (f) an axisymmetric computation, same initial conditions as
equation (20) bar that 0.01y2 → y2, at t = 10, 20, 30, 40, 50, in (e) the solid lines come from the

adaptive scheme of [Blom & Zegeling 1994] and crosses from the spectral method. The parameters

chosen here are a0 = −0.1, a1 = 2, ε = 0.05, δ = 4.

and utilize local extrapolation, these codes often settle to using surprisingly large
time steps dt ∼ 0.5 or larger for even moderate error tolerances (relative error
∼ 10−4) and this further speeds the computations.

3.3.2 Exponential time differencing. Integrating factor ideas are not new, there
are actually several non-appealing aspects of the approach. On the basis of “truth in
advertising” we must reveal them. A philosophically unpleasant feature is that one
notes that the fixed points of equations (7) are not the same as those of the original
untampered equations (3), (4). We are unaware of any circumstance in which this
has led to any problems, but it is not nice. A more serious fact that counts in its

Technical Report. Note del Polo, No. 99, 2006.



12 · R. V. Craster & R. Sassi

disfavour is that the local truncation error, when Ω2∆t� 1, for the time stepping
schemes we use are, for say 4th order Runge-Kutta, O(Ω2∆t)5. This is apparently
disastrous as Ω can be large and we now have fourth order accuracy in time, but
with a large pre-multiplicative factor. However, it is important to recall that the
local truncation error involves expanding exp(−Ω2∆t) terms which are, practically,
exponentially small for large Ω relative to ∆t. Nonetheless we are clearly picking
up an additional contribution to the numerical error for moderate values of Ω.
This is surmountable, basically one designs a time stepping scheme that correctly
incorporates the exponential behaviour, a recent article, [Cox and Matthews 2002],
derives several exponential Runge-Kutta schemes; this is an active area of current
research with modifications of their scheme by [Kassam and Trefethen 2003] to
overcome a numerical instability and by [Krogstad 2005] generating a scheme with
smaller local truncation error and better stability properties. Krogstad also notes
the very interesting link with the commutator-free Lie group methods of [Munthe-
Kaas 1999] and undoubtedly this area will develop further.

In essence the exponential time differencing idea applied here for U , involves
utilizing the integrating factor exp(Ω2t) and multiplying equation (3) through by
it and then we integrate over a time step to obtain:

Un+1 = Une
L∆t + eL∆t

∫ ∆t

0

e−LτNu(u(tn + τ), v(tn + τ), tn + τ)dτ

where we have rewritten equation (3) as

Ut = Lu+Nu(u, v)

that is, with a Linear piece (here −Ω2) and a Nonlinear piece (here the Fourier
transform of the nonlinear reaction terms); this is the notation used in the rel-
evant literature. The interesting departure, and distinguishing feature, from the
standard integrating factor method is that one then approximates the integral and
the truncation error is then independent of Ω2. The article by [Cox and Matthews
2002] contains various approximations to the integral and numerical comparisons
of methods.

It is important to bring these “state-of-the-art” solvers into the more applied
domain and enable other researchers to take advantage of them. We utilize the
fourth order Runge-Kutta-like scheme of Krogstad,

Un+1 = eL∆tUn + ∆t[4φ2(L∆t)− 3φ1(L∆t) + φ0(L∆t)]Nu(Un, Vn, tn) +

2∆t[φ1(L∆t)− 2φ2(L∆t)]Nu(µ2, ν2, tn + ∆t/2) +

2∆t[φ1(L∆t)− 2φ2(L∆t)]Nu(µ3, ν3, tn + ∆t/2) +

∆t[4φ2(L∆t)− φ1(L∆t)]Nu(µ4, ν4, tn + ∆t)

with the stages µi as

µ2 = eL∆t/2Un + (∆t/2)φ0(L∆t/2)Nu(Un, Vn, tn)

µ3 = eL∆t/2Un + (∆t/2) [φ0(L∆t/2)− 2φ1(L∆t/2)]Nu(Un, Vn, tn) +

∆tφ1(L∆t/2)Nu(µ2, ν2, tn + ∆t/2)
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Fig. 6. The 1-D Gray-Scott equation (15) is solved using different time steps ∆t with the same
parameters values of figure (2). The final solution obtained at t = 200 is compared, for each

method (RK4, ETDRK4 and ETDRK4-B), with a gold-standard run (computed with ETDRK4-

B and ∆t = 10−5); the maximum absolute errors are displayed as a function of the time step.

µ4 = eL∆tUn + ∆t [φ0(L∆t)− 2φ1(L∆t)]Nu(Un, Vn, tn) +

2∆tφ1(L∆t)Nu(µ3, ν3, tn + ∆t).

The functions φi are defined as

φ0(z) =
ez − 1

z
, φ1(z) =

ez − 1− z
z2

φ2(z) =
ez − 1− z − z2/2

z3

and these are precisely the terms that emerge naturally in the Lie group methods
[Munthe-Kaas 1999]. The original Cox & Matthews scheme involves a split-step and
has marginally worse error and stability properties. There are also slight problems
associated with capturing the behaviour of φi(z) uniformly as z → 0 and [Kassam
and Trefethen 2003] suggest a remedy; one uses an integral in the complex plane
[Higham 1996], and we also use this approach in our algorithms. For brevity we
have presented the scheme for U alone, the V equations follow in a similar fashion.

We label this as a fourth order Exponential Time Differencing Runge-Kutta
(ETDRK4-B) scheme to distinguish it from a standard Runge-Kutta scheme and
to be consistent with the notation of [Cox and Matthews 2002; Kassam and Tre-
fethen 2003; Krogstad 2005]. It is also worth noting that various other exponential
Runge-Kutta schemes have been developed by other authors, see [Vanden Berghe
et al. 2000] and the references therein to overcome this difficulty arising in other
contexts.

A reasonably large numerical overhead is involved in setting up the fourth-order
scheme using the device suggested by [Kassam and Trefethen 2003]; if one utilizes
an adaptive scheme in time then this overhead must be regularly recomputed and
this then becomes expensive, hence we do not adapt the ETDRK4 schemes in time.

A numerical 1-D comparison of the ETDRK4 scheme of ([Cox and Matthews
2002]), the improved ETDRK4-B ([Krogstad 2005]), and the more standard RK4
scheme is shown in figure (6). It is noticeable that ETDRK4-B proved to give
the smaller error; both it and the ETDRK4 scheme provide an order of magni-
tude improvement over the RK4 scheme for larger timesteps, rewarding the extra
programming effort. The errors all scale with the expected ∆t4 scaling.
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Fig. 7. Absolute errors of the computational methods with respect to a gold-standard run ob-
tained with ETDRK4-B using ∆t = 0.01. The 2-D equation being solved is (19), which leads

to labyrinthine patterns. Most schemes (RK4, ETDRK4, ETDRK4-B) use a fixed time step of

∆t = 0.1, CK45 adapts its time step to contain local absolute error below 10−4, leading to an
average ∆t ≈ 0.62. The smaller computational time (about 11.6 against 22.7 minutes) is paid out

with a larger error. Note that Matlab is not very efficient when it comes to loops; with Fortran

the difference in execution times is wider (2.5 versus 8.7 minutes).

Although from a practical point of view all of these schemes are explicit and so
are much better (faster, accurate) than the implicit, or semi-implicit schemes often
used for these equations. This must be the main message to be taken from this
article.

In figure (7) a 2-D comparison is performed. As well as the previous schemes, we
also employed the Cash-Karp version of the RK4 scheme that adapts the timestep
(the overhead is small, easily allowing this). It is, again, clear that the ETDRK4
and ETDRK4-B schemes are more accurate and over longer times ETDRK4-B is
the preferred scheme. The adaptive method is very fast, and the accuracy can be
improved by lessening the error tolerances, and thus it is recommended for longer,
more time-consuming, computations.

4. CONCLUDING REMARKS

We have developed and packaged a suite of algorithms for solving reaction diffusion
equations. To make the algorithms immediately relevant and directly usable for
those in the reaction diffusion equations community we have illustrated the algo-
rithms upon recent and varied examples from the literature. Probably the most
striking feature to emerge is how splendidly the method copes with sharp varia-
tions in the solutions, and also how fast and accurate the method is even with large
timesteps.

But, before further congratulating ourselves upon the efficiency of spectral meth-
ods we must discuss several disadvantages:

The scheme we present is utterly reliant upon the reaction-diffusion equations
being semi-linear, that is, the diffusion terms are simply uxx + Cuyy and similarly
for v; for some constant C (we have simply had isotropic diffusion in this article).

We have not discussed possible problems with aliasing, earlier versions of our
code utilized Orzag’s 2/3 rule to filter this out. However, this actually made no
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discernable difference to the solutions and we later just discarded this. It is evident
that the method has terms exp(−Ω2∆t) so higher order modes are, in any case,
exponentially decaying; aliasing transfers some lower order modes to higher ones,
so for diffusion-like problems the aliasing is automatically damped. Nonetheless
aliasing is an issue that should be borne in mind in any spectral scheme.

Fourier spectral methods require periodicity, and we are not in the position, at
least here, to set Neumann or Dirichlet boundary conditions on the edge of the
domain. That requires an extension to Chebyshev, or some other basis functions.
Thus we have to take the domain size large enough that the waves, pulses, structures
of interest do not interact with the edges of the domain. In fact, one can set up and
indeed solve Dirichlet/ Neumann boundary condition problems using integrating
factor methods, see for instance [Kassam and Trefethen 2003], but there is then an
essential difference. One must take the exponential of a full matrix, the periodic case
treated here is special as those matrices are then diagonal and this simplification
underlies all that we have done here, and computing the exponential of a matrix is
numerically expensive particularly if it must be re-computed. This is an area that
deserves further thought and work as the prospective pay-off in generating explicit
timestepping codes for stiff PDEs in high spatial dimensions is considerable.

In some cases spectral accuracy means that we can use so few modes that the
graphical solutions look unnaturally poor. This is despite the isolated values at
the grid points being spectrally accurate, we can then utilize interpolation onto
a finer grid using periodic cardinal functions, an algorithm for 1D is supplied in
[Weideman and Reddy 2001]. We present an alternative, and generalization to 2D,
in Appendix B based upon padding a Fourier transform with zeros.

Note that we are not claiming that the codes herein are the absolute best algo-
rithms available for reaction-diffusion equations, nor do we attempt to imply that
other scientists using alternative algorithms have been misguided. In particular,
in 1D, the adaptive scheme of [Blom and Zegeling 1994] has proved itself to be a
useful and accurate algorithm that we have enjoyed working with. One alternative
scheme that certainly suggests itself is an Alternating Direction Implicit scheme
where spatial discretization is again done through spectral methods, for complete-
ness we provide a Matlab code that does this and we discuss this further in an
appendix. In essence, we find that the low-order time solver usually used means
that the scheme performs much less well than the integrating factor method of the
main text.

Our aim has been, and is, to provide good, clear, working, versatile spectral
schemes, that avoid stiffness issues, in a form whereby they can be utilized and
built upon by other scientists. Thus, we hope, allowing them to concentrate upon
the physics, biology, chemistry or other scientific issue rather than upon numerical
concerns; the codes are summarized in table I, and are documented both internally
and via an electronic README file.
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Table I. A schematic tree of the provided algorithms. Names and corresponding equations are
matched in the lower table.

Fortran Matlab

|-- OneD |-- OneD

| |-- CK45 | |-- CK45

| | |-- auto_CK45.f | | |-- auto_CK45.m

| | |-- epidemic_CK45.f | | |-- epidemic_CK45.m

| | |-- fisher_CK45.f | | |-- fisher1D_CK45.m

| | ‘-- gray1D_CK45.f | | ‘-- gray1D_CK45.m

| |-- ETDRK4_B | |-- ETDRK4

| | |-- auto_ETDRK4_B.f | | ‘-- gray1D_ETDRK4.m

| | |-- epidemic_ETDRK4_B.f | |-- ETDRK4_B

| | |-- fisher_ETDRK4_B.f | | |-- auto_ETDRK4_B.m

| | ‘-- gray1D_ETDRK4_B.f | | |-- epidemic_ETDRK4_B.m

| ‘-- RK4 | | |-- fisher1D_ETDRK4_B.m

| |-- auto_RK4.f | | ‘-- gray1D_ETDRK4_B.m

| |-- epidemic_RK4.f | ‘-- RK4

| |-- fisher_RK4.f | |-- auto_RK4.m

| ‘-- gray1D_RK4.f | |-- epidemic_RK4.m

‘-- TwoD | |-- fisher1D_RK4.m

|-- CK45 | ‘-- gray1D_RK4.m

| |-- gray2D_CK45.f ‘-- TwoD

| ‘-- labyrinthe2D_CK45.f |-- CK45

|-- ETDRK4_B | |-- fisher2D_CK45.m

| |-- gray2D_ETDRK4_B.f | |-- gray2D_CK45.m

| ‘-- labyrinthe2D_ETDRK4_B.f | ‘-- labyrinthe2D_CK45.m

‘-- RK4 |-- ETDRK4

|-- gray2D_RK4.f | ‘-- labyrinthe2D_ETDRK4.m

‘-- labyrinthe2D_RK4.f |-- ETDRK4_B

| |-- fisher2D_ETDRK4_B.m

Useful | |-- gray2D_ETDRK4_B.m

|-- adifisher.m | ‘-- labyrinthe2D_ETDRK4_B.m

|-- fourierupsample.m ‘-- RK4

|-- fourierupsample2D.m |-- fisher2D_RK4.m

|-- plot_fisher2D.m |-- gray2D_RK4.m

|-- plot_gray2D.m ‘-- labyrinthe2D_RK4.m

‘-- plot_labyrinthe2D.m

File Name ref. Equation

1-D

auto (16)
epidemic (2)

fisher1D (13)
gray1D (15)

2-D

fisher2D Appendix C

gray2D (18)

labyrinthe2D (19)
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APPENDIX

A. THE ONE DIMENSIONAL MATLAB CODE

function gray1D_RK4(N,Nfinal,dt,ckeep,L,epsilon,a,b)

if nargin<8;

disp(’Using default parameters’);

N=512; Nfinal=10000; dt=0.2; ckeep=10;

L=50; epsilon=0.01; a=9*epsilon; b=0.4*epsilon^(1/3);

end

x=(2*L/N)*(-N/2:N/2-1)’;

u=initial(x,L); uhat=fft(u);

ukeep=zeros(N,2,1+Nfinal/ckeep);

ukeep(:,:,1)=u;

tkeep=dt*[0:ckeep:Nfinal];

ksq=((pi/L)*[0:N/2 -N/2+1:-1]’).^2;

%-----------------Runge-Kutta----------------------------------

E=[exp(-dt*ksq/2) exp(-epsilon*dt*ksq/2)]; E2=E.^2;

for n=1:Nfinal

k1=dt*fft(rhside(u,a,b));

u2=real(ifft(E.*(uhat+k1/2)));

k2=dt*fft(rhside(u2,a,b));

u3=real(ifft(E.*uhat+k2/2));

k3=dt*fft(rhside(u3,a,b));

u4=real(ifft(E2.*uhat+E.*k3));

k4=dt*fft(rhside(u4,a,b));

uhat=E2.*uhat+(E2.*k1+2*E.*(k2+k3)+k4)/6;

u=real(ifft(uhat));

if mod(n,ckeep)==0,

ukeep(:,:,1+n/ckeep)=u;

end

end

save(’gray1D_RK4.mat’,’tkeep’,’ukeep’,’N’,’L’,’x’)

%----------------------Figures---------------------------------

mesh(tkeep,x,squeeze(ukeep(:,2,:))); view([60,75]);

xlabel(’t’); ylabel(’x’); zlabel(’z’);

title(’(a) Surface plot of v’)

%--------------Initial Condition ------------------------------

function u=initial(x,L)

u=[1-0.5*(sin(pi*(x-L)/(2*L)).^100) ...

0.25*(sin(pi*(x-L)/(2*L)).^100)];

%---------------Right Hand Side--------------------------------

function rhs2=rhside(u,a,b)

t1=u(:,1).*u(:,2).*u(:,2);

rhs2=[-t1+a*(1-u(:,1)) t1-b*u(:,2)];

This produces figure 2(a) of the text for the Gray-Scott equations.
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B. FOURIER CARDINAL FUNCTION INTERPOLATION

As noted in the text, spectral methods are often very accurate even with few in-
terpolation points. When plotting graphically this sometimes leads to artificially
poor-looking output, clearly the solution is spectrally accurate at each interpolation
point and we just need to insert more points. Fourier cardinal function interpola-
tion as in [Weideman and Reddy 2001] can be used in 1D, or, more in tune with the
current article, one can pad an FFT with additional zeros and then invert which
is convenient in either one or two space dimensions. The short Matlab scripts that
do this are:

In one dimension:

function fout=fourierupsample(fin,newN);

% Given a periodic function fin, computed at N equispaced nodes in

% the periodic domain [-L,L], fout is its upsampled version on newN

% nodes onto the same domain.

N=length(fin); HiF=(N-mod(N,2))/2+1;

fftfin=max((newN/N),1)*fft(fin);

fout=real(ifft([fftfin(1:HiF); zeros(newN-N,1); fftfin(HiF+1:N)]));

And in two dimensions:

function fout=fourierupsample2D(fin,newNx,newNy);

% Given a periodic function fin in 2D computed at equidistant

% nodes Nx x Ny, then fout is its upsampled version on

% newNx x newNy nodes.

[Ny,Nx]=size(fin);

HiFx=(Nx-mod(Nx,2))/2+1; HiFy=(Ny-mod(Ny,2))/2+1;

fftfin=max((newNx/Nx)*(newNy/Ny),1)*fft2(fin);

fout=real(ifft2([fftfin(1:HiFy,1:HiFx), ...

zeros(HiFy,newNx-Nx), fftfin(1:HiFy,HiFx+1:end); ...

zeros(newNy-Ny,newNx); fftfin(HiFy+1:end,1:HiFx), ...

zeros(Ny-HiFy,newNx-Nx), fftfin(HiFy+1:end,HiFx+1:end)]));

C. ALTERNATING DIRECTION IMPLICIT (ADI) METHODS:

This appears to be a viable alternative to that which we have presented in the
main text; it is worth briefly outlining the method. The basic idea is similar to
operator (Strang) splitting and the method is discussing in some detail in [Boyd
2001; Press et al. 1992]. As noted by Boyd the conventional centered finite dif-
ference schemes can easily be modified by using spectral differentiation matrices,
let D denote the N × N Fourier differentiation matrix ([Fornberg 1998], [Boyd
2001],[Trefethen 2000][Weideman and Reddy 2001]). ADI, or at least the ADI we
use here, means that we split each time step into two and we first deal implicitly
with one set of space derivatives and then in the next half time step with the other.
So

ut = uxx + uyy + f(u)
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Fig. 8. Panels (a) and (b) relative errors and timings for ADI versus the integrating factor method.

is approximated by the following matrix system, here I is the N×N identity matrix
and U is the matrix of u

U (t+1/2) =

[
I − ∆t

2
D

]−1

U (t)

[
I +

∆t

2
DT

]
+

[
I − ∆t

2
D

]−1
∆t

2
F (u(t))

U (t+1) =

[
I +

∆t

2
D

]
U (t+1/2)

[
I − ∆t

2
DT

]−1

+
∆t

2
F (u(t+1/2))

[
I − ∆t

2
DT

]−1

with the evident advantage that each matrix is evaluated only once and thereafter
we just have matrix multiplication. This is ideal for implementation in Matlab.
Unfortunately, this is only accurate to O(∆t)2 so although the method is nicely
stable one requires relatively small time steps relative to the explicit non-stiff scheme
that is used in the main text. For instance, for Fisher’s equation in 2D we show
some comparative errors and timings in figure 8; note this simulation is for Fisher’s
equation using 256×256 Fourier modes on a 50×50 domain, the initial condition is a
Gaussian 0.2 exp(−0.25(x2+y2)). The integrating factor solution with ∆t = 10−2 is
taken as the reference solution and the relative errors are computed as the maximal
difference away from this. Notably the errors from the integrating factor scheme
are multiplied by 104 in order that they are visible.

Doubtless one could improve the naive implementation above, but for the appli-
cation to reaction-diffusion equations it seems uncompetitive. There are advantages
though, in that it is generalizable to problems with u dependent diffusivity whereas
the integrating factor method is not.
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