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Trapped modes of the Helmholtz equation are investigated in infinite, two-dimensional acoustic waveg-
uides with Neumann or Dirichlet walls. A robust boundary element scheme is used to study modes both
inside and outside the continuous spectrum of propagating modes. An effective method for distinguishing
between genuine trapped modes and spurious solutions induced by the domain truncation is presented.
The method is also suitable for the detection and study of “nearly trapped modes” (NTM). These are
of great practical importance as they display many features of trapped modes but do not require perfect
geometry.
An infinite, two-dimensional channel is considered with one or two discs on its centreline. The walls may
have rectangular, triangular or smooth cavities. The combination of a circular obstacle and a rectangular
cavity, in both Neumann and Dirichlet guides is studied, illustrating the possible use of a movable disc to
detect wall irregularities.
The numerical method is validated against known results and many new modes are identified, both inside
and outside the continuous spectrum. Results obtained suggest that at least one symmetry line is an
important condition for the formation of trapped mode type resonances. The addition of a symmetry-
preserving geometric parameter to a problem which has a discrete embedded trapped mode solution for
a specific geometry, tends to lead to a continuous set of trapped modes.
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1. Introduction

Within the framework of classical wave theory, trapped modes are time-harmonic oscillations at some
well-defined frequency, which are localised near a boundary or trapping structure in unbounded domains.
The decay with distance from the trapping feature is usually exponential although algebraic decay can
also occur. Mathematically, a trapped mode corresponds to an eigenfunction with no radiation to the far
field. Over the past 60 years the study of trapped modes has intensified and diversified. Depending on
the context, trapped modes are known as acoustic resonances, Rayleigh-Bloch waves, edge waves, array
guided surface waves, sloshing modes, motion trapped modes and quantum mechanical bound states.

Trapped modes are considered here in an acoustic context, but direct comparison can be made with
associated problems in water-waves and in quantum waveguides Callan et al. (1991), Evans et al. (1993),
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Evans & Porter (1999), Exner & Seba (1989), Postnova & Craster (2008) and in cyclotrons Caspers &
Scholz (1996).

In this paper we shall consider waves in a two-dimensional channel |y| < d which acts as a waveg-
uide. Time-harmonic oscillations with angular frequency ω = kc are considered, where c is the wavespeed.
The pressure fluctuation in the guide, φ , satisfies the Helmholtz equation ∇2φ + k2φ = 0, subject to
appropriate homogeneous boundary conditions. We shall consider both Dirichlet and Neumann wall
conditions. A trapped mode (or acoustic resonance) is a solution for φ in an infinite domain with finite
energy. The positive value of the wavenumber k for which a solution exists is referred to as the trapped
mode frequency.

Trapped modes can be classified as embedded or non-embedded, depending on whether their fre-
quency is respectively above or below the first cut-off for travelling modes. This distinction is important
as it determines the stability of the mode. The non-embedded modes are stable in the sense that if a
geometric parameter is varied continuously, the mode persists up to some limit, with only a slight vari-
ation of its frequency. In contrast, embedded modes may exist only for a specific combination of the
geometric parameters and may be formally destroyed by an infinitesimal perturbation of the configura-
tion, giving rise to NTMs. This means that for many configurations, embedded modes may not exist at
all, or there may be only a few discrete geometric parameter values which support such a mode. From a
computational perspective the distinction is important because embedded trapped modes require higher
detection accuracy than non-embedded modes as an eigenvalue in the continuous spectrum disappears
under small perturbations. Nevertheless, the NTM frequencies are of practical importance.

There is a vast amount of literature on analytical, numerical and physical aspects of trapped mode
problems, to which it is hard to do justice. We mention here a few results and relevant notions, but our
coverage is far from exhaustive.

Historically, trapped modes were first discovered in failed attempts to prove uniqueness. For a
specified geometry, uniqueness of the solution to a forced problem at a particular frequency is equivalent
to the non-existence of a trapped mode at that frequency. For the difference between two such solutions
is a non-trivial solution of the homogeneous problem, i.e. a trapped mode.

John (1950) established uniqueness for a particular class of single, surface-piercing bodies which
have the property that any vertical line emanating from the free surface does not intersect the body.
Ursell (1950) proved uniqueness for a circular cylinder submerged in fluid of infinite depth. Since then
many other partial results have been obtained (see, for example, Simon & Ursell (1984)) but a general
proof of uniqueness for all bodies at all frequencies was not found. The reason for the absence of such a
proof soon became clear. For example, McIver (1996), constructed an explicit example of two surface-
piercing bodies for which the potential is non-unique at a specific frequency. Detailed reviews of the
literature are provided by Linton & McIver (2007) and Kuznetsov et al. (2002).

An alternative conception of the problem began with Ursell (1951), who established the correspon-
dence between the finite energy of a trapped mode and the type of eigenvalue which gives rise to it. If
a fluid is bounded by fixed surfaces and by a free surface of infinite extent, the modes of vibration with
infinite energy form a continuous spectrum. A trapped mode has finite total energy and corresponds to
a discrete eigenvalue embedded within the continuous spectrum. In a subsequent study, Jones (1953)
established that semi-infinite domains which are cylindrical at infinity have a continuous spectrum with
a discrete embedded spectrum. Jones’ work established the Helmholtz equation, with suitable boundary
conditions, as a rich mathematical area for the study of trapped modes which we continue in this paper.

Waveguides with one or more obstacles of various shapes, placed either symmetrically with respect
to the centreline or off-centre, have been much studied in various contexts as the problem has important
applications. The configuration is mathematically equivalent to that of an infinite periodic array of such
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obstacles. Finite arrays of structures may exhibit “nearly” trapped modes. These consist in practice of
large amplitude responses to forcing near the trapped mode frequencies of the corresponding infinite
array. A typical example would be the support columns of a long bridge, which can be represented as
two discs in a waveguide, e.g. Chen et al. (2012).

The existence of trapped modes in two-dimensional infinite acoustic waveguides with an obstruction
of general shape, symmetric about the centreline of the guide, was established by Evans et al. (1994).
Associated calculations for a sound-hard disc (i.e. with Neumann condition on its boundary) at the
centre of Neumann and Dirichlet guides (i.e. with Neumann or Dirichlet boundary condition on the
guide walls respectively ) were reported in Callan et al. (1991), Evans & Porter (1997b) and Maniar &
Newman (1997).

Callan et al. (1991) constructed the solution for the case of one disc of radius a placed at the centre
of an infinite Neumann guide of width 2d, using a linear combination of suitably modified multipole
potentials. It was shown that for each a/d there is a particular wavenumber below the first cut-off π/2d
which satisfies the Neumann trapped mode problem. Additional modes, for a linear array of discs with
0.81 . a/d , were reported by Evans & Porter (1999). These findings are consistent with the analysis of
Cobelli et al. (2011), who reproduced this case experimentally and reported two resonance curves for
discs such that 0.8 6 a/d 6 1. Extending the work of Callan et al., Evans & Porter (1997b) established
that one embedded mode, in the range π/2 6 kd 6 3π/2 exists for only one value a/d ≈ 0.352 and a
corresponding kd ≈ 4.677≈ 1.489π .

For an infinite Dirichlet waveguide, without any symmetry considerations, the first cut-off is kd =
π/2. For soft waveguides it was proved by McIver & Linton (1995) that trapped modes do not exist
below the first cut-off frequency for a large class of of both sound-soft and sound-hard bodies. In
addition, they showed that antisymmetric trapped modes do not exist below the first cut-off in many two-
dimensional Neumann guides containing sound-soft bodies if they satisfy the condition ny 6 0 if y > 0,
and ny > 0 if y 6 0 (where (nx,ny) is the normal to the obstacle out of the fluid region). A large class
of obstacles satisfy this geometrical condition, including discs and rectangular blocks symmetrically
placed with respect to the guide walls. But if the trapped modes sought are antisymmetric about the
centreline then the continuous spectrum of the problem is the interval k ∈ [π/d,∞) and non-embedded
modes can be found below the first cut-off π/d.

Maniar & Newman (1997) found that one antisymmetric trapped mode, with frequencies π/2 <
kd < π exists for each disc in a Dirichlet waveguide, such that 0 < a/d . 0.6788. For π < kd < 2π ,
a trapped mode exists for the isolated value of a/d ≈ 0.267, at a frequency kd ≈ 6.258 ≈ 1.992π - see
Evans & Porter (1997b) and Linton & McIver (2007). For multiple cylinders on the centreline of either a
Dirichlet or Neumann guide, non-embedded trapped mode results are given by Evans & Porter (1997a).

Following these initial results establishing their existence, trapped modes were discovered in many
contexts, from large physical structures supported by arrays of standing columns to quantum waveguides
and nanowire inclusions in metamaterials Podolskiy et al. (2003). Given their wide applicability, from
non-destructive testing to enhancement of evanescent modes in the near-field of a “perfect lens” Pendry
(2000, 2004), systematic and efficient numerical methods of detection of trapped modes are required.

Various numerical schemes have been used to investigate trapped modes. A difficulty every method
faces relates to the need to truncate an infinite domain, applying an appropriate boundary condition
on some finite boundary. As the trapped solutions decay at large distances it would not seem critical
how this is done. Yet every simple scheme gives rise to spurious resonances, which must be eliminated
carefully. Any single spurious mode for a particular geometry can be identified and culled by varying the
numerical truncation and discretisation. But automatic and efficient investigation of a wide parameter
space is a challenge.
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We formulate the problem in §2 and present in §3 a numerical approach based on the boundary
element method (BEM) which we use to find trapped modes in two-dimensional waveguides. There are
two main ideas behind this scheme. Firstly, assuming exponential decay along the guide, the dominant
exponential decay condition is imposed at some length x = L. Secondly, we obtain a measure of the
radiation down the pipe for any candidate solution and insist that this be small, noting that trapped and
nearly trapped modes give a sharp minimum of this measure. The combination of these two conditions
automatically weeds out the spurious modes while permitting a moderately small value of L. This novel
combination turns out to be well-suited to investigate the higher frequency embedded modes where
the presence of propagating modes renders other methods less effective. It also identifies NTMs well.
Naturally, distinguishing between trapped and nearly trapped modes requires greater accuracy, but the
general vicinity of such modes is located efficiently.

Other procedures have been employed for the numerical detection of trapped modes, for example
Hardy space element techniques Hohage & Nannen (2015) and finite elements combined with perfectly
matched layers (PML), e.g. Duan et al. (2007); Hein & Koch (2008). PMLs are advantageous in
some problems, but we consider our BEM approach more appropriate for trapped mode detection. The
BEM is computationally efficient as it calculates the solution in terms of values attained on the domain
boundary, therefore reducing computations by one dimension. As against this, the matrix in the BEM
formulation is ‘full’, whereas for the PML approach it is sparse, albeit in one more dimension. The PML
methods work well for scattering problems, but the BEM procedure appears more robust for trapped
mode detection as it automatically avoids the difficulties reported by Duan et al. (2007) whereby the
discrete numerical eigenvalues, which are strongly dependent on the PML parameters, can be mistaken
for resonant eigenvalues thus rendering it very difficult to distinguish between the two. Our scheme is
designed to be flexible and computationally efficient to allow the study of trapped modes in geometries
without symmetry, e.g. with cavities and obstacles which are not aligned with each other.

In §4, we use the method for one or more sound-hard circular discs in both Neumann and Dirichlet
guides. We have reproduced those results obtained by other authors using different methods, for a wide
range of confugurations and extend those results in both the embedded and nonembedded frequency
regimes.

In §5, guides with wall cavities are considered. The trapped modes for this problem can be regarded
either as resonances in soft acoustic guides or as bound states in quantum waveguides Exner & Seba
(1989), Carini et al. (1992). The latter are narrow, two dimensional quantum guides, composed of tiny
strips of a very pure semiconductor material, that allow electrons to propagate but require the wave
function to vanish on the surface.

The trapped modes for a Dirichlet guide with a rectangular or Gaussian cavity are found for fre-
quencies up to the second cut-off. We do not discuss symmetrical indentations in each guide wall, e.g.
Fernyhough (1998). A Neumann waveguide with rectangular or triangular cavity is also investigated.
Neumann guides with cavities have received much attention, e.g.Duan et al. (2007). We include here
one such example for illustration and as a logical precursor to the next section.

In §6 a sound-hard disc, aligned with the rectangular cavity, is added to both Dirichlet and Neumann
guides. This could be regarded as a mobile detection device, sent down the channel to detect wall
imperfections. The addition of new geometric parameters to a problem which has one embedded trapped
mode for a specific discrete geometry, leads to the appearance of a continuous set of solutions. The
behaviour of the trapped frequencies as the disc is moved provides information about the cavity and its
location.

Geometries without any (x,y) symmetry, consisting of Dirichlet and Neumann guides with a rectan-
gular cavity and a sound-hard disc removed from the guide centre (not aligned with the cavity anymore)
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are also considered. We have not identified any genuinely trapped modes for geometries without a
symmetry line, although Nazarov (2013) has shown that these exist.
§7 is concerned with nearly trapped modes (NTMs) as they were consistently found throughout our

computations. Indeed, for an isolated trapped mode, any approximation to it would be a NTM. In some
cases, NTMs may be correspond to a complex eigenvalue of the infinite problem, but we do not pursue
that approach here. Unlike pure trapped modes, which have zero radiation, NTMs are near-resonances
with small radiation. The BEM developed is ideally suited for their detection. Although NTMs are not
a solution to the infinite problem in that they do not satisfy the decay condition in the far field, they are
important because of their practical implications. The high amount of energy present in the near field, in
comparison with the amount that radiates, is important in predicting the forces on the trapping features.
We conclude in §8.

2. Mathematical formulation

The domain is an infinite waveguide (W ) consisting of a pair of planar walls (Γ±) at y = ±d and a
trapping feature (D) consisting of one or more sound-hard discs on the guide’s centreline. In some
cases the trapping feature consist of a cavity in one of the planar walls. All geometric parameters are
henceforth scaled by d for ease of notation, so that d = 1 and all subsequent spatial variables are non-
dimensional. All symmetry descriptions, unless otherwise specified, refer to the x direction.

The trapped mode problem, either Dirichlet or Neumann, for the reduced velocity potential φ(x,y),
is formulated as follows:

(∇2 + k2)φ = 0 for (x,y) ∈W\D (2.1)
φ → 0 for |x| → ∞, |y|6 1 (2.2)

∂φ

∂n
= 0 for (x,y) ∈ ∂D (2.3)

Dirichlet problem: φ = 0 for (x,y) ∈ Γ± or (2.4)

Neumann problem:
∂φ

∂y
= 0 for (x,y) ∈ Γ± (2.5)

where ∂/∂n is the outward normal derivative. In this formulation k2 is an eigenvalue of either the
Dirichlet or Neumann problem if it corresponds to a non-trivial solution φ which satisfies either (2.1) -
(2.4) or (2.1) - (2.3) and (2.5) respectively.

The governing equations are translated into a flexible procedure which allows analysis of any two
dimensional domain and can be applied to both internal and external problems. Using standard tech-
niques of potential theory (2.1) is re-written as an integral equation. For any point x′ on the boundary
Γ±∪∂D, the space dependent potential φ(x′), can be written in terms of boundary integrals

c(x′)φ(x′) =
∫

Γ±∪∂D

[
φ(x)

∂G(x,x′)
∂n

−G(x,x′)
∂φ(x)

∂n

]
ds(x). (2.6)

The free coefficient c(x′) is given by

c(x′) =
α

2π
, 0 6 c(x′)6 1, (2.7)

where α is the the angle subtended at the point of interest x′. For this two-dimensional problem, we use
for G(x,x′) the fundamental solution G = 1

4i H
1
0 (k|x−x′|), where H1

0 is the Hankel function of the first



6 of 36 SARGENT & MESTEL

kind and zeroth order. If all calculations were in a regular waveguide, one could instead use the periodic
Green’s function Linton (1998) and McIver et al. (2001) but we wish our method also to apply to more
general geometry.

The infinite waveguide is truncated to a finite section such that −1 6 y 6 1,−L 6 x 6 L. The
distance L must be sufficiently large to reach into the far field where the solution decay is dominant. The
truncated boundary is divided into N small line elements Sm, (m = 0,1, . . .N), of length l. The choice of
l depends on the precision necessary for the detection of a mode, the embedded modes requiring finer
boundary discretisation than the non-embedded. A simple comparison between known analytic results
and numeric solutions obtained with our program, confirms that the error in the trapped mode frequency
values is proportional to N−2, as expected. The majority of results presented here were obtained using
boundary elements of length 0.01 6 l 6 0.1.

Following the discretisation step, the right hand side of (2.6) is reduced to a summation of N integrals
over each boundary element

c(x′)φ(x′) =
N

∑
m=1

{∫
Sm

[
φ(x)

∂G(x,x′)
∂n

−G(x,x′)
∂φ(x)

∂n

]
ds(x)

}
, x′ ∈ Sm. (2.8)

On each segment either φ or ∂φ/∂n is known. The remaining unknown is expressed as a linear function
of its values at the end points of the segment. The discretised equation (2.8) is used to express φ at
each of the N points along the boundary. With the application of boundary conditions, a system of N
equations in N unknowns is obtained. The system is written in matrix form as

MX = 0. (2.9)

The complex entries in M(k) are obtained by integrating the terms in (2.8) along each boundary element
Sm. The vector X stores the unknown values of either the potential or its normal derivative on each
of element Sm. The existence of non-trivial solutions requires that det[M(k)] = 0. Without loss of
generality, X can be chosen to be real within the bounds of numerical error. Hence, solutions correspond
to those frequencies for which both the real and the imaginary parts of the matrix are simultaneously
singular i.e.

det[MR(k)] = 0 and det[MI(k)] = 0. (2.10)

respectively. These two conditions are used by the program to verify the accuracy of the calculations
and provide a more robust investigation tool. For this problem it would be possible to have chosen
a real fundamental solution for G, but the actual choice provides a valuable diagnostic and accuracy
check. It also facilitates extension towards calculating complex resonances in other problems. Further
details concerning computation accuracy including the treatment of singularities can be found in Sargent
(2012). Discussion of the general principles of the boundary element method can be found in Brebbia
et al. (1984).

3. Identification of trapped modes

The trapped mode condition (2.2) defined at infinity cannot be tested directly on a finite domain. Instead,
on the edges where the domain is truncated, the following decay conditions are imposed

∂φ

∂x
∼ µ1φ , x =−L and

∂φ

∂x
∼−µ1φ , x = L, −1 6 y 6 1. (3.1)
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The decay coefficient µ1 depends on the problem and the range of frequencies investigated. This
choice of boundary condition is based on the assumption that in the positive far field for a given trapped
mode frequency, the solution can be written as an infinite superposition of modes, which satisfy the
boundary conditions on ±Γ . Taking the Neumann case with 0 < k < π/2, for example

φ =
∞

∑
n=1

ane−µnx sin
[
(2n−1)π

2
y
]
, µn =

[(
2n−1

2
π

)2

− k2

] 1
2

. (3.2)

A similar expansion is used in Wang (2014). In the positive far field the solution is expected to behave
asymptotically as

φ ≈ a1e−µ1x sin
πy
2
. (3.3)

With regard to (3.2), we see that condition (3.1) introduces an error proportional to exp[−(µ2−µ1)L]. In
contrast, a homogeneous Dirichlet condition, say, would make an error of O(exp(−µ1L)) which can be
much greater, given the typical proximity of k to (n−1/2)π . This effectively permits equivalent accu-
racy to be obtained for much smaller values of L. The substitute condition (3.1) successfully identifies
the decaying solutions but also allows standing waves with wavenumbers which satisfy the boundary
condition at x =±L exactly, yielding a spurious set of eigenvalues which do not satisfy (2.2). For exam-
ple solutions of the form cos(

√
π2/4− k2x)sin(πy/2) could occur where k satisfies both (3.1) and (3.3)

at x = L.
A simple but computationally inefficient way to identify these spurious modes would be to vary

the truncation length L, over which the computation is carried out. An eigenvalue corresponding to a
genuine trapped mode is not dependent on the truncation of the guide whereas the k values of spurious
modes do vary greatly with L. Plotting the determinants of MR(k) and MI(k) for increasing number
of discretisation points N, can also differentiate between genuine and some fictitious solutions, as the
wavenumbers obtained for a real trapped mode should converge to the real solution. However, both
these strategies, although reliable, are time consuming when applied to wide ranges of frequencies and
geometric parameters. A more effective method to identify and discard spurious solutions is based on a
measure of the radiated energy.

We define an energy radiation index (ERI) to be the total energy over a finite section of the guide in
the far field, normalised by the total energy on the boundary of the truncated domain. For each geometry
(for example radius of disc, separation between discs), truncation L and frequency k, an energy index
is calculated over a section of the guide R = R−∪R+, as shown in figure 1, with points (x,y) ∈ R such
L−λ 6 |x|6 L,−1 6 y 6 1. Here λ is the usual wavelength λ = 2π/k. The energy radiation index is
the ratio

ERI =
∫

R φ(x, y; k)2 dxdy∫
∂Ω

φ(x, y; k)2 ds
, (3.4)

where ds is the arc length ds2 = dx2 +dy2 and ∂Ω is the boundary of the truncated domain.
The ERI method of finding true or nearly trapped modes is implemented as follows: for a given

geometry, truncation L and discretisation l, the values of k satisfying (2.10) are determined. For each
such k, the eigenvector corresponding to the zero eigenvalue of the singular M(k), provides a set of
values for the unknowns, either φ or ∂φ

∂n , on each boundary element. These candidate numbers are
substituted in (2.8) and φ(x, y; k) can be calculated and used to compute the energy radiation index
using (3.4). For an exact solution, the radiation calculated sufficiently far from the trapping feature,
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FIG. 1: The ERI estimates the total energy in R = R−∪R+, normalised by energy on truncated domain
boundary to provide a measure of the decay rate of the solution in the far field.

should be exponentially small. A mode obtained using the BEM method is an approximation of the exact
solution and corresponds to a sharp local minimum in the space of parameters which define the domain’s
geometry. Typically, the geometrical parameter space is scanned fairly coarsely, and the corresponding
k values are determined. The ERI is found for each case, and those values suggesting a local minimum
are investigated more closely. The sharpness of the ERI minimum corresponding to a trapped mode is
pronounced – a high ERI gradient invariably indicates at least a NTM in the vicinity. Occasionally, a
non sharp local minimum is encountered which does not indicate a trapped mode. With experience, the
trapped modes can be found quickly. Inevitably, if the initial scanning of parameter space is too coarse,
modes may be missed, but in no case has our method failed to find a mode found by other authors.

This is a very effective method of distinguishing between real solutions and spurious L-dependent
modes as the radiation indices can be compared for all values of k, in a given frequency range, corre-
sponding to many sets of geometric parameters. Once a candidate k is found using the ERI method,
other checks may be carried out to ensure the validity of results, which include the re-computation of
the mode for finer resolution (l) and different waveguide truncations (L). For a genuine solution any
changes in k, occurring due to these variations, should be no more than of order N−2. As usual with
eigenvalue calculations, an O(ε) error in the eigenvector gives an O(ε2) error in the eigenvalue, so that
the frequency k can be found accurately with a relatively coarse grid.

An example of the ERI method applied to the detection of an embedded mode for two sound-hard
discs on the centreline of a Neumann guide now follows. The discs have equal radius a and their centres
are separated by a distance c. The ERI is computed for sets (a,c) and all values of k such that M(k) is
singular. The data indicate at a glance which configurations are likely to support a trapped mode. Table
1 shows the lowest ERI for a range of (a,c) and π/2 < k < 3π/2. Note the final column is for c = 4
and was included to give an idea of the scale of variation.

The lowest ERI together with the corresponding k, are displayed for each (a,c). It can be seen that
somewhere near the configuration c = 2.8, a = 0.275, the index has a sharp local minimum. (There is
also the suggestion of a possible minimum near (0.225,2.9), but further data show that this is not the
case.) A further indication that there are two competing modes can be seen from the k-values, which
jump between k ' 4.55 and k ' 4.5 in the vicinity of the ERI minimum. The displayed frequencies in
the immediate neigbourhood of a trapped mode candidate usually correspond to nearly trapped modes.
The modes with higher radiation index are spurious.

Once parameter values corresponding to a (nearly) trapped mode are found, the solution can be
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Energy Radiation Index

Separation c
Radius a 2.6 2.7 2.8 2.9 4

0.225 0.031855 0.014048 0.002309 0.000939 0.012459
0.25 0.023881 0.009368 0.000987 0.001520 0.012049
0.275 0.012929 0.003928 7.21E−05 0.002299 0.010642
0.3 0.003989 0.000580 0.000372 0.003177 0.008521
0.325 0.001002 0.001419 0.002583 0.004141 0.005824
Corresponding k value

Separation c
Radius a 2.6 2.7 2.8 2.9 4

0.225 4.5545 4.5523 4.5532 4.4542 4.5819
0.25 4.5551 4.5529 4.5538 4.4619 4.5867
0.275 4.5567 4.5546 4.4764 4.4715 4.4553
0.3 4.4782 4.4569 4.4946 4.4840 4.4679
0.325 4.4662 4.5278 4.5150 4.5006 4.4847

Table 1: Energy radiation index, and associated frequencies below the second cut-off (π/2 < k < 3π/2),
for two discs in a Neumann guide. (a,c) are varied and the lowest ERI with the corresponding k are
displayed. Note the 4th column is for c = 4, not c = 3. There is a sharp minimum near the middle of the
data. The minimising k-values flit between two values, indicating two competing modes.

refined by scanning over intervals around the candidate geometric parameters. For example, the initial
results in Table 1 are re-computed for c∈ [2.7, 2.9] and a∈ [0.25, 0.3] with increments 0.01 and the ERI
minimum was found for c = 2.84, a = 0.275. This refining process can be repeated and the parameter
values which give rise to real trapped modes established with increasing precision in a time-efficient
manner. However, there is little point in exceeding the precision of the underlying grid.

In general, the accuracy of the scheme is limited by the discretisation (l,L). When a trapped mode is
isolated in parameter space, a further error is introduced by the distance from the exact values. However,
if we are close enough, this merely changes a trapped mode into a NTM, which is not critical in many
applications. For a given discretisation and parameter set, the frequency can be obtained very accurately,
but it will naturally differ from the exact trapped frequency because of the truncation. Below, we do
not always refine the geometrical parameters to the maximum grid accuracy once it becomes clear that
a NTM exists. When the trapped mode is part of a continuum, however. the k-values are automatically
very accurate.

4. Discs on the centreline of a symmetric guide

For every k > 0, a travelling mode eikx satisfies the Neumann boundary condition on the waveguide.
The continuous spectrum for this problem is [0,∞) Evans & Linton (1991), Jones (1953), hence all
trapped modes are embedded. However, if the problem is restricted to finding only the y−antisymmetric
solutions then the lower bound of the essential spectrum is π/2. With this restriction, the antisymmetric
modes can be considered as non-embedded eigenvalues. For the case of one disc at the centre of an
infinite Neumann guide it was established by Callan et al. (1991) that at least one trapped mode exists
for all discs of radii 0 < a 6 1 below the first cut off π/2.
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Evans & Porter (1997b) extended the work of Callan et al. (1991) constructing the solution for one
disc on the centreline of a Neumann waveguide. They used a linear combination of suitably modified
multipole potentials and sought trapped modes in the range π/2 6 k 6 3π/2. The existence of a second
travelling mode in this frequency band required an extra constraint to ensure the corresponding propa-
gating solution is zero at the trapped mode frequency. It was shown that only one value, a = 0.352 and
a corresponding kc = 4.677 = 1.4896π , satisfy the system of equations and the side condition simulta-
neously. Thus it is anticipated that in order to find trapped modes for higher frequencies it is necessary
to consider obstacles defined by more parameters which could be varied. Placing the second disc at a
variable distance from the first one provides such an additional geometric variable.

4.1 Two identical discs in a Neumann guide

The results obtained for the non-embedded modes are in agreement with those of Evans & Porter (1997a)
for the case of a long narrow wave channel containing any number of different size bottom mounted cir-
cular cylinders arbitrarily spaced along the centreline of the channel. These modes correspond to acous-
tic resonances, where the same governing equations and boundary conditions apply. Evans and Porter
have shown that there are no more than N trapped modes, in the range 0< k < π , for any configuration of
N cylinders, the precise number depending critically on the geometry of the configuration. With N = 2,
we extend these results for the next two bands of frequencies π/2 < k < 3π/2 and 3π/2 < k < 5π/2.

The presence of a second disc provides an additional parameter, the spacing c, which for a given
a, can be varied so that the amplitude of the additional travelling mode is zero at the trapped mode
frequency. This rationale predicts that two discs will have more than one embedded trapped mode in
this frequency range and that these should persist with the geometry, within certain limits. Indeed,
using the BEM method, both symmetric and antisymmetric embedded modes are found in the range
π/2 < k < 3π/2 for discs such that 0.1 6 a . 0.4 and discrete values of c. It is notable that the addition
of another disc increases the maximum radius supporting an embedded mode above the value a≈ 0.352
for a single disc in the waveguide. A symmetric, embedded mode, for a = 0.1 and c = 0.7112, is
presented in Fig. 2. Details of embedded modes found in this frequency range are given in Table 2. It
is found that the antisymmetric modes decay slower with x and so require more numerical effort for the
same accuracy. It can be seen from the table that the same disc size can support modes at more than
separation distance. In figure (3), the symmetric and antisymmetric modes are drawn for a = 0.2.
The list provided is not exhaustive and further modes may be found for additional discrete values of the

-4 -3 -2 -1 0 1 2 3 4

-0.5

0

0.5

-0.1

0

0.1

FIG. 2: Contours of φ for an embedded trapped mode for two discs of small radius a= 0.1 in a Neumann
guide separated by c = 0.7112 for k = 4.6746≈ 1.4880π .



TRAPPED MODES OF THE HELMHOLTZ EQUATION 11 of 36

spacing parameter c. Embedded modes are computationally harder to locate than non-embedded ones,
as they are sensitive to minute changes in the geometry, appearing only for exact parameter values.

a c k k/π x-symmetry
0.10 0.7112 4.6734 1.4876 Symmetric
0.15 0.7336 4.5897 1.4610 Symmetric
0.20 0.7734 4.5291 1.4416 Symmetric
0.20 1.3666 4.6952 1.4945 Antisymmetric
0.25 0.7956 4.5404 1.4453 Symmetric
0.25 2.8948 4.6289 1.4734 Antisymmetric
0.25 1.4210 4.6915 1.4934 Antisymmetric
0.30 0.8934 4.5900 1.4611 Symmetric
0.35 1.3680 4.6803 1.4898 Symmetric
0.35 2.4632 4.6606 1.4835 Symmetric

Table 2: Embedded trapped modes for two identical discs in a Neumann guide.

Results above the second cut-off in the band 3π/2< k < 5π/2 are new, but follow a similar rationale
e.g. to Porter & Evans (2005). The presence of three travelling modes in this frequency band suggests
that only a single trapped mode may be possible for an exact combination of the geometric parameters
a and c. Such a mode was found for a = 0.18, c = 0.54 for wavenumber k ≈ 7.72759 = 2.4597π and is
shown in figure 4. It should be noted that accurate computations in this frequency range are expensive
due to the high discretisation required to confirm a trapped mode. A NTM can be found more cheaply.

4.2 Two discs of different radius in a Neumann guide

Two discs of different radius 0 < a1,a2 6 0.8, have either one or two modes in the range 0 < k < π/2.
Solutions corresponding to non-embedded frequencies are stable, in that varying the geometry does
not destroy the trapped mode, it only continuously modifies the value of k. As the discs are differ-
ent, the solutions do not display x-symmetry in the rigorous, mathematical sense. Instead we define
quasi-symmetry for this configuration as follows: a mode may be either quasi-symmetric or quasi-
antisymmetric if for a fixed y coordinate and large x, φ(x,y) and φ(−x,y) have identical or different
signs respectively. Consider the case of two discs such that a1 < a2 with individual characteristic fre-
quencies kc1,kc2. For overlapping discs one quasi-symmetric mode is found at a frequency ks, near that
corresponding to the larger disc, ks ≈ kc2.

If one disc is large, 0.8 6 a1 6 1 and the second is such that 0 < a2 < 0.8, the configuration has
either two or three modes, depending on c. The case a1 = 0.9 and a2 = 0.3 is illustrated in Fig.5. The
intersecting discs have two modes, one quasi-symmetric and one quasi-antisymmetric. As c increases
a third mode appears - this particular geometry has a maximum of three trapped modes. For two larger
discs, such 0.8 < a1,a2 6 1, depending on c, this configuration has up to four trapped modes, two
quasi-symmetric and two quasi-antisymmetric.
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FIG. 3: Two embedded trapped modes for two discs of radius a = 0.2: one symmetric, at c = 0.7734
for k = 4.5291≈ 1.4416π and one antisymmetric at c = 1.3666 for k = 4.6952≈ 1.4945π .

-4 -3 -2 -1 0 1 2 3 4

-0.5

0

0.5

-0.5

0

0.5

FIG. 4: Trapped mode embedded in 3π/2 < k < 5π/2 for two discs of radius a = 0.1775, separation
c = 0.4911 and k = 7.7604 = 2.4702π .

4.3 Two identical discs in a Dirichlet guide

The number and type of modes for two discs on the centreline of a Dirichlet waveguide were investigated
up to the third cut-off. Two discs, of equal radius, 0 < a 6 0.6, on the centreline of a Dirichlet guide,
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FIG. 5: Contours of multiple trapped modes for two discs a1 = 0.9,a2 = 0.3, in a Neumann guide, at
the exact separation distances c = 1 (overlapping discs), 1.2,2,5 and 7.

support one or two trapped modes, depending on the distance between them. The first, x-symmetric,
mode can be found for any value of c, including overlapping discs. The second, x-antisymmetric, mode
appears only for c> 2a. Frequencies for the symmetric and anti-symmetric modes are, in similar manner
to the Neumann case, such that ks < kc < ka. The results obtained for frequencies such that π/2 < k < π

are omitted as they are similar to those of Evans & Porter (1997a). We extend these results for the next
frequency band π < k < 2π .

4.3.1 π < k < 2π In this frequency range, only one embedded mode exists for a single disc on the
centreline of a Dirichlet guide, for a specific value of a Linton & McIver (2007).

k ≈ 6.258 = 1.992π, a = 0.267. (4.1)

With two discs, for each k, the guide supports one propagating mode, but the additional parameter c can
be varied until a trapped mode is found. Our results show that trapped modes exist for discs of all radii
such that 0.1 . a . 0.3 at discrete values of c. Some disc sizes were found to support more modes than
others. For discs with a = 0.125 three trapped modes are possible whereas for a smaller discs, a = 0.1,
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only one mode was found. The list of modes found for this geometry is given in Table 3. In Fig. 6(a) -

a c k k/π x-Symmetry
0.100 0.60 6.283 1.999 Symmetric
0.125 0.60 6.131 1.952 Symmetric
0.125 1.75 6.190 1.970 Symmetric
0.125 3.50 6.219 1.980 Antisymmetric
0.175 0.62 6.087 1.937 Symmetric
0.175 1.75 6.165 1.962 Symmetric
0.175 2.30 6.211 1.977 Antisymmetric
0.225 0.65 6.137 1.953 Symmetric
0.225 1.75 6.196 1.972 Symmetric
0.250 0.75 6.185 1.969 Symmetric
0.250 1.75 6.222 1.980 Symmetric
0.250 1.75 6.241 1.984 Symmetric
0.275 1.30 6.241 1.987 Symmetric
0.295 1.55 6.270 1.996 Symmetric

Table 3: Embedded trapped modes supported by two identical discs on the centreline of a Dirichlet
guide.

6(c) we present three trapped modes for the same disc, with radius a = 0.125. The first plot, Fig. 6(a),
corresponds to a small separation between discs c = 0.6. A second mode appears at a slightly larger
separation, c = 1.75. Both these modes are symmetric in x and antisymmetric in y. As the distance
increases, a third mode, anti-symmetric in both x and y, appears at c = 3.35.

It is possible that additional modes exist for increasing c and small values of a. The rationale for
the last requirement is based on the fact that the high wavenumber gives rise to four potential peaks in
the y-direction, as can be seen in Fig.6(a) - 6(c), which must be accommodated in the remaining space
between the discs and the waveguide walls.

4.4 Two discs of different radius in a Dirichlet guide

In this section we present results for the case of two discs, with radii a1 = 0.2, a2 = 0.5, placed on
the centreline of a soft guide. The discs have individual characteristic trapped mode frequencies, kc1 =
3.0561 = 0.9728π , kc2 = 3.07145 = 0.9776π . This type of geometry has either one or two trapped
modes, depending on c. We use the terms quasi-symmetric and quasi-antisymmetric as defined in section
4.2. The modes are stable in the sense that frequencies vary continuously with c and they can be either
quasi-symmetric or quasi-antisymmetric.

As c increases, three stages can be distinguished, as illustrated in Fig. 7. Firstly, for 0 < c < a1 +a2
a single, quasi-symmetric, trapped mode exists for all c, with k decreasing almost linearly with c.

As a1 + a2 6 c . λ a second mode, quasi-antisymmetric appears at a higher frequency. The
quasi-symmetric mode is coupled in the sense that there is interaction between the discs. The quasi-
antisymmetric mode is decoupled, as exponential decay appears in the inner area and the interaction
between discs is minimal.
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(a) a = 0.125, c = 0.6, k ≈ 6.1311 = 1.952π .
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(b) a = 0.125, c = 1.75, k ≈ 6.190 = 1.970π .
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(c) a = 0.125, c = 3.5, k ≈ 6.219 = 1.980π .

FIG. 6: Contour plots of three embedded modes, π < k < 2π , for two identical discs on the centreline
of a Dirichlet guide.

As c increases above 3λ , the energy distribution between the two discs becomes skewed and the
trapped mode becomes localised around one disc: the symmetric mode has a potential minimum/maximum
on the boundary of the smaller disc, with ks < kc1,ks → kc1 as c→ ∞. We also note that the quasi-
antisymmetric mode has the highest amplitude oscillations on the boundary of the larger disc, with
ka→ kc2 from above.

5. Waveguides with cavities

We now consider trapped modes in a guide which has a cavity on one wall. The simplest configuration
is a rectangular cavity, consisting of a region of length 2w in which the guide width is increased from 2
to 2+h.

5.1 Rectangular cavity in a Dirichlet guide

To begin with, we fix the cavity depth h = 1 and vary the width 2w. Trapped modes are sought in the
range 0 < k < π/2. For narrow cavities, the solution decays slowly at infinity and the trapped mode
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FIG. 7: Two discs, a1 = 0.2, a2 = 0.5, in a Dirichlet guide, for c = 1.6 (top) and c = 3.6,6 and 8
(bottom). c = 1.6, k ≈ 2.987 = 0.951π (quasi-symmetric: QS), c = 3.6, k = 3.055 ≈ 0.973π (QS),
k≈ 3.087 = 0.983π (quasi-anti-symmetric: QA). c = 6, k≈ 3.065 = 0.976π (QS), k≈ 3.073 = 0.978π

(QA). c = 8, k ≈ 3.066 = 0.976π (QS), k = 3.071 = 0.978π (QA). Note the skewed distribution of φ

between the two discs.

frequency is close to the cut-off value π/2. As w→ 0, the solution approaches the non-trapped standing
wave solution φ ∼ cos π

2 y.
The following simple argument predicts the appearance of trapped modes. For generality, we con-

sider both symmetric and anti-symmetric solutions with respect to the x-axis. The separable solutions
in the waveguide far away from the cavity, takes the form

φ = X(x)T (y)∼ exp

{
±i
[

k2−
(

π

2

)2
] 1

2
x

}
cos
(

πy
2

)
. (5.1)

Below the first cut-off, k < π/2, the y-symmetric oscillation cannot propagate down the guide. Now if
w is assumed fairly large, in the region of the cavity around x = 0 we effectively have a wider guide, so
that the Dirichlet condition on y = 1 and y =−1−h, suggests the y behaviour

Y (y)≈ cos
[

π

2

(
y+h/2
1+h/2

)]
= cos [µ2(y+h/2)] , (5.2)

with the x-dependence

X(x)∼ e±iµ1x ≡ exp
[
±i
(
k2−µ

2
2
) 1

2 x
]
. (5.3)

Thus if k lies between the two cut-off values
π

2+h
< k <

π

2
, (5.4)
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oscillations are possible in the cavity region, but not in the rest of the guide. A wave would effectively
be trapped in the cavity. This is of course an over-simplification of the structure of the trapped mode.
However, in the non-embedded regime, for this simple geometry, this argument renders the appearance
of trapped modes plausible. Furthermore, applying the Dirichlet condition on the vertical cavity walls
gives

cos µ1w = 0, (5.5)

which together with (5.4), predicts that a trapped mode is possible below the first cut-off k < π/2 for a
cavity of depth h and width 2w such that

w '

(
1− 1

(1+h/2)2

)−1/2

. (5.6)

This predicts that for h = 1 if w ' 1.34 y-even trapped modes are possible inside the cavity, but not
down the guide. And indeed, using the BEM, it was found that an x-symmetric trapped mode exists for
all cavities with w ' 1.35. The approximation for k, depending on the cavity dimensions

k ≈ π

√(
1

2+h

)2

+

(
kn

πw

)2

, (5.7)

is also a useful indicator of the range of values which should be checked numerically in order to find
the trapped mode frequency, saving significant computation time. In (5.7) kn = π/2,π,3π/2,2π, . . .
represent the guide cut-off values. For example, for a cavity of h = 1,w = 2.7, according to (5.7),
a trapped mode should exist for k ≈ 1.1879 = 0.3781π . The first trapped mode computed for this
geometry has k = 1.1524≈ 0.3668π . The estimate (5.7) predicts that k will decrease as the width of the
cavity increases, which is consistent with the values found using the BEM. As the width of the cavity
increases, additional, x-antisymmetric, modes appear for the same geometry, for new values of k which
satisfy approximately µ1w = π. As w increases, more trapped modes are found as new eigenvalues
satisfy the condition

µ1w = kn. (5.8)

Embedded modes, below the second cut-off π/2 < k < π , for this configuration exist only for discrete
couples (h,w). The range 0 < h 6 3,0 < w 6 3 was investigated and the geometries found to support
trapped modes, together with the relevant frequencies, are listed in Table 4. These modes have not
previously been reported. To find these eigenvalues, boundary element steps of l = 0.1 and l = 0.05 were
used, hence the spacing parameters h and w displayed in Table 4 have an expected error in the range
0.05−0.1. A notable geometry is h= 2.2,w= 2.9 which supports two modes, at k1≈ 2.7361= 0.8709π

and k2 ≈ 3.03302 = 0.9654π (see Fig. 9(a) and 9(b)).

5.2 Smooth cavity in a Dirichlet waveguide

Whilst studying the trapped modes in rectangular cavities it was found that if the sharp corners at the
top of the cavity were smoothed slightly, the trapped mode would disappear. This raised the question
about the role of corner singularities in the formation of trapped modes and whether a smooth cavity
would support trapped modes. Fernyhough (1998) demonstrate that this should not be the case, but
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FIG. 8: Non-embedded trapped modes in a Dirichlet guide with a rectangular cavity of width 2w = 4.6
and depth h = 1. k ≈ 1.1943 = 0.3801π (x-symmetric), k ≈ 1.5028 = 0.4783π (x-antisymmetric).
Compare figure 3 of Wang (2014).

we nevertheless investigate a smooth cavity here. Let a Dirichlet waveguide have a lower boundary,
prescribed by a Gaussian function

Γ−(x) =−1−he−(x/w)2
. (5.9)

Keeping one parameter fixed, e.g. h = 1, and varying w, it was found that non-embedded (0 < k < π/2)
modes exist for all w > 0.4. The corresponding frequencies vary continuously with the geometry as
illustrated in Fig. 10. Embedded modes in the higher frequency range, π/2 < k < π , exist only for
discrete pairs (h,w). Two such modes are for h = 3,w2 = 1.8,k ≈ 2.3442 = 0.7461π and h = 2.6,w2 =
0.8,k ≈ 2.7473 = 0.8745π . The first mode is plotted in Fig. 11.

5.3 Triangular cavities in a Neumann waveguides

A triangular indentation of maximum depth h and upper width w, supports trapped modes for discrete
couples (h,w). These parameter values are similar to those which support trapped modes in rectangular
cavities. Table 5 lists the modes found for this case. All modes found are even in x.
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h 2w k k/π

2 3.8 2.482 0.790
2.2 5.8 2.731 0.871
2.2 5.8 3.033 0.965
2.6 2.8 2.902 0.924
3.0 3.4 2.657 0.846
3.0 3.9 2.621 0.834
2.1 5.2 2.373 0.755

Table 4: Embedded trapped modes supported by a rectangular cavity in a Dirichlet guide.

h 2w k k/π

2.9 7.6 1.456 0.464
3.5 10.4 1.245 0.396
3.9 11.6 1.159 0.369
5.6 8.8 1.349 0.429
5.9 9.6 1.282 0.408

Table 5: Trapped mode frequencies for a triangular cavity in a Neumann guide.

6. Rectangular cavity and disc on centreline of a waveguide

A single disc, of radius a, on the centreline of an infinite waveguide may support a trapped mode,
depending on its size and the type of boundary condition on the guide. A cavity, of width w and depth h,
in the absence of other obstacles in the guide, may support a trapped mode for discrete (h,w). Isolated
thin or shallow cavities cannot support trapped modes – the spacing parameters must exceed some
threshold in order for resonances to occur.

In general, the existence of travelling modes reduces the number of trapped modes. As the frequency
is increased through each cut-off, for each new travelling mode an extra geometric constraint is required
to ensure the corresponding propagating solution is zero at the trapped mode frequency Evans & Porter
(1997b). Thus it is anticipated that geometries with more adjustable parameters will have a higher
number of embedded frequencies. This rationale predicts that the combination of a disc and a cavity
will have more than one embedded mode and that they should persist with the geometry, within certain
limits. Indeed, it was found that the combination of a sound-hard disc aligned with a cavity greatly
increases the affinity to trapped mode type resonances. For both the Dirichlet and the Neumann problem,
trapped modes can be found for discs of all radii and for cavities of specific depth and width. The modes
can be either x-symmetric or x-antisymmetric.

6.1 Rectangular cavity and disc in the centre of a Neumann guide

The problem was studied in the frequency range 0 < k < π/2. Trapped modes can be found for a
larger range of parameters than for a single disc or cavity as the combination of both gives rise to more
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FIG. 9: Embedded trapped modes for the same rectangular cavity 2w = 5.8,h = 2.2, in a Dirichlet guide.
k1 ≈ 2.7361 = 0.8709π , k2 ≈ 3.0330 = 0.9654π.

resonances. For example, in the absence of a disc, shallow or narrow cavities do not support trapped
modes. The minimum depth required for the appearance of a mode in a cavity is h & 2, whereas the
addition of a disc will enable trapped modes, in some cases, for cavities such that h≈ 0.4.

All discs of radius 0 < a 6 1, placed in the centre of the guide, support trapped modes for discrete
couples of (h,w). A disc of a given radius supports trapped modes for more than one cavity, for discrete,
specific couples (h,w). The case a = 1 is included because a cavity of width w > 1 allows the whole
domain to remain connected.

The addition of a disc enables the appearance of trapped modes in the presence of cavities which
otherwise would not support trapped modes. For a given cavity depth it is possible that there are no
trapped modes, irrespective of its width and the disc radius. Some cavities may support modes in
conjunction with more than one disc. For example, a guide with a cavity of depth h = 4.6 and 2w = 4.2,
has an x-symmetric trapped mode for disc of radius a = 0.3 and a different, x-antisymmetric mode, for
a = 1. For nearby values of a, the trapped mode is perturbed, giving rise to nearly trapped modes with
low radiation, which physically would be difficult to distinguish from the trapped mode itself. Table 6
shows trapped mode frequencies for the fixed a = 0.4 and cavities in the range h ∈ (0,6),2w ∈ (0,7)
The k values found vary noticeably from case to case in contrast to those for an isolated disc in the
waveguide, which are close to the relevant cut-off. The plots illustrate the evolution of the trapped
modes as the cavity size increases. As the horizontal walls of the cavity are pulled further apart, the
solution develops new local critical points on the cavity walls, at x = ±w (see Fig. 14). As the cavity
increases further, an antisymmetric mode appears, with a series of peaks and troughs on the cavity walls
(see Fig. 15).
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FIG. 10: Trapped mode frequencies below the first cut-off, 0 < k < π/2, for a Gaussian cavity in an
infinite Dirichlet guide.
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FIG. 11: Embedded trapped mode in a smooth cavity with Gaussian profile, h = 3,w2 = 1.8 and fre-
quency k ≈ 2.3442 = 0.7461π .

6.2 Rectangular cavity and disc in a Dirichlet waveguide

The combination of the two aligned features, cavity and disc, greatly increases the number of trapped
mode resonances, and the resultant spectrum may provide information about the nature of the wall
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FIG. 12: An embedded trapped mode in a triangular cavity, h= 2.9,w= 3.8 and frequency k≈ 1.4563=
0.4635π .

h 2w k k/π x-Symmetry
0.8 6.0 1.157 0.368 Symmetric
1.4 6.75 0.988 0.315 Symmetric
1.0 7.0 1.264 0.402 Antisymmetric
3.4 6.0 1.147 0.365 Symmetric
3.8 6.2 1.095 0.348 Symmetric
4.8 4.4 1.362 0.433 Symmetric (see Fig 13)
4.2 7.0 1.025 0.326 Symmetric
4.6 3.4 1.402 0.446 Symmetric (see Fig. 14)

4.95 6.6 1.456 0.463 Antisymmetric (see Fig. 15)

Table 6: Trapped mode frequencies for a cavity and a sound hard disc at the centre of a Neumann guide.

cavity. For a single cavity, six modes were found in the range 0 < h 6 6, 0 < w 6 6 (Table 4). With the
addition of a disc, for the same cavity parameters, the number of trapped modes increased to 84. The
list of trapped mode frequencies found for this structure and a selection of plots to illustrate the variety
of solution found are included in Appendix A. The modes are presented in increasing order of cavity
depth.

Any disc of radius 0 < a 6 1, placed at the centre of a Dirichlet guide, supports trapped modes
for one or more discrete couples (h,w). It is notable that the presence of a cavity extends the radius
for which trapped modes are possible above the a = 0.67 limit found for an isolated disc (Callan et al.
(1991), Maniar & Newman (1997)).

For a given cavity it is possible that there are no trapped modes, irrespective of the disc radius.
However, the trapped mode (a,h,w) triples are densely distributed therefore most geometries are likely
to support at least a nearly trapped mode. It is therefore possible, to find either a trapped mode or a nearly
trapped mode with low radiation, for any given 0 < a 6 1 and most values of h and w. Although not
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FIG. 13: Trapped mode for a rectangular cavity and a disc at the centre of a Neumann guide, h= 4.8,w=
4.4 and frequency k ≈ 1.3615 = 0.4334π .
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FIG. 14: Trapped mode for a rectangular cavity and a disc on centre of a Neumann guide, h = 4.6,2w =
3.4 and frequency k ≈ 1.4024 = 0.4464π .

an exact solution to the problem, nearly trapped modes would physically be very difficult to distinguish
from the perfectly decaying modes.

Some configurations may support more than one mode. Two cases were identified within the param-
eters studied (0 < a 6 1,0 < h 6 6, 0 < w 6 6), where the same structure has two trapped modes, at two
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FIG. 15: Trapped mode for a rectangular cavity and a disc at the centre of a Neumann guide, h =
4.95,2w = 6.6 and frequency k ≈ 1.4557 = 0.4634π .

different frequencies. Plots for these cases can be found in Appendix A.

6.3 Rectangular cavity and off-centre disc in a Neumann and a Dirichlet guide

Finally, geometries without any x or y-symmetry, were considered for both Dirichlet and Neumann
guides, with a sound-hard disc and a rectangular cavity. The removal of the disc from the centre of the
guide, even by a small distance, so that 0 < xc � 1, leads to the disappearance of the trapped mode.
In most cases a small perturbation gives rise to a nearly trapped mode. As the distance xc is increased,
nearly trapped modes also disappear. As xc & λ , a wavelength, a nearly trapped mode, corresponding to
the pure trapped mode for either a single cavity or a single disc, is recovered. This occurs at frequencies
similar but not identical to those corresponding to pure trapped modes. These modes are localised either
around the disc or the cavity. The mode formed around the disc is perturbed in the region and beyond the
cavity. Also, the mode trapped by the cavity is perturbed around and beyond the disc. An illustration of
this behaviour, in a Dirichlet guide, where the disc is removed from the centre to xc =−6, is presented
in Fig. 16(a) -16(b).

No pure trapped modes were found for any asymmetric geometry, irrespective of the disc radius and
cavity size. This does not exclude the possibility that a trapped mode may exist for a specific set of
values (a,h,w,xc), however such a geometry was not identified.

7. Nearly trapped modes

Nearly trapped modes (NTMs) appear consistently throughout this problem. Unlike pure trapped modes,
which are characterised by zero radiation, nearly trapped modes are near-resonances with small radi-
ation. The BEM developed is therefore ideally suited for their detection. Although NTMs are not a
solution in that they do not satisfy the decay condition in the far field, they are important because of
the physical, practical implications. The high amount of energy present in the near field, in comparison
with the amount that radiates, is important in predicting the forces on the trapping features.
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(a) Nearly trapped mode at k ≈ 2.9931 = 0.9527π . Without the cavity, the trapped frequency is kc ≈ 2.9907 = 0.9511π

 

 

−8 −6 −4 −2 0 2 4 6

−3

−2

−1

0

1

−0.5

0

0.5

1

(b) Nearly trapped mode at k ≈ 2.7037 = 0.8606π . Without the disc the trapped frequency is kc ≈ 2.6566 = 0.7900π

FIG. 16: Nearly trapped modes in a Dirichlet guide with a rectangular cavity h = 2.6, w = 5.8 and a disc
of radius a = 0.3 over a wavelength away, xc � λ . Two NTMs resemble the trapped modes ignoring
either the cavity or disc.

There are two main categories of nearly trapped modes which were found numerically: 1) perturba-
tions of exact trapped modes 2) modes with low radiation which are not related to any trapped modes.

The specific set of parameters corresponding to an embedded trapped mode is a discrete point in a
continuous band of parameters which all support nearly trapped modes. As a result a geometry which
approximates that required for a trapped mode will give rise to a nearly trapped mode which in a physical
system might be indistinguishable from an exact resonant mode. This is illustrated by the data in Table
1 referring to the Neumann waveguide with two sound-hard discs for which a and c are uniformly
varied. The energy radiation sharply decreases as the configuration approaches that required for the
formation of a trapped mode but it can be seen that slightly perturbed configurations have low energy
loss, corresponding to a nearly trapped mode. These NTMs are important as some of the geometric
specifications for trapped modes are idealised and not likely to occur in physical situations. Physical
systems which closely approximate those required for a trapped mode are then likely to give rise to
the related, nearly trapped modes. For example, an infinite or doubly infinite periodic array of vertical
cylinders is known to support pure trapped waves. In finite arrays near-trapping occurs in the form
of large resonances which appear at the incident wave frequency which corresponds to the trapped
mode frequency for the infinite array Evans & Porter (1999). Maniar & Newman (1997) calculated the
distribution of forces along a finite array of 100 cylinders at the ‘near-trapping’ frequency and shown
that the force on the middle cylinder is approximately 34 times higher than that on an isolated cylinder.
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The second category discovered is that of NTMs which are not related to any trapped modes at real
frequencies. For example two large discs 0.6 < a 6 1 in a Dirichlet guide were found to support only
nearly trapped modes. They are y-symmetric, whereas all the trapped modes found for smaller discs are
y-antisymmetric. The amplitude in the inner area is about 100 times higher than in the outer area. The
disc radii and separation c can be varied continuously and the radiation index remains approximately
constant. These modes exist for all c above a certain threshold. For larger separations more than one
mode can be found for the same geometry and they can be either symmetric or antisymmetric in x. An
example of such a mode, for a1 = a2 = 0.7, is presented in Fig. 17.
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FIG. 17: An x and y-symmetric nearly trapped mode, a = 0.7, c = 4.4 and k ≈ 2.6497 = 0.8434. The
potential is not zero in the far field, there is 102 difference in amplitude between the inner and outer
areas.

8. Summary and concluding remarks

A robust and efficient boundary element program for the detection of trapped modes in both bounded
and unbounded 2-D domains has been used to confirm and extend existing results for sound-hard circular
discs in both Neumann and Dirichlet waveguides with or without cavities.

An effective strategy, based on the combination of a decaying boundary condition and an estimate
of the radiation in the far field (ERI), was devised to locate genuine and nearly trapped modes and to
discard spurious modes which appear due to domain truncation. The ERI method is a useful measure of
the energy leak associated with nearly trapped modes which are of practical importance. The presence
of NTMs is in general an indication of nearby configurations which support a pure trapped mode.

Known results for two sound-hard discs of radius a in Neumann and Dirichlet guides were extended.
Embedded modes were found for discrete values of the distance between discs and any a 6 0.4 for
Neumann guides and a 6 0.3, for Dirichlet guides. The numerical scheme developed is also used to
investigate the related topic of nearly trapped modes.

Wall cavities of sufficient size were found to give rise to various numbers of trapped modes in
a predictable manner. It was found that a soft guide with a rectangular cavity has embedded modes
(π/2 < k < π) for discrete couples (h,w). In the parameter range 0 < h 6 6, 0 < 2w 6 6, seven trapped
modes were found. Notably, two different x-symmetric trapped modes, at two different frequencies,
were found for h = 2.2,2w = 5.8.

Ir was shown that cavities without corner singularities can give rise to trapped modes, by investigat-
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ing a Dirichlet guide with a smooth Gaussian lower boundary. Non-embedded trapped modes exist for
all such cavities above a certain size and their k-values vary continuously with the geometry. Embedded
modes in the next frequency range π/2 < k 6 π , exist only for discrete pairs (h,w). Undoubtedly more
embedded modes could be found if the number of geometric parameters defining the boundary were
increased.

Triangular cavities, in a Neumann guide, with 0 < h 6 6, 0 < 2w 6 6, were investigated and five
embedded modes were found. These results suggest that any large symmetric cavity in either a Dirichlet
or Neumann guide, would support embedded trapped modes, below the second cut-off, for specific
couples (h,w).

The complexity increases when there is both an inclusion and a cavity. A sound-hard disc on the
horizontal centreline of a guide with a rectangular cavity exhibits trapped modes for discrete triples
(a,h,w) in both Neumann and Dirchlet cases. It was established that discs of all radii (0 < a 6 1)
support trapped modes for many associated cavities. This contrasts with the case of a single disc in a
Dirichlet guide in the absence of a cavity, which has one trapped mode in the range π/2 < k < π , but
only if 0 < a < 0.67. The presence of the disc also extends the range of cavities which support trapped
modes, as in general thin or shallow cavities do not support embedded trapped modes. Thus the cavity
may be detected by the sudden appearance of a trapped mode as the disc moves down the channel. If
the geometry is constrained too much it is not always possible to find a trapped mode, so that for a
given rectangle (h,w), there may not exist a trapped mode irrespective of the disc’s size. As usual with
embedded modes, perturbing a geometric parameter formally destroys the trapped mode. However, for
this geometry many nearly trapped modes were found, some with low radiation, so that physically they
would be difficult to distinguish from genuine trapped modes.

Geometries without any (x,y) symmetry were also considered. As the disc is removed from the
cavity’s vertical symmetry line, any existing trapped mode is destroyed. No pure trapped modes were
discovered for asymmetric geometries, irrespective of the disc radius and cavity size. This does not
exclude the possibility that a trapped mode may exist for a specific set of values (a,h,w,xc,yc), but no
such geometry was found. If the disc is moved more than one wavelength away from the cavity, nearly
trapped modes, corresponding to the pure modes of either the isolated disc or cavity, appear. These
modes are localised around either the disc or the cavity, decaying away from the trapping feature and
perturbed near the cavity or disc, respectively. The frequencies are similar but not identical to those
corresponding to the pure trapped modes in the absence of cavity or disc.

In summary, for the cases we have studied, at least one symmetry line seemed necessary for genuine
trapped mode resonances (but see Nazarov (2013)). Increasing the number of trapping features, placed
with a degree of symmetry, leads to the appearance of new trapped modes. The addition of a new
geometric parameter to a problem which has one embedded trapped mode solution for a specific discrete
geometry, leads to the appearance of a continuum of trapped modes.

Applications of trapped mode studies fall into three broad categories: first, the situations where
trapped modes are undesirable. Embedded modes especially may be excited by travelling waves of the
same frequency by nonlinear processes leading to the accumulation of energy with destructive effects
on a structure. Examples are constructions supported by large arrays of standing columns (offshore
platforms, bridges and proposed designs for floating airports), long tunnels for high speed trains and
cavities in quantum waveguides, with application to particle accelerators Caspers & Scholz (1996).

The second category relates to obtaining information about structures which are not directly acces-
sible. Trapped modes are suitable for these applications due to their high localisation and the fact that
they are sensitive to environmental changes. A growing body of research is concerned with their use for
sensors and non-destructive testing. A fraction of the energy of a travelling wave excites the (nearly)
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trapped mode through mode conversion which then leaks out Cobelli et al. (2011). This leak appears
as a long-tailed ringing due to a high quality factor (Q) of the trapped mode Onoe (2007). Extensive
experiments have been conducted Onoe & Suzuki (2007) to assess the feasibility of remote excitation
of trapped energy modes in plates and pipes and its applications to sensors and non-destructive testing.

A third category is that of structures where high resonance at a narrow band of frequencies is desired.
For example achieving resonances with high-Q factors is essential in order to make the performance
of metamaterials more efficient. As recent theoretical analysis showed, high-Q resonances involving
trapped modes are possible in metamaterials. Fedotov et al. (2007) reported exceptionally narrow trans-
mission and reflection resonances in planar metamaterials. The appearance of the narrow resonances is
attributed to the excitation of, otherwise inaccessible, symmetric trapped modes.

The rich catalogue of results obtained leads us to conclude that even for systems where exact trapped
modes may be fairly rare occurrences, nearly trapped modes are widespread and of practical importance.
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A. Multiple modes for a disc and rectangular cavity in a Dirichlet guide



a = 0.2    

Mode No. h  w k  k/π Type 
0.2 - 1 2.0 1.2 3.05274 0.97172 Symmetric 

0.2 - 2 2.4 2.9 2.94200 0.93647 Symmetric 

0.2 - 3 2.7 1.7 2.83115 0.90118 Symmetric 

0.2 - 4 3.6 2.9 2.94046 0.93598 Symmetric 

0.2 - 5 3.7 3.6 2.83115 0.90118 Symmetric 

0.2 - 6 4.0 1.2 3.05436 0.97223 Symmetric 

0.2 - 7 4.0 3.5 2.71868 0.86538 Symmetric 

 

Mode No 0.2 - 1 Mode 0.2 - 6 

 

 
Mode No. 0.2 - 5 Mode No. 0.2 - 7 

 
 

 

  



a= 0.3    

Mode No. h  w  k k/π Type 
0.3 - 1 1.2 3.4 2.91233 0.92702 Symmetric 

0.3 - 2 1.6 4.0 2.64178 0.84090 Symmetric 

0.3 - 3 1.6 3.4 3.04218 0.96836 Antisymmetric 

0.3 - 4 1.8 1.3 2.98267 0.94941 Symmetric 

0.3 - 5 2.6 1.8 2.98330 0.94961 Symmetric 

0.3 - 6 2.2 3.4 2.99660 0.95385 Symmetric 

0.3 - 7 2.8 1.6 2.99660 0.95385 Symmetric 

0.3 - 8 2.8 3.2 3.07459 0.97867 Antisymmetric 

0.3 - 9 3 3.8 2.59016 0.82447 Symmetric 

0.3 - 10 3 3.6 2.96646 0.94425 Antisymmetric 

0.3 - 11 3.2 3.2 3.06215 0.97471 Symmetric 

0.3 - 12 3.2 4.2 3.01957 0.96116 Symmetric 

0.3 - 13 3.2 4 2.81968 0.89753 Antisymmetric 

0.3 - 14 3.2 4 3.02608 0.96323 Symmetric 

0.3 - 15 3.2 4.2 3.01957 0.96116 Symmetric 

0.3 - 16 3.2 5 2.69225 0.85697 Antisymmetric 

0.3 - 17 3.8 4.8 2.49856 0.79532 Antisymmetric 

0.3 - 18 4.2 1.6 2.98325 0.94960 Symmetric 

 
Mode No. 0.3 – 2 

 
Mode No. 0.3 – 3   

  

Mode No. 0.3 – 5 Mode No. 0.3 – 6 

 
 

Mode No 0.3 - 11 Mode No. 0.3 – 9 

 
 

  



a= 0.4   
Mode No. h w k k/π Type 

0.4 - 1 0.4 3.8 2.91181 0.92686 Antisymmetric 

0.4 - 2 0.6 4.2 2.72432 0.86718 Antisymmetric 

0.4 - 3 0.8 4.8 2.52567 0.80395 Antisymmetric 

0.4 - 4 1 3.6 3.09261 0.98441 Symmetric 

0.4 - 5 1.4 3 2.64636 0.84236 Symmetric 

0.4 - 6 1.4 4 2.75261 0.87618 Symmetric 

0.4 - 7 1.8 4 2.83507 0.90243 Antisymmetric 

0.4 - 8 2.2 3.6 2.99137 0.95218 Symmetric 

0.4 - 9 2.4 4.8 2.46092 0.78333 Antisymmetric 

0.4 - 10 3 3.8 2.91729 0.92860 Antisymmetric 

0.4 - 11 3 3.8 2.59755 0.82683 Symmetric 

0.4 - 12 3.2 1.4 2.98553 0.95033 Symmetric 

0.4 - 13 3.2 5 2.46796 0.78558 Symmetric 

0.4 - 14 3.2 5 2.69685 0.85843 Antisymmetric 

0.4 - 15 3.4 4 2.45937 0.78284 Symmetric 

0.4 - 16 3.4 3.8 2.93025 0.93273 Symmetric 

0.4 - 17 3.6 2.2 2.98549 0.95031 Symmetric 

0.4 - 18 3.8 2 2.95417 0.94034 Symmetric 

0.4 - 19 4 4 2.67420 0.85122 Symmetric 

0.4 - 20 4.4 4.2 2.53742 0.80769 Symmetric 

 
Mode No. 04 – 3 

 
Mode No. 0.4 – 4 

 
 

Mode No. 0.4 - 6 Mode No.  0.4 - 8 

 

 
Mode 0.4 – 10 Mode 0.4 - 11 

 

 



Mode No.0.4 – 16 Mode No.0.4 – 20 

 
 

  

a= 0.5   

Mode No. h w k k/π Type 

0.5 - 1 1.2 2 3.05683 0.97302 Symmetric 

0.5 - 2 1.6 4 2.91675 0.92843 Antisymmetric 

0.5 - 3 3.4 2.6 3.03562 0.96627 Symmetric 

0.5 - 4 3.6 4 2.45102 0.78018 Symmetric 

0.5 - 5 4 1.2 3.05626 0.97284 Symmetric 

0.5 - 6 4 1.6 3.06547 0.97577 Symmetric 

 
Mode No. 0.5 – 1 

 
Mode No. 0.5 - 2 

  
Mode No. 0.5 - 3 Mode No 0.5 – 4 

  

a= 0.6    

Mode No. h w k k/π Type 

0.6 - 1 1.8 1.2 3.13480 0.99784 Symmetric 

0.6 - 2 2.2 2.8 3.08010 0.98043 Symmetric 

0.6 - 3 2.2 4 2.54860 0.81124 Symmetric 

0.6 - 4 3.2 3.2 3.11298 0.99089 Symmetric 

0.6 - 5 3.2 3.6 2.70943 0.86244 Symmetric 

0.6 - 6 3.2 4 3.08229 0.98112 Symmetric 

0.6 - 7 3.4 2.2 3.116000 0.99185 Symmetric 



Mode 0.6 – 4 Mode No. 0.6 – 5 

 
 

a= 0.7    

Mode No. h w k k/π Type 

0.7 - 1 1.0 3 3.094245 0.98493 Symmetric 

0.7 - 2 1.2 5 3.072042 0.97786 Antisymmetric 

0.7 - 3 1.4 3.6 2.866064 0.91230 Symmetric 

0.7 - 4 1.4 4.4 2.969265 0.94515 Antisymmetric 

0.7 - 5 2.0 3 3.079549 0.98025 Symmetric 

0.7 - 6 2.0 3.2 3.011674 0.95865 Symmetric 

0.7 - 7 2.4 4.6 3.056370 0.97287 Antisymmetric 

0.7 - 8 2.8 2.9 3.135751 0.99814 Antisymmetric 

0.7 - 9 3.0 3.2 2.985512 0.95032 Symmetric 

0.7 - 10 3.0 4.4 2.284029 0.72703 Symmetric 

  
Mode No. 0.7 – 1 Mode 0.4 – 4 

 
 

Mode No. 0.7 - 6 Mode No. 0.7 – 7 

  

Mode 0.7 – 10  

 

 

  



a= 0.8   

Mode No   h  w k k/π Type 

0.8 - 1 0.8 1.2 3.006279 0.95693 Symmetric 

0.8 - 2 1.2 4.4 2.60853 0.83032 Symmetric 

0.8 - 3 1.4 5.8 2.90441 0.92450 Antisymmetric 

0.8 - 4 1.8 5.2 2.67329 0.85093 Antisymmetric 

0.8 - 5 2.8 2 3.00612 0.95688 Symmetric 

0.8 - 6 2.8 5.4 3.00583 0.95679 Symmetric 

0.8 - 7 3.0 4 2.48272 0.79027 Symmetric 

0.8 - 8 3.0 4 2.81717 0.89673 Symmetric 

 
Mode No. 0.8 – 1 

 
Mode No. 0.8 – 3 

  
Mode No. 0.8 – 5 Mode 0.8 – 6 

 

 

  

a= 0.9   

Mode No. h  w k k/π Type 

0.9 - 1 1.0 4.8 2.601422 0.82806 Symmetric 

0.9 - 2 1.4 5.8 2.889752 0.91984 Antisymmetric 

0.9 - 3 1.6 3.6 2.876110 0.91549 Symmetric 

0.9 - 4 1.6 5.6 2.160214 0.68762 Symmetric 

0.9 - 5 1.8 3.2 2.672035 0.85054 Symmetric 

0.9 - 6 1.8 4.6 2.367837 0.75371 Symmetric 

0.9 - 7 1.8 5 2.239986 0.71301 Symmetric 

0.9 - 8 1.8 5.6 2.085912 0.66397 Symmetric 

0.9 - 9 1.8 5.8 2.043547 0.65048 Symmetric 

0.9 - 10 2.8 4 2.878430 0.91623 Symmetric 

0.9 - 11 2.4 6 2.978324 0.94803 Antisymmetric 

 

 

 



Mode No. 0.9 – 3 Mode No. 0.9- 5 

 

 
Mode No. 0.9 - 8 Mode No. 0.8 - 9 

 
 

Mode No. 0.9 – 11  

 

 

  
 


