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1 Introduction

In this work, we are interested in an alternative way to penfoES using a numer-
ical substitute of a subgrid-scale model with a calibratiased on physical inputs.
This approach can be seen as falling within Implicit LES @)Bbecause it is based
on an artificial dissipation operator where the numericedreis the source of the
regularization. However, the purpose here is to controlieiXly this error to enable
it to play the role of an explicit subgrid-scale model.

The most popular ILES are based on differentiation opesatat introduce arti-
ficial dissipation in order to mimic the dissipative meclsams of the subgrid-scales.
For this ILES family, the term “implicit” can be understood the sense that the
actual equations to be solved are the Navier-Stokes easatithout any extra ex-
plicit modelling as in a DNS. In practice, the numerical gission provided by
some specific schemes (typically upwind schemes) can actadk-scales in a man-
ner similar to an explicit subgrid-scale model. This fa\aile property, sometimes
referred to as the “convenient conspiracy”, does not hoktesyatically because
a scheme that provides an acceptable artificial dissipati@ame spatial resolution
can become sub- or over-dissipative at another resolufiwat is why some authors
have developed different versions of their schemes depgrati their ILES resolu-
tion. The goal of the present study is to examine how this wes& can be overcome
through flexible and accurate numerics with physical inputs

T. Dairay- E. Lamballais

Institute PPRIME, Department of Fluid Flow, Heat Transfer armmBustion. CNRS - Univer-
sitt de Poitiers ENSMA. &leport 2, Boulevard Marie et Pierre Curie, BP 30179, 86962 Fu-
turoscope Chasseneuil Cedex, France, e-rffiaitii c. | anbal | ai s, t hi baul t. dairay} @
uni v-poitiers.fr

S. Laizet: J.C. Vassilicos

Turbulence, Mixing and Flow Control Group, Department of dwautics, Imperial College
London, London SW7 2AZ, United Kingdom, e-ma{ls. | ai zet, j.c.vassilicos}@
i mperi al . ac. uk



2 T. Dairay, E. Lamballais, S. Laizet, and J.C. Vassilicos

2 General methodology and goal

Here, we present an ILES modelling where the artificial gstson is introduced
by the molecular dissipation operator, namely the visceusnt[5]. As for stan-
dard ILES, the source of artificial dissipation is the nurcarierror. However, an
originality of the approach is that it is based on high-orckmtred finite-difference
schemes for the computation of the second derivatives ifNthéer-Stokes equa-
tions. Importantly, these schemes are implicit in spacey(tére often referred to
as “compact”, see [6] for a comprehensive presentatiomebyeenabling flexibil-
ity for the control of their artificial dissipative featurds can be easily shown that
the use of a finite difference scheme with a modified squareemawberk” that
overestimates its exact counterpiris equivalent to the introduction of a spectral
viscosity vs(k) given byvs(k) = v%{"z wherev is the kinematic molecular vis-
cosity. The flexibility to shap&” makes it possible to prescribe any valugto the
spectral viscosity at the cutoff wavenumlbgr= 11/Ax while at the same time con-
trolling the kernelvs(k)/vo (Ax is the mesh size). For instance, [5] have used this
flexibility to mimic the Spectral Vanishing Viscosity (SV\y hyperviscous kernels
while ensuring high-order accuracy.

The first calculations based on this approach have beenssfatér DNS as
well as for LES. For the former, a moderate valuegfvith a very selective kernel
concentrated nedg is helpful to control spurious oscillations due to aliasikgr
the latter, after the successful calculation of a turbutdrannel flow by [5], [2]
have shown that this kind of implicit subgrid-modelling shiaally improves the
prediction of heat transfer for an impinging jet flow commhte eddy viscosity
subgrid-scale closures such as the dynamic Smagorinske MWALE models.

Even if these first LES results are encouraging, the flexyiti the prescription
of vs(k) can also be seen as a drawback because of the arbitraritresiioed by
the need to chose botly and the kerneis(k) /vy appropriately case by case. The
aim of this study is therefore to provide ways to constrais thoice by appropriate
physical scaling of the numerical dissipation. To predietvalue ofvg required for
a given LES spatial resolution, we propose an approach k@aséuk solution of a
Pao-like equation. The method is validated on DNS and LEBe8D Taylor-Green
vortex problem.

3 Pao-like solution

In the framework of homogeneous and isotropic turbulennd, assuming that a
spectral range exists where the energy spectrum is stagfortae Lin equation
leads to

1 Note, however, that evidence has been accumulating oveesi@years which shows that there
is no significant such range except perhaps in the directly usdissipation range, see [3] and
references therein, but the present work is only a startingt pdiich will evolve accordingly
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T(k) = 2vk?E (k) @)

whereE (k) is the kinetic energy spectrum wherélak) is the transfer term related
to the energy flux{1(k) by —dr7(k)/dk = T (k). As in the Kolmogorov theory, this
flux can be assumed to depend only on the dissipatiand the wavenumbek.
Then, for dimensional reasons, equation (1) becomes

4 (1/cksl/3k5/3E(k)) +2vkPE(K) = 0 @)
with the analytical solution
E(k) = Cie? 353 exp( —3/20i (k/ky ) ) 3

wherek,, = £%/4/v%/4 s the Kolmogorov wavenumber (see [7] for more details).

As a tool to predict the spectrum that should be obtained byptiesent type
of LES, a similar approach can be used by repladihgn the right hand side of
equation (2) witkk”. Then, the resulting differential equation can be solvetie
ically in a spectral range between a wavenuni@ébelow whichvs(k) is assumed
to vanish) and infinity. This computationally inexpensigdusion can be done for
any value ofvg leading to a set of Pao-like solutions.
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Fig. 1 Kinetic energyE (k) and dissipatiofk”E (k) spectra obtained by solving the Pao-like equa-
tion fromvg/v = 0 (reference Pao solution) tg/v = 48 by steps of 8.

To illustrate the behaviour of such Pao-like solutions,dasek,, /k. =5 is con-
sidered with a SVV-like kernel (plotted in figure 2-left).rf, it is interesting to
investigate how the increase uf/v modifies the kinetic energy spectrum and its
related dissipation spectrum (including the numericaltigoution). Six kinetic en-
ergy spectra are presented in figure 1-left. The refereneetrspn corresponds to
the casevp/v = 0 for which the Pao spectrum (3) is virtually recovered. Thepv
is increased by steps of 8 up to the value 48v4&v is increased, the overall range
of the predicted spectrum is reduced. For the highest valfieg/ v, this reduction
corresponds to a strong fall at the cutoff wavenuniger 8ks considered for this ex-
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ample. The resulting low levels & (k;) suggest that the corresponding LES could
be done using a mesh suchzs= 11/k;. For instance, to have the same kinetic en-
ergy atk; as atk, for the reference DNS (for whichy /v = 0), a simple dichotomic
search provides the valug/v = 42.37. Using the Pao-like solver, this dichotomic
search ensuring es(k:) = Epns(ky) can be performed extensively for any ratio
kn /K. Figure 2-right presents the resulting behaviour for tmgeal< k, /k; < 30.

As expected, the Sharp SVV kernel (plotted in figure 2-lefjuires to use signifi-
cantly higher values ofp/v (see figure 2-right).
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Fig. 2 Left: SVV-like and Sharp SVV kernels. Right: evolution u§/v with k; /k; to ensure
Ees(ke) = Epns(ky ) as predicted by the Pao-like solution.

The corresponding dissipation spectra (figure 1-rightrtyeshow how the use
of high-order numerical viscosity can concentrate an edisaipation neak; in
order to compensate the lack of dissipation Kas k; (which could not be taken
into account using a discretization based on mesh sizeAvite 17/kc).

4 DNSand LESresults

The suitability of the present prediction ef/v is examined by performing LES of
the 3D Taylor-Green vortex problem while using filtered DNSults as reference
for comparison (case “DNS). Both DNS and LES are carried out using the high-
order flow solver “Incompact3d” which is based on sixth-orfiaite-difference
schemes [4]. For the sake of clarity, only the Reynolds nuree= 5000 is pre-
sented here. For this fairly high value, accurate DNS reszdh be obtained with
a regular Cartesian mesh of 128@esh odes on a triperiodic domain® For the
present calculations, using the symmetries of the probteny, the flow inside the
impermeable boxt is explicitly calculated with a reduction of the computatid
cost by a factor 8. Then, comparable LES are performed ug@tyiesh nodes with
ky /ke = 8 which represents a reduction of the computational costfagtar of 4096
by comparison with DNS. The Pao-like solver provides thei@aby/v ~ 95 and
232 for the SVV-like and Sharp SVV kernels respectively (ogere 2-right).
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When these values are used in the present type of LES, s#tisfaesults are
obtained with a clear improvement compared to a calculgtéformed at the same
spatial resolution but free from subgrid-scale modelling artificial dissipation.
This improvement can be illustrated by considering the &vaution of the kinetic
energyEg and its dissipatios = —dEy/dt (thatincludes the numerical contribution)
as presented in figure 3 (left). The filtered DNS data are nbthafter the applica-
tion of the filter Ts (k) = \/ELes(K)/Epns(K) in the Fourier space wheiEyns(K)
is the Pao kinetic energy spectrum wher&ass(K) is its Pao-like counterpart for
a given set ofyy and kernelvs(k) /vo. Here, for the sake of brevity, only the Sharp
SVV kernel is considered withp /v = 232.

The calculation free from extra dissipation, referred t6LdsS no model” case,
means that a conventional compact finite difference schermsdd to compute the
viscous term. Interestingly, although this configuratism@ ipriori sub-dissipative,
an over-dissipative behaviour seems to be obseaymsteriori throughout the cal-
culation as shown in figure 3 (left). A close examination & time evolution oy
ande reveals that in fact, the “LES no model” case is very sligisifp-dissipative
just a the beginning of the simulation. This lack of dissipatis responsible of a
pile-up of energy near the cutoff wave numligat the early transition. As a direct
consequence of this pile-up, the dissipation is overestichdespite the nature of
the numerical operator that is essentially sub-dissipat\t this coarse resolution,
this erroneous dissipation eventually overdar&pgor the rest of the calculation
without being able to suppress the spurious energy at soa#.sThis behaviour is
a very simple illustration of the contradictory conclusdhat can be provided ky
priori anda posteriori analysis of the influence of any subgrid-scale model.
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Fig. 3 Left: time evolution of the kinetic enerdyi and its dissipatior. Right: 1D spectr& (k,t)
att = 24.

Then, when the second derivatives of the Navier-Stokestiemseare computed
using an over-dissipative scheme with the level of nhuméntsosity predicted
by the Pao-like solver (“LES)y/v = 232" case), the agreement with the filtered
DNS is clearly improved as shown in figure 3 (left). Taeriori/a posteriori para-
dox is recovered in reverse, namely the extra dissipatiéouisd to slow down the
time decrease dEy by comparison with the “LES no model” case while matching
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remarkably well the “DN$” data. This matching suggests that the artificial dissi-
pation provided by the choicey/v = 232 is able to compensate consistently the
small-scale dissipation that is missed by the coarse dizatien.

To better understand the role played by the artificial viggoi is insightful to
consider the time evolution of the kinetic energy specti(k,t). For the “LES
no model”, from the start of the early transition until thedeof the calculation, an
unrealistic pile-up of energy can be observed in the vigiaftthe cutoff wave num-
berk.. This production of small-scale oscillations leads to venyealistic vortical
structures subjected to a spurious background noise iaritesteous visualisations
of, for instance, the enstrophy and Qecriterion (not shown for reasons of space).
Conversely, the use of a calibrated numerical viscositgher‘LES vo/v = 232"
case enables a strong decreasE(@t) atk ~ k; throughout the simulation. These
behaviours are illustrated in figure 3 (right) for spectréagied att = 14, a time
for which the turbulence is fully developed. The spectralg@awhere the artificial
dissipation is active can be easily guessed by comparistimetoon-filtered DNS
results. The resulting damping of the small-scale energumes the regularity of
the LES solution (free from spurious oscillations) as ferrtimerically converged
DNS counterpart computed at high resolution. This featnebkes the development
of realistic vortices that compare very well, at least ga#iliely, to those associated
with the filtered DNS results (not shown for reasons of space)

It can be noticed that the damping of the kinetic energy kegmrstronger for the
“LES vp/v = 232" case compared to the “DNSdata. This discrepancy means that
the Pao-like solver cannot predict exactly the full dissgraas it is actually com-
puted in the LES. The assumption of turbulence in equiliorto simplify the Lin
equation can be suspected to be responsible of this inalifibther reason could be
connected to the discretization errors in the convectiradehat are not taken into
account. The improvement of the present Pao-like modelpsagress, in particular
by taking into account the pervasive non-equilibrium natofrthe turbulence. The
potential benefit of non-vanishing spectral viscosity athim subgrid-scale model
of [1] is also under investigation.
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