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Abstract

There are two main projections used to transform, and reconstruct, field ion mi-

crographs or atom probe tomography data into atomic coordinates at the speci-

men surface and, subsequently, in three-dimensions. In this article, we present

a perspective on the strength of the azimuthal equidistant projection in compar-

ison to the more widely used and well-established point-projection (or pseudo-

stereographic projection), which underpins data reconstruction in most software

packages currently in use across the community. After an overview of the re-

construction methodology, we demonstrate that the azimuthal equidistant is more

robust with regards to errors on the parameters used to perform the reconstruction

and is therefore more likely to yield more accurate tomographic reconstructions.

Keywords:

1. Introduction

Since the introduction of the field-emission electron microscope (FEEM) and

subsequently of the field-ion microscope (FIM), it has been recognized that they
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are projection microscopes that provide a highly-magnified image of the surface of

the specimen. This projection also underpins atom-probe tomography (APT) and

enables the technique to analyze individual features at the sub-nanometer scale.

The high spatial resolution of the FIM and its capacity to resolve individual

atomic terraces has made it a tool of choice for investigating the true nature of the

projection. A field ion micrograph is indeed a projected image of the specimen

surface, revealing details of its structure down to the atomic level. In the 1960s and

1970s, Brandon (1964) and Newman et al. (1967), among others, reported on the

study of the properties of the projection in field ion microscopy. They compared

micrographs to known point-projections, such as gnomonic or stereographic, only

to show that none of those projections often used in other microscopy techniques

could be used as such. Based on the arguments of Newman, Wilkes et al. (1974)

proposed that the projection led to features separated by an angle θ at the specimen

surface would be separated by a distance ρ = kθ × θ at the detector. This was

subsequently referred to as a linear projection.

From the 1980’s, the community’s focus progressively shifted to atom-probe

microanalysis and then to atom probe tomography. The progressive adoption of

the reconstruction protocol, proposed by Blavette, Bostel and co-workers (Blavette

et al., 1982; Bas et al., 1995) and subsequently modified to remove small-angle ap-

proximations (Geiser et al., 2009; Gault et al., 2011), across the entire atom probe

user base has led to a premature end of the discussions on this topic. However,

as the performance of APT are routinely challenged, particularly in the analysis

of complex materials, it is important to revisit the properties of the ion projection,

and its intimate link to the specimen geometry.

In 1999, Cerezo and co-workers revisited the linear projection (Cerezo et al.,
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1999), and highlighted once again that it was a better representation of the actual

ion projection in FIM than a pseudo-stereographic projection, but also tested its

limits. Two interesting points arose from this study: the linear projection holds

through a tilt series, or if the specimen is rotated about its main axis; however, the

proportionality factor between the angle at the specimen surface and the distance

on the detector cannot be assumed constant across all possible combinations of

poles.

Cerezo’s work pointed to the idea that a center of the projection must be de-

fined and that the azimuths are maintained through the projection: the ions fly

within a plane that contains the main specimen axis and its original position at

the specimen surface. If we assume azimuths are conserved, then we are dealing

with azimuthal equidistant projection, which is a well-known and well-described

projection used, e.g. by geographers (Snyder, 2007), and is the projection model

of the Earth represented on the United Nations emblem. More recently, Miller and

Forbes (2014) also discussed the Hawkes-Kasper approach, which is an equivalent

to this projection model.

In this article, we provide a critical viewpoint of the main projection models,

showcase how a precise determination of the orientation of the specimen can be

achieved via the identification of the crystallographic features present in the detec-

tor hit map, and finally introduce a framework that could be generalized and form

the base for a new reconstruction paradigm, which is described and discussed.
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2. General reconstruction framework

2.1. System of coordinates

The reconstruction protocol in APT consists in a transformation of the detector

coordinates (XD,YD) and detection sequence N, as well as an instantaneous radius

of curvature R into the coordinates of individual atoms (x, y, z) in the tomographic

reconstruction built assuming that the specimen is a spherical cap sitting on a

truncated cone (Bas et al., 1995; Gault et al., 2011):

(XD,YD,N,R)⇐⇒ (x, y, z) (1)

A point that was introduced by Gault et al. (2011) is the use of cylindrical coor-

dinates to describe the system. We can write the relationship between cylindrical

and Cartesian coordinates (Fig. 1) as:


XD = ρ cosψ

YD = ρ sinψ
(2)

on the detector, and 
x = r cosψ = R sin θ cosψ

y = r sinψ = R sin θ sinψ

z = zc(N) + R cos θ

(3)

at the specimen surface.

R is the radius of the specimen, θ is the launch angle, ψ is the azimuthal angle,

and zc is the z coordinate of the centre of the apex of the spherical cap, which can

conventionally be set to 0 at the beginning of the experiment, but varies with the
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sequence of evaporation. zc is a function of the detection sequence and can be

seen as the analyzed depth.

Figure 1: Schematic view of the emitter and system of coordinates used in this study (not to scale).

In this framework, an ion strikes the detector at the coordinate (ρ, ψ) origi-

nating from a position at the surface of the specimen characterized by (r, ψ, z) or

(R, θ, ψ, zc). For the remaining of this study, we will assume that the projections of

the angle is azimuthal. This implies that there exist a particular point on the detec-

tor plane (but possibly outside the physical detector) around which the azimuthal

angles (e.g. ψ) are preserved. This point will be called the center of the projection

or projection center. The pseudo-stereographic projection model, for instance, is

an azimuthal projection, the center of which is at the intersection of the axis of

the specimen and the detector plane. Within this assumption, we can choose this

point as the origin of the (ρ, ψ) detector coordinate so that ψ is preserved (which

was implied in the use of the same symbol in eq. 2 and 3).

2.2. Tomographic reconstruction
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The transformation of the detector coordinates (ρ, ψ,N) into the (θ, ψ, zc) makes

then use of the radius of curvature R. ψ is unchanged through an azimuthal pro-

jection so that we are left with

1. computing θ from ρ, i.e. adopting an angular projection model

2. computing R, i.e. adopting an radius evolution model

3. computing zc from N, θ and R, i.e. adopting a depth of analysis model

4. computing (x, y, z) through equation (3)

This paper is concerned with the first item, namely the angular projection

model. We will thus assume that we use a satisfactory radius evolution model

as well as a robust model for the depth increment.

Classical methods to model evolution of the specimen radius are based either

on the usual relationship R = V/(k f Fev) (usually referred to as voltage recon-

struction mode), on the change in radius constrained by a constant shank angle,

or on a micrograph of the specimen profile (respectively shank angle or tip pro-

file reconstruction mode in the most commonly used commercial data treatment

software). In any case, one or more additional parameters must be introduced: k f

for voltage mode, initial radius (R0) and the half-shank angle (α) for the shank

angle mode or a complete profile of the specimen derived from a high-resolution

electron micrograph of its outer shape.

Finally, the depth of analysis zc of the current ion N can be deduced from that

of the previous ion N − 1 through the following relationship:

zc (N) = zc (N − 1) +
dzc

dN
(4)

dzc
dN is the so-called depth increment, which was defined by (Bas et al., 1995) as the
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(virtual) depth of a layer corresponding to the removal of a single atom. Its value

is determined in such a way that the total analyzed volume is necessarily equal

to the total number of atom multiplied by the atomic volume (corrected for the

limited detection efficiency η). A way1 to achieve this is to attribute to each atom

a volume increment corresponding to the atomic volume Ω:

dV
dN

=
dV
dzc

dzc

dN
=

Ω

η
(5)

so that
dzc

dN
=

Ω

η dV
dzc

(6)

dV
dzc

has the units of a surface and can be seen as the projected analyzed surface. If

the effective detected surface on the detector is a disk and the maximum observ-

able angle is θmax, then dV
dzc

= πR2 sin2 θmax. If the effective detection surface is not

exactly a disk, which is often the case when the end-user selects a specific area of

the detector for data reconstruction, a more general formula would be needed that

includes a geometrical factor σ depending only on the shape of the selected area:

dzc

dN
=

Ω

ησπ sin2 θmaxR2
(7)

Interestingly, θmax depends on the angular projection model, which is itself

strongly dependent on the specimen and microscope geometries. Therefore, θmax

is not a constant, and actually is expected to evolve throughout a single analysis.

Finally, please note that the formula introduced in Gault et al. (2011) to extend

the concept introduced by Bas et al. (1995) equating dV
dzc

to the reverse projection

1non unique, but always used
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of the detector onto the surface of the spherical cap is not generally applicable.

3. Angular projection models

If the specimen is assumed to possess a spherical end-shape, the position of an

atom at the surface of the sample can be given by its longitude and latitude angles,

widely used in geographical mapping. In the notation of this work, the longitude

is ψ. Since we consider only azimuthal projections, its value is conserved through

the projection. While the latitude represents the elevation from the equatorial

plane, in atom probe tomography, it is more conventional to access it through its

complementary angle θ which gives the angle between the axis of the specimen

and the position of the atom.

Defining an angular projection is simply finding the relationship between ρ,

the distance between the projection center within the detector plane and the de-

tected hit position, and θ, the launch angle, i.e. ρ = f (θ).

3.1. Pseudo-stereographic projections (standard model)

The pseudo-stereographic projection is the de facto standard angular projec-

tion model for atom probe tomography. It is a point-projection model. It can be

envisioned as an intermediate situation between a gnomonic projection (i.e. where

the origin is the center of the spherical cap) and a stereographic projection (i.e.

where the origin is at the south pole, i.e. at twice the radius from the surface).

In the pseudo-stereographic model, all trajectories originate from the same point

situated on the specimen axis but behind the center of the spherical cap. The

distance from the centre to the apparent origin of the trajectories is written mR.

Trigonometric considerations leads to the following expression for the projection:
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ρ =
L

m + cos θ
sin θ (8)

A possible misconception originating from the ubiquitous use of the expression

image compression factor is that the standard pseudo-stereographic model for

atom probe reconstruction is equivalent to a linear compression of the launch an-

gles so that the ions are detected with an apparent angle θ′ such that

θ = ξθ′ (9)

with ξ being the image compression factor (ICF). In the pseudo-stereographic

projection model, however, ξ = θ/θ′ is not a constant over the detector. It can be

expressed as:

ξ =
θ

atan
(

sin θ
m+cos θ

) (10)

While this leads to the expected ξ = m + 1 for small θ and is still a reasonable

assumption up to any practical angles, it is not strictly equivalent to a simple

angular compression.

The inverse projection gives:

θ = atan
(
ρ

L

)
+ asin

(
m sin

(
atan

(
ρ

L

)))
(11)

3.2. Azimuthal equidistant projections (linear model)

As shown independently by Newman et al. (1967), Wilkes et al. (1974) and

Cerezo et al. (1999) using FIM, the relationship between distance on the detector

and crystallographic angle is in fact better reproduced by a linear relationship, i.e.
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ρ = kθ (12)

The convergence of the projections at small angles imposes that:

k =
L
ξ

=
L

m + 1
(13)

but the projection models are only equivalent at small angles. The inverse projec-

tion is:

θ =
ρ

k
(14)

In geographical mapping, this model is called azimuthal equidistant. Similarly

to the pseudo-stereographic projection, it is azimuthal. It is equidistant in the

sense that the distance on the detector ρ (i.e. on the map) between the center

and any other point is proportional to the actual distance at the surface of the

specimen’s spherical cap (i.e. Rθ). The azimuthal equidistant projection is not a

point projection and the apparent trajectories of the ions do not cross at a single

projection point, as pointed out in the description of the ion projection in FIM by

i.e. Newman et al. (1967).

3.3. Comparison of the models

3.3.1. Distance vs. angle

Figure 2(a) compares the standard pseudo-stereographic projection model with

the azimuthal equidistant model. For convergence at low angle, we chose k = L/ξ.

This choice imposes that the models share the same image compression factor

a low angles. The angular compression model is also shown, and it is con-

firmed that, while a pseudo-stereographic projection model is not a simple angular
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compression, it is still well approximated by it up to wide angles. The pseudo-

stereographic model and the equidistant model do diverge at high angles.

3.3.2. Image compression factor

In FIM and APT, the projection properties, and particularly the image com-

pression factor, are not a constant of a specific microscope but are affected by the

geometry of the specimen itself (Gipson, 1980; Hyde et al., 1994; Gault et al.,

2009; Vurpillot et al., 2011; Loi et al., 2013). While it can change during a single

APT analysis, it may actually not be constant throughout a single FIM image or

an instantaneous desorption map. The image compression factor is defined as the

ratio between the real angle θ and the apparent angle θ′ = atan
(
ρ

L

)
. To measure

its variation, we can define a local image compression factor as dθ
dθ′ . Figure 2(b)

shows dθ
dθ′ (normalized by the low angle ICF ξ) as a function of θ for the projection

models. It shows that in an equidistant projection model, 2 close crystallographic

poles are actually closer together when they are at the edge of the detector than

when they are at the center. Only for a pure angular compression (and not for the

standard pseudo-stereographic model) is the local ICF constant.

3.3.3. Magnification

A possible quantification of the magnification as a function of the position on

the detector can be derived as follow. If one imagines a small elementary circle at

the surface of the specimen at an angle θ, its radius can be expressed as Rdθ along

one direction and R sin θdψ. The image of this circle through the projection will

be an ellipse, the 2 dimensions of which are given by dρ and ρdψ. We define the

square of the magnification M as the ratio of the area of the small circle on the
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Figure 2: Comparison of the pseudo-stereographic and azimuthal equidistant projection models
(as well as the angular compression model). (a) Distance vs. angle. (b) Normalized local image
compression factor.(c) Normalized local magnification factor.
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detector by its area at the specimen surface

M2 = MθMψ =
dρ

Rdθ
ρdψ

R sin θdψ
=

dρ
dθ

ρ

R2 sin θ
(15)

In the general case, M is a function of θ, i.e. at any given moment it is not

constant throughout the detector. A consequence of this is that the number of

hits on an area of the detector is also a function of θ and, even in the absence of

evaporation artifacts, has no reason to be uniform on the detector.

In the limits of small angles, the local magnification M2 is equal to L2/(ξR)2.

We thus plot the value of M2 normalized by L2/(ξR)2 for the different projection

models (Figure 2(c)). This figure shows that the commonly used projection model

predicts that a small feature at the surface of the specimen (for instance, the ter-

race of a pole) would be imaged with a significantly broader area at the edge of

the detector than at the center. This is not typically what is observed experimen-

tally: Figure 3 is a desorption map from a pure aluminum specimen acquired on a

LEAP 5000 XS instrument. 41 crystallographic poles were manually positioned

and indexed. The relative size of the (113) and (1−13) are similar, although if the

true projection was close to a pseudo-stereographic projection, differences in size

up to about 30% would be expected for poles located at ≈ 35◦ from each other.

The equidistant projection model does not predict such a large variation in sur-

face magnification throughout the detection area. This difference in the predicted

surface magnification will be of importance because of its influence on the depth

of analysis model through the surface of analysis.
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4. Experimental and modeling assessment of the projection models

An experimental assessment of the accuracy of the angular projection can be

made by using either FIM images or desorption maps from an APT dataset, if

it bears enough crystallographic information such as poles or zone axis. This is

easiest with pure metals. In the set of crystallographic poles shown in Figure 3,

with their position on the detector, it is possible to directly compare the observed

positions to the positions predicted by the projection models.

Figure 3: Desorption map of a pure aluminum sample obtained on a LEAP 5000 XS instrument
with 41 indexed crystallographic poles.

4.1. Distance vs. angle

Figure 4a shows the relationship between the distance on the detector and the

angle between crystallographic features. To plot this figure, we have separately
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considered each identified pole as the center of projection, and plotted the distance

between the center and all the other poles as a function of the crystallographic

angle. Overlaid are two best fit curves corresponding, in blue, to an equidistant

projection, and, in red, to a pseudo-stereographic projection. Because each model

has been optimized separately, the corresponding image compression factors are

different (as shown, for instance, by the different slope at origin). It is readily

visible that the experimental data is linear up to very large angles and that the best

fit pseudo-stereographic projection can not accurately reproduce the experimental

distribution, which is particularly striking at large angles.

Figure 4b shows the image compression factors (ξ = L/k) resulting in the best

fits for each pole considered as the projection center, as a function of the distance

of that pole to the detector center. It can be seen that 1) the pseudo-stereographic

model always predict a higher ICF, which arises in order to compensate for the

non-linearity; and 2) the pseudo-stereographic is very dependent on the chosen

projection center, in contrast with the equidistant model. Figure 4c assesses the

quality of the fits by plotting χ2 = 1
N

∑
(ρexp − ρmodel)2. It shows that the pseudo-

stereographic model gives consistently less accurate results than the equidistant

model.

Such an analysis shows that (i) the azimuthal equidistant projection closely

matches the experimental data, better than the pseudo-stereographic projection;

and (ii) the equidistant model is essentially immune (within accessible angles) to

errors on the position of the projection center which is virtually always unknown.

In electrostatic simulations of ion trajectories, with a geometry mimicking a

full-size commercial instrument introduced by Loi et al. (2013), this linear rela-

tionship was also found to reproduce well the trend observed in the variation of
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Figure 4: (a) Distance between the centre of a set of 41 crystallographic poles observed in the
analysis of a pure-Al dataset obtained on a LEAP 5000 XS (each pole considered as the projection
centre). (b) Best fit ICF (ξ = L/k) obtained for pseudo-stereographic (red) and equidistant (blue)
models respectively, as a function of the position of the pole considered as projection centre. (c)
Quality of the fits obtained in (b) as assessed by χ2 = 1

N
∑

(ρexp − ρmodel)2
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the distance ρ of an ion impact to the center of the projection, which corresponds

in this case to the center of the detector, as a function of the emitting angle (Larson

et al., 2013) for a variety of specimen geometries. In Figure 5 (a), ρ is plotted as

a function of the launch angle for specimens with shank angles varying from 2 to

14◦ and radii in the range of 20 to 170 nm. For each distribution, a linear regres-

sion corresponding to an equidistant projection was calculated and is displayed

as a solid line. In addition, a dashed line is displayed which shows the distri-

bution expected from a pseudo-stereographic projection using the estimation of

the average image compression factor derived by Loi et al. (2013). The ratio be-

tween the results of the simulations and both the linear regression and the pseudo-

stereographic projection is shown in Figure 5 (b). For the equidistant projection,

this ratio only varies within a narrow range of ±2% around unity with a standard

deviation for the ratio 2σequidistant = .011, while for the pseudo-stereographic pro-

jection, more significant variations are observed, with 2σpseudo−stereographic = .017.

In order to have a better appreciation of how such variations could affect exper-

imental data, we have calculated the average positioning errors between the simu-

lated distance ρ on the detector and the one predicted by the pseudo-stereographic

and equidistant projection models for each simulation. The resulting histograms

are shown on Fig. 6 for the 97 simulations. The equidistant model has a distribu-

tion of error localized around zero whereas the pseudo-stereographic projection

models introduces a significant systematic error, for a wide variety of sample

geometries (shank angles varying from 2 to 14◦ and radii in the range of 20 to

170nm).
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Figure 5: (a) Distribution of the distance from the ion impact position to the center of the detector
ρ as a function of the launch angle θ (dots) for various shank angles (see color bar) and specimen
radii in the range of 20—170 nm; superimposed are a linear regression (solid line) as well as the
expected distribution based on the average image compression factor (dashed line). (b) ratio of the
distribution obtained from the simulations to the linear regression (solid line) as well as that based
on the average image compression factor.
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Figure 6: Histograms of the average distance between simulated detected position and position
predicted by the pseudo-stereographic (red) and equidistant (blue) models.

4.2. Projection and orientation adjustment

Since the azimuthal equidistant angular projection accurately describes the

actual projection in APT despite its very simple equations, it opens the way for

automatic adjustments of the crystallographic features contained in the desorption

maps, such as that of Fig.3, in order to accurately obtain the orientation of the

specimen. This is what was done on Fig. 7 where we superimposed the desorption

image of a pure Al specimen, shown in Fig. 3, with the predicted position of the

crystallographic poles as well as zone axes based on the two projections (with

ICFs corresponding to Fig. 4a). To adjust the orientation of the specimen, we

have minimized the distance between the observed and predicted poles only. An

alternative methods would have been to adjust the orientation by pattern-matching

on the figure showing the zone axes. For known structures, building a database

that could be used for pattern-matching is feasible only if the projection is known.

Such an effort would allow for automated determination of the orientation of the
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specimen by techniques similar to those used in electron microscopy orientation

mapping, e.g. electron backscatter diffraction (Britton et al., 2016), nano-beam

diffraction (Rauch and Véron, 2014), or transmission Kikuchi diffraction (Keller

et al., 2012; Trimby, 2012).

Figure 7: Same desorption map as in Fig. 3 superimposed with the adjusted azimuthal equidistant
(blue) and pseudo-stereographic (red) projections of 41 visible indexed crystallographic poles.

5. Discussion on the effect of the projection model on the reconstructed vol-

ume

It is difficult to determine a good metric for the accuracy of atom probe recon-

structions since it really depends on what is being investigated. However, there are

two general aspects that are usually, albeit implicitly, used as quality assessment

of the reconstruction:
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1. Angular distortions: if the volume contains planar features such as an inter-

face, thin layers or platelets precipitates, one expects them to appear flat in

the reconstruction.

2. Distance accuracy: it is very common to check for known interplanar dis-

tances as a mean of reconstruction calibration.

Both of those aspects had been discussed by Bas et al. (1995) already. A

perfect illustration of this is the expression of z in Eq. 3. It consists in the sum

of zc, the analyzed depth, and R cos θ, which links the curvature of the sample to

the position of the atoms in the final reconstructed volume. Schematically, we can

say that the error on R cos θ is indicative of angular distortions, while the error on

zc corresponds to depth calibration error. Interestingly, these two aspects are not

independent.

Errors on R cos θ will occur if the projection model is inaccurate. Systematic

errors can, to a certain extent, be compensated by an adjusted R with respect to

its physical value. However, this will also influence every other aspects of the

reconstruction, in particular the depth of analysis (Gault et al., 2009).

If we know the actual projection law, it is possible to reverse-project any given

object to test the reconstruction protocol. In Appendix A, we derive the analytic

equations of two planes normal to the analysis direction and located at a distance

τ from each other, mimicking the reconstruction of a thin layer of thickness τ.

It should be kept in mind that this is in the absence of any other reconstruction

artifacts such as local magnification or trajectory aberrations due to variation in

local evaporation fields. We can apply this to the simulated geometries used above.

Again, we are in a very ideal situation where the sample has a completely smooth

surface. In this context, no near-field effect can deteriorate the reconstruction
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(Vurpillot et al., 2000; Oberdorfer et al., 2013), and we should thus obtain the best

possible reconstructed layer. In addition, we have a full knowledge of the sample

geometry, so that no calibration should be needed.

Eq. A.13 shows that the expression of the reconstructed z is dependent on θ

(whereas it should be constant for a plane normal to the direction of analysis).

Again it has 2 contributions: (i) the effect of the error on R cos θ (proportional to
R∗
R

cos θ∗
cos θ ) and (ii) the effect of the error on the depth of analysis (proportional to(

R
R∗

sin θmax
sin θ∗max

)2
).

The calibration of an APT reconstruction is very often performed by checking

a known interplanar distance, i.e. by calibrating the depth of analysis. We see

from eq. A.13 that for this we need to adjust
(

R
R∗

sin θmax
sin θ∗max

)2
to make it close to 1. The

influence of θmax is very important here as its contribution is squared. Of course

it can be adjusted by artificially adjusting R and/or the image compression factor,

which is what is necessarily done in practice in the absence of other information

on their value, but it can only result in some degree of angular distortions. It also

means that, in the case where the radius has been measured, for instance by ex-

situ electron microscopy, the actual value may not be the one that should be used

to optimize the calibration of the reconstruction. The same holds true for cases

where the image compression factor can be measured.

To illustrate this, we have used eq. A.13 to reconstruct a 5nm thin layer normal

to the analysis in one of the simulated sample geometries (R = 90nm, α = 14◦).

We show only the trace of this layer in the (x, z) plane. The result is shown on

figure 8.

With the actual physical parameters as input, the equidistant projection models

quite accurately predicts the shape of the layer. Its thickness is accurate. Only faint

22



Figure 8: Effect of the projection model on the reconstruction of a thin layer normal to the direction
of analysis for a simulated geometry of R = 90nm and α = 14◦. The ideally reconstructed
layer is depicted as dashed black lines. The equidistant projection model (blue) gives satisfactory
results, whereas pseudo-stereographic model needs adjustment of the parameters with respect to
the physical parameters.

distortions appear at large angles. The pseudo-stereographic projection predicts

a layer thickness about 8% thicker than the expected 5nm, mostly linked to a

wrong value of θmax that causes an inaccurate estimation of the analyzed surface.

The distortions are very important, even at moderate angles. If one assumes an a

priori knowledge of the thickness of the layer, one could adjust the reconstruction

parameters to achieve it. For this, one could change the value of the radius and/or

that of the ICF. This is illustrated by the 2 lower images in Fig. 8 where the layer

has been forced to a central thickness of 5 nm. It is obvious that there remain

some distortions and the layer does not appear flat. Again, this is in a very ideal

situation where the model should work at its best. This explains why, because of

the chosen standard angular projection model, there can always be, even in the

most accurately calibrated APT reconstruction, some remaining distortions which

sadly may lead potential readers to be less confident in the results.
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6. Conclusions

In conclusion, we would like to point that the pseudo-stereographic projection

was introduced in the early implementation of the tomographic reconstruction

protocol, and, for the small field-of-view instruments, was working fine. While it

has been extended to wide angle instruments, it should in fact only be considered

as a small-angle approximation of the real projections. The azimuthal equidistant

model, while not ideal, has a validity domain much closer to the modern instru-

ments setup.

In summary, we have shown that:

• the ion projection in atom probe tomography and field ion microscopy is

best described by an azimuthal equidistant projection;

• the azimuthal equidistant is expected to work on a broad range of specimen

geometries;

• this projection was shown to be not only more accurate, but also more robust

than the pseudo-stereographic projection when it comes to errors on e.g. the

position of the center of the projection;

• the implementation of a protocol based on such a projection is simple and

could easily be generalized.

Acknowledgement

Drs M.P. Moody, L.T. Stephenson, R.K.W. Marceau, D. Haley, T.C. Peterson,

F. Vurpillot, B.P. Geiser & D.J. Larson are all thanked for fruitful discussions over

the years. We extend our gratitude to Shyeh Tjing – Cleo – Loi who developed

24



and performed the Lorentz-based simulations that have enabled part of this work.

BG is grateful for the support from Profs. S.P. Ringer & J.M. Cairney as well as

the Australian Microscopy & Microanalysis Research Facility (AMMRF) at the

University of Sydney, where some of the data presented herein was obtained. Dr
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Rauch, E., Véron, M., 2014. Automated crystal orientation and phase mapping in

TEM. Materials Characterization 98, 1–9.

Snyder, J., 2007. Flattening the Earth: Two Thousand Years of Map Projections.

University of Chicago Press.

Stender, P., Oberdorfer, C., Artmeier, M., Pelka, P., Spaleck, F., Schmitz, G, 2007.

New tomographic atom probe at University of Muenster, Germany. Ultrami-

croscopy 107(9), 726-733

Trimby, P. W., 9 2012. Orientation mapping of nanostructured materials using

transmission Kikuchi diffraction in the scanning electron microscope. Ultrami-

croscopy 120, 16–24.

Vurpillot, F., Bostel, A., Cadel, E., Blavette, D., 2000. The spatial resolution of

3D atom probe in the investigation of single-phase materials. Ultramicroscopy

84 (3-4), 213–224.

Vurpillot, F., Gruber, M., Da Costa, G., Martin, I., Renaud, L., Bostel, A., 2011.

Pragmatic reconstruction methods in atom probe tomography. Ultramicroscopy

111 (8), 1286–94.

27



Wilkes, T. J., Smith, G. D. W., Smith, D. A., 1974. On the quantitative analysis of

Field Ion Micrographs. Metallography 7, 403–430.

Appendix A. Equation of a reconstructed plane

For simplicity, we give only the 2D trace of a reconstructed layer in the (x, z)

plane such as the normal to the layer is along the axis of the tip. We will describe

the plane by finding the equations of its 2 interfaces (top and bottom). Conven-

tionally, we can assume that interface 1 is at depth 0 and interface 2 at depth τ.

In this case, the equation of the correctly reconstructed interfacial planes are at

x1 = R1 sin θ, z1 = 0 and x2 = R2 sin θ, z2 = τ.

The atoms originating from plane 1 at angle θ will correspond to a radius R1

and and a depth zc1 such as (eq. 3):

z1 = zc1 + R1 cos θ (A.1)

Since z1 = 0, we have

zc1 = −R1 cos θ (A.2)

If the radius evolves with a shank angle α so that R1 = R0 + w(zc1 − zc0), with

w = sinα
1−sinα , then

zc1 = −(R0 + w(zc1 − zc0)) cos θ (A.3)

or

zc1 =
w cos θzc0 − R0 cos θ

1 + w cos θ
(A.4)

zc0 is the initial depth of analysis, when the radius was equal to R0. The earlier

atoms from plane 1 to be detected will be those situated at θ = θmax, so that
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zc(θmax) = zc0. We find:

zc0 = −R0 cos θmax (A.5)

and finally:

zc1 = −R0 cos θ
1 + w cos θmax

1 + w cos θ
(A.6)

and similarly for plane 2:

zc2 =
τ − R0 cos θ(1 + w cos θmax)

1 + w cos θ
(A.7)

This expression gives the depth that is probed when evaporating the planes.

When we reconstruct the planes, however, we use parameters which are deduced

from the reconstruction model and which might be erroneous. Let us denote them

R∗, θ∗ and θ∗max. The reconstructed plane will be at:

z = R∗ cos θ∗ + z∗c (A.8)

z∗c can be calculated by noting that

dz∗c =
dz∗c
dN

dN
dzc

dzc (A.9)

or

dz∗c =

(
R sin θmax

R∗ sin θ∗max

)2

dzc (A.10)

Because of the evolution of the radius, this equation is best integrated nu-

merically, however, to better visualize the effect of badly chosen reconstruction

parameters, let us treat the conservative case of constant R (i.e. w = 0). Then
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eq. A.10 is trivially integrated and

z∗c =

(
R sin θmax

R∗ sin θ∗max

)2

zc (A.11)

and

z∗ =

(
R sin θmax

R∗ sin θ∗max

)2

zc + R∗ cos θ∗ (A.12)

We then have the equations of the 2 planes (with w = 0):

z∗1 = R cos θ
R∗

R
cos θ∗

cos θ
−

(
R
R∗

sin θmax

sin θ∗max

)2
z∗2 = R cos θ

R∗

R
cos θ∗

cos θ
−

(
1 −

τ

R cos θ

) ( R
R∗

sin θmax

sin θ∗max

)2 (A.13)
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