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1 Introduction

In this work, we are interested in an alternative way to perform LES using a numer-
ical substitute of a subgrid-scale model with a calibrationbased on physical inputs.
This approach can be seen as falling within Implicit LES (ILES) because it is based
on an artificial dissipation operator where the numerical error is the source of the
regularization. However, the purpose here is to control explicitly this error to enable
it to play the role of an explicit subgrid-scale model.

The most popular ILES are based on differentiation operators that introduce arti-
ficial dissipation in order to mimic the dissipative mechanisms of the subgrid-scales.
For this ILES family, the term “implicit” can be understood in the sense that the
actual equations to be solved are the Navier-Stokes equations without any extra ex-
plicit modelling as in a DNS. In practice, the numerical dissipation provided by
some specific schemes (typically upwind schemes) can act at small-scales in a man-
ner similar to an explicit subgrid-scale model. This favourable property, sometimes
referred to as the “convenient conspiracy”, does not hold systematically because
a scheme that provides an acceptable artificial dissipationat one spatial resolution
can become sub- or over-dissipative at another resolution.That is why some authors
have developed different versions of their schemes depending on their ILES resolu-
tion. The goal of the present study is to examine how this weakness can be overcome
through flexible and accurate numerics with physical inputs.
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2 General methodology and goal

Here, we present an ILES modelling where the artificial dissipation is introduced
by the molecular dissipation operator, namely the viscous term [5]. As for stan-
dard ILES, the source of artificial dissipation is the numerical error. However, an
originality of the approach is that it is based on high-ordercentred finite-difference
schemes for the computation of the second derivatives in theNavier-Stokes equa-
tions. Importantly, these schemes are implicit in space (they are often referred to
as “compact”, see [6] for a comprehensive presentation) thereby enabling flexibil-
ity for the control of their artificial dissipative features. It can be easily shown that
the use of a finite difference scheme with a modified square wavenumberk′′ that
overestimates its exact counterpartk2 is equivalent to the introduction of a spectral

viscosityνs(k) given byνs(k) = ν k′′(k)−k2

k2 whereν is the kinematic molecular vis-
cosity. The flexibility to shapek′′ makes it possible to prescribe any valueν0 to the
spectral viscosity at the cutoff wavenumberkc = π/∆x while at the same time con-
trolling the kernelνs(k)/ν0 (∆x is the mesh size). For instance, [5] have used this
flexibility to mimic the Spectral Vanishing Viscosity (SVV)or hyperviscous kernels
while ensuring high-order accuracy.

The first calculations based on this approach have been successful for DNS as
well as for LES. For the former, a moderate value ofν0 with a very selective kernel
concentrated nearkc is helpful to control spurious oscillations due to aliasing. For
the latter, after the successful calculation of a turbulentchannel flow by [5], [2]
have shown that this kind of implicit subgrid-modelling drastically improves the
prediction of heat transfer for an impinging jet flow compared to eddy viscosity
subgrid-scale closures such as the dynamic Smagorinsky or the WALE models.

Even if these first LES results are encouraging, the flexibility in the prescription
of νs(k) can also be seen as a drawback because of the arbitrariness introduced by
the need to chose bothν0 and the kernelνs(k)/ν0 appropriately case by case. The
aim of this study is therefore to provide ways to constrain this choice by appropriate
physical scaling of the numerical dissipation. To predict the value ofν0 required for
a given LES spatial resolution, we propose an approach basedon the solution of a
Pao-like equation. The method is validated on DNS and LES of the 3D Taylor-Green
vortex problem.

3 Pao-like solution

In the framework of homogeneous and isotropic turbulence, and assuming that a
spectral range exists where the energy spectrum is stationary1, the Lin equation
leads to

1 Note, however, that evidence has been accumulating over the past 8 years which shows that there
is no significant such range except perhaps in the directly viscous dissipation range, see [3] and
references therein, but the present work is only a starting point which will evolve accordingly
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T (k) = 2νk2E(k) (1)

whereE(k) is the kinetic energy spectrum whereasT (k) is the transfer term related
to the energy fluxΠ(k) by −dΠ(k)/dk = T (k). As in the Kolmogorov theory, this
flux can be assumed to depend only on the dissipationε and the wavenumberk.
Then, for dimensional reasons, equation (1) becomes

d
dk

(

1/Ckε1/3k5/3E(k)
)

+2νk2E(k) = 0 (2)

with the analytical solution

E(k) =Ckε2/3k−5/3exp
(

−3/2Ck (k/kη)
4/3

)

(3)

wherekη = ε1/4/ν3/4 is the Kolmogorov wavenumber (see [7] for more details).
As a tool to predict the spectrum that should be obtained by the present type

of LES, a similar approach can be used by replacingk2 on the right hand side of
equation (2) withk′′. Then, the resulting differential equation can be solved numer-
ically in a spectral range between a wavenumberks (below whichνs(k) is assumed
to vanish) and infinity. This computationally inexpensive solution can be done for
any value ofν0 leading to a set of Pao-like solutions.
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Fig. 1 Kinetic energyE(k) and dissipationk′′E(k) spectra obtained by solving the Pao-like equa-
tion from ν0/ν = 0 (reference Pao solution) toν0/ν = 48 by steps of 8.

To illustrate the behaviour of such Pao-like solutions, thecasekη/kc = 5 is con-
sidered with a SVV-like kernel (plotted in figure 2-left). First, it is interesting to
investigate how the increase ofν0/ν modifies the kinetic energy spectrum and its
related dissipation spectrum (including the numerical contribution). Six kinetic en-
ergy spectra are presented in figure 1-left. The reference spectrum corresponds to
the caseν0/ν = 0 for which the Pao spectrum (3) is virtually recovered. Then, ν0/ν
is increased by steps of 8 up to the value 48. Asν0/ν is increased, the overall range
of the predicted spectrum is reduced. For the highest valuesof ν0/ν , this reduction
corresponds to a strong fall at the cutoff wavenumberkc = 8ks considered for this ex-
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ample. The resulting low levels ofE(kc) suggest that the corresponding LES could
be done using a mesh such as∆x = π/kc. For instance, to have the same kinetic en-
ergy atkc as atkη for the reference DNS (for whichν0/ν = 0), a simple dichotomic
search provides the valueν0/ν = 42.37. Using the Pao-like solver, this dichotomic
search ensuringELES(kc) = EDNS(kη) can be performed extensively for any ratio
kη/kc. Figure 2-right presents the resulting behaviour for the range 1≤ kη/kc ≤ 30.
As expected, the Sharp SVV kernel (plotted in figure 2-left) requires to use signifi-
cantly higher values ofν0/ν (see figure 2-right).
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Fig. 2 Left: SVV-like and Sharp SVV kernels. Right: evolution ofν0/ν with kη/kc to ensure
ELES(kc) = EDNS(kη ) as predicted by the Pao-like solution.

The corresponding dissipation spectra (figure 1-right) clearly show how the use
of high-order numerical viscosity can concentrate an extra-dissipation nearkc in
order to compensate the lack of dissipation fork > kc (which could not be taken
into account using a discretization based on mesh size with∆x = π/kc).

4 DNS and LES results

The suitability of the present prediction ofν0/ν is examined by performing LES of
the 3D Taylor-Green vortex problem while using filtered DNS results as reference
for comparison (case “DNSf ”). Both DNS and LES are carried out using the high-
order flow solver “Incompact3d” which is based on sixth-order finite-difference
schemes [4]. For the sake of clarity, only the Reynolds number Re = 5000 is pre-
sented here. For this fairly high value, accurate DNS results can be obtained with
a regular Cartesian mesh of 12803 mesh odes on a triperiodic domain 2π3. For the
present calculations, using the symmetries of the problem,only the flow inside the
impermeable boxπ3 is explicitly calculated with a reduction of the computational
cost by a factor 8. Then, comparable LES are performed using 1603 mesh nodes with
kη/kc = 8 which represents a reduction of the computational cost by afactor of 4096
by comparison with DNS. The Pao-like solver provides the valuesν0/ν ≈ 95 and
232 for the SVV-like and Sharp SVV kernels respectively (seefigure 2-right).
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When these values are used in the present type of LES, satisfactory results are
obtained with a clear improvement compared to a calculationperformed at the same
spatial resolution but free from subgrid-scale modelling and artificial dissipation.
This improvement can be illustrated by considering the timeevolution of the kinetic
energyEk and its dissipationε =−dEk/dt (that includes the numerical contribution)
as presented in figure 3 (left). The filtered DNS data are obtained after the applica-
tion of the filterTf (k) =

√

ELES(k)/EDNS(k) in the Fourier space whereEDNS(k)
is the Pao kinetic energy spectrum whereasELES(k) is its Pao-like counterpart for
a given set ofν0 and kernelνs(k)/ν0. Here, for the sake of brevity, only the Sharp
SVV kernel is considered withν0/ν = 232.

The calculation free from extra dissipation, referred to as“LES no model” case,
means that a conventional compact finite difference scheme is used to compute the
viscous term. Interestingly, although this configuration is a priori sub-dissipative,
an over-dissipative behaviour seems to be observeda posteriori throughout the cal-
culation as shown in figure 3 (left). A close examination of the time evolution ofEk

andε reveals that in fact, the “LES no model” case is very slightlysub-dissipative
just a the beginning of the simulation. This lack of dissipation is responsible of a
pile-up of energy near the cutoff wave numberkc at the early transition. As a direct
consequence of this pile-up, the dissipation is overestimated despite the nature of
the numerical operator that is essentially sub-dissipative. At this coarse resolution,
this erroneous dissipation eventually overdampsEk for the rest of the calculation
without being able to suppress the spurious energy at small scale. This behaviour is
a very simple illustration of the contradictory conclusions that can be provided bya
priori anda posteriori analysis of the influence of any subgrid-scale model.
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Fig. 3 Left: time evolution of the kinetic energyEk and its dissipationε. Right: 1D spectraE(k, t)
at t = 24.

Then, when the second derivatives of the Navier-Stokes equations are computed
using an over-dissipative scheme with the level of numerical viscosity predicted
by the Pao-like solver (“LESν0/ν = 232” case), the agreement with the filtered
DNS is clearly improved as shown in figure 3 (left). Thea priori/a posteriori para-
dox is recovered in reverse, namely the extra dissipation isfound to slow down the
time decrease ofEk by comparison with the “LES no model” case while matching
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remarkably well the “DNSf ” data. This matching suggests that the artificial dissi-
pation provided by the choiceν0/ν = 232 is able to compensate consistently the
small-scale dissipation that is missed by the coarse discretization.

To better understand the role played by the artificial viscosity, it is insightful to
consider the time evolution of the kinetic energy spectrumE(k, t). For the “LES
no model”, from the start of the early transition until the end of the calculation, an
unrealistic pile-up of energy can be observed in the vicinity of the cutoff wave num-
berkc. This production of small-scale oscillations leads to veryunrealistic vortical
structures subjected to a spurious background noise in instantaneous visualisations
of, for instance, the enstrophy and theQ-criterion (not shown for reasons of space).
Conversely, the use of a calibrated numerical viscosity forthe “LES ν0/ν = 232”
case enables a strong decrease ofE(k, t) at k ≈ kc throughout the simulation. These
behaviours are illustrated in figure 3 (right) for spectra obtained att = 14, a time
for which the turbulence is fully developed. The spectral range where the artificial
dissipation is active can be easily guessed by comparison tothe non-filtered DNS
results. The resulting damping of the small-scale energy ensures the regularity of
the LES solution (free from spurious oscillations) as for its numerically converged
DNS counterpart computed at high resolution. This feature enables the development
of realistic vortices that compare very well, at least qualitatively, to those associated
with the filtered DNS results (not shown for reasons of space).

It can be noticed that the damping of the kinetic energy nearkc is stronger for the
“LES ν0/ν = 232” case compared to the “DNSf ” data. This discrepancy means that
the Pao-like solver cannot predict exactly the full dissipation as it is actually com-
puted in the LES. The assumption of turbulence in equilibrium to simplify the Lin
equation can be suspected to be responsible of this inability. Another reason could be
connected to the discretization errors in the convective terms that are not taken into
account. The improvement of the present Pao-like model is inprogress, in particular
by taking into account the pervasive non-equilibrium nature of the turbulence. The
potential benefit of non-vanishing spectral viscosity as inthe subgrid-scale model
of [1] is also under investigation.
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