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Abstract 

Acute heart failure and in particular, cardiogenic shock are associated with high morbidity 

and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as 

catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. 

Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve 

systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of 

smaller trials suggested that levosimendan is associated with a better outcome than 

dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv 

mecarbil, phase II clinical trials suggest a favorable hemodynamic profile in patients with 

acute and chronic heart failure, and a phase III morbidity/mortality trial in patients with 

chronic heart failure has recently begun. Here, we review the pathophysiological basis of 

systolic dysfunction in patients with heart failure and the mechanisms through which different 

inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen 

species production in mitochondria are intimately linked to the processes of excitation-

contraction coupling, we also discuss the impact of inotropic agents on mitochondrial 

bioenergetics and redox regulation. Therefore, this position paper should help identify novel 

targets for treatments that could not only safely improve systolic and diastolic function 

acutely, but potentially also myocardial structure and function over a longer term.   
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Introduction 

Heart failure (HF) is a leading cause for hospital admissions in developed countries 

worldwide,1 and its incidence is further increasing as average life expectancy rises. While 

the prognosis of patients with chronic HF has improved over the last decades, the 

prognosis of acute HF is still poor. Although only a small percentage of patients with acute 

HF present with cardiogenic shock (~3%) and/or signs of hypoperfusion (~15%), their in-

hospital mortality is much higher than of patients with acute HF without these severe 

conditions.2 An important treatment option in these patients is inotropic agents to acutely 

increase cardiac output.3 However, since the use of most inotropic agents (in particular, 

catecholamines and PDE-inhibitors) is complicated by adverse short- and long-term effects, 

their use is not recommended in the absence of hypotension or hypoperfusion.3 On the 

other hand, the oldest inotropic agent (digitalis) can be safely applied to patients with 

chronic HF and improves morbidity.4 […] Here, we discuss the detailed mechanisms of 

inotropic agents to estimate which mechanisms of action may provide benefit in either acute 

or chronic HF.  

 

In patients with HF with reduced ejection fraction (HFrEF), the inability of the heart to eject 

sufficient blood for the needs of peripheral tissues is caused by defects of excitation-

contraction (EC) coupling in cardiac myocytes (Figure 1).5 Traditionally, an acute increase 

in cardiac output is achieved with drugs that increase intracellular cyclic adenosine 

monophosphate (cAMP), such as catecholamines or phosphodiesterase (PDE) inhibitors 

(Figure 2). However, these agents increase myocardial oxygen (O2) consumption, 

predispose to life-threatening arrhythmias6 and activate signaling pathways of hypertrophy 

and cell death,7, 8 which may explain why they are associated with adverse outcome.9 

Consequently, recent developments aimed at increasing contractility without increasing 

cAMP or Ca2+ through Ca2+-sensitizing of myofilaments or myosin activation. Although 

meta-analyses with the Ca2+ sensitizer levosimendan suggest an overall benefit,10, 11 larger 

comparative trials failed to show a survival benefit despite hemodynamic improvements.12-15 

The myosin activator omecamtiv mecarbil has passed phase II trials,16-20 and a phase III 

trial was recently launched in patients with chronic HF (GALACTIC-HF; NCT0292932).   

 

Considering the poor outcome of patients in cardiogenic shock and/or signs of 

hypoperfusion2 and the mostly disappointing results of inotropic agents in patients with 

acute HF, novel strategies are urgently needed. To this end, the Committees on 

Translational Research and on Acute Heart Failure of the Heart Failure Association (HFA) 

of the European Society of Cardiology (ESC) developed this position paper that addresses 

the following three key issues:  
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1) Why have classical inotropic agents failed?  

2) Is direct targeting of sarcomere function therapeutically advantageous? 

3) Which novel concepts are promising? 

 

To understand the mechanisms of traditional, current and future medicines, it is essential to 

understand the physiology of EC coupling and its pathological alterations in HF. We will 

also discuss the bioenergetic consequences of inotropic interventions, since these may 

impact the long-term prognosis of HF patients. Finally, we will give recommendations for 

basic and clinical research directed at developing novel strategies for inotropic interventions 

in acute HF.   

 

 

Physiology of excitation-contraction coupling 

During each action potential, Ca2+ enters cardiac myocytes via L-type Ca2+ channels 

(LTCC), triggering even greater Ca2+ release from the Ca2+ stores of the cell, i.e., the 

sarcoplasmic reticulum (SR; Figure 1). This Ca2+ binds to troponin C, facilitating actin-

myosin interaction that induces the contraction of the heart muscle. During diastole, Ca2+ 

diffuses away from troponin C, initiating relaxation. The Ca2+ that was released from the SR 

is taken back up by the SR Ca2+ ATPase (SERCA), whereas the amount of Ca2+ that 

entered the cell via LTCCs is exported by the Na+/Ca2+ exchanger (NCX).4  

 

Cardiac contractility is increased by three principle mechanisms:  

1) -Adrenergic stimulation, 

2) the Frank-Starling mechanism and 

3) the positive force-frequency relation (also known as “Bowditch-Treppe”).  

 

Noradrenaline (NA) is released from sympathetic nerve endings in the myocardium and 

stimulates 1-adrenergic receptors (1-ARs), which couple to the stimulatory G-protein (Gs) 

and activate the adenylyl cyclase (AC) to produce cAMP (Figures 1 and 2). Cyclic AMP 

activates protein kinase A (PKA) which (through phosphorylation) activates LTCCs, 

accelerates SERCA, increases SR Ca2+ release via ryanodine receptors (RyRs) and 

decreases myofilament Ca2+ affinity. Furthermore, cAMP activates the exchange protein 

directly activated by cAMP (Epac), further activating Ca2+/Calmodulin-dependent protein 

kinase II (CaMKII) which phosphorylates various Na+- and Ca2+-transporting proteins, 

mostly synergistic with PKA-mediated actions (Figure 2).21 The net result is an increase 

and acceleration of force generation and relaxation (positive inotropic and lusitropic effects), 
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maintaining the refilling of the ventricles at elevated heart rates (positive chronotropic 

effect). In the human heart, the breakdown of cAMP is governed primarily by PDE3 and to a 

lesser extent by PDE4.22 

 

Besides -AR stimulation, the “Bowditch Treppe” increases cardiac contractility at elevated 

heart rates. This is explained by slower Ca2+-efflux (via the NCX) than -influx kinetics (via 

LTCCs), which results in intracellular accumulation of Ca2+ at higher heart rates that is 

sequestered into the SR by SERCA, from where it is released in greater amounts on the 

ensuing beat. The Frank Starling mechanism is caused by a length-dependent increase of 

the Ca2+ affinity of the myofilaments, resulting in stronger contraction at unchanged 

cytosolic Ca2+ concentrations ([Ca2+]c).  

 

 

Pathophysiological changes of excitation-contraction coupling in 

heart failure 

The central deficit of EC coupling in myocytes from failing hearts is a decreased Ca2+ load 

of the SR. This is primarily the result of reduced SERCA expression and activity and a Ca2+ 

leak from the SR via RyRs, reducing systolic SR Ca2+ release and thereby the activator 

Ca2+ at the myofilaments (Figure 1).5 The reduced rate of SERCA-mediated Ca2+ re-uptake 

into the SR also slows relaxation. Furthermore, the cytosolic Na+ concentration ([Na+]i) is 

elevated in failing cardiac myocytes through changes in the “late Na+ current” (late INa), 

Na+/H+ exchanger (NHE) and Na+/K+-ATPase (NKA) activities.23 While this facilitates Ca2+-

influx via the reverse-mode of the NCX during the action potential,5 partly compensating for 

decreased systolic SR Ca2+ release,24 relaxation is further slowed by hampering diastolic 

Ca2+ extrusion via the forward-mode NCX. This is particularly problematic at higher heart 

rates, when diastole progressively shortens. Consequently, the normally positive force-

frequency relationship is blunted or even negative in failing human hearts, mediated by a 

variable combination of elevated diastolic [Ca2+]c and tension as well as decreased SR Ca2+ 

load and release.25, 26 This decreases left ventricular ejection fraction (LVEF) and cardiac 

output at higher heart rates in vivo.27 Finally, elevated diastolic [Ca2+]c and increased open 

probability of RyRs increases the probability of spontaneous SR Ca2+ release events, which 

(by subsequent Ca2+ extrusion via the electrogenic NCX) can induce delayed after-

depolarizations, a well-defined trigger of ventricular arrhythmias.  

 

In addition to the defects in ion handling and the ensuing inversion of the force-frequency 

relationship, continuous stimulation of cardiac 1-ARs through activation of the sympathetic 
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nervous system desensitizes and downregulates 1-ARs (Figure 2),7, 8 blunting their 

response to endogenous or exogenous catecholamines. Consequently, phosphorylation of 

several Ca2+ handling proteins is reduced. In failing hearts, the Ca2+ affinity of the 

myofilaments is increased as a result of decreased PKA-mediated phosphorylation of 

troponin I,28, 29 although this issue is not fully settled yet.30  

 

 

Energetic aspects 

EC coupling requires high amounts of energy in the form of ATP, which is replenished by 

oxidative phosphorylation in mitochondria. During β-adrenergic stimulation, mitochondria 

take up Ca2+ to stimulate the Krebs cycle, which produces NADH as the main electron 

donor for ATP production at the respiratory chain (Figure 3).31 Mitochondrial function is 

impaired in HF, resulting in energetic deficit and oxidative stress (Figure 3).31-33 

Mitochondrial dysfunction is linked to defects in EC coupling, since the Krebs cycle requires 

stimulation of its key enzymes by Ca2+, and decreased SR Ca2+ release hampers 

mitochondrial Ca2+ uptake via the uniporter (MCU). In addition, elevated [Na+]i accelerates 

mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger (NCLX; Figure 3). 

Impaired Krebs cycle activity limits NADH-dependent ATP production at the respiratory 

chain and provokes excess emission of reactive oxygen species (ROS) through depletion of 

the NADPH-dependent anti-oxidative capacity, causing oxidative stress.31 Reduced ATP 

production can limit the contractile reserve of the LV,34 and most Na+ and Ca2+ transporting 

mechanisms are sensitive to redox-dependent modifications.35 Thus, the tight interplay 

between EC coupling and mitochondrial energetics (Figure 3) can set in motion a vicious 

cycle of deteriorated ion handling, energetic deficit and oxidative stress to aggravate 

systolic and diastolic dysfunction in HF.  

 

In patients with HF, iron deficiency (ID) predicts adverse outcome,36 while iron 

supplementation improves functional capacity and quality of life.37 In failing hearts, 

myocardial iron content is reduced and associated with reduced activity of Krebs cycle 

dehydorgenases and expression of antioxidative enzymes.38 In preclinical models, severe 

cardiac or skeletal muscle ID perturbs mitochondrial function and induces systemic 

metabolic derangements and cardiomyopathy.39, 40 Accordingly, ID may further aggravate 

energy supply and demand mismatch and oxidative stress in HF. However, since plasma ID 

does not directly correlate with myocardial ID, these issues require further investigation (for 

more in-depth discussion see Ref.41).  

“Classical” inotropic agents 
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Digitalis 

Digitalis-derived cardiotropic glycosides (CTG) are the oldest inotropic drugs and increase 

[Na+]i in cardiomyocytes by inhibiting Na+ export via the NKA (Figure 4). [Na+]i 

accumulation hampers diastolic Ca2+ extrusion via the NCX and supports Ca2+ influx via the 

reverse mode NCX during systole, thereby increasing diastolic [Ca2+], Ca2+ transient 

amplitudes and consequently, inotropy (Figure 4). On the other hand, elevated [Na+]i 

accelerates mitochondrial Ca2+ efflux via the NCLX, reducing Ca2+-activation of the Krebs 

cycle and its regeneration of NADH and NADPH. Since NADPH is required for anti-

oxidative enzymes to detoxify ROS (Figure 3), CTG-induced NADPH oxidation increases 

mitochondrial ROS emission and thereby arrhythmias (Figure 4).42 The pro-arrhythmic 

actions of CTG narrow its therapeutic range.43  

 

In patients with HFrEF, digoxin may be considered in symptomatic patients in sinus rhythm 

despite treatment with an ACE-inhibitor (or angiotensin receptor blocker), a β-blocker and a 

mineralocorticoid antagonist to reduce the risk of hospitalizations (class IIb, B3). However, 

the Digitalis Investigation Group (DIG) Trial4 was conducted before β-blockers became a 

mainstay of HF therapy, and digoxin did not improve all-cause mortality, but reduced 

hospitalization due to HF worsening. At the lower dosages used in current practice, digitalis 

may be preferentially a modulator of autonomic tone and less inotropic stimulator.44 The 

ongoing DIGIT-HF study prospectively investigates the role of digitoxin in patients with 

HFrEF already on current guideline-adherent therapy (http://digit-hf.de). In atrial fibrillation, 

clinical evidence is limited to small and observational studies, and there is an ongoing 

debate on potentially increased mortality.45 However, prescription bias in the retrospective 

analyses likely mimics the perceived digoxin driven mortality.46 In the current HF 

Guidelines, an intravenous bolus of digoxin should be considered in digoxin-naïve-patients 

with New York Heart Association (NYHA) class IV patients and rapid ventricular rate to slow 

heart rate (Class IIa, B).3 

 

 

Catecholamines 

The three endogenous catecholamines dopamine, adrenaline and noradrenaline stimulate 

1-ARs, and to variable degrees also 1- and 2-ARs and dopaminergic D1- and D2-

receptors (Table 1).6 Thus, their hemodynamic actions are not limited to increasing cardiac 

contractility via 1-ARs (Figure 2). In fact, 1-AR-mediated vasoconstriction by adrenaline 

and noradrenaline (Table 1) renders them useful in patients with septic shock where 

vasodilation underlies hypotension. The hemodynamic profile of dopamine, the immediate 

http://digit-hf.de/
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precursor to noradrenaline in the synthetic pathway, is dominated by vasodilation at low 

concentrations at which binding to dopaminergic D1- and D2-receptors increases blood flow 

to the heart, brain, kidney and various other organs. Its traditional use to increase renal 

blood flow, however, was discouraged after neutral effects in trials on patients with acute 

decompensated heart failure, with or without renal dysfunction.47-49 At higher doses, 

dopamine increases blood pressure by vasoconstriction via 1-ARs and positive inotropic 

and chronotropic effects via -ARs, respectively.   

 

Since in patients with cardiogenic shock, neuroendocrine activation induces vasoconstriction 

and tachycardia, the ideal drug should be positive inotropic without further increasing 

systemic vascular resistance (SVR). Dobutamine fulfils these requirements.50 It is a full 

agonist at 1-ARs, inducing a positive inotropic effect with similar efficacy as isoproterenol, a 

synthetic 1- and 2-AR agonist without any -AR agonism (Table 1). The affinity of 

dobutamine for 2-AR is ~10-fold lower than for 1-ARs and in particular, its agonist efficacy 

at 2-ARs and 1-ARs much weaker than at 1-ARs.51 Through its dominating inotropic effect 

and mutually offsetting vascular effects of 1- and 2-AR agonism, the decrease of SVR at 

intermediate and higher doses is mediated by reflex withdrawal of the endogenous 

sympathetic tone.52 For any given increase in cardiac contractility, the increase of heart rate 

and blood pressure is lower with dobutamine than with dopamine or noradrenaline, further 

reflecting dobutamine´s selectivity for 1- over 2- and 1-ARs.50 However, this favorable 

hemodynamic profile comes at the cost of elevated myocardial oxygen (O2) consumption50, 52 

and arrhythmias. Noradrenaline may be considered in patients who have cardiogenic shock, 

despite treatment with another inotrope to increase blood pressure and vital organ 

perfusion.3 The combination of adrenaline with dobutamine, however, appears to portend a 

particular risk for adverse outcome.53  

 

In patients with HF, elevated plasma noradrenaline levels predict adverse outcome.54 

Chronic -AR stimulation desensitizes and downregulates -ARs via PKA, GRK2 (also 

known as -ARK1) and -arrestin.7, 8, 55 Furthermore, -arrestin activates CaMKII which 

sustains contractility despite desensitization of -ARs from PKA-mediated inotropy (Figure 

2).21 CaMKII activation, however, is a major driver of cardiac arrhythmias.56 The net 

functional consequence of all these processes is a decreased responsiveness of the human 

failing heart to -AR stimulation. Therefore, despite its favourable short-term hemodynamic 

profile that improves symptoms,9 dobutamine treatment is associated with tolerance,57 

arrhythmias and mortality, respectively.58, 59 
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PDE Inhibitors 

To overcome desensitization and downregulation of cardiac β-ARs as well as their 

blockade through β-blockers, PDE-inhibitors were developed. In human failing myocardium, 

inhibition of PDE3, but not PDE4 potentiates β-AR mediated positive inotropic effects.60 

Conversely, in human atrial myocardium, inhibition of PDE4 potentiates arrhythmias 

induced by both β1- and β2-AR stimulation, while PDE3 inhibition only potentiates β1-AR-

induced arrhythmias.61 PDE-inhibitors also decrease SVR through cAMP-mediated 

vasodilation, which is beneficial in patients with acute HF and high SVR, but limits its 

application in patients with cardiogenic shock due to reductions in blood pressure. In 

patients with HF treated with β-blockers, the efficacy and potency of PDE-inhibitors is 

maintained, while the effects of dobutamine are blunted.62  

 

Why have classical inotropes failed?  

Currently, dobutamine, dopamine and PDE-inhibitors are recommended in patients with 

hypotension (SBP <90 mmHg) and/or signs/symptoms of hypoperfusion despite adequate 

filling status to increase cardiac output and blood pressure and to improve peripheral 

perfusion and maintain end-organ function (IIb, C).3 However, while in analyses that 

evaluated cAMP-dependent inotropes in general, their short term use yielded neutral 

effects, longer term use was associated with adverse outcome in patients hospitalized for 

acute HF despite improved quality of life.58, 63, 64 Therefore, inotropic agents are explicitly 

restricted to patients that fulfil the above mentioned criteria and are not recommended for 

any other patients (class IIIA).3 The adverse long-term effects may be related to PKA- and 

CaMKII-induced maladaptive cardiac remodeling through inducing hypertrophy, apoptosis 

and fibrosis (Figure 2).7, 8 In particular, activation of 1-ARs induces apoptosis,65 which is an 

important mechanism for LV remodelling and dysfunction in HF.66, 67 Furthermore, β-

adrenergic activation alters myocardial substrate utilization and thereby, may trigger 

energetic deficit and oxidative stress.59 These data indicate that despite their favourable 

acute hemodynamic profile, the use of adrenergic agonists and PDE-inhibitors leads to 

adverse outcome by triggering maladaptive cardiac remodelling and arrhythmias, while vice 

versa, antagonizing 1-ARs can reverse remodelling, improve LV function and prolong 

survival.7 Therefore, a new generation of inotropes had to be developed to avoid activation 

of adrenergic pathways and increase contractility without raising Ca2+, which is pro-

arrhythmic and causes higher energy consumption through activation of Ca2+ transporting 

systems.   
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Treatments targeting sarcomeres 

 

Ca2+ sensitizers 

Ca2+ sensitizers shift the relationship between [Ca2+]c and force development of sarcomeres 

(i.e., the pCa-force relationship) to the left, increasing force at any given [Ca2+]c. They were 

developed in the early 1980s as cardiotonic agents with a number of theoretical advantages 

over catecholamines and PDE-inhibitors:  

 

(i) Ca2+ sensitizers should neither increase trans-sarcolemmal influx of Ca2+ nor 

alter SR Ca2+ fluxes during systole or diastole. This should be less pro-

arrhythmic and less energy consuming.  

(ii) Ca2+ sensitizers should not affect heart rate or blood pressure if a compound 

was selective for cardiac myofilaments, which may have positive effects on 

energetics.  

(iii) Ca2+ sensitizers should be independent of the desensitized β-AR/cAMP system 

in HF and should themselves not induce tolerance. 

 

Examples of this class of drugs are EMD-57033, CGP-48506, pimobendan and 

levosimendan. The mechanisms of Ca2+ sensitization differ between Ca2+ sensitizers. While 

levosimendan and pimobendan increase the affinity of troponin C to bind Ca2+,68-70 CGP-

48506 acts downstream of troponin C, and EMD 57033 affects the actin-myosin interaction 

by direct binding to the myosin motor domain.71, 72 Independent of the mechanism, the shift of 

the pCa2+-force curve to the left increases systolic force generation for any given [Ca2+]c, but 

on the other hand impedes relaxation following the decrease in [Ca2+]c. The slowing of 

diastolic relaxation is an inherent property of pure Ca2+ sensitizers and may be the reason 

why most pharmaceutical companies stopped their development. In this context, mutations in 

sarcomeric proteins that cause hypertrophic cardiomyopathy (HCM) commonly increase 

myofilament Ca2+ sensitivity as a unifying disease mechanism.73, 74 Moreover, both HCM 

mutations and drugs that increase Ca2+ sensitivity are arrhythmogenic, presumably by 

providing a sink for Ca2+ that is released during diastole, causing depolarisations via the 

electrogenic NCX.75, 76  

 

Levosimendan 

In contrast to CGP-48506, levosimendan does not prolong relaxation time or compromise 

diastolic relaxation. Thus, it does not have the same profile as pure Ca2+ sensitizers. The 

most likely reason is that levosimendan is not only a Ca2+ sensitizer binding to troponin C,69 

but also a potent and selective PDE3-inhibitor with an IC50 in the nanomolar range, but 
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~1000-fold lower affinity for PDE4.77, 78 Accordingly, levosimendan increases cAMP with 

similar potency as it increases force.79 Furthermore, its positive inotropic effect is abolished 

by the muscarinic receptor agonist carbachol, which acts through inhibiting cAMP 

generation. Also in human myocardium, the inotropic effects of levosimendan require β-

adrenergic pre-stimulation and/or elevations of [Ca2+]c and can be prevented by PDE3-, but 

not PDE4-inihibition.80-82  

 

Levosimendan´s clinical activity during long-term treatment is mainly governed by its active 

metabolite OR-1896, which has a much longer half-life (81 vs. 1 h83). OR-1896 stimulated 

contractile force with a roughly similar potency as levosimendan, had a 4.5-fold lower 

potency as a Ca2+ sensitizer and a 38-fold lower potency as a PDE3 inhibitor.78 Yet, even 

the inotropic effect of OR-1896 is sensitive to carbachol and therefore likely mediated by 

PDE3 inhibition.84 Therefore, also for OR-1896, a combination of PDE3-inhibition with Ca2+ 

sensitization is the mechanism that is responsible for positive inotropy.  

 

A common alternative explanation why levosimendan does not prolong relaxation (other 

than through PDE3-inhibition) is that levosimendan´s binding to troponin C is Ca2+-

dependent. However, it is currently unclear – if not rather unlikely – whether levosimendan 

can bind and unbind troponin C on a beat-to-beat basis in a millisecond and micromolar 

range, as would be required to explain the lack of relaxation prolongation by this 

mechanism (see the Online Supplement for a detailed discussion of this issue). Besides 

its effects on EC coupling, levosimendan also activates glibenclamide-sensitive 

sarcolemmal ATP-dependent K+-currents (IKATP), which may add to its vasodilating activity 

and potentially provide cardioprotective effects through activation of mitochondrial IKATP (see 

Online Supplement for a more detailed discussion).    

 

These data indicate that for levosimendan, PDE3 inhibition synergizes with Ca2+ 

sensitization for its inotropic action (Figure 5), which may be particularly relevant to human 

failing myocardium in which PDE3 plays the dominant role for controlling intracellular 

cAMP.60 From this it can be predicted that the more β-ARs are pre-activated by 

endogenous or exogenous catecholamines, the more pronounced is the inotropic effect of 

levosimendan, and the more this effect is mediated by PDE3-inibition rather than Ca2+ 

sensitization. Conversely, at low β-AR pre-activation (such as during pharmacological β-

blockade), the Ca2+ sensitization effect of levosimendan may become more important for 

inotropy. In this context, it is interesting to observe that in the SURVIVE trial, patients with 

(but not without) β-blocker pre-treatment had improved short-term survival with 

levosimendan compared to dobutamine.85, 86 Conversely, in patients with septic shock who 
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were all co-treated with catecholamines, levosimendan was associated with higher rates of 

supraventricular tachycardia and a numerical, but non-significant increase in mortality 

(hazard ratio 1.24, p=0.17).87 Therefore, although the clinical evidence for these 

considerations is limited, levosimendan´s PDE3-inhibitory effect may be potentiated through 

pre-activation of β-ARs by endogenous or exogenous catecholamines also under in vivo 

conditions, and such potentiated adrenergic signaling may potentially contribute to 

arrhythmias and adverse consequences for cardiomyocyte biology (Figure 2).    

 

Clinical trials 

Several clinical trials tested the effects of levosimendan in patients with HF, comparing it to 

either placebo or dobutamine. In the LIDO trial, levosimendan improved hemodynamics 

more effectively than dobutamine and was associated with lower mortality than dobutamine 

after 180 days.88 In the SURVIVE trial, however, mortality after 180 days (the primary 

endpoint) was not different between dobutamine and levosimendan despite a more 

favourable hemodynamic profile (BNP reduction) in the first 5 days after randomization.12 

As mentioned above, pre-treatment with a β-blocker was associated with improved short-

term outcome at day 5 in a posthoc analysis.85 

  

In the REVIVE trial,13 levosimendan (compared to placebo) was associated with more 

frequent hypotension and cardiac arrhythmias during the infusion period, and a numerical 

(but insignificant) risk of death despite improved symptoms and reduced plasma BNP 

levels. In a meta-analysis on 5,480 patients in 45 randomized clinical trials, however, 

levosimendan was associated with a 20% relative risk reduction of mortality, and this 

reduction was confirmed in studies with placebo (-18%; p<0.05) or dobutamine as 

comparator (-32%; p<0.005).10 These trends were confirmed by another meta-analysis.11 

However, in these meta-analyses, trials on patients with acute cardiac events were 

combined with trials on patients undergoing elective cardiac surgery. Furthermore, in the 

recent CHEETAH14 and LEVO-CTS15 trials, levosimendan did not improve outcome of 

patients with systolic HF undergoing cardiac surgery, although the use of inotropes 24 

hours after surgery was reduced with levosimendan in LEVO-CTS.15 

 

Several smaller and mostly underpowered trials evaluated the usefulness of repeated 

doses of levosimendan for patients with terminal HF in outpatient settings. Since posthoc- 

and meta-analyses of these smaller trials suggest that levosimendan may have favourable 

effects on hemodynamics, symptoms, rehospitalisation and biomarkers, the initiation of an 

adequately powered trial is warranted.89 

 



13 
 

Taken together, the principle of Ca2+ sensitization alone was no breakthrough in the 

treatment of the common forms of HF, because it is associated with worsening of diastolic 

relaxation, which is already compromised in HF in the first place. The ancillary PDE-

inhibitory effect of levosimendan improves its hemodynamic profile compared to other, 

more pure Ca2+ sensitizers, although this may come at the cost of cAMP-related side 

effects (e.g., arrhythmias). No single trial on its own, however, could so far show superiority 

of levosimendan compared to placebo or a comparator drug.  

 

Based on the clinical profile of levosimendan, the current HF Guidelines make the following 

recommendations for the use of levosimendan:  

 Short-term intravenous infusion of levosimendan may be considered in patients with 

hypotension (SBP <90 mmHg) and/or signs/symptoms of hypoperfusion despite 

adequate filling status to increase cardiac output and improve peripheral perfusion 

and maintain end-organ function (similar to dobutamine, dopamine and PDE-

inhibtors; IIb, C).3 

 When mean arterial pressure needs pharmacological support, a vasopressor 

(preferably noradrenaline) may be used in combination with levosimendan.3  

 An intravenous infusion of levosimendan (or a PDE inhibitor) may be considered to 

reverse the effect of β-blockade if β-blockade is thought to be contributing to 

hypotension with subsequent hypoperfusion (IIb, C).3 

 Levosimendan is not recommended unless the patient is symptomatically 

hypotensive or hypoperfused because of safety concerns (IIIA).3  

 

 

Omecamtiv mecarbil 

Omecamtiv mecarbil (OM) is a small-molecule, selective cardiac myosin activator whose 

therapeutic rationale and discovery were described elsewhere.90, 91 OM binds to the 

catalytic domain of cardiac myosin, stabilizing the pre-powerstroke state,92 thus increasing 

the transition rate of myosin into the strongly actin-bound force-generating state (Figure 

6A)93 and thus increasing cardiac contractility. The pharmacodynamic signature of OM is an 

increase in the systolic ejection time (SET). This is a consequence of the increase in the 

number of myosin heads interacting with actin filaments, facilitating a longer duration of 

systole, even as [Ca2+]c already decays. OM prolongs the time and increases the amplitude, 

but not the rate of cell shortening, and does not interfere with [Ca2+]c transients (Figure 

6B).93  
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A number of dose-finding studies with an intravenous formulation of OM were performed in 

a dog model of HF,94 healthy men17 and patients with acute19 and chronic HF,16 

respectively. In the dog HF model, OM prolonged SET and increased stroke volume (SV; 

Table 2).93, 94 As a consequence, cardiac output increased, thereby decreasing SVR and 

heart rate, presumably through reducing endogenous sympathetic activation.93, 94 Although 

OM might increase ATP turnover at the level of the sarcomere,93 this increase appears to 

be counterbalanced by the reduction in heart rate, SVR (reducing cardiac afterload) and 

end diastolic volume (reducing myocardial wall stress), resulting in no significant change of 

cardiac O2 consumption despite the increase of cardiac output.93, 94 Consequently, cardiac 

efficiency should improve.  

 

In healthy men and patients with stable HF, at comparable increases in SET, however, the 

net increases in SV, cardiac output and the ensuing decreases in heart rate were overall 

smaller than in the preclinical studies, perhaps reflecting the broader range of baseline 

conditions found in human studies (Table 2). In these early studies, OM was studied over a 

broad range of plasma concentrations, in some cases exceeding 1200 ng/ml. Increases in 

SET are noted at plasma concentrations as low as 100-200 ng/ml, while the effect on SV 

appeared to plateau at 400-500 ng/ml. In some individuals, myocardial ischemia developed 

with chest pain, ECG changes and/or troponin rises at plasma concentrations beyond 1200 

ng/ml.16, 17 This may be explained by an excessive increase in SET, prolonging cardiac 

contraction, and progressively shortening diastole (during which coronary perfusion takes 

place).16, 17 In a trial of patients with ischemic cardiomyopathy and angina in daily life, 

however, OM at target plasma concentrations of 295 ng/ml and 550 ng/ml, respectively, did 

not affect symptom-limited exercise capacity in treadmill tests or plasma troponin I levels.18 

Subsequent trials focused on dose regimens that constrain exposure to less than 1000 

ng/ml. 

 

In the ATOMIC-AHF study on patients with AHF and an LVEF ≤40%, the primary endpoint 

of dyspnea relief was not reached by 3 ascending doses of intravenous infusion of OM 

versus placebo.19 However, in the highest dose group (n=202), more patients responded 

with dyspnea relief to OM (51%) than to placebo (37%; p=0.034). In an echocardiographic 

substudy, OM prolonged SET and decreased LV end-systolic dimension, although LV 

stroke volume was not increased.19 Additionally, slight decreases in heart rate (-2 bpm) and 

increases in systolic blood pressure were noted (Table 2).  

 

In the COSMIC-HF trial, oral OM at either a fixed dose (25 mg twice daily) or dosing based 

on a pharmacokinetic titration protocol was tested against placebo in patients with stable 
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(not acute) systolic HF receiving standard of care therapy.20 After 20 weeks, moderate 

increases in SET and SV and a slight reduction in heart rate were noted in the 

pharmacokinetic titration group (Table 2). The latter effect may reflect slightly reduced 

endogenous sympathetic activity.95 Furthermore, the LV end-diastolic volume decreased by 

11 ml and NT-proBNP levels dropped by 970 pg/ml compared to placebo, respectively. As 

in ATOMIC-AHF,19 there was a small increase in cardiac troponin I that did not correlate 

with OM plasma concentrations.16, 17 The frequency of deaths, arrhythmias, hospital 

admissions or adverse events was not different between groups, suggesting safety.  

 

Overall, the hemodynamic profile of OM appears promising within its therapeutic range. The 

increase in cardiac contractility and subsequent prolongation of SET increases LV stroke 

volume in patients with chronic heart failure and consequently, blood pressure should rise 

initially which then may reduce endogenous sympathetic activation. This is indicated by the 

slight though consistent lowering of heart rate in human and animal studies. As a result, 

cardiac output in humans appears largely unchanged despite the modest decrease in heart 

rate, suggesting improved cardiac efficiency. Furthermore, the decrease in LV filling 

pressures, as indicated by the decrease in NT-proBNP in COSMIC-HF or the decrease of 

LV end-diastolic pressures in acute studies in the dog indicate LV unloading that may 

facilitate reverse remodeling of the LV. The now initiated GALACTIC-HF trial 

(NCT02929329), which aims to include 8000 patients with chronic HF will eventually clarify 

the long-term outcome by OM. Meanwhile, some uncertainties remain regarding the 

mechanisms of action of OM and their implications for cardiac function and long-term 

outcome.  

 

Diastolic dysfunction  

In cardiac myocytes, the increase in systolic function by OM comes at the cost of increased 

diastolic tension (Figure 6C), indicated by shortening of diastolic cell length. At low [OM] of 

200-400 nM, systolic improvement outweighs the diastolic deficit in rat cardiac myocytes, 

while at 800 nM, this relation reverses. In an in vivo pig model of myocardial stunning after 

ischemia/reperfusion, OM reduced both end-diastolic and end-systolic volumes to similar 

extents (Figure 6E) at concentrations that prolonged SET by 20% (table 2). Thereby LVEF 

pseudo-increased, while SV did not.96 Furthermore, the OM-induced increase in cardiac 

output was smaller in humans with or without HF compared to the dogs with HF (table 3). 

In light of the results on post-ischemic pigs,96 it needs to be considered whether an 

improvement of SET (and therefore, SV) by OM may have been (partly) offset by decreases 

in end-diastolic volume or filling. The improvement of NT-proBNP by long-term OM in 
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COSMIC-HF,20 however, rather argues against a meaningful deterioration of diastolic 

function by these doses of OM.  

 

Bioenergetic aspects 

In dogs with HF, OM did not increase O2 consumption94 although in the post-ischemic pig 

model, O2 consumption tended to increase.96 In isolated mouse hearts, OM impaired 

myocardial efficacy by increasing O2 consumption in working hearts and during basal 

(resting) metabolism, which was abolished by a myosin-ATPase inhibitor.96 These data 

suggest that OM increases (tonic) myosin ATPase activity97 and thereby O2 consumption, 

which however contrasts with the effect of OM to inhibit the basal ATPase of myosin in 

vitro.98 In skinned rat cardiac myocytes, OM shifted the pCa/force relationship to the left, 

indicative of sensitizing myofilaments to Ca2+ (Figure 6F).99 In human myocardium, OM 

increased the myosin duty ratio which resulted in enhanced Ca2+ sensitivity, but slower force 

development.100 In a mouse model of dilated cardiomyopathy with decreased myofilament 

Ca2+ sensitivity, OM resensitized myofilaments towards control levels.101 However, in the 

majority of patients with HF, the Ca2+ affinity of the myofilaments is increased rather than 

decreased,28-30, 102, 103 and in LV myocardium of patients with terminal HF, increased diastolic 

tension consumes as much ATP and O2 as systolic tension, and elevated diastolic tension is 

a substantial energetic burden in failing hearts especially at higher heart rates.104 

 

In conclusion, whether OM has a neutral or even net energy-sparing effect on myocardial 

bioenergetics, or whether the drug´s net effect on myosin could increase O2-consumption is 

a question future research should continue to address. Furthermore, the development of 

small molecules targeting sarcomeric motor proteins is an emerging field that is discussed 

in more detail in the Online Supplement.  
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Alternative treatments targeting EC coupling  

 

Nitroxyl 

Nitroxyl (HNO) is produced by NO synthase under conditions of oxidative or nitrosative 

stress. HNO donated by Angeli’s salt (AS) improves cardiac function in normal and failing 

dogs, independently of β-AR signaling, with no change in cGMP levels.105, 106 In cardiac 

myocytes, HNO increases fractional shortening (FS) and Ca2+ transients with no involvement 

of cAMP/PKA or cGMP/protein kinase G signaling.107 Instead, HNO modifies cysteine 

residues to enhance Ca2+ handling and increase myofilament Ca2+ sensitivity. In particular, 

HNO alters the inhibitory interaction between phospholamban and SERCA2a in a redox-

dependent manner, improving SR Ca2+ uptake and release in isolated myocytes/hearts 

(Figure 7).108, 109 In addition, HNO modifies the actin-tropomyosin and myosin heavy chain-

myosin light chain 1 interactions, increasing Ca2+ sensitivity and force generation in intact 

and skinned muscles (Figure 7).110 

 

Whereas beneficial effects of NO signaling to cGMP may be lost in conditions of cardiac 

oxidative stress (by the high reactivity of NO with ROS), this does not occur with HNO, 

whose efficacy is preserved in conditions with altered redox balance.111, 112 Novel HNO 

donors (e.g. CXL-1020) are long-lasting and more specific. CXL-1020 has HNO-dependent 

positive inotropic and lusitropic effects in isolated cardiac myocytes in vitro and in whole 

animal studies in vivo, in both normal and failing conditions. Human phase I-IIa clinical trials 

were recently completed (NCT01092325, NCT01096043). In patients with systolic HF, CXL-

1020 reduced both left and right heart filling pressures and SVR, while increasing SV. Heart 

rate was unchanged, and arterial pressure declined modestly.113 Currently, an improved 

second-generation HNO donor, CXL-1427, is tested in Phase I and II trials on healthy 

volunteers and patients with HF (NCT02157506, NCT02819271).   

 

Other compounds and interventions 

The mechanisms and, where appropriate, clinical results of Istaroxime, SERCA2a gene 

therapy and EF hand proteins are discussed in the Online Supplement.   
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Energetic considerations 

Taken together, inotropic agents have three principal modes of action:  

 

1) Activation of the adrenergic system,  

2) sensitization of myofilaments to Ca2+ and  

3) reconstitution of cytosolic Ca2+ handling independent of adrenergic activation.  

 

The modes of action of inotropic drugs have important energetic consequences. Most 

cellular ATP is consumed by SERCA, NKA and myosin ATPase.114 A central mechanism to 

match ATP supply to demand is “parallel activation” by Ca2+,31 where Ca2+ activates both 

ATP consumption and -regeneration (Figures 3 and 8): Increases in [Ca2+]c accelerate ATP 

consumption by EC coupling, hastening respiration via ADP which oxidizes NADH and 

FADH2 at the respiratory chain. On the other hand, Ca2+ enters mitochondria to activate 

Krebs cycle dehydrogenases, accelerating NADH and FADH2 regeneration (Figure 8).31 

Consequently, hormones or drugs that increase Ca2+ handling (e.g., catecholamines) in the 

short term induce this “parallel activation” of respiration, maintaining the redox state of 

NADH and FADH2 in normal hearts (Figure 8).31 In the failing heart, however, mitochondrial 

Ca2+ uptake is impaired, resulting in NADH oxidation during β-adrenergic stimulation.31, 33 

Since NADH is coupled to the NADPH pool, and NADPH required for ROS detoxification 

(Figures 3 and 8), a mismatch between cardiac work and mitochondrial Ca2+ uptake 

induces oxidative stress.31, 33 This may contribute to arrhythmias, systolic dysfunction and 

maladaptive remodeling through necrosis and other redox-sensitive signaling pathways.33 

Therefore, improving SR Ca2+ content and release, as has been observed with 

AAV1/SERCA2a115 or HNO107 in animal models of HF, may improve the efficiency of 

mitochondrial Ca2+ uptake and make the failing heart less sensitive towards β-AR-mediated 

oxidative stress and damage. In patients with improved LVEF in response to β-blockers, 

SERCA gene expression was strongly upregulated,116 suggesting that also β-blockers may 

improve mitochondrial redox regulation through restoring defective EC coupling in the long 

term.  

 

Conversely, when sensitizing myofilaments to Ca2+, the increase in ATP consumption at the 

myofilaments may not be adequately matched by Ca2+-induced Krebs cycle activation in 

mitochondria (Figure 8). In fact, pre-stretching cardiac trabeculae increases force 

production independent of an increase in Ca2+ via the Frank Starling mechanism, which is 

related to myofilament Ca2+ sensitization, and this oxidizes NADH.117 Whether such 

energetic mismatch and possibly further downstream consequences such as energetic 

deficit and oxidative stress are also the result of Ca2+ sensitization through inotropic drugs 
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(i.e., EMD-57033, levosimendan, OM, nitroxyl etc.), mutations occurring in patients with 

HCM73, 74 and/or post-translational modifications occurring in patients with systolic HF103 

needs to be clarified by future research. In the context of inotropic drugs, however, a profile 

where Ca2+ sensitization is coupled to restoration of Ca2+ handling (i.e. nitroxyl) or increases 

of Ca2+ (i.e., levosimendan; table 3) may ameliorate energetic/redox mismatch occurring 

through Ca2+ sensitization per se.  

 

Finally, it should be considered whether targeting mitochondria may be an alternative 

indirect inotropic intervention, since in dogs with HF, elamipretide – which accumulates in 

mitochondria and improves mitochondrial function – acutely increased cardiac output by a 

similar extent (+25%)118 as OM (+22 and +29%, respectively; Table 3).93, 94 Furthermore, 

trimetazidine and perhexilline target substrate metabolism of mitochondria and improve 

LVEF, hemodynamics, cardiac energetics and symptoms in patients with HF (for more 

details on these compounds see Online Supplement).119-123 Finally, cardiac myocyte-

specific iron deficiency impaired the response to dobutamine in preclinical models of HF 

which could be restored by iron supplementation,124 suggesting that pharmacological 

restoration of mitochondrial function may also regenerate the heart´s response to inotropic 

stimulation.  

 

 

Summary 

Catecholamines and PDE-inhibitors are associated with excess mortality presumably 

related to the induction of arrhythmias in the short term and the activation of signaling 

pathways that aggravate maladaptive remodelling of the failing heart in the long term. 

Although levosimendan has so far been viewed as a Ca2+ sensitizer, its inotropic effect 

relies on PDE3-inhibition as well. As a myosin activator, OM improves systolic function 

without activating adrenergic signaling or increasing cytosolic Ca2+, but its therapeutic range 

is limited by diastolic dysfunction at higher doses. Nitroxyl restores cytosolic Ca2+ handling 

in failing hearts without activating cAMP-dependent signaling pathways and shows a 

promising hemodynamic profile, but its clinical usefulness awaits further clinical testing. 

Besides the impact of adrenergic signaling, bioenergetics aspects need to be considered to 

estimate the comprehensive profile and long-term consequences of any agent that affects 

inotropy.  
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Statements and recommendations 

Based on these preclinical and clinical data as well as the bioenergetic considerations, the 

Committees on Translational Research and on Acute Heart Failure of the HFA of the ESC 

make the following statements and recommendations:  

 Currently available drugs primarily targeting inotropy are cardiotropic glycosides, 

catecholamines (in particular, dobutamine), PDE-inhibitors and levosimendan.  

 According to the current HF Guidelines,3 the use of catecholamines, PDE-inhibitors 

and levosimendan should be limited to patients with hypotension (SBP <90 

mmHg) and/or signs/symptoms of hypoperfusion despite adequate filling status to 

increase cardiac output and improve peripheral perfusion to maintain end-organ 

function (IIb, C).  

 PDE-inhibitors and levosimendan can cause hypotension due to vasodilatory 

actions.   

 Vasopressors (preferably norepinephrine) may be considered to increase blood 

pressure and vital organ perfusion in patients with cardiogenic shock despite the 

use of inotropes (IIb, B).3  

 So far, all inotropic drugs recommended for the use in patients with acute HF 

(including levosimendan) activate adrenergic signaling at least to some extent.  

 Longer-term use of drugs that exclusively target adrenergic signaling 

(catecholamines, PDE-inhibitors) are associated with adverse outcome.   

 Levosimendan, with its hybrid Ca2+ sensitization and adrenergic action (PDE3 

inhibition), could be useful in selected patient populations, which may include 

patients treated with β-blockers.   

 Since mitochondrial function is intimately linked to cellular Ca2+ handling,31 the 

bioenergetic consequences of treatments targeting inotropy need to be considered 

to understand their short- and long-term consequences.  

 On theoretical grounds, treatments that restore the defects of cytosolic Ca2+ 

handling in the failing heart without activating adrenergic signaling may be a 

promising avenue since they avoid diastolic dysfunction and potentially bioenergetic 

mismatch of pure Ca2+ sensitization, but also adverse long-term consequences of 

adrenergic activation.  

 Future research should be directed towards deepening our understanding of the 

close interplay between EC coupling and mitochondrial energetics, since only 

the integration of these aspects will resolve the net biological effects of drugs 

targeting inotropy in the short- and long-term.  

 



21 
 

Acknowledgements 

We thank Gerasimos Filippatos, Fady I. Malik and Piero Pollesello for insightful discussions 

and valuable input to the manuscript.  

 

 

Funding: 

CM:  German Research Foundation (DFG; SFB-894, TRR-219, Ma 2528/7-1), German 

Federal Ministry of Education and Science (BMBF), Corona Foundation.  

NH:  DFG: HA 7512/2-1; Bayer Healthcare; Mercator Research Center Ruhr 

FRH:  Novartis, Servier 

DJM:  DFG (MA 1081/22-1) 

JLB:  Fonds National de la Recherche Scientifique and European Union (UE Horizon2020 

GA634559) 

LC:  Fondation Leducq (Research grant Nr. 11, CVD 04), DZHK (German Centre for 

Cardiovascular Research), German Ministry of Research and Education (BMBF) 

RAdB:  AstraZeneca and Bristol Meyers Squibb 

BP:  Stealth Peptides (Elamiperide), Novartis and Bayer Healthcare.  

 

 

Disclosures: 

  

CM:  advisory boards to Servier and Stealth Biotherapeutics. Honoraria from Novartis, 

Servier, Berlin Chemie, Pfizer, Bayer.  

FRH:  Novartis, Servier, research co-op. Orion, Sanofi, Novartis. 

ARL:  consultancy or advisory board payments from Roche, Celladon and Stealth 

Biotherapeutics.  

JM:  Consultant for Cardiorentis. Advisor for Novartis. Travel grants from Boehringer 

Ingelheim, Novartis and Menarini. 

ZP:  lecture honoraria from Orion.  

CGT:  co-inventor of the Canadian patent no. 2,613,477: “Thiol Sensitive Positive Inotropes”, 

issued on Dec 3, 2013 

BY:   Institutional honoraria from Novartis, Bayer Healthcare, Amgen 

JLB:  Fonds National de la Recherche Scientifique and European Union (UE Horizon2020 

GA634559) 

LC:  Fondation Leducq (Research grant Nr. 11, CVD 04), DZHK (German Centre for 

Cardiovascular Research), German Ministry of Research and Education (BMBF) 

RAdB:  honoraria from Novartis. 



22 
 

BP:  advisory boards/steering commmittees from Bayer Healthcare, Novartis, Stealth 

Peptides, Astra Zeneca, Daiichi-Sankyo, Vifor 

AM: Honoraria for lectures from Orion, Servier, Abbott, Novartis and Consultant for BMS, 

Cardiorentis, Roche, Sphyngotec. 

 

 

 

  



23 
 

References: 

1. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, 
Nodari S, Lam CSP, Sato N, Shah AN, Gheorghiade M. The Global Health and Economic 
Burden of Hospitalizations for Heart Failure: Lessons Learned From Hospitalized Heart 
Failure Registries. Journal of the American College of Cardiology 2014;63(12):1123-1133. 

2. Chioncel O, Mebazaa A, Harjola V-P, Coats AJ, Piepoli MF, Crespo-Leiro MG, 
Laroche C, Seferovic PM, Anker SD, Ferrari R, Ruschitzka F, Lopez-Fernandez S, Miani D, 
Filippatos G, Maggioni AP, on behalf of the ESCHFL-TRI. Clinical phenotypes and outcome 
of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry. 
Eur J Heart Fail 2017;19(10):1242-1254. 
3. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, 
Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, 
Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der 
Meer P, Authors/Task Force M, Document R. 2016 ESC Guidelines for the diagnosis and 
treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment 
of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed 
with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart 
Fail 2016;18(8):891-975. 
4. The Effect of Digoxin on Mortality and Morbidity in Patients with Heart Failure. New 
England Journal of Medicine 1997;336(8):525-533. 
5. Bers DM. Altered Cardiac Myocyte Ca Regulation In Heart Failure. Physiology 
(Bethesda) 2006;21(6):380-387. 
6. Overgaard CB, Dzavik V. Inotropes and vasopressors: review of physiology and 
clinical use in cardiovascular disease. Circulation 2008;118(10):1047-56. 
7. Bristow MR. Treatment of chronic heart failure with beta-adrenergic receptor 
antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res 
2011;109(10):1176-94. 
8. Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic 
signaling in heart failure? Circ Res 2003;93(10):896-906. 

9. Francis GS, Bartos JA, Adatya S. Inotropes. Journal of the American College of 
Cardiology 2014;63(20):2069-78. 
10. Landoni G, Biondi-Zoccai G, Greco M, Greco T, Bignami E, Morelli A, Guarracino F, 
Zangrillo A. Effects of levosimendan on mortality and hospitalization. A meta-analysis of 
randomized controlled studies. Crit Care Med 2012;40:634-46. 
11. Pollesello P, Parissis J, Kivikko M, Harjola VP. Levosimendan meta-analyses: Is there 
a pattern in the effect on mortality? International journal of cardiology 2016;209:77-83. 
12. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ, Thakkar 
R, Padley RJ, Poder P, Kivikko M, Investigators S. Levosimendan vs dobutamine for patients 
with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA : the journal 
of the American Medical Association 2007;297(17):1883-91. 
13. Packer M, Colucci W, Fisher L, Massie BM, Teerlink JR, Young J, Padley RJ, 
Thakkar R, Delgado-Herrera L, Salon J, Garratt C, Huang B, Sarapohja T, Group RHFS. 
Effect of levosimendan on the short-term clinical course of patients with acutely 
decompensated heart failure. JACC Heart failure 2013;1(2):103-11. 
14. Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, Calabrò 
MG, Grigoryev EV, Likhvantsev VV, Salgado-Filho MF, Bianchi A, Pasyuga VV, Baiocchi M, 
Pappalardo F, Monaco F, Boboshko VA, Abubakirov MN, Amantea B, Lembo R, Brazzi L, 
Verniero L, Bertini P, Scandroglio AM, Bove T, Belletti A, Michienzi MG, Shukevich DL, 
Zabelina TS, Bellomo R, Zangrillo A. Levosimendan for Hemodynamic Support after Cardiac 
Surgery. N Engl J Med 2017;376(21):2021-2031. 

15. Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, Harrison 
RW, Hay D, Fremes S, Duncan A, Soltesz EG, Luber J, Park S, Argenziano M, Murphy E, 
Marcel R, Kalavrouziotis D, Nagpal D, Bozinovski J, Toller W, Heringlake M, Goodman SG, 
Levy JH, Harrington RA, Anstrom KJ, Alexander JH. Levosimendan in Patients with Left 



24 
 

Ventricular Dysfunction Undergoing Cardiac Surgery. N Engl J Med 2017;376(21):2032-
2042. 
16. Cleland JG, Teerlink JR, Senior R, Nifontov EM, Mc Murray JJ, Lang CC, Tsyrlin VA, 
Greenberg BH, Mayet J, Francis DP, Shaburishvili T, Monaghan M, Saltzberg M, Neyses L, 
Wasserman SM, Lee JH, Saikali KG, Clarke CP, Goldman JH, Wolff AA, Malik FI. The 
effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic 
heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. 
Lancet 2011;378(9792):676-83. 
17. Teerlink JR, Clarke CP, Saikali KG, Lee JH, Chen MM, Escandon RD, Elliott L, Bee 
R, Habibzadeh MR, Goldman JH, Schiller NB, Malik FI, Wolff AA. Dose-dependent 
augmentation of cardiac systolic function with the selective cardiac myosin activator, 
omecamtiv mecarbil: a first-in-man study. Lancet 2011;378(9792):667-75. 
18. Greenberg BH, Chou W, Saikali KG, Escandon R, Lee JH, Chen MM, Treshkur T, 
Megreladze I, Wasserman SM, Eisenberg P, Malik FI, Wolff AA, Shaburishvili T. Safety and 
tolerability of omecamtiv mecarbil during exercise in patients with ischemic cardiomyopathy 
and angina. JACC Heart failure 2015;3(1):22-9. 
19. Teerlink JR, Felker GM, McMurray JJ, Ponikowski P, Metra M, Filippatos GS, 
Ezekowitz JA, Dickstein K, Cleland JG, Kim JB, Lei L, Knusel B, Wolff AA, Malik FI, 
Wasserman SM, Investigators A-A. Acute Treatment With Omecamtiv Mecarbil to Increase 
Contractility in Acute Heart Failure: The ATOMIC-AHF Study. Journal of the American 
College of Cardiology 2016;67(12):1444-55. 
20. Teerlink JR, Felker GM, McMurray JJV, Solomon SD, Adams Jr KF, Cleland JGF, 
Ezekowitz JA, Goudev A, Macdonald P, Metra M, Mitrovic V, Ponikowski P, Serpytis P, 
Spinar J, Tomcsányi J, Vandekerckhove HJ, Voors AA, Monsalvo ML, Johnston J, Malik FI, 
Honarpour N. Chronic Oral Study of Myosin Activation to Increase Contractility in Heart 
Failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. The 
Lancet 2016;388(10062):2895-2903. 
21. Tilley DG. G protein-dependent and G protein-independent signaling pathways and 
their impact on cardiac function. Circ Res 2011;109(2):217-30. 
22. Bobin P, Belacel-Ouari M, Bedioune I, Zhang L, Leroy J, Leblais V, Fischmeister R, 
Vandecasteele G. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic 
perspective. Archives of cardiovascular diseases 2016;109(6-7):431-43. 
23. Clancy CE, Chen-Izu Y, Bers DM, Belardinelli L, Boyden PA, Csernoch L, Despa S, 
Fermini B, Hool LC, Izu L, Kass RS, Lederer WJ, Louch WE, Maack C, Matiazzi A, Qu Z, 
Rajamani S, Rippinger CM, Sejersted OM, O'Rourke B, Weiss JN, Varro A, Zaza A. 
Deranged sodium to sudden death. J Physiol 2015;593(6):1331-45. 
24. Weisser-Thomas J, Piacentino V, 3rd, Gaughan JP, Margulies K, Houser SR. 
Calcium entry via Na/Ca exchange during the action potential directly contributes to 
contraction of failing human ventricular myocytes. Cardiovasc Res 2003;57(4):974-85. 
25. Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR. Altered myocardial force-
frequency relation in human heart failure. Circulation 1992;85(5):1743-50. 
26. Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, Prestle J, 
Minami K, Just H. Relationship between Na+-Ca2+-exchanger protein levels and diastolic 
function of failing human myocardium. Circulation 1999;99(5):641-8. 
27. Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H. Influence 
of the force-frequency relationship on haemodynamics and left ventricular function in patients 
with non-failing hearts and in patients with dilated cardiomyopathy. European heart journal 
1994;15(2):164-70. 
28. van der Velden J, Klein LJ, Zaremba R, Boontje NM, Huybregts MAJM, Stooker W, 
Eijsman L, de Jong JW, Visser CA, Visser FC, Stienen GJM. Effects of Calcium, Inorganic 
Phosphate, and pH on Isometric Force in Single Skinned Cardiomyocytes From Donor and 
Failing Human Hearts. Circulation 2001;104(10):1140-1146. 
29. Wolff MR, Buck SH, Stoker SW, Greaser ML, Mentzer RM. Myofibrillar calcium 
sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of 
altered beta-adrenergically mediated protein phosphorylation. J Clin Invest 1996;98(1):167-

176. 



25 
 

30. Marston SB, de Tombe PP. Troponin phosphorylation and myofilament Ca2+-
sensitivity in heart failure: increased or decreased? Journal of molecular and cellular 
cardiology 2008;45(5):603-7. 
31. Bertero E, Maack C. Calcium Signaling and Reactive Oxygen Species in 
Mitochondria. Circ Res 2018;122(10):1460-1478. 
32. Neubauer S. The failing heart--an engine out of fuel. The New England journal of 
medicine 2007;356(11):1140-51. 
33. Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production 
and elimination. Journal of molecular and cellular cardiology 2014;73C:26-33. 
34. Tian R, Halow JM, Meyer M, Dillmann WH, Figueredo VM, Ingwall JS, Camacho SA. 
Thermodynamic limitation for Ca2+ handling contributes to decreased contractile reserve in 
rat hearts. Am J Physiol 1998;275(6 Pt 2):H2064-71. 
35. Wagner S, Rokita AG, Anderson ME, Maier LS. Redox regulation of sodium and 
calcium handling. Antioxidants & redox signaling 2013;18(9):1063-77. 

36. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, 
Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJV, Anker SD, 
Ponikowski P. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. 
European heart journal 2010;31(15):ehq158-1880. 

37. Jankowska EA, Tkaczyszyn M, Suchocki T, Drozd M, von Haehling S, Doehner W, 
Banasiak W, Filippatos G, Anker SD, Ponikowski P. Effects of intravenous iron therapy in 
iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled 
trials. European Journal of Heart Failure 2016;18(7):786-795. 

38. Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, Pluhacek T, 
Spatenka J, Kovalcikova J, Drahota Z, Kautzner J, Pirk J, Houstek J. Myocardial iron content 
and mitochondrial function in human heart failure: a direct tissue analysis. European journal 
of heart failure 2016. 
39. Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC. Lethal 
Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep 2015;13(3):533-
545. 
40. Barrientos T, Laothamatas I, Koves TR, Soderblom EJ, Bryan M, Moseley MA, Muoio 
DM, Andrews NC. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle. 
EBioMedicine 2015;2(11):1705-17. 
41. von Hardenberg A, Maack C. Mitochondrial Therapies in Heart Failure. Handb Exp 
Pharmacol 2017;243:491-514. 

42. Liu T, Brown DA, O'Rourke B. Role of mitochondrial dysfunction in cardiac glycoside 
toxicity. Journal of molecular and cellular cardiology 2010;49(5):728-736. 
43. Gonano LA, Petroff MV. Subcellular Mechanisms Underlying Digitalis-Induced 
Arrhythmias: Role of Calcium/Calmodulin-Dependent Kinase II (CaMKII) in the Transition 
from an Inotropic to an Arrhythmogenic Effect. Heart Lung Circ 2014;23(12):1118-1124. 
44. van Bilsen M, Patel HC, Bauersachs J, Bohm M, Borggrefe M, Brutsaert D, Coats 
AJS, de Boer RA, de Keulenaer GW, Filippatos GS, Floras J, Grassi G, Jankowska EA, 
Kornet L, Lunde IG, Maack C, Mahfoud F, Pollesello P, Ponikowski P, Ruschitzka F, Sabbah 
HN, Schultz HD, Seferovic P, Slart R, Taggart P, Tocchetti CG, Van Laake LW, Zannad F, 
Heymans S, Lyon AR. The autonomic nervous system as a therapeutic target in heart failure: 
a scientific position statement from the Translational Research Committee of the Heart 
Failure Association of the European Society of Cardiology. Eur J Heart Fail 2017;epub 
ahead of print 2017 Sep 26. 
45. Vamos M, Erath JW, Hohnloser SH. Digoxin-associated mortality: a systematic review 
and meta-analysis of the literature. European heart journal 2015;36(28):1831-1838. 
46. Bavendiek U, Aguirre Davila L, Koch A, Bauersachs J. Assumption versus evidence: 
the case of digoxin in atrial fibrillation and heart failure. European heart journal 
2017;38(27):2095-2099. 
47. Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, 
Bart BA, Bull DA, Stehlik J, LeWinter MM, Konstam MA, Huggins GS, Rouleau JL, O'Meara 
E, Tang WH, Starling RC, Butler J, Deswal A, Felker GM, O'Connor CM, Bonita RE, 
Margulies KB, Cappola TP, Ofili EO, Mann DL, Davila-Roman VG, McNulty SE, Borlaug BA, 



26 
 

Velazquez EJ, Lee KL, Shah MR, Hernandez AF, Braunwald E, Redfield MM, Network 
NHFCR. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal 
dysfunction: the ROSE acute heart failure randomized trial. JAMA : the journal of the 
American Medical Association 2013;310(23):2533-43. 
48. Giamouzis G, Butler J, Starling RC, Karayannis G, Nastas J, Parisis C, Rovithis D, 
Economou D, Savvatis K, Kirlidis T, Tsaknakis T, Skoularigis J, Westermann D, Tschöpe C, 
Triposkiadis F. Impact of Dopamine Infusion on Renal Function in Hospitalized Heart Failure 
Patients: Results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. 
Journal of cardiac failure 2010;16(12):922-930. 
49. Triposkiadis FK, Butler J, Karayannis G, Starling RC, Filippatos G, Wolski K, Parissis 
J, Parisis C, Rovithis D, Koutrakis K, Skoularigis J, Antoniou C-K, Chrysohoou C, Pitsavos C, 
Stefanadis C, Nastas J, Tsaknakis T, Mantziari L, Giannakoulas G, Karvounis H, 
Kalogeropoulos AP, Giamouzis G. Efficacy and safety of high dose versus low dose 
furosemide with or without dopamine infusion: The Dopamine in Acute Decompensated 
Heart Failure II (DAD-HF II) Trial. International journal of cardiology 2014;172(1):115-121. 
50. Tuttle RR, Mills J. Dobutamine: development of a new catecholamine to selectively 
increase cardiac contractility. Circ Res 1975;36(1):185-96. 
51. Williams RS, Bishop T. Selectivity of dobutamine for adrenergic receptor subtypes: in 
vitro analysis by radioligand binding. J Clin Invest 1981;67(6):1703-11. 
52. Ruffolo RR, Jr. The pharmacology of dobutamine. The American journal of the 
medical sciences 1987;294(4):244-8. 
53. Tarvasmäki T, Lassus J, Varpula M, Sionis A, Sund R, Køber L, Spinar J, Parissis J, 
Banaszewski M, Silva Cardoso J, Carubelli V, Di Somma S, Mebazaa A, Harjola V-P. 
Current real-life use of vasopressors and inotropes in cardiogenic shock - adrenaline use is 
associated with excess organ injury and mortality. Critical Care 2016;20(1):208. 
54. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T. 
Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart 
failure. The New England journal of medicine 1984;311(13):819-23. 
55. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors 
and heart function. Nature 2002;415(6868):206-12. 

56. Wagner S, Maier LS, Bers DM. Role of Sodium and Calcium Dysregulation in 
Tachyarrhythmias in Sudden Cardiac Death. Circ Res 2015;116(12):1956-1970. 
57. Unverferth DA, Blanford M, Kates RE, Leier CV. Tolerance to dobutamine after a 72 
hour continuous infusion. The American journal of medicine 1980;69(2):262-6. 

58. Tacon CL, McCaffrey J, Delaney A. Dobutamine for patients with severe heart failure: 
a systematic review and meta-analysis of randomised controlled trials. Intensive care 
medicine 2012;38(3):359-67. 
59. Stapel B, Kohlhaas M, Ricke-Hoch M, Haghikia A, Erschow S, Knuuti J, Silvola JMU, 
Roivainen A, Saraste A, Nickel AG, Saar JA, Sieve I, Pietzsch S, Müller M, Bogeski I, Kappl 
R, Jauhiainen M, Thackeray JT, Scherr M, Bengel FM, Hagl C, Tudorache I, Bauersachs J, 
Maack C, Hilfiker-Kleiner D. Low STAT3 expression sensitizes to toxic effects of β-
adrenergic receptor stimulation in peripartum cardiomyopathy. European heart journal 
2017;38(5):349-361. 
60. Molenaar P, Christ T, Hussain RI, Engel A, Berk E, Gillette KT, Chen L, Galindo-
Tovar A, Krobert KA, Ravens U, Levy FO, Kaumann AJ. PDE3, but not PDE4, reduces 
beta(1) - and beta(2)-adrenoceptor-mediated inotropic and lusitropic effects in failing 
ventricle from metoprolol-treated patients. British journal of pharmacology 2013;169(3):528-
38. 
61. Molina CE, Leroy J, Richter W, Xie M, Scheitrum C, Lee IO, Maack C, Rucker-Martin 
C, Donzeau-Gouge P, Verde I, Llach A, Hove-Madsen L, Conti M, Vandecasteele G, 
Fischmeister R. Cyclic adenosine monophosphate phosphodiesterase type 4 protects 
against atrial arrhythmias. Journal of the American College of Cardiology 2012;59(24):2182-
90. 
62. Metra M, Nodari S, D'Aloia A, Muneretto C, Robertson AD, Bristow MR, Dei Cas L. 
Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients 
with heart failure: a randomized comparison of dobutamine and enoximone before and after 



27 
 

chronic treatment with metoprolol or carvedilol. Journal of the American College of 
Cardiology 2002;40(7):1248-58. 

63. Mebazaa A, Parissis J, Porcher R, Gayat E, Nikolaou M, Boas FV, Delgado JF, 
Follath F. Short-term survival by treatment among patients hospitalized with acute heart 
failure: the global ALARM-HF registry using propensity scoring methods. Intensive care 
medicine 2011;37(2):290-301. 

64. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix 
GH, Bommer WJ, Elkayam U, Kukin ML, et al. Effect of oral milrinone on mortality in severe 
chronic heart failure. The PROMISE Study Research Group. The New England journal of 
medicine 1991;325(21):1468-75. 

65. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates 
apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. 
Circulation 1998;98(13):1329-34. 
66. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, 
Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. The 
New England journal of medicine 1996;335(16):1182-9. 
67. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, 
Armstrong RC, Kitsis RN. A mechanistic role for cardiac myocyte apoptosis in heart failure. J 
Clin Invest 2003;111(10):1497-504. 
68. Fujino K, Sperelakis N, Solaro RJ. Sensitization of dog and guinea pig heart 
myofilaments to Ca2+ activation and the inotropic effect of pimobendan: comparison with 
milrinone. Circ Res 1988;63(5):911-922. 

69. Pollesello P, Ovaska M, Kaivola J, Tilgmann C, Lundström K, Kalkkinen N, Ulmanen 
I, Nissinen E, Taskinen J. Binding of a new Ca2+ sensitizer, levosimendan, to recombinant 
human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear 
magnetic resonance study. J Biol Chem 1994;269(46):28584-28590. 

70. Schlecht W, Li K-L, Hu D, Dong W. Fluorescence Based Characterization of Calcium 
Sensitizer Action on the Troponin Complex. Chem Biol Drug Design 2016;87(2):171-181. 
71. Radke MB, Taft MH, Stapel B, Hilfiker-Kleiner D, Preller M, Manstein DJ. Small 
molecule-mediated Refolding and Activation of Myosin Motor Function. eLife 2014:DOI: 
10.7554/eLife.01603. 
72. Solaro RJ, Gambassi G, Warshaw DM, Keller MR, Spurgeon HA, Beier N, Lakatta 
EG. Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. 
Circ Res 1993;73(6):981-990. 

73. Moore JR, Leinwand L, Warshaw DM. Understanding cardiomyopathy phenotypes 
based on the functional impact of mutations in the myosin motor. Circ Res 2012;111(3):375-
85. 
74. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. The New England 
journal of medicine 2011;364(17):1643-56. 
75. Schober T, Huke S, Venkataraman R, Gryshchenko O, Kryshtal D, Hwang HS, 
Baudenbacher FJ, Knollmann BC. Myofilament Ca sensitization increases cytosolic Ca 
binding affinity, alters intracellular Ca homeostasis, and causes pause-dependent Ca-
triggered arrhythmia. Circ Res 2012;111(2):170-9. 
76. Baudenbacher F, Schober T, Pinto JR, Sidorov VY, Hilliard F, Solaro RJ, Potter JD, 
Knollmann BC. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in 
mice. J Clin Invest 2008;118(12):3893-903. 

77. Raasmaja A, Talo A, Haikala H, Nissinen E, Linden IB, Pohto P. Biochemical 
properties of OR-1259--a positive inotropic and vasodilatory compound with an 
antiarrhythmic effect. Advances in experimental medicine and biology 1992;311:423. 
78. Szilagyi S, Pollesello P, Levijoki J, Kaheinen P, Haikala H, Edes I, Papp Z. The 
effects of levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and 
phosphodiesterase enzymes of the guinea pig. European journal of pharmacology 
2004;486(1):67-74. 
79. Boknik P, Neumann J, Kaspareit G, Schmitz W, Scholz H, Vahlensieck U, 
Zimmermann N. Mechanisms of the contractile effects of levosimendan in the mammalian 
heart. The Journal of pharmacology and experimental therapeutics 1997;280(1):277-83. 



28 
 

80. Hasenfuss G, Pieske B, Castell M, Kretschmann B, Maier LS, Just H. Influence of the 
novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human 
myocardium. Circulation 1998;98(20):2141-7. 
81. Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GO, Levy FO, Skomedal T, Osnes 
JB, Qvigstad E. Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account 
for its inotropic effect in failing human heart. British journal of pharmacology 
2014;171(23):5169-81. 
82. Brixius K, Reicke S, Schwinger RH. Beneficial effects of the Ca(2+) sensitizer 
levosimendan in human myocardium. Am J Physiol Heart Circ Physiol 2002;282(1):H131-7. 
83. Antila S, Kivikko M, Lehtonen L, Eha J, Heikkila A, Pohjanjousi P, Pentikainen PJ. 
Pharmacokinetics of levosimendan and its circulating metabolites in patients with heart 
failure after an extended continuous infusion of levosimendan. British journal of clinical 
pharmacology 2004;57(4):412-5. 
84. Orstavik O, Manfra O, Andressen KW, Andersen GO, Skomedal T, Osnes JB, Levy 
FO, Krobert KA. The Inotropic Effect of the Active Metabolite of Levosimendan, OR-1896, Is 
Mediated through Inhibition of PDE3 in Rat Ventricular Myocardium. PloS one 
2015;10(3):e0115547. 
85. Mebazaa A, Nieminen MS, Filippatos GS, Cleland JG, Salon JE, Thakkar R, Padley 
RJ, Huang B, Cohen-Solal A. Levosimendan vs. dobutamine: outcomes for acute heart 
failure patients on β-blockers in SURVIVE†. Eur J Heart Fail 2009;11(3):304-311. 
86. Kivikko M, Pollesello P, Tarvasmäki T, Sarapohja T, Nieminen MS, Harjola V-P. Effect 
of baseline characteristics on mortality in the SURVIVE trial on the effect of levosimendan vs 
dobutamine in acute heart failure: Sub-analysis of the Finnish patients. International journal 
of cardiology 2016;215:26-31. 
87. Gordon AC, Perkins GD, Singer M, McAuley DF, Orme RML, Santhakumaran S, 
Mason AJ, Cross M, Al-Beidh F, Best-Lane J, Brealey D, Nutt CL, McNamee JJ, Reschreiter 
H, Breen A, Liu KD, Ashby D. Levosimendan for the Prevention of Acute Organ Dysfunction 
in Sepsis. The New England journal of medicine 2016;375(17):1638-1648. 
88. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K, Harjola VP, 
Mitrovic V, Abdalla M, Sandell EP, Lehtonen L, Steering C, Investigators of the 
Levosimendan Infusion versus Dobutamine S. Efficacy and safety of intravenous 
levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): 
a randomised double-blind trial. Lancet 2002;360(9328):196-202. 
89. Pölzl G, Altenberger J, Baholli L, Beltrán P, Borbély A, Comin-Colet J, Delgado JF, 
Fedele F, Fontana A, Fruhwald F, Giamouzis G, Giannakoulas G, Garcia-González MJ, 
Gustafsson F, Kaikkonen K, Kivikko M, Kubica J, von Lewinski D, Löfman I, Malfatto G, 
Manito N, Martínez-Sellés M, Masip J, Merkely B, Morandi F, Mølgaard H, Oliva F, Pantev E, 
Papp Z, Perna GP, Pfister R, Piazza V, Bover R, Rangel-Sousa D, Recio-Mayoral A, 
Reinecke A, Rieth A, Sarapohja T, Schmidt G, Seidel M, Störk S, Vrtovec B, Wikström G, 
Yerly P, Pollesello P. Repetitive use of levosimendan in advanced heart failure: need for 
stronger evidence in a field in dire need of a useful therapy. International journal of 
cardiology 2017;243:389-395. 

90. Malik FI, Morgan BP. Cardiac myosin activation part 1: from concept to clinic. J Mol 
Cell Cardiol;51(4):454-461. 
91. Morgan BP, Muci A, Lu PP, Qian X. Discovery of omecamtiv mecarbil the first, 
selective, small molecule activator of cardiac myosin. ACS Med Chem Lett. 
92. Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A. 
Mechanistic and structural basis for activation of cardiac myosin force production by 
omecamtiv mecarbil. Nat Commun 2017;8(1):190. 
93. Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K, Anderson RL, 
Sueoka SH, Lee KH, Finer JT, Sakowicz R, Baliga R, Cox DR, Garard M, Godinez G, Kawas 
R, Kraynack E, Lenzi D, Lu PP, Muci A, Niu C, Qian X, Pierce DW, Pokrovskii M, Suehiro I, 
Sylvester S, Tochimoto T, Valdez C, Wang W, Katori T, Kass DA, Shen YT, Vatner SF, 
Morgans DJ. Cardiac myosin activation: a potential therapeutic approach for systolic heart 
failure. Science 2011;331(6023):1439-43. 



29 
 

94. Shen YT, Malik FI, Zhao X, Depre C, Dhar SK, Abarzua P, Morgans DJ, Vatner SF. 
Improvement of cardiac function by a cardiac Myosin activator in conscious dogs with 
systolic heart failure. Circulation Heart failure 2010;3(4):522-7. 
95. Mann DL. Searching for the perfect agent to improve cardiac contractility. Lancet 
2016;388(10062):2845-2847. 
96. Bakkehaug JP, Kildal AB, Engstad ET, Boardman N, Naesheim T, Ronning L, Aasum 
E, Larsen TS, Myrmel T, How OJ. Myosin Activator Omecamtiv Mecarbil Increases 
Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting 
Myosin ATPase Activity. Circulation Heart failure 2015;8(4):766-75. 
97. Bakkehaug JP, Kildal AB, Engstad ET, Boardman N, Næsheim T, Rønning L, Aasum 
E, Larsen TS, Myrmel T, How O-J. Response to Letter Regarding Article, “Myosin Activator 
Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac 
Efficiency Mediated by Resting Myosin ATPase Activity”. Circulation Heart failure 
2015;8(6):1142. 

98. Liu Y, White HD, Belknap B, Winkelmann DA, Forgacs E. Omecamtiv Mecarbil 
Modulates the Kinetic and Motile Properties of Porcine β-Cardiac Myosin. Biochemistry 
2015;54(10):1963-1975. 
99. Nagy L, Kovacs A, Bodi B, Pasztor ET, Fulop GA, Toth A, Edes I, Papp Z. The novel 
cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force 
production in isolated cardiomyocytes and skeletal muscle fibres of the rat. British journal of 
pharmacology 2015;172:4506–4518. 
100. Swenson AM, Tang W, Blair CA, Fetrow CM, Unrath WC, Previs MJ, Campbell KS, 
Yengo CM. Omecamtiv Mecarbil Enhances the Duty Ratio of Human Beta Cardiac Myosin 
Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac 
Muscle. J Biol Chem 2017;292(9):3768-3778. 
101. Utter MS, Ryba DM, Li BH, Wolska BM, Solaro RJ. Omecamtiv Mecarbil, a Cardiac 
Myosin Activator, Increases Ca2+ Sensitivity in Myofilaments With a Dilated Cardiomyopathy 
Mutant Tropomyosin E54K. Journal of cardiovascular pharmacology 2015;66(4):347-353. 
102. Messer AE, Jacques AM, Marston SB. Troponin phosphorylation and regulatory 
function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account 
for the contractile defect in end-stage heart failure. Journal of molecular and cellular 
cardiology 2007;42(1):247-59. 
103. van der Velden J, Papp Z, Zaremba R, Boontje NM, de Jong JW, Owen VJ, Burton 
PBJ, Goldmann P, Jaquet K, Stienen GJM. Increased Ca2+-sensitivity of the contractile 
apparatus in end-stage human heart failure results from altered phosphorylation of 
contractile proteins. Cardiovasc Res 2003;57(1):37-47. 
104. Meyer M, Keweloh B, Guth K, Holmes JW, Pieske B, Lehnart SE, Just H, Hasenfuss 
G. Frequency-dependence of myocardial energetics in failing human myocardium as 
quantified by a new method for the measurement of oxygen consumption in muscle strip 
preparations. Journal of molecular and cellular cardiology 1998;30(8):1459-70. 
105. Paolocci N, Katori T, Champion HC, St John ME, Miranda KM, Fukuto JM, Wink DA, 
Kass DA. Positive inotropic and lusitropic effects of HNO/NO- in failing hearts: independence 
from beta-adrenergic signaling. Proc Natl Acad Sci U S A 2003;100(9):5537-42. 
106. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, Espey MG, 
Fukuto JM, Feelisch M, Wink DA, Kass DA. Nitroxyl anion exerts redox-sensitive positive 
cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc Natl Acad Sci U S 
A 2001;98(18):10463-8. 
107. Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM, Di Benedetto G, 
O'Rourke B, Gao WD, Wink DA, Toscano JP, Zaccolo M, Bers DM, Valdivia HH, Cheng H, 
Kass DA, Paolocci N. Nitroxyl improves cellular heart function by directly enhancing cardiac 
sarcoplasmic reticulum Ca2+ cycling. Circ Res 2007;100(1):96-104. 

108. Froehlich JP, Mahaney JE, Keceli G, Pavlos CM, Goldstein R, Redwood AJ, Sumbilla 
C, Lee DI, Tocchetti CG, Kass DA, Paolocci N, Toscano JP. Phospholamban thiols play a 
central role in activation of the cardiac muscle sarcoplasmic reticulum calcium pump by 
nitroxyl. Biochemistry 2008;47(50):13150-2. 



30 
 

109. Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, Keceli G, 
Rainer PP, Lee DI, Huke S, Ziolo MT, Kranias EG, Toscano JP, Wilson GM, O'Rourke B, 
Kass DA, Mahaney JE, Paolocci N. HNO enhances SERCA2a activity and cardiomyocyte 
function by promoting redox-dependent phospholamban oligomerization. Antioxidants & 
redox signaling 2013;19(11):1185-97. 
110. Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF, Shen X, Stanley BA, Foster DB, 
Wink DA, King SB, Van Eyk JE, Paolocci N. Nitroxyl-mediated disulfide bond formation 
between cardiac myofilament cysteines enhances contractile function. Circ Res 
2012;111(8):1002-11. 
111. Paolocci N, Jackson MI, Lopez BE, Miranda K, Tocchetti CG, Wink DA, Hobbs AJ, 
Fukuto JM. The pharmacology of nitroxyl (HNO) and its therapeutic potential: not just the 
Janus face of NO. Pharmacology & therapeutics 2007;113(2):442-58. 
112. Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, 
Pagliaro P, Gao WD, van Eyk J, Kass DA, Wink DA, Paolocci N. Playing with cardiac "redox 
switches": the "HNO way" to modulate cardiac function. Antioxidants & redox signaling 
2011;14(9):1687-98. 
113. Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, Mazhari R, 
Takimoto E, Paolocci N, Cowart D, Colucci WS, Kass DA. Nitroxyl (HNO): A novel approach 
for the acute treatment of heart failure. Circulation Heart failure 2013;6(6):1250-8. 
114. Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. 
Dordrecht, The Netherlands: Kluwer Academic Publisher; 2001. 
115. Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, 
O'Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, 
Harding SE. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and 
reduces ventricular arrhythmias in a model of chronic heart failure. Circulation Arrhythmia 
and electrophysiology 2011;4(3):362-72. 

116. Lowes BD, Gilbert EM, Abraham WT, Minobe WA, Larrabee P, Ferguson D, Wolfel 
EE, Lindenfeld J, Tsvetkova T, Robertson AD, Quaife RA, Bristow MR. Myocardial gene 
expression in dilated cardiomyopathy treated with beta-blocking agents. The New England 
journal of medicine 2002;346(18):1357-65. 

117. Brandes R, Bers DM. Intracellular Ca2+ increases the mitochondrial NADH 
concentration during elevated work in intact cardiac muscle. Circ Res 1997;80(1):82-7. 
118. Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic Therapy With 
Elamipretide (MTP-131), a Novel Mitochondria-Targeting Peptide, Improves Left Ventricular 
and Mitochondrial Function in Dogs With Advanced Heart Failure. Circulation Heart failure 
2016;9(2):e002206. 
119. Fragasso G, Piatti MPM, Monti L, Palloshi A, Setola E, Puccetti P, Calori G, 
Lopaschuk GD, Margonato A. Short- and long-term beneficial effects of trimetazidine in 
patients with diabetes and ischemic cardiomyopathy. American heart journal 
2003;146(5):854. 
120. Fragasso G, Perseghin G, De Cobelli F, Esposito A, Palloshi A, Lattuada G, Scifo P, 
Calori G, Del Maschio A, Margonato A. Effects of metabolic modulation by trimetazidine on 
left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with 
heart failure. European heart journal 2006;27(8):942-948. 
121. Zhang L, Lu Y, Jiang H, Zhang L, Sun A, Zou Y, Ge J. Additional Use of 
Trimetazidine in Patients With Chronic Heart Failure: A Meta-Analysis. Journal of the 
American College of Cardiology 2012;59(10):913-922. 
122. Beadle RM, Williams LK, Kuehl M, Bowater S, Abozguia K, Leyva F, Yousef Z, 
Wagenmakers AJM, Thies F, Horowitz J, Frenneaux MP. Improvement in Cardiac Energetics 
by Perhexiline in Heart Failure Due to Dilated Cardiomyopathy. JACC: Heart Failure 
2015;3(3):202-211. 

123. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, 
Ashrafian H, Horowitz J, Fraser AG, Clarke K, Frenneaux M. Metabolic modulation with 
perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel 
treatment. Circulation 2005;112(21):3280-8. 



31 
 

124. Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM, Rostami F, Reboll 
MR, Heineke J, Flögel U, Groos S, Renner A, Toischer K, Zimmermann F, Engeli S, Jordan 
J, Bauersachs J, Hentze MW, Wollert KC, Kempf T. Iron-regulatory proteins secure iron 
availability in cardiomyocytes to prevent heart failure. European heart journal 
2017;38(5):362-37. 

 

  



32 
 

Figure legends 

 

 

Figure 1: The physiology of excitation-contraction coupling and how this is altered in 

systolic heart failure.   

AR, adrenergic receptor; PDE, phosphodiesterase; cAMP, cyclic adenosine 

monophosphate; PKA, protein kinase A; SR, sarcoplasmic reticulum; SERCA, SR Ca2+ 

ATPase; RyR, ryanodine receptor; ICa and INa, Ca2+ and Na+ currents; NCX; Na+/Ca2+-

exchanger; NKA, Na+/K+-ATPase; ETC, electron transport chain; T-tubule, transversal 

tubule. Red arrows () indicate the direction of change in heart failure.  

 

 

Figure 2: Signal transduction of β1-adrenergic stimulation in cardiac myocytes and 

its impact on inotropy, but also arrhythmias, hypertrophy and apoptosis.  

ADR, adrenaline; NA, noradrenaline; AR, adrenergic receptor; AC, adenylyl cyclase; cAMP, 

cyclic adenosine monophosphate; PDE, phosphodiesterase; PKA, protein kinase A; EPAC, 

exchange protein directly activated by cAMP; 5’-AMP, 5’ adenosine monophosphate; 

CaMKII, Ca2+/calmodulin-dependent protein kinase II; GRK2, G-protein coupled receptor 

kinase 2; α, β, γ,  α-, β- and γ-subunits of the stimulatory G-protein.    

 

 

Figure 3: Interplay between EC coupling and mitochondrial energetics.  

Krebs cycle activity is controlled by Ca2+, and mitochondrial Ca2+ uptake is diminished in 

heart failure by changes in cytosolic Ca2+ and Na+ handling. This provokes an energetic 

deficit and oxidative stress, which further impairs EC coupling and aggravates systolic and 

diastolic function.  

Nnt, nicotinamide nucleotide transhydrogenase; ETC, electron transport chain; ATPase, 

F1Fo-ATP synthase; IDPm, isocitrate dehydrogenase; Mn-SOD, mitochondrial superoxide 

dismutase; CK, creatine kinase; Cr, creatine; PCr, phosphocreatine; SERCA, SR Ca2+ 

ATPase; RyR, ryanodine receptor; late INa, late Na+ current; NCLX, mitochondrial Na+/Ca2+-

exchanger; MCU, mitochondrial Ca2+ uniporter; CaMKII, Ca2+/calmodulin-dependent protein 

kinase II; AR, adrenergic receptor. Red arrows () indicate the direction of change in heart 

failure. 
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Figure 4: Mechanisms of action of cardiotonic glycosides (CTG) and istaroxime 

(ISTA).  

ROS, reactive oxygen species; SR, sarcoplasmic reticulum; SERCA, SR Ca2+ ATPase; 

RyR, ryanodine receptor; ICa and INa, Ca2+ and Na+ currents; NCX; Na+/Ca2+-exchanger; 

NKA, Na+/K+-ATPase; NCLX, mitochondrial Na+/Ca2+-exchanger; TCA, tricarboxylic acid 

(Krebs) cycle. Red arrows () indicate the direction of change in response to CTG.   

 

 

Figure 5: Mode of action of levosimendan and its active metabolite OR-1896.  

Both Ca2+-sensitization and PDE3-inhibition at nanomolar concentrations ([nM]) contribute 

to their inotropic and lusitropic effects. Activation of mitochondrial KATP (mitoKATP) channels 

at micromolar concentrations ([µM]) may provide protection against ischemia/reperfusion.     

AR, adrenergic receptor; PDE, phosphodiesterase; cAMP, cyclic adenosine 

monophosphate; PKA, protein kinase A; SR, sarcomplasmic reticulum; SERCA, SR Ca2+ 

ATPase; RyR, ryanodine receptor; ICa and INa, Ca2+ and Na+ currents; NCX; Na+/Ca2+-

exchanger; NKA, Na+/K+-ATPase; ETC, electron transport chain; T-tubule, transversal 

tubule. Red arrows () indicate the direction of change in heart failure, while green arrows 

() indicate the direction induced by levosimendan.  

 

 

Figure 6: Mechanism of action and effects of omecamtiv mecarbil.  

A, The mechanochemical cycle of myosin. Yellow indicates myosin weakly bound to actin, 

while red indicates the myosin strongly bound to actin. Omecamtiv mecarbil (OM) 

accelerates the transition rate of myosin into the strongly actin-bound force-generating 

state. B, Representative tracings showing that OM (200 nM) increases the time and 

amplitude of myocyte shortening without any effect on the cytosolic Ca2+ transient. In 

contrast, the β-AR agonist isoproterenol increases myocyte shortening through increasing 

cytosolic Ca2+ transients. Fractional systolic sarcomere shortening and diastolic cell length 

(C) as well as time to peak and maximal relaxation velocity (D) in isolated rat cardiac 

myocytes in response to escalating concentrations of OM. A-D are from Malik et al. 93 with 

permission. E, Impact of OM (20 min infusion at a dose that prolonged SET by 20%) on LV 

pressure-volume loops in a pig model of myocardial stunning (termed “post-ischemic” 

heart). The volumes indicate LV stroke volume and end-diastolic volume, of which EF is 

calculated. Taken from Bakkehaug et al. 96 with permission. F, The impact of OM at 0.1 or 1 

µM on normalized isometric force in response to increasing Ca2+ concentrations 
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(decreasing pCa) in skinned rat cardiac myocytes. Taken from Nagy et al. 99 with 

permission. 

 

 

Figure 7: Mechanisms of action of nitroxyl (HNO) in HF. HNO affects redox-

sensitive residues of various proteins involved in myocyte Ca2+ handling. In 

particular, HNO increases SERCA activity and sensitizes myofilaments to Ca2+. In 

concert, these properties increase SR Ca2+ load, systolic Ca2+ transients and 

contraction. Red arrows () indicate the direction of change in heart failure, while 

green arrows () indicate the direction induced by HNO.  

 

 

Figure 8: Known and hypothesized bioenergetic consequences of inotropic 

interventions that either increase cytosolic Ca2+ or myofilament Ca2+ sensitivity. ECC, 

excitation-contraction coupling; ETC, electron transport chain; MCU, mitochondrial Ca2+ 

uptake.  

 

 

 

 

 

 

 

 


