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Abstract Of central importance to the αBB algorithm is the calculation of
the α values that guarantee the convexity of the underestimator. Improve-
ment (reduction) of these values can result in tighter underestimators and
thus increase the performance of the algorithm. For instance, it was shown by
Wechsung et al. (J Glob Optim 58(3):429-438, 2014) that the emergence of the
cluster effect can depend on the magnitude of the α values. Motivated by this,
we present a refinement method that can improve (reduce) the magnitude of α
values given by the scaled Gerschgorin method and thus create tighter convex
underestimators for the αBB algorithm. We apply the new method and com-
pare it with the scaled Gerschgorin on randomly generated interval symmetric
matrices as well as interval Hessians taken from test functions. As a measure
of comparison, we use the maximal separation distance between the original
function and the underestimator. Based on the results obtained, we conclude
that the proposed refinement method can significantly reduce the maximal
separation distance when compared to the scaled Gerschgorin method. This
approach therefore has the potential to improve the performance of the αBB
algorithm.
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1 Introduction

The αBB algorithm [15,5,2,1] is a branch-and-bound algorithm which is based
on creating convex underestimators for general twice-continuously differen-
tiable (C2) functions. The tightness of the underestimator plays a key role in
the efficiency of the algorithm. In the αBB method, the underestimator of a
C2 term or function is obtained by adding an appropriate quadratic term to
the original expression. The validity of the underestimator depends on the cal-
culation of the so-called α values, which must be chosen appropriately in order
to ensure convexity. One must take care, however, not to be over-conservative
by selecting α values that are larger than needed as the smaller the α values
the tighter the underestimator is with respect to the original function.

A number of methods for the calculation of α values that are rigorously
valid, i.e., such that the underestimator is guaranteed to be convex, have been
presented in the literature [12,2,19,20]. It is usual, but not necessary, for a
trade-off between tightness of the underestimator and computational cost to
exist. With respect to this, a comparative study among different methods for
calculating α values for the original αBB underestimator as well as methods
that employ different underestimators [2,20,4,3,16,14] has been presented by
Guzman et al. [9].

One important aspect of the choice of α values is with respect to the so-
called cluster problem [8]. The cluster problem describes the situation where
a branch-and-bound algorithm creates a large number of unfathomed boxes
around a solution because it creates nodes much faster than it fathoms. This
effect is of course dependent on the quality of the underestimator and can
significantly impact the performance of the algorithm. As shown by Wechsung
et al. [21], improving the α values can be critical with respect to the cluster
effect during execution of the αBB algorithm.

Motivated by the above observations, we introduce a “refinement” algo-
rithm, based on Haynsworth’s theorem [11,6], to improve the α values given
by the scaled Gerschgorin method [2]. Although the algorithm can be applied
to improve the α values given by any of the methods used in the original αBB
method (see [2]) we choose the scaled Gerschgorin method because it usually
gives good (i.e., comparatively small) α values, it is computationally cheap
and the use of a different α value for each variable (non-uniform shift) allows
for more flexibility than other (uniform shift) methods.

In order to test the algorithm on a number of randomly generated (sym-
metric) interval matrices and interval Hessians generated from test functions,
we use the maximum separation distance as a measure of tightness between
an αBB underestimator and the original function.

In Section 2 we begin by briefly presenting the αBB underestimator for
general C2 functions and the scaled Gerschgorin method for calculating α
values for the underestimator. In Section 3 we state Haynsworth’s theorem
which is the basis of our new method. In Section 4 we present the refinement
algorithm. We begin with an example to help the reader understand how we
use Haynsworth’s theorem for our purpose. We then give a pseudocode form of
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the algorithm and close the section with another example where we apply the
refinement algorithm. In Sections 5 and 6 we present the results of comparing
the scaled Gerschgorin method and the refinement method. In Section 5 we
present results from randomly generated symmetric interval matrices while in
Section 6 we report results from Hessian matrices taken from test functions.
Finally, we conclude in Section 7.

In what follows we will assume that the reader has some basic knowledge
of the αBB algorithm and is familiar with interval arithmetic and interval
matrices (see [10] for an introduction to interval analysis). We will denote
single intervals using lower case letters inside square brackets, for example
[x] = [x, x] and interval matrices with capital letters inside square brackets,
for example [M ].

2 The αBB underestimator and the scaled Gerschgorin method

Given a general nonlinear function, f ∈ C2, a convex underestimator, F (x) =

f(x)+q(x), of f over a given hyper-rectangular domainX =
[
[x1, x1]...[xn, xn]

]T
is constructed within the αBB algorithm [15,5,2,1], where

q(x) =

n∑
i=1

αi(xi − xi)(xi − xi), αi ≥ 0, i = 1, ..., n. (1)

Note that q(x) ≤ 0, ∀x ∈ X and thus F (x) is indeed an underestimator
of f(x) over that domain. The α values have to be determined so as to en-
sure F is convex. This is accomplished with the use of the interval Hessian
matrix, [Hf ], over the hyper-rectangular domain of interest. The interval Hes-
sian matrix [Hf ] is obtained by constructing the matrix Hf (x) of second-order

derivatives of f and deriving an interval enclosure
[
hij , hij

]
for each element

hij(x) over the domain X. In the scaled Gerschgorin method, [2] the α values
are calculated as

αi = max

0,−1

2

hii −∑
j 6=i

max{|hij |, |hij |}
kj
ki

 , i = 1, ..., n (2)

with ki, i = 1, ..., n, being positive integers. A useful feature of the αBB
underestimator is that the maximum separation distance between f(x) and
the underestimator F (x) over X is explicitly given by

max
x∈X

D(x) = max
x∈X

(f(x)− F (x)) =

n∑
i=1

αi

(xi − xi)2

4
. (3)

We can see from Eq. (3) that even if the α values were not to improve as we
subdivide the domain, the maximum separation distance would nevertheless
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improve quadratically. This is an important feature of the αBB underestimator
which relates to the cluster problem [8].

A theoretical analysis of the cluster problem was first carried out in [8]. This
analysis showed that the relaxations in a branch-and-bound algorithm must
have at least second-order convergence to “avoid” the cluster problem. In a
later paper [21], it was shown that the pre-factor of the convergence order also
plays a crucial role. For the αBB algorithm, the pre-factor corresponds to the
α values. Therefore, an improvement on these values could have a significant
effect on the performance of the αBB algorithm.

As is evident from Eq. (3) we would like to make the α values as small
as possible while ensuring that the Hessian of F (x), HF (x) = Hf (x) + D
where D is the diagonal matrix with diagonal entries di = 2αi, is positive
semi-definite over the area of interest. With the help of Haynsworth’s theorem
[11,6], introduced in the next section, we can improve (reduce) the α values
obtained by the scaled Gerschgorin method.

3 Haynsworth’s theorem

The inertia of a symmetric matrix is defined as follows:

Definition 3.1 (Inertia of a symmetric scalar matrix) Given a symmet-
ric matrix M , the inertia of M , In(M), is the triplet (π(M), ν(M), δ(M)) of
the numbers of positive, negative and zero eigenvalues of M respectively.

We now state Haynsworth’s theorem which is the basis of the refinement
method.

Theorem 3.2 (Haynsworth [11]) Given a symmetric matrix M partitioned

in the form M =

[
A B
BT C

]
, and assuming A is non-singular, then In(M) =

In(A) + In(C −BTA−1B).

Theorem 3.2 can be used recursively for the complete calculation of the
inertia of a scalar matrix ([7]) and therefore for revealing whether the matrix
is positive semi-definite or not. This can be accomplished by choosing A to
be a single diagonal entry, noting its sign, then calculating the Schur comple-
ment, C − BTA−1B and repeating the process on this newly formed matrix.
Assume for example that for a given n × n symmetric matrix M , we repeat
this procedure n times and find

In(M) = In(A1) + ...+ In(An−1) + In(An), (4)

with Ai > 0 for i = 1, ..., n − 1 and An ≥ 0 where Ai is the entry m
(i)
11 of

the i-th Schur complement, Mi, with M1 being the initial matrix M . Then by
Theorem 3.2 we conclude that the matrix M is positive semi-definite.
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For scalar matrices we can always proceed to calculate the complete inertia
even if at some step there is no non-zero diagonal entry that can be chosen
(see [7] for details). An extension of the recursive use of Theorem 3.2 for the
calculation of the inertia of symmetric interval matrices has been presented
in [18]. In this work, however, we are not interested in calculating the inertia
but rather guaranteeing semi-definiteness. In a similar manner, we can extend
the recursive procedure for determining the positive semi-definiteness of scalar
matrices to the case of interval matrices.

For example consider a symmetric interval matrix [M ]. We follow the same
procedure as in the scalar case but use interval arithmetic for the calculation
of each subsequent (interval) Schur complement. Assume we find

In([M ]) = In([A1]) + ...+ In([An−1]) + In([An]), (5)

with [Ai] =
[
m

(i)
11 ,m

(i)
11

]
being strictly positive intervals for i = 1, ..., n− 1

and m
(n)
11 ≥ 0.

It is straightforward to show, based on Theroem 3.2, that this implies the
positive semi-definiteness of the interval matrix [M ] (i.e. all the symmetric
scalar matrices contained in [M ] are positive semi-definite). Nevertheless, for
the purpose of completeness, we state this in Proposition 3.3, followed by the
proof.

Proposition 3.3 Given a symmetric interval matrix [M ], if [Ai] are strictly
positive intervals for i = 1, ..., n− 1 and [An] is a non-negative interval, then
[M ] is positive semi-definite.

Proof First, we note that when we calculate an interval Schur complement,
[C]−[B]T [A]−1[B], an overestimation takes place. That is, [C]−[B]T [A]−1[B] ⊇
{C − BTA−1B : C ∈ [C], B ∈ [B] and A ∈ [A]}. It is therefore clear that, for
any symmetric matrix M ∈ [M ] we have Ai ∈ [Ai], for i = 1, ..., n and thus M
is positive semi-definite and therefore [M ] is positive semi-definite.

In the next section we begin with an example of how this can be used to
calculate smaller α values and to help the reader understand how we utilize
Theorem 3.2.

4 The refinement algorithm

Consider a 3-dimensional function f : B ⊂ R3. We want to construct the αBB
underestimator over an area X ⊆ B. After calculation of the interval Hessian
[Hf ] over X and calculation of the α values using Eq. (2) we consider the
convex underestimator F (x) = f(x) + q(x) with its Hessian,

[HF ] =

[h′11] [h12] [h13]
[h21] [h′22] [h23]
[h31] [h32] [h′33]

 , (6)



6 Dimitrios Nerantzis, Claire S. Adjiman

where [hij ] =
[

∂2f
∂xi∂xj

|x=X

]
is calculated using interval arithmetic and

[h′ii] = [hii] +di where di = 2αi with αi calculated using Eq. (2) for i = 1, 2, 3.
Now assume that after applying Haynsworth’s theorem recursively on [HF ] we
find:

at step 1,

[
m

(1)
11 ,m

(1)
11

]
= [h′11] > 0, (7)

at step 2,

[
m

(2)
11 ,m

(2)
11

]
= [h′22]− [h12]2

[h′11]
> 0 (8)

and finally at step 3,

[
m

(3)
11 ,m

(3)
11

]
= [h′33]− [h13]2

[h′11]
−

(
[h23]− [h12]

[h23]

)2
(

[h′22]− [h12]2

[h′11]

) ≥ 0. (9)

Notice that the left-hand sides of inequalities (7), (8), (9) are the (inter-

val) entries [m
(i)
11 ], i = 1, 2, 3 of each subsequent (interval) Schur complement

starting with matrix [HF ]. In the above scenario, based on Proposistion 3.3,
we would know that the interval matrix is positive semi-definite.

We focus on one specific output of these calculations, m
(3)
11 . In the case

shown here, since the original matrix [HF ] is used without any pivoting, m
(3)
11

is linked to the third variable x3 and is therefore denoted by r3. Notice that if
r3 is positive we can reduce [h′33] (i.e. reduce d3) by any value in [0,min{r3, d3}]
without affecting inequalities (7) and (8), thus maintaining the positive semi-
definiteness of the interval Hessian [HF ]. We refer to the value r3 (or ri in
the general case) as the residual. After we reduce [h′33] by a certain value we
can interchange the second and third rows and columns of the new matrix
and repeat the same process. Since the last row and column of the matrix
now correspond to variable x2, the residual is denoted by r2 and is used to
reduce [h′22], if possible. Similarly we can calculate r1 and reduce [h′11]. We
give a pseudocode of the refinement method in Algorithm 1. Note that the
input of the algorithm is the interval Hessian, [HF ] = [Hf ] + D, of the αBB
underestimator with di = 2αi calculated by Eq. (2). However, as mentioned
in the Introduction, the input matrix can be the interval Hessian of the un-
derestimator where the α values have been calculated with any other method.
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Algorithm 1 Refinement algorithm (O(n4))

1: Inputs: n × n interval Hessian, [HF ], of the αBB underestimator, the diagonal shift
matrix, D, where di = 2αi.

2: Initialize mi = 0 for i = 1, ..., n.
3: for i = 0, 1, ..., n− 1 do
4: If i > 0, interchange rows n− i, n and columns n− i, n of [HF ].
5: Calculate residual rn−i of [HF ]. If rn−i ≤ 0 (or if at any step during calculation of

rn−i the result is ≤ 0 ) stop and exit the loop.
6: Reduce the diagonal entry [h′n−i,n−i] of [HF ] by a value mn−i ∈ [0,min{rn−i, dn−i}].
7: end for
8: The new α values are α′i = (di −mi)/2, i = 1, ..., n.

Note that if Algorithm 1 terminates for some iteration k at step 5, any
improvements obtained up to that point (mn, ...,mn−(k−1)) to the α values,
αn, ..., αn−(k−1), are still valid. The rest of the values, mn−k, ...,m1, are still
zero from the initialization at step 2. Thus, the new α values given at step 8
are valid.

The question arises of how to choose a value formn−i ∈ [0,min{rn−i, dn−i}]
at step 5 of Algorithm 1. At the first iteration we can choosemn = min{rn, dn}.
However, it might be wiser to “spread” the reduction to all the diagonal ele-
ments (if possible). We consider three approaches:

Shared: mn−i = min

{
rn−i
n− i

, dn−i

}
, i = 0, 1, ..., n− 1 (10)

Extra-weighted: mn−i = min

{
rn−i
n− i

+ wn−i

(
rn−i −

rn−i
n− i

)
, dn−i

}
,

where wn−i =
dn−i∑n
j=1 dj

and i = 0, 1, ..., n− 1

(11)

Weighted: mn−i =


min

{
dn−i∑n−i
j=1 dj

rn−i, dn−i

}
, i = 0, 1, ..., n− 2

0, if d1 = 0 and i = n− 1

r1, otherwise

(12)

In the Shared option, the current reduction is equal to the current residual
divided by the number of remaining diagonal entries to be reduced. In the
Extra-weighted option the current reduction has the same value as in the
Shared option plus a weighted portion (wn−i) of what remains if we subtract
this value from the residual. In the Weighted option the reduction value is a
portion of the current residual which is given by to the ratio of dn−i over the
sum of the remaining dj values to be reduced.
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Let us now give an example of the refinement algorithm so that it may
become clearer to the reader. We will use the Shared reduction option for this
example. Consider the 3× 3 (symmetric) interval matrix:

[Hf ] =

 −5 [3, 4] [6, 7]
[3, 4] −2 [5, 6]
[6, 7] [5, 6] −4

 . (13)

The fact that the diagonal elements of the example matrix are scalar bears
no significance. In fact, in practice, only the lower bounds of the diagonal
elements need to be considered (see Lemma 1 in [13]). Calculating the α values
using Eq. (2) (with ki = 1, for i = 1, 2, 3) we find, α1 = 8, α2 = 6, α3 = 8.5.
The hypothetical interval Hessian is:

[HF ] =

 11 [3, 4] [6, 7]
[3, 4] 10 [5, 6]
[6, 7] [5, 6] 13

 . (14)

Performing calculations (7)-(9) on [HF ] we find, at step 1:
[
m

(1)
11 ,m

(1)
11

]
=

[11, 11] = 11, at step 2:
[
m

(2)
11 ,m

(2)
11

]
= [8.54, 9.18] and at step 3:

[
m

(3)
11 ,m

(3)
11

]
=

[6.31, 9.18]. Therefore r3 = 6.31 and we now reduce the entry h33 of [HF ] by
m3 = r3/3 = 2.1 and interchange rows and columns 2,3 resulting in the matrix,

[H ′F ] =

 11 [6, 7] [3, 4]
[6, 7] 10.9 [5, 6]
[3, 4] [5, 6] 10

 . (15)

Again, using (7)-(9) we find
[
m

(1)
11 ,m

(1)
11

]
= 11,

[
m

(2)
11 ,m

(2)
11

]
= [6.43, 7.62]

and
[
m

(3)
11 ,m

(3)
11

]
= [5.58, 8.39] respectively. Thus now m2 = r2/2 = 2.79 and

the new matrix is

[H ′′F ] =

7.21 [5, 6] [3, 4]
[5, 6] 10.9 [6, 7]
[3, 4] [6, 7] 11

 . (16)

Performing the same calculations once more we find
[
m

(1)
11 ,m

(1)
11

]
= 7.21,[

m
(2)
11 ,m

(2)
11

]
= [5.89, 742],

[
m

(3)
11 ,m

(3)
11

]
= [4.67, 8.79] and so finally m1 = r1 =

4.67. The reduced α values are: α′1 = α1 −m1/2 = 5.665, α′2 = α2 −m2/2 =
4.605 and α′3 = α3 −m3/2 = 7.45.

Although we cannot calculate actual minima in this case, since our ex-
ample matrix was not derived from a specific function, we can measure the
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improvement obtained with the reduced values, α′i, using Eq. (3). More specif-
ically, we can set (xi − xi)2 = 1, i = 1, 2, ..., n and consider the percentage of
improvement with respect to the (hypothetical) maximal separation distance,

I = 100

(
1−

n∑
i=1

α′i

/ n∑
i=1

αi

)
%. (17)

The value of I can vary from 0% (no reduction at all in the α values),
up to 100% (the initial matrix is identified as positive semi-definite). For our
example we have I = 21.2%, meaning that (by this measure) the refinement
led to a 21.2% reduction in the maximal separation distance.

Note that we could simply apply the recursive procedure given in Eq. (5)
on the initial Hessian matrix to determine whether it is positive semi-definite.
This concept was proposed in [17]. In this work, however, we are interested in
reducing the α values and not identifying whether the initial interval Hessian
is positive semi-definite or not.

5 Results on random symmetric interval matrices.

In this section we present results from the application of the refinement algo-
rithm on randomly generated symmetric interval matrices. We have generated
four groups of one thousand random matrices each with dimension 3, 4, 5
and 7 respectively and with the intervals in each matrix varying in [−10, 10].
The lower bound, hij = hji, of each non-diagonal entry is chosen randomly

(uniform distribution) from [−10, 10] and then the upper bound, hij = hji, is
chosen from [hij , 10]. The diagonal (scalar) entries are again chosen randomly

from the interval [−10, 10] (as mentioned earlier, in practice we do not need
to consider interval diagonal entries). For each matrix in each group we apply
Algorithm 1 with all three different reduction options (Eq. (10)-(12)) and we
calculate the percentage improvement (reduction) in the maximum separation
distance, I, given by Eq. (17). For each group of matrices we plot three his-
tograms of the I values obtained after applying the refinement algorithm with
each reduction option respectively in Figures 1-4. Furthermore, in Table 1 we
give the mean values attained by I for each reduction option in each group of
random matrices.

Notice that cases where the α values, calculated by the scaled Gerschgorin
method, were all zero, have been filtered out from the results of both this and
the next section. In practice, for such cases, there is no need for underestima-
tion as the problem is already convex over the domain of interest.

We can make the following observations. First, as the matrix dimension in-
creases the mean I values improve (increase) for all cases. Second, the Shared
(10) and Extra-weighted (11) options perform significantly better than the
Weighted option (12) in all four cases while the Extra-Weighted option per-
forms slightly better than the Shared option. For a more detailed analysis of the
performance of the Shared and Extra-weighted options, we plot a histogram
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(Figure 5) of the values I2 − I1, where I1 and I2 are the values for the Shared
method (Figure 4a) and the Extra-Weighted method (Figure 4b) respectively.
As can be seen, the majority of cases in Figure 5 are positive. Therefore, we
can conclude that the Extra-weighted option might be preferable overall.

6 Results on random interval Hessian matrices.

In this section we present results from the application of the refinement al-
gorithm on symmetric interval Hessian matrices calculated over random sub-
domains of the following three test functions:

Griewank:

f(x) = 1 +

n∑
i=1

x2i
4000

−
n∏

i=1

cos(xi/
√
i), n = 4, x ∈ [−5, 5]4. (18)

Levy:

f(x) = sin2(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2, (19)

yi = 1 + (xi − 1)/4, n = 5, x ∈ [−5, 5]5.

Himmelblau (extension to n dimensions):

f(x) =

n∑
i<j

[
(x2i + xj − 11)2 + (xi + x2j − 7)2

]
, n = 5, x ∈ [−5, 5]5. (20)

For each function we calculate three groups of one thousand Hessian ma-
trices each, over random hyper-rectangular domains with randomly chosen
centres and with sides of randomly varying length within (0, L) for a) L = 2,
b) L = 1 and c) L = 0.2. We then calculate the αi values using the scaled
Gerschgorin method (Eq. (2) ) with ki = xi−xi. Next we calculate the refined
α′i values using the Extra-weighted reduction option (Eq. (11) ) and we plot
a corresponding histogram of the values

I = 100

(
1−

∑n
i=1 α

′
i(xi − xi)2∑n

i=1 αi(xi − xi)2

)
%. (21)

The results are given in Figures 6-8. We also give the mean I value attained
for each test function for each value of L in Table 2.

As mentioned earlier, the results differ for each case since the Hessians
have a certain structure and entry values. In Figure 6 (Griewank) the refine-
ment method results in an improvement of approximately 14% regardless of
the value of L. In Figure 7 (Levy) we see that the refinement method is suc-
cessful only when L = 0.2 with average improvement of 11.5% percent. In
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Figure 8 (extended Himmelblau) the refinement algorithm performs well for
all cases with increasing improvement, 21.5%, 27.4% and 32.6% as the value
of L becomes smaller. Finally, in Figure 9 we compare once more the Shared
reduction option and the Extra-weighted reduction option by comparing the
I values (given by Eq. (21) ) obtained for the Griewank function when L = 2.
Again, the Extra-weighted option exhibits better performance.

7 Conclusions

We have presented a refinement method which we use in conjunction with the
scaled Gerschgorin method in order to improve (reduce) the α values needed for
the convex underestimator of the deterministic global optimization algorithm
αBB. However, the refinement method can be utilized with other available
methods for the calculation of the α values.

We have applied our algorithm on randomly generated symmetrical interval
matrices as well as interval Hessian matrices taken from test functions. In order
to compare the scaled Gerschgorin method and the refinement method we used
as a measure the maximal separation distance of the underestimator.

In the experiments with the randomly generated matrices we used four
groups of matrices with dimension 3, 4, 5 and 7 respectively and with each
group consisting of a thousand matrices. The results showed that the refine-
ment method improved the maximal separation distance by an average of
7.4%, 11.3%, 13.3% and 16.3% for each group respectively.

In the experiments with the interval Hessian matrices we used three test
functions: 4D-Griewank, 5D-Levy and a 5D-extension of the Himmelblau func-
tion. For each test function we calculated three groups of a thousand interval
Hessians each. The Hessians were calculated over randomly chosen hyper-
rectangular areas with sides of length (0, L) where L = 2, L = 1 and L = 0.2
for each group respectively. As it is natural, the results differ for each function.
For the Griewank function the results where similar regardless of the value of
L with an average improvement of approximately 14%. For the Levy func-
tion there was no significant improvement for L = 2 and L = 1. However for
L = 0.2 the improvement was 11.5%. Finally, for the extended Himmelblau
function we had 21.5%, 27.4% and 32.6% improvement for L = 2, L = 1 and
L = 0.2 respectively with many of cases having 100% improvement.

Furthermore, we have tested three different reduction options for step 5 of
the refinement algorithm and based on the results we have concluded that the
Extra-weighted option (11) performs the best.

From the above we conclude that the refinement method can result in a con-
siderable improvement with respect to the the maximal separation distance.
Despite the fact that this improvement comes at a (reasonable) computational
cost, the improvement in the α values can result in an overall reduction of com-
putational time, if nodes are fathomed at a higher rate during the execution
of the Branch-and-Bound algorithm. As future work, it remains to be seen
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whether the refinement method is cost-effective, when integrated for use into
the αBB algorithm.
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Fig. 1 Histogram of the I values (Eq. (17)) for the 1000 3 × 3 random matrices using a)
the Shared option (10), b) the Extra-weighted option (11) and c) the Weighted option (12).
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Fig. 2 Histogram of the I values (Eq. (17)) for the 1000 4 × 4 random matrices using a)
the Shared option (10), b) the Extra-weighted option (11) and c) the Weighted option (12).

0 20 40 60 80 100
I-value

20
40
60
80

100
120
140

O
cc

ur
re

nc
es

a)

0 20 40 60 80 100
I-value

20
40
60
80

100
120
140

O
cc

ur
re

nc
es

b)

0 20 40 60 80 100
I-value

20
40
60
80

100
120
140
160

O
cc

ur
re

nc
es

c)



Tighter αBB relaxations 17

Fig. 3 Histogram of the I values (Eq. (17)) for the 1000 5 × 5 random matrices using a)
the Shared option (10), b) the Extra-weighted option (11) and c) the Weighted option (12).
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Fig. 4 Histogram of the I values (Eq. (17)) for the 1000 7 × 7 random matrices using a)
the Shared option (10), b) the Extra-weighted option (11) and c) the Weighted option (12).



Tighter αBB relaxations 19

Fig. 5 Comparison of the Shared (10) and Extra-weighted (11) reduction options: histogram
of the values I2− I1, where I1 and I2 are the values for the Shared method (Figure 4a) and
the Extra-Weighted method (Figure 4b) respectively.
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Fig. 6 Histogram of the I values (Eq. (21)) for interval Hessians of the Griewank function
on randomly selected hyper-rectangular areas with a) L = 2, b) L = 1 and c) L = 0.2.
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Fig. 7 Histogram of the I values (Eq. (21)) for interval Hessians of the Levy function on
randomly selected hyper-rectangular areas with a) L = 2, b) L = 1 and c) L = 0.2.
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Fig. 8 Histogram of the I values (Eq. (21)) for interval Hessians of the extended Himmelblau
function on randomly selected hyper-rectangular areas with a) L = 2, b) L = 1 and c)
L = 0.2.
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Fig. 9 Comparison of the Shared (10) and Extra-weighted (11) reduction options on the
random Hessians corresponding to Figure 6 (Griewank, L = 2). Histogram of the values
I2 − I1, where I1 corresponds to the Shared option I values and I2 to the Extra-weighted
option I values.
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