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ABSTRACT 

Sustainable development in degraded landscapes in the humid tropics require 

effective soil and water management practices. Coupled hydrological-erosion models have 

been used to understand and predict the underlying processes at watershed scale and the effect 

of human interventions. One prominent tool is the parameter-efficient distributed (PED) 

model, which improves on other models by considering a saturation-excess runoff generation 

driving erosion and sediment transport in humid climates. This model has been widely 

applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with 

good success in estimating discharge and sediment concentrations. However, previous 

studies performed manual calibration of the involved parameters without reporting sensitivity 

analyses or assessing equifinality. The aim of this article is to provide a multi-objective global 

sensitivity analysis of the PED model using automatic random sampling implemented in the 

SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of 

model application and the outcomes used for its evaluation. Five of the 13 PED model 

parameters are insensitive for improving model performance. Additionally, associating 

behavioural parameter values with a clear physical meaning provides slightly better results 

and helps interpretation. Finally, good performance in one module does not translate directly 

into good performance in the other module. We interpret these results in terms of the 

represented hydrological and erosion processes and recommend field data to inform model 

calibration and validation, potentially improving land degradation understanding and 

prediction and supporting decision-making for soil and water conservation strategies in 

degraded humid landscapes. 
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1. INTRODUCTION 

In the Ethiopian Highlands, increasing population and associated rural development 

have intensified agriculture resulting in land degradation and hardpan formation at shallow 

depths (Tebebu et al., 2015; Tebebu et al., 2017). As a result, sediment concentrations have 

increased in rivers that feed important reservoirs (Zimale et al., 2017). To inform decision 

makers of the best management practices to counteract these effects, several studies have 

used coupled hydrological-erosion models, with the prominent case of the Parameter-

Efficient Distributed (PED) model (e.g., Tesemma et al (2010) Engda et al., 2011; Tilahun 

et al., 2013a; Tilahun et al., 2013b; Tilahun et al., 2015; Guzman et al., 2017a; Guzman et 

al., 2017b; Zimale et al., 2017; Zimale et al., 2018). The PED model was conceptualised and 

developed by Collick et al. (2009), Steenhuis et al. (2009), and Tesemma et al. (2010) to 

simulate rainfall-runoff processes in the sub-humid, semi-monsoonal climate of the 

Ethiopian Highlands, and later complemented with an erosion module by Tilahun et al. 

(2013a) and Tilahun et al. (2013b). The PED model improves over more complex models 

implemented in the area (e.g., Setegn et al., 2010; Easton et al., 2010) because it represents 

more accurately the process of saturation excess runoff characteristic of humid climates. In 

the Ethiopian Highlands, saturation excess runoff occurs in degraded hillslope areas and 

valley bottoms with a water table close to the land surface (Steenhuis et al., 2013; Tilahun et 

al., 2013a; Guzman et al., 2017a). 

Despite the attractive name, the PED model has up to nine parameters for the rainfall-

runoff module and four for the erosion module. This is similar to other conceptual models 

[e.g. GR4J (Perrin et al., 2003), TOPMODEL (Beven & Kirby, 1979), WEPP (Flanagan & 
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Nearing, 1995)], but many less than other physically based models [e.g. SWAT (Arnold et 

al., 2012), EUROSEM (Morgan et al., 1998), DYRIM (Wang et al., 2015; Shi et al., 2016)]. 

The HBV conceptual model, for instance, may use 15 or more parameters depending upon 

the application (Bergström & Forsman, 1973). One current limitation, however, is that 

studies implementing the PED model so far have relied on manual calibration and are very 

limited in reporting sensitivity or uncertainty analyses. The exception is the manual 

sensitivity analysis of the PED model in the Supplementary Material of Tilahun et al. 

(2013a). Based on this material, Guzman et al. (2017b) recognised that four of the nine 

parameters in the hydrological module are insensitive and highlighted that the relatively few 

adjustable parameters are one advantage of the model. The remaining parameters can be 

linked directly to observable processes at catchment scale and are thus less affected by 

equifinality issues (Beven, 2006). At the same time, Guzman et al. (2017b) recognised that 

it is difficult to determine input parameters a priori because they are defined at the catchment 

scale and not at the point scale at which measurements are made. Moreover, a sensitivity 

analysis of the erosion module parameters has been largely dismissed. 

To fill this methodological gap, we present a systematic and comprehensive 

sensitivity analysis of the PED model using the SAFE Toolbox implemented in MATLAB 

(Pianosi et al., 2015). This manuscript aims to answer three main questions with respect to 

model implementation in degraded humid landscapes: 

(Q1) does good performance in the hydrological module translate directly into good 

performance in the erosion module and vice versa? 
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(Q2) what are the most influential parameters in providing good performing model 

simulations? 

(Q3) what are the most influential parameters in the simulation of low, mean, and 

peak flows, and of mean and peak sediment concentrations? 

 The results of this analysis may improve the application of the PED model in the 

evaluation of the effects of landscape interventions in the hydrology and erosion processes 

of degraded watersheds, as well as provide a guide to evaluate the implementation of other 

coupled hydrological-erosion models. Ultimately, this can help inform decision makers more 

accurately about the implementation of soil and water management practices in degraded 

humid landscapes. 

 

2. METHODS 

2.1 Parameter-Efficient Distributed (PED) Model 

The PED model divides a watershed in three distinct lumped landscape units for the 

simulation of the hydrological response (Figure 1): (A1) lower areas that can saturate during 

the rainy season, (A2) degraded hillslopes that saturate promptly after a storm, and (A3) 

permeable hillslopes that allow subsurface infiltration. By applying a water balance between 

precipitation (P), potential evapotranspiration (EP), and soil moisture (St i), any excess over 

maximum soil storage capacity (Smax i) of areas A1 and A2 contributes surface runoff (qr1 and qr2) 

directly to streamflow. In the case of the permeable hillsides, any excess is transformed to 

recharge (qr3) to a baseflow linear reservoir (BSt) with maximum storage BSmax and mean 

residence time t1/2. Excess over BSmax percolates (q*
r3) to an interflow zero-order reservoir (ISt) 
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with mean duration τ*. Baseflow (qb) and interflow (qi) are generated from their respective 

subsurface reservoirs and are added to total streamflow. 

The sum of the area fractions does not necessarily adds up to the entire catchment, as 

a fraction of the discharge may leave the watershed in the form of deep regional flow without 

being accounted for (e.g., Tilahun et al., 2013a; Tilahun et al., 2015; Zimale et al., 2018). In 

this implementation, when the automatic sampling of the input space (subsection 2.2) yields 

combinations of area fractions whose sum exceeds 1, values are then normalised. This is 

equivalent to reducing one parameter in the calibration procedure but will introduce 

parameter interaction that needs to be accounted for. In addition, in the manual calibration of 

the model, the initial three root soil moistures and baseflow storage (at t=0) need to be 

defined a priori, which would imply adding 4 extra parameters to the calibration. Generally, 

daily time step continuous models are calibrated for at least 8 years (Yapo et al., 1996), and 

the first year is discarded as warmup period. Here, due to the long 8-month dry phase, the 

moisture in the root profile is always depleted to the same low moisture content at the 

beginning of the rain phase and independent of the initial values chosen if the first 90 time 

steps (days) are discarded  as a warmup period. Although the baseflow storage may need a 

longer warmup period, it will affect only the first year of the simulations by the start of the 

first rainy season. 

An erosion module is coupled to the outputs of the hydrological module to calculate 

sediment concentrations in the stream at daily scale (Figure 1). In this module, erosion is 

generated from the two runoff source areas –the periodically saturated bottom lands (A1) and 

the degraded soils on the hillsides (A2)– by rills that form in the newly plowed lands. Initially, 



 

9 
 

when the rills are just formed, sediment transport is the highest and the concentration is 

determined by the transport limit of the water carrying the sediment. Hairsine & Rose 

(1992a), Hairsine & Rose (1992b), Ciesiolka et al. (1995), Tilahun et al. (2013a), and Tilahun 

et al. (2013b) have shown that the sediment load at the transport limit is proportional to the 

unit flux, q, to the 1.4 power (e.g., at q1.4), where at is a coefficient of transport limiting 

conditions. Once the rills are formed, the sediment concentration is dependent on the delivery 

of soil from the interrill area and the sediment load can be expressed as as q1.4, where as is a 

coefficient of source limiting conditions. A function H, which ranges from 0 to 1 and is 

determined a priori, is used to express the proportion of land in the watershed with active rill 

formation. Originally, H was developed as a step function by Tilahun et al. (2013b), and then 

simplified to a curve by Guzman et al. (2017b). 

The concentration of sediment, C [g l-1], in the river is obtained by dividing the 

sediment yield by the total predicted discharge (including baseflow and interflow) from the 

hydrological module. The final form is the one shown in Equation 1: 

 

   (1) 

 

where the four soil-related parameters (a) are coefficients where the subscripts indicate the 

saturated (1) and degraded (2) areas, for transport limiting (t) and source limiting (s) 

conditions. Feasible ranges for these parameters have been determined in previous modelling 

exercises performed by Tilahun et al. (2013a), Tilahun et al. (2013b), and Guzman et al. 

(2017b), where an extended description of the module can be also found. 
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2.2. Model evaluation and sensitivity analysis 

 The SAFE Toolbox implements several established Global Sensitivity Analysis 

(GSA) methods to support the development and assessment of environmental models 

(Pianosi et al., 2015). The 3 basic steps of GSA in SAFE, with the criteria implemented in 

this article, are: 

 1. Sampling input space: We created a matrix X of N randomly sampled input 

combinations, each made up of M parameter components. Here, M=9 for the hydrological 

module (Table I) and M=4 for the erosion module (Table II). We sampled N=10000 

parameter combinations from uniform distributions within feasible ranges using Latin 

Hypercube Sampling (McKay et al., 1979). The automatic sampling covers the entire 

parameter space with different degrees of density depending on the number of samples. The 

advantage of using a Latin Hypercube Sampling algorithm is to avoid repeating parameter 

combinations by using a memory of previously sampled parameters when sampling the next 

set. Since this is a random exercise, although each run of the automatic sampling will provide 

different specific results, the overall statistics and global performance will remain consistent. 

Increasing the number of samples beyond 10000 would likely increase the probability of 

finding a better performing set compared to a smaller number, but this comes at a computing 

cost that does not correlate optimally to the overall improvement in model performance. 

For the erosion module, we tested the premise that a model not only needs to perform 

well, but it needs to do so for the right reasons. Therefore, we first identified Nbeh behavioural 

parameter sets from the hydrological module as explained below, approximately accounting 
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for 1% of the original N random sets. Then, we sampled Ne≈N/Nbeh independent random sets 

of erosion parameters and combined them with the behavioural hydrological parameter sets, 

resulting again in approximately 10000 different combinations effectively assimilated in the 

erosion module. We compared this to a completely random selection of N combinations of 

the 13 parameters involved in the entire PED model. This comparison aims to answer the 

question of whether optimising the erosion module independently will provide behavioural 

results for the hydrological module as well (Q1). 

2. Model evaluation: We computed a matrix Y of model output samples given the 

inputs from X. The outputs of the PED model include simulated discharge, flow components, 

soil moisture status, and sediment concentration. Model outputs are also the objective 

functions used to evaluate model simulations. We used a multi-objective evaluation (Gupta 

et al., 1998) consisting of the Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), 

Percent Bias (PBIAS) (Gupta et al., 1999) and the Kling–Gupta Efficiency (KGE) (Gupta et 

al., 2009). They are defined, respectively, as: 
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   (4) 

 

where Yt are the observed (obs) or simulated (sim) variables (e.g., flow or sediment 

concentration) at time t; μ and σ are their correspondent mean and standard deviation, 

respectively; and, r is the correlation coefficient between simulated and observed values. In 

order to frame the multi-objective optimisation as a minimisation exercise, NSE and KGE 

were subtracted from 1 whereas PBIAS was converted to absolute values to place the 

theoretical optimum at zero for all metrics. 

Model calibrations that optimise the NSE alone have two problems: (1) the simulated 

flow variability will be systematically underestimated; and, (2) the bias component has a low 

weight when the observed flow variability is high. Therefore, the addition of PBIAS is to 

address the flow variability and give more representation to low flow errors. In addition, 

Gupta et al. (2009) presented a decomposition of the NSE criterion expressed in terms of 

three components: linear correlation, bias, and variability of flow. KGE aims to optimise 

these three components simultaneously, although it may yield lower NSE values. 

Moriasi et al. (2007) recommend judging parameter sets as satisfactory if NSE>0.50, 

and if PBIAS<±25% for streamflow or PBIAS<±55% for sediment modelling. In our 

implementation, behavioural thresholds for the three criteria were defined from the top 5% 

performing parameter sets. This approach results in better, more exigent values than the 

recommendation keeping approximately only the top 1% parameter combinations (Figure 

2). The ‘best set’ overall was selected as the one which performs simultaneously well for all 
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metrics. This is achieved by identifying the minimum Euclidian distance from the theoretical 

optimum (zero) in a 3-dimensional space, which is expressed as: 

 

  (5) 

  

where MultiObji is the multi-objective function for parameter combination i. Instead of 

assigning distinct weights to each individual objective function (NSEi, PBIASi, and KGEi), 

these were ranked and normalised by the worst and best values obtained from the N parameter 

combinations. As shown for example for PBIAS in Equation 6, this means that effectively 

the best performing set is assigned a normalised objective function value of 0, while the worst 

performing set is assigned a normalised objective function value of 1. 

  

   (6) 
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Tilahun et al., 2013a; Tilahun et al., 2013b; Guzman et al., 2017b). 

3. Sensitivity analysis: We obtained a matrix S of sensitivity analysis outputs from 

the model inputs X and outputs Y. The sensitivity of each parameter was assessed applying 

multio-bjective regional sensitivity analysis (RSA) (Spear & Hornberger, 1980; Sieber & 

Uhlenbrook, 2005) and the moment-independent PAWN method (Pianosi & Wagener, 2015; 
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Pianosi & Wagener, 2018). For both methods, we assessed the robustness of the sensitivity 

indices by bootstrapping (Efron, 1979; Efron & Tibshirani, 1993) using 100 resamples, which 

approximates the uncertainty in the calculation of S when subgroups of parameter 

combinations are used iteratively in the calculations. 

The RSA approach splits the parameter population into two datasets (behavioural and 

non-behavioural) depending on whether the associated sample i in matrix Y is better than the 

threshold defined for the evaluated objective function j: 

 

    (7) 

 

The method then assesses the difference between the cumulative density functions 

(CDFs) of behavioural (ybeh Y) and non-behavioural (ynon-beh Y) sets by a suitable measure [e.g., 

maximum vertical distance (mvd) or area between curves (spread), (Pianosi et al., 2015)]. 

The mvd for input parameter xi X is calculated using the Kolmogorov-Smirnov statistic 

(Kolmogorov, 1933; Smirnov, 1939) as: 

  

   (8) 

  

The larger the sensitivity index (mvd or spread) of an input parameter, the higher the 

sensitivity to that parameter. However, in contrast to spread, mvd is an absolute measure, i.e. 

it has meaningful value per se, regardless of the units of measures of X and Y (Pianosi et al., 

2015). By definition, mvd ranges from 0 to 1; if equal to 0, then the two CDFs are exactly the 

( ),i jY threshold j<

Î Î

Î

( ) ( )| |( ) max
i beh i non beh

i
i x y i x y ix

mvd x CDF x CDF x
-

= -



 

15 
 

same; if equal to 1, then the two CDFs are ‘mutually exclusive’ (the same value is given 

probability 0 by one CDF and 1 by the other); the higher the mvd is, the higher the sensitivity 

to that parameter is (Pianosi et al., 2015). 

The PAWN method also uses CDFs for sensitivity analysis but differently than RSA. 

RSA focuses on how input distributions vary when conditioning the output, for instance, 

using thresholds for objective functions (Equation 7). In contrast, PAWN focuses on how 

the output distribution varies when conditioning an input, i.e., when removing the uncertainty 

around the input (Pianosi & Wagener, 2015). Whereas RSA quantifies differences in the 

CDFs of the inputs (model parameters) using Equation 8, PAWN uses differences in the 

CDFs of the output (flow and sediment simulations, or performance metrics) using Equation 

9: 

  

   (9) 

 

where KS is the Kolmogorov-Smirnov statistic, CDFy(y) is the unconditional CDF of output 

y Y when all inputs vary simultaneously, and CDFy|xi(y) is the conditional CDF obtained 

when all inputs but xi vary. As KS would depend on the fixed nominal value of xi, Pianosi & 

Wagener (2015) and Pianosi & Wagener (2018) recommend using a statistic (e.g., median or 

maximum) of KS over all possible values of xi to derive the pawn sensitivity index: 
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In this numerical implementation of PAWN, the maximum was used as the statistic 

to define the pawn sensitivity index. Equations 9 and 10 were approximated using the 

generic sampling approach developed by Pianosi & Wagener (2018), splitting the range of 

variation of each input parameter xi into n=10 equally spaced intervals, and thus using 

parameter samples of size N/n for building the unconditional and conditional CDFs. The 

impact of these approximation errors is inferred by using a dummy parameter that, in 

principle, should not affect the output variability (Zadeh et al., 2017). The value of the 

dummy pawn sensitivity index is used to put all other pawn sensitivity results into context 

(Pianosi & Wagener, 2018). By definition, pawn ranges from 0 to 1; the lower pawn is, the 

less influential the evaluated parameter is; if equal to 0, then the parameter has no influence 

on the output (Pianosi & Wagener, 2015). In addition, if pawn is significantly larger than the 

dummy sensitivity, then the parameter is indeed influential; if equal or even smaller than the 

dummy sensitivity, then the parameter is potentially uninfluential (Pianosi & Wagener, 

2018). 

To identify which parameters are the most influential in generating behavioural (good 

performing) model simulations (Q2), we used RSA with the three performance metrics (NSE, 

PBIAS, and KGE) and PAWN with the multi-objective function (MultiObj) as the model 

output Y. More interestingly, we used PAWN to identify which parameters are the most 

influential in the simulation of different flow magnitudes (minimum, mean, and maximum) 

and sediment concentrations (mean and maximum) (Q3). 

 

2.3. Application study site and available data 
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We used data from the Anjeni watershed in the Ethiopian Highlands covering the 

period between 01/01/1990 to 31/12/1993. These data were originally collected by the Soil 

Conservation Research Programme (SCRP) and made available through the Amhara 

Regional Agricultural Research Institute (ARARI). The Anjeni watershed has more than 70% 

of the area under cultivation (Legesse, 2009). The catchment has an area of 1.13 km2, with 

elevations between 2405 and 2507 m above sea level and receives an average of 1690 mm of 

rainfall (Tilahun et al., 2013b). The watershed is characterised by a mixture of deep soils and 

shallow soils with a hard pan. Soil and water conservation structures were installed in 1985. 

They consisted of a trench and the removed soil was placed uphill to form an embankment 

(Bosshart, 1995). Terraces were formed by deposition of soil uphill of the embankment. 

For more details on the Anjeni watershed and the available data, the reader is referred 

to Liu et al. (2008), Engda et al. (2011), Tilahun et al. (2013a), Tilahun et al. (2013b). 

Guzman et al. (2013), and Guzman et al. (2017b). We focus this article in the evaluation of 

the sensitivity of the different PED model parameters and the relation between model 

structure and observable and measurable processes in the field, a procedure that can be 

applied similarly to other models, catchments, and datasets. 

 

2.4. Code availability 

The code for the Parameter-Efficient Distributed (PED) model and for the sensitivity 

analysis workflow using the SAFE toolbox are in the form of freely available MATLAB 

scripts in a GitHub repository (Ochoa-Tocachi, 2018). 
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3. RESULTS 

3.1. (Q1) does good performance in the hydrological module translate directly into good 

performance in the erosion module and vice versa? 

When applying automatic sampling of parameter sets for the hydrological module, 

the top 5% performing sets for each criteria resulted in thresholds of 0.76, ±3.23%, and 0.84 

for NSE, PBIAS, and KGE, respectively (Table III). Behavioural sets are those whose 

performance is better than these thresholds simultaneously, which resulted in approximately 

1% (105) of the 10000 sampled parameter sets in a single run (Figure 2a). The best NSE 

obtained was 0.83 (with corresponding PBIAS=10.42% and KGE=0.82), the best PBIAS was 

-0.0089% (with NSE=0.72 and KGE=0.79), and the best KGE was 0.91 (with NSE=0.82 and 

PBIAS=-2.29%). Although all these values are considerably better than the minima 

recommended in the literature (Moriasi et al., 2007), this also evidences that different 

combinations of parameters can yield acceptable performances. This issue, known as 

equifinality (Beven, 2006), hinders the identification of a single global optimum set. The 

‘best set’, as defined using Equation 5, resulted in NSE=0.81, PBIAS=-0.04%, and 

KGE=0.90 (Table I). 

Results are more modest for the erosion module. When using behavioural sets from 

the hydrological module combined with random sampled erosion parameters, only 0.77% 

(78) of the 10080 combinations were behavioural. This resulted in thresholds of 0.58, 

±4.50%, and 0.72 for NSE, PBIAS, and KGE, respectively (Table III). The best NSE obtained 

was 0.69 (with PBIAS=-2.30% and KGE=0.80), the best PBIAS was 0.0027% (with 

NSE=0.55 and KGE=0.67), and the best KGE was 0.80 (with NSE=0.66 and PBIAS=-3.87%). 
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Again, although any of these values can still be judged as excellent, they do not necessarily 

belong to a single set and, therefore, they might not be better than the defined thresholds 

simultaneously (Figure 2b). For this case, and particularly for this exercise run, the ‘best set’ 

in the erosion module coincided with the one that provided the best NSE (Table II). 

Behavioural sets in the hydrological module are not directly associated to good performance 

in the erosion module, as evidenced by the high dispersion in Figure 2b. Similarly, as seen 

in Table II, values of the four erosion parameters are the most different, which suggests that 

erosion module performance is not as dependent on the input parameters from the 

hydrological module as it is on its own erosion parameter values. 

Interestingly, the evaluation of the erosion module using completely random 

combinations of the 13 PED model parameters performs similarly well (Figure 2c). 

Thresholds resulted in 0.57, ±5.58%, and 0.71 for NSE, PBIAS, and KGE, respectively, with 

0.91% of the 10000 combinations being behavioural (Table III). The best NSE obtained was 

0.67, the best PBIAS was -0.0130%, and the best KGE was 0.81. The ‘best set’ yielded 

NSE=0.64, PBIAS=-0.86%, and KGE=0.81 (Table II). These numbers are similar to those 

obtained using behavioural hydrological sets, which indicates that the erosion module is 

insensitive to the hydrological parameters, i.e., it is more sensitive to the rainfall amount than 

to the exact amount of overland flow. In contrast, the behavioural sets from the erosion 

module do not perform necessarily well when tested in the hydrological module (Figure 2d). 

Although some parameter sets fell within the performance thresholds recommended by 

Moriasi et al. (2007), none was behavioural according to the criteria derived from the global 

population. Behavioural erosion sets can yield hydrological module performances as poor as 
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NSE=-0.20, PBIAS=-65.14%, and KGE=-0.01 (Table III), indicating that good performance 

in one module does not necessarily translate to good performance in the other. This is 

especially true if one module uses only a subset (i.e., surface runoff from areas A1 and A2 in 

the erosion module) of the parameters of the other modules (i.e., interflow, baseflow, 

evapotranspiration, and surface runoff from areas A1 and A2 in the hydrological model). 

However, under the premise that a model not only needs to perform well but to do so for the 

right reasons, using behavioural sets from the hydrological module do provide slightly better 

performances in the erosion module, although this result is not statistically significant. 

  

3.2. (Q2) what are the most influential parameters in providing good performing model 

simulations? 

Equifinality is indeed present. Although the overall statistics (e.g., percentage of 

behavioural sets, best NSE, PBIAS, and KGE) remain similar when repeating the exercise 

with new random combinations, the actual absolute parameter values in the identified 

behavioural and best sets will differ each time. As expected, it is not possible from the 

discharge signal at the outlet of the watershed to identify a single combination of parameters 

that optimises all performance metrics at the same time (Figure 2), which is even more 

problematic having the two independent modules in the PED model. Seemingly similar 

parameter sets (e.g. Tilahun et al., 2013a; Tilahun et al., 2013b; Guzman et al., 2017b) can 

yield similarly good NSE values but very different PBIAS, whereas other much different 

parameter combinations (‘best sets’ from random sampling) can offer consistently good 

statistics (Tables I and II, and Figure 3). 
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Despite this lack of identifiability, the multi-objective RSA (evaluated using the 

combined thresholds of NSE, PBIAS, and KGE) reveals that behavioural sets might occur in 

specific regions of the parameter input space. Good performing hydrological simulations 

were sensitive to the portion of degraded and non-degraded hillside areas in the watershed 

(A2 and A3), the parameter that determines the relative amount of baseflow and interflow 

(BSmax), and the interflow mean duration (τ*) (Figure 4a). The four erosion parameters (at,1, at,2, 

as,1, and as,2) are the main control of the sediment concentration response, using either 

behavioural or completely random hydrological sets as input for the erosion module (Figures 

4a and 4b). In the latter case, the only hydrological parameter that has a strong influence in 

the erosion module performance is the maximum soil storage capacity of the degraded 

hillsides (Smax 2) and, in fact, the sediment transport limiting capacity (at,2) and the sediment 

source limiting capacity (as,2) of these degraded areas were the most influential (Figure 4b). 

Despite the high RSA uncertainty, it is thus possible from the nine parameters that present 

the highest sensitivity in the performance of the PED model to determine the degradation 

state of a watershed based on the discharge at the outlet, and to provide good estimations of 

discharge and sediment concentrations (e.g., Figure 3). The other four parameters of the PED 

model (A1, Smax 1, Smax 3, and t1/2) were insensitive and, therefore, unidentifiable. 

The PAWN sensitivity analysis suggests that, in fact, variations in particular model 

parameters are less influential in the overall PED model performance (evaluated using 

MultiObj) (Figures 4c and 4d). Again, the hydrological module outputs were mostly 

controlled by the portion of degraded and non-degraded hillside areas in the watershed (A2 

and A3), and to a lesser extent by the interflow mean duration (τ*). In contrast to RSA, PAWN 
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determined a much smaller influence of the baseflow reservoir capacity (BSmax) (Figure 4c). 

The sediment concentration outputs were much more sensitive to the erosion parameters, 

remarkably to the sediment transport and source limiting capacity of the degraded hillside 

areas (at,2 and as,2) and, to a lesser extent, to the fractional hillside areas (A2 and A3) that control 

both sediment yield and sediment concentration dilution (Figure 4d). 

 

3.3. (Q3) what are the most influential parameters in the simulation of low, mean, and 

peak flows, and of mean and peak sediment concentrations? 

 When model outputs are evaluated not in terms of model performance (an objective 

function metric) but in terms of actual model simulations (flow magnitudes and sediment 

concentrations), results are more remarkable. The PAWN sensitivity analysis shows that 

model parameters have different influence in the simulation of outcomes with a clear physical 

meaning. Peak flow simulation was mostly determined by the distribution of the three 

fractional saturated, degraded, and permeable areas (A1, A2, and A3), and the interflow mean 

duration (τ*), which controls how quickly water moves through the fast subsurface pathway 

(Figure 5a). Mean flow simulation, in contrast, was also controlled by the fractional areas, 

especially those of the degraded and permeable hillsides (A2 and A3), and their correspondent 

maximum soil moisture storage capacities (Smax 2, Smax 3) (Figure 5b). These parameters are the 

main control of the catchments’ water yield, whereas those involved in daily flow variability 

(BSmax, t1/2, and τ*) had no influence on mean flow simulation. Low flow simulation was 

insensitive to all but two parameters, namely, the parameter that controls the relative amount 

of baseflow (BSmax) and the residence time in the baseflow reservoir (t1/2) (Figure 5c). This is 
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consistent with the choice of the output (the minimum flow), as these two parameters 

represent the mechanism by which water leaving the catchment is delayed, while it is much 

less sensitive to the parameterisation of the soil moisture account and of the fast pathway (τ*). 

The simulation of peak sediment concentration was largely influenced by the four 

erosion parameters (at,1, at,2, as,1, and as,2) and insensitive to the hydrological parameters (Figure 

5d). This is sensible since model performance in the erosion module can be assessed only 

when sediment transport occurs, as including periods without sediment would overestimate 

model performance. However, in contrast to the performance analysis, the simulation of peak 

sediment concentration is insensitive to the maximum soil storage capacity of the degraded 

hillsides (Smax 2) and less sensitive to the hillside area fractions (A1 and A2). Nevertheless, the 

sediment transport limiting capacity (at,2) and the sediment source limiting capacity (as,2) of 

the degraded areas were still more influential than the erosion capacities of the saturated areas 

(at,1 and as,1) (Figure 5d). Lastly, the simulation of mean sediment concentration shows a 

sensitivity pattern quite similar to that of erosion module performance and, in contrast to peak 

sediment concentration sensitivity, area fractions controlling sediment yield (A1 and A2) and 

sediment concentration dilution (A3) gain more influence (Figure 5e). The inconclusion of 

some parameter sensitivity results in the context of the dummy sensitivity (Figures 4 and 5) 

indicates that uncertainty in individual parameters may easily contribute to total output 

uncertainty (Pianosi & Wagener, 2015; Pianosi & Wagener, 2018). 

  

4. DISCUSSION 

4.1. Interpretation of physical processes behind parameter sensitivity 
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Tilahun et al. (2013a) performed a manual sensitivity analysis of the PED model 

based on single parameter modifications of ±10%, ±20%, and ±30% from their optima and 

looking at changes in NSE. They also found that the distribution of the three fractional areas 

–saturated, degraded, and permeable (A1, A2, and A3)– are more sensitive than their 

correspondent water storage capacities (Smax i). They attributed such sensitivity to errors in 

closing the water balance when area fractions are modified. In addition, their higher 

sensitivities may be determined by the different structure of the model for each landscape 

unit. A1 represents the fraction of the watershed that are in the valley bottom, A2 the hillsides 

with limited infiltration capacity through the hardpan (degraded areas), and A3 the remaining 

hillsides with percolation rates in excess of the daily rainfall intensities. 

We observed here that behavioural parameter combinations occur when fractional 

areas A1 and A2 are the smallest and A3 the largest, which could be attributed to the higher 

complexity of the model structure for A3 that provides more degrees of freedom for the daily 

flow simulation than for the annual water yield. Runoff generation in the PED model occurs 

immediately after rainfall exceeds soil storage in the portions of the watershed in the valley 

bottom (A1), and on the degraded hillside (A2), whereas percolation of the remaining hillside 

are routed through a linear reservoir (baseflow) and a zero-order reservoir (interflow). 

Therefore, when most of the simulated flows are contributed by A3, the more complex time 

series is more able to match the daily flow variability in the observed discharge, in contrast 

to the more rapid runoff response offered by A1 and A2 (Tesemma et al., 2010). Although this 

might suggest that a simpler model would perform similarly well, overland flow from A1 and 

A2 are an accurate and a preferred representation of the rapid runoff response that occurs in 
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the semi-humid Ethiopian Highlands (Collick et al. 2009; Steenhuis et al., 2009; Tesemma 

et al., 2010). 

The relative contribution of each fractional area in Table I should not be a surprise 

and could be a direct consequence of the monsoonal climate and specific watershed being 

simulated (i.e., Anjeni in this case). Field observations have shown that the saturated areas 

in the valley bottom are small in the Anjeni watershed (Guzman et al., 2017b), because of 

the deep incisions of the streams in the deep soil profile and the lack of a flat area near the 

stream, which produces little contributions to the outflow signal at the outlet. In other 

catchments where saturated areas are hydrologically more important, the sensitivity of 

parameter A1 might become greater (Zimale et al., 2018). Even here, the uncertainty 

associated to the sensitivity calculation of A1 was quite large (Figure 4a). As the fractional 

areas are the initial control of water yield and flow variability, these are highly influential 

parameters in the simulation of mean and peak flows (Figures 5a and 5b). 

A plausible explanation for the insensitivity of the three soil moisture capacity 

parameters (Smax i), is related to the fact that soils remain near full capacity during the frequent 

storms in the rainy season of the simulated watershed (Tilahun et al., 2013a). Indeed, Smax 1 and 

Smax 2 were always insensitive (Figures 4 and 5). The best hydrological performance was 

obtained when the permeable soil moisture capacity (Smax 3) was smaller. The maximum water 

storage parameters of the root zone are inconsequential during most of the year because the 

recharge and the overland flow are equal to the precipitation minus the evapotranspiration on 

the period prior to the last rain that filled up the soil. The actual evapotranspiration during 
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the rain phase is always close to the potential rate because the soil is always near the 

maximum storage value (Smax i). 

Only shortly after the dry phase the first few rainfalls are dependent on the soil storage 

variation. Therefore, the higher sensitivity of the degraded soil moisture capacity (Smax 2) when 

evaluating the erosion module performance (Figure 4b) can be linked to the early 

transportation of sediments during the first rains that form eroding rills in the newly plowed 

lands (Guzman et al., 2013). In fact, one would expect sediment transport to be determined 

essentially by how small or large the degraded soil moisture storage capacity is, i.e., how fast 

or slow the degraded soil saturates and runoff generation in the degraded hillsides starts. This 

signal is later lost in the overall runoff signal and the soil moisture capacity parameters 

become mostly insensitive. 

In contrast to Tilahun et al. (2013a), who found that the PED model was not greatly 

dependent on the subsurface flow parameters, we observe that maximum baseflow storage 

(BSmax) and interflow mean duration (τ*) were quite sensitive (Figure 4a). This was due to the 

nature of the watershed with flow stopping within 24 hour of the rain event. Behavioural sets 

tended to present rather small values of these parameters with respect to their entire sampling 

range. This implies that the relatively large amount of water infiltrated in the permeable 

hillsides fills the baseflow reservoir quickly, and any excess above its storage capacity 

generates percolation to the interflow reservoir leaving the catchment more rapidly. Lower 

volumes in the linear reservoir also represent smaller baseflow amounts, which will then be 

less important than interflow in the contribution to total flows. We coincide with Tilahun et 
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al. (2013a), nonetheless, in that the residence time of the baseflow reservoir (t1/2) is less 

sensitive when evaluating model performance and thus unidentifiable. 

The subsurface reservoirs are more influential in the simulation of different flow 

magnitudes. Peak flow simulation was highly sensitive to variations in τ*, which controls 

water movement through the fast subsurface pathway (Figure 5a), whereas minimum flow 

simulation was highly sensitive to BSmax and t1/2, which represent the mechanism by which 

water is delayed through the slow subsurface pathway (Figure 5c). The higher sensitivity of 

the baseflow reservoir capacity (BSmax) compared to that of the soil moisture storage capacities 

(Smax i) may be also related to the higher importance of the entire permeable hillside landscape 

unit (A3) in the PED model compared to the other fractional areas. 

Lastly, we observe that the four erosion parameters were highly sensitive, especially 

when using behavioural sets from the hydrological module as input to the erosion module 

(Figures 4a and 4c). The good performance of the erosion module was mostly influenced by 

the sediment transport limiting capacity (at,2) and the sediment source limiting capacity (as,2)  

in the degraded areas (Figure 4). The latter was also the case when analysing the sensitivity 

in the simulation of peak and mean sediment concentration (Figures 5d and 5e). In the 

watershed, when the first rains are forming rills, sediment transport is the greatest and the 

concentration is determined by the transport limit of the water carrying the sediment. Once 

the rills are established, the sediment concentration depends on the delivery of soil from the 

interrill area and is controlled by the source limiting conditions (Tilahun et al., 2013a; 

Tilahun et al., 2013b; Guzman et al., 2017b). Sensitivity in the erosion module is also linked 

to the fractional areas to which the erosion limiting conditions are connected to (Table II, 
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and Figures 4d and 5e), and to the area of permeable hillsides (A3) that control baseflow and 

interflow that ultimately dilute total sediment concentration in the stream. 

Tilahun et al. (2013a) did not interpret the sensitivity of the erosion parameters, partly 

because of the lower NSE efficiencies obtained for the erosion module compared to those of 

the hydrological module. However, so few parameters involved in the erosion module of the 

PED model do provide good estimations of sediment concentrations. Other models have a 

much poorer fit, even though they use many more parameters [e.g., SWAT (Arnold et al., 

2012), EUROSEM (Morgan et al., 1998), DYRIM (Wang et al., 2015; Shi et al., 2016)]. 

Other studies implementing the PED model for sediment concentration estimation need to 

consider the characteristics of their catchments. For instance, the depth of the soil to bedrock 

is quite large in the Anjeni watershed, whereas it might be shallower in other watersheds for 

which the PED model has been tested (Tilahun et al., 2015; Guzman et al., 2017a; Zimale et 

al., 2018). Future research might consider the application of a multi-basin sensitivity analysis 

of the PED model or even a multi-model evaluation. 

 

4.2. Potential ways to improve parameter identifiability and model performance 

There are several reasons for observing different sets of similar performing 

parameters. Besides those discussed before, two other possible explanations are: (1) there are 

strong interaction effects between the PED model parameters that the sensitivity analysis 

does not capture [see, e.g. Zadeh et al. (2017)] and (2) the objective functions are not diverse 

enough to identify all parameters. In fact, some parameters can be insensitive in providing 

good model performance when this is only informed by NSE. As shown in Figure 2, 
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parameter sets that yield good NSE values may be highly biased, thus adding PBIAS as a 

complementary performance metric provides more insights on the sensitivity and potential 

identifiability of the parameters. In the task of finding a global optimum set, Gupta et al. 

(2009) recommends the modeller to move from aggregated metrics towards the use of 

multiple measures of model performance, for instance, to reduce the simulation bias even at 

the expense of impairing the NSE (e.g., Figure 2). As shown by Hoang et al. (2017), a nearly 

unique set of parameters can be obtained in this way. It is worth highlighting that the 

manually calibrated optima from previous studies provide excellent performance, 

comparable to that of the best set from automatic random sampling (Figure 3). 

The issue of identifiability in rainfall-runoff modelling theory is also related to the 

correct understanding and selection of acceptable conceptual representations of the 

hydrological processes in the system (Beven, 2006). The PED model offers a process-based 

model structure whose conceptualisation is consistent with field observations and has proved 

useful in providing better understanding and predictions of the degree of landscape 

degradation and its effects on hydrological and erosion processes at different scales (Easton 

et al., 2010; Tilahun et al., 2013a; Tilahun et al., 2013b; Tilahun et al., 2015; Guzman et al., 

2017a; Guzman et al., 2017b; Zimale et al., 2018). In contrast to structural identifiability, the 

issue of parameter identifiability can be addressed by informing calibration with the use of 

complementary data. 

Guzman et al. (2017b) suggest that the problem of parameter identifiability can be 

addressed by fixing insensitive parameters in advance, which can be done, for example, by 

using auxiliary soil or groundwater data (Shin et al., 2015). These data, together with 



 

30 
 

geographical information and local knowledge, can be also used to constrain the extent of the 

different landscape units. In practical terms, it may be possible to fix the fractional areas to 

approximate their real spatial distribution in the watershed, and to avoid obtaining unrealistic 

areal values. This was done here by restricting the ranges from which the different area 

fractions were sampled. However, fixing sensitive parameters in advance compromises 

model calibration and may result in poor performances, irrespectively of the combination of 

the other parameters. In addition, the fractional area parameters represent the average of these 

areas throughout the watershed. While saturated and degraded areas might seem apparent, 

observations made above ground may not capture the transient dynamics over the season or 

over the years (Guzman et al., 2017b). For instance, reports from the Palouse (Eastern 

Washington) indicate that the distribution of the argillic layer/fragipan is erratic and 

consequently the perched water table dynamics are highly variable as well (O’Geen et al., 

2005). Research to map these areas using remote sensing and other methods is still ongoing 

work. 

In addition, advances in ecohydrological monitoring technologies, such as isotope 

tracing (e.g., McGuire & McDonnell, 2006; Klaus & McDonnell, 2013; Tekleab et al., 2014), 

can be used to quantify soil and groundwater storage volumes and to estimate transit times 

in different catchment components. This information may indeed be used to inform the 

quantification of soil moisture capacities and subsurface flow parameters, by fixing 

insensitive parameters or narrowing their feasible ranges substantially. However, in areas 

with extensive data scarcity, more fundamental data such as precipitation, 

evapotranspiration, or discharge, can account for a large proportion of the uncertainty in the 
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simulations than the uncertainty added by model structural error and parameter identifiability 

(Buytaert et al., 2014). Recent research by the authors is directed to improving the interflow 

component of the PED model calibrating the parameters using groundwater levels. 

 

4.3. Usefulness of modelling and sensitivity analyses for decision-making 

Understanding runoff and erosion processes will aid the placement of soil and water 

conservation practices. The model helps to determine what these processes are and thus has 

the potential to optimise the effectiveness of interventions. The sensitivity analysis shows 

that the fractional area of degraded soils determines the amount of overland flow and the 

amount of sediment leaving the watershed. Increasing the permeable hillside area is 

important, as this will decrease the sediment yield of a watershed. Therefore, using soil and 

water conservation practices that convert degraded areas into more permeable ones will 

decrease runoff generation and soil leaving the watershed. 

The (in)sensitivity of the soil moisture capacities shows that difference between 

saturated and degraded areas (A1 and A2) is less important than the sum of both areas. As the 

water storage in both soils will saturate during the rainy season, the model will likely provide 

good performances if they were combined. However, a clear distinction between the two 

areas can be useful to plan and intervene physically in the watershed. For example, installing 

infiltration furrows in saturated areas will enhance gully formation and erosive processes, 

while the same practice is beneficial on degraded lands. Practices that prevent rills from 

forming, initially, and sediment contributions from the interrill areas, later, will decrease 

sediment concentrations. In addition, replanting the most severely degraded areas and using 
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natural fertilizers to maintain more vegetation will greatly decrease sediment concentrations. 

The sensitivity analysis also shows indirectly that the permeable hillsides are not in need of 

soil and water conservation practices because these areas contribute zero sediment as 

demonstrated by the good fit of the erosion module. Although the sensitivity of the subsurface 

parameters is interesting, it does not have a practical significance as these parameters are 

determined by the geology of the landscape and are not influenced by interventions at the 

surface level. 

In addition to the work from Zegeye et al. (2010), Tebebu et al. (2010), as well as the 

Bahir Dar University program research, Nigussie et al. (2018) found a mismatch between 

planned design of soil and water conservation activities and actual processes occurring in the 

field. Since decision-making is often based on models –rather than on more personal and 

time-intensive participatory programs–, understanding how models represent the dominant 

patterns in the watersheds is key to providing design advice that is more likely to make 

improvements in the landscape; thereby being favourable for the community. 

 

5. CONCLUSIONS 

The PED model is a useful coupled hydrological-erosion tool that has proved 

convenient in modelling discharge and sediment concentrations in humid monsoonal 

climates. Studies that have implemented the PED model for discharge and sediment 

concentration estimation had dismissed the issue of equifinality, parameter identifiability, 

and uncertainty and sensitivity analyses. The contribution of this article is to present the 

application of a systematic and comprehensive global sensitivity analysis of the PED model 
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to answer several questions about model implementation and interpretation in degraded 

humid landscapes. 

We find that good performance in the hydrological module does not translate directly 

to good performance in the erosion module and vice versa. Nevertheless, good performing 

sets from the hydrological module, which are associated with a good physical representation 

of the watershed processes, yield slightly better results when input to the erosion module. 

Furthermore, parameters in the PED model have clear physical meaning, and therefore, can 

be associated to real physical processes and variables. We have identified which parameters 

are more important in the optimisation of the PED model performance and, more importantly, 

which of them are associated to different flow and sediment concentration outcomes. We 

have interpreted these results in terms of the underlying physical processes in the application 

watershed. 

The identification of model parameters can be complemented with new data sources 

such as spatially distributed soil moisture and groundwater levels or leveraging recent 

advances in tracer hydrology to estimate currently insensitive parameters. Nevertheless, even 

without these additional data and with a relatively small number of parameters, the PED 

model is able to estimate with outstanding accuracy the discharge and, more importantly, the 

sediment concentration, which is generally extremely difficult to predict. Sediment 

concentration simulation is highly sensitive to the extent and characteristics of degraded 

hillside areas and, therefore, can be useful to support decision-making on soil and water 

conservation practices. 
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For water and soil management purposes in data scarce regions, such as many tropical 

and humid mountainous environments, providing a group of parameter sets that reasonably 

agree could be more effective than finding a unique set of parameters. Improving the 

parameter set representativeness of the real system would provide relevant outputs that help 

understand and predict land degradation processes and watershed management impacts more 

effectively. Moreover, generating and improving the quality of more fundamental data may 

have a higher impact in reducing uncertainties for discharge and sediment concentration 

predictions than the selection of optimum sets in model calibration. 
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Tables: 

Table I. Parameter sets in the hydrological module, feasible ranges, manually calibrated ‘optima’, and ‘best set’ from automatic sampling. See main 

text and Figure 1 for the parameter and objective function names. 

Parameter Units Min Max Engda et al. 
(2012) 

Tilahun et al. 
(2013a, 2013b) 

Guzman et al. 
(2017b) 

Best behavioural 
hydrological set 

Best behavioural 
erosion set 

A1 % 0 20 0 2 2 14.09 0.49 
A2 % 5 40 20 14 10 7.29 11.25 
A3 % 20 80 60 50 47 40.08 68.53 
Smax 1 mm 50 250 - 200 200 219.45 192.78 
Smax 2 mm 5 150 150 10 10 132.53 20.41 
Smax 3 mm 50 300 250 100 65 52.69 68.18 
BSmax mm 50 200 70 100 100 75.30 89.93 

t1/2 day 20 100 70 70 75 84.63 33.20 
τ* day 1 50 20 10 10 11.16 25.20 

NSE -   0.68 0.80 0.82 0.81 0.64 
PBIAS ±%   -19.43 -8.64 1.13 -0.04 -34.58 
KGE -   0.70 0.87 0.87 0.90 0.60 

 

Table II. Parameter sets in the erosion module, feasible ranges, manually calibrated ‘optima’, and ‘best set’ from automatic random sampling. See 

main text for the parameter and objective function names. 

Parameter Units Min Max Tilahun et al. 
(2013a) 

Tilahun et al. 
(2013b) 

Guzman et al. 
(2017b) 

Best from 
behavioural 

hydrological sets 

Best from random 
hydrological sets 

at1 g L-1 (mm d-1)0.4 as1 15 0.2 4 6 6.25 11.53 
at2 g L-1 (mm d-1)0.4 as2 15 3.4 4 5 5.87 8.74 
as1 g L-1 (mm d-1)0.4 0 10 - 3 5.5 1.41 8.77 
as2 g L-1 (mm d-1)0.4 0 10 - 3 4.5 4.55 5.96 

NSE -   0.57 0.60 0.66 0.69 0.64 
PBIAS ±%   37.51 31.61 14.49 -2.30 -0.86 
KGE -   0.38 0.45 0.66 0.80 0.81 

 



 

2 
 

Table III. Range of objective function results for behavioural parameter sets in the hydrological and erosion modules of the PED model (Figure 2). 

Behavioural simulations are those that perform simultaneously better than thresholds defined as the 5% top results for the Nash-Sutcliffe Efficiency (NSE), 

Percent Bias (PBIAS), and the Kling–Gupta Efficiency (KGE). M2007 are the recommendations from Moriasi et al. (2007). 

Objective function Units Hydrological module 
with behavioural 
hydrological sets 

Erosion module with 
behavioural 

hydrological sets 

Erosion module with 
random hydrological 

sets 

Hydrological module 
with behavioural 

erosion sets 
M2007 threshold % 37.29 18.94 15.36 0.23 

5% threshold % 1.05 0.77 0.91 0.00 
NSE - 0.76 – 0.83 0.58 – 0.69 0.57 – 0.67 -0.20 – 0.81 

PBIAS ±% 0.0089 – 3.23 0.0027 – 4.50 0.0130 – 5.58 0.37 – 65.14 
KGE - 0.84 – 0.91 0.72 – 0.80 0.71 – 0.81 -0.01 – 0.88 

Figure 2 location - (a) (b) (c) (d) 
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Figure captions: 

 

Figure 1. Complete diagram of the Parameter-Efficient Distributed (PED) model. P is precipitation; 

EP is potential evapotranspiration; Q is discharge; and, C is sediment concentration. The hydrological module 

uses 9 parameters: Ai are area fractions of zone i, where i is 1 (saturated), 2 (degraded), and 3 (permeable); Smax,i 

are maximum water storage capacities of area i; BSmax is the maximum baseflow storage capacity; t1/2 (=ln(2)/α) 

is the time in days required to reduce the volume of the baseflow linear reservoir by a factor of 2 under no-

recharge conditions; and, τ* is the duration of the period for interflow to cease after percolation, controlled by a 

zero-order reservoir. The erosion module uses 4 parameters: at,i are coefficients for transport limiting conditions, 

and as,i are coefficients for source limiting conditions, where i is for areas A1 and A2. Parameter n and function H, 

which represents rill formation, are defined a priori. 
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Figure 2. Scatter plots of Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBIAS), for the entire 

population of parameter sets (grey), behavioural parameter sets (black), manual optima from the literature 

(black cross), and best performing sets for different criteria, including the Kling–Gupta Efficiency (KGE). 

Thresholds (dashed lines) are defined from the top 5% performance of the total population (inner limits) and 

from Moriasi et al. (2007) recommendations (outer limits). Behavioural simulations are those that perform 

simultaneously better than thresholds defined as the 5% top results of each objective function. Black circles in 

plots (a) and (b) represent behavioural hydrological sets which were subsequently input to the erosion module. 

Black squares in plot (c) represent behavioural erosion sets that were then mapped in the hydrological parameter 

set shown in plot (d). The larger occurrence of negative PBIAS indicates systematic model overestimation with 

respect to the observed values. 
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Figure 3. Section of the time series of rainfall, potential evapotranspiration, flow, and sediment 

concentration. The simulated time series were calculated using the parameter sets from Tables I and II. 
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Figure 4. Sensitivity indices of the parameters in the PED model for model performance. Plots (a) and 

(b) show sensitivity as the maximum vertical distance (mvd) index applying regional sensitivity analysis (RSA). 

Plots (c) and (d) show sensitivity following the PAWN method and using MuiltiObj (Equation 5) as the 

evaluated model output. In (a) and (c), performance for each module is evaluated independently. In (b) and (d), 

model performance is evaluated on the basis of the erosion module. Larger mvd and pawn, illustrated by bar 

height and darker grey shade, represent higher sensitivities. Uncertainty is represented by the vertical line on 
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top of each bar at the 95% confidence level. The bold black horizontal line depicts the dummy parameter result. 

See main text and Figure 1 for the parameter names. 

 

 

Figure 5. Sensitivity indices of the parameters in the PED model using the PAWN method. Evaluated 

model outputs are maximum flow (a), mean flow (b), and minimum flow (c) from the hydrological module, and 

maximum sediment concentration (d), and mean sediment concentration (e) from the erosion module. Larger 

pawn, illustrated by bar height and darker grey shade, represents higher sensitivity. Uncertainty is represented 
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by the vertical line on top of each bar at the 95% confidence level. The bold black horizontal line depicts the 

dummy parameter result. See main text and Figure 1 for the parameter names. 

 


