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Abstract

GPdoemd is an open-source python package for design of experiments for model dis-
crimination that uses Gaussian process surrogate models to approximate and maximise
the divergence between marginal predictive distributions of rival mechanistic models. GP-
doemd uses the divergence prediction to suggest a maximally informative next experiment.
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Explicit parametric mechanistic models are common in science and engineering, e.g. eco-
nomics (Black and Scholes, 1973), biology (Mehrian et al., 2018), and control theory (Bem-
porad et al., 2002). Researchers develop multiple rival mechanistic models, corresponding
to different hypotheses about underlying system mechanisms, but typically lack sufficient
data to discriminate between the models (Box and Hill, 1967; Buzzi-Ferraris and Forzatti,
1983). To discard inaccurate models, GPdoemd suggests gathering more data through ad-
ditional experiments. To minimise cost, e.g. money and time, GPdoemd designs optimal
new experiments, i.e. experiments yielding maximally informative results.

1. Background

GPdoemd assumes multiple rival mechanistic models fi, e.g. systems of ODEs, which take as
inputs some design variables x, e.g. temperature, pressure, flow rate, and model parameters
θi, e.g. chemical reaction rate. Typically, the model parameters θi are tuned to make the
model predictions fit the experimental data D. However, there will be model parameter
uncertainty, i.e. θi ∼ p(θi | D), which propagates through to uncertainty in the model
predictions. To account for the model parameter uncertainty, we approximate the models’
marginal predictive distributions

p(fi(x) | D) =

∫
p(fi(x) |θi)p(θi | D)dθi . (1)

The optimal next experiment x∗ is found by maximising a design utility function

x∗ = arg max
x

U {fi(x) | D ; i = 1, . . . ,M} , (2)

where U{·} is a divergence measure between the rival models’ marginal predictive distribu-
tions. The idea is to find the experiment x∗ for which the model predictions differ the most,
within the error margin imposed by the model parameter uncertainty and measurement
noise variance. Equation (2) is typically intractable, so the solution must be approximated.
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Typical methods for design of experiments for model discrimination can be divided into
two different approaches (Olofsson et al., 2018). First, the analytical approach, e.g. Box and
Hill (1967), Buzzi-Ferraris et al. (1990) and Michalik et al. (2010), assumes that the mecha-
nistic models are (approximately) linear in the model parameters, and the model parameter
posterior p(θi | D) is a multivariate Gaussian distribution. The analytical approach is com-
putationally efficient but requires gradient information that may not be readily available in
complex models or legacy code. The second approach is the data-driven, i.e. Monte Carlo-
based, approach, e.g. Vanlier et al. (2014) and Ryan et al. (2015), where samples are drawn
from the model parameter posterior in order to compute the optimal next experiment. No
gradient information is required, but the data-driven approach can be computationally very
expensive due to the number of samples required for large x and θi search spaces.

Olofsson et al. (2018) hybridise the analytical and data-driven approaches by training
Gaussian process (GP) surrogate models on sampled data and using the surrogate models in
an analytical fashion. The GPdoemd open-source software package implements this hybrid
approach. The hybrid approach computes p(fi(x) | D) = N (µ̆, Σ̆) by placing a GP prior
fi ∼ GP(0, kxkθ) on the original mechanistic models fi, assuming a Gaussian model param-
eter distribution θ | D ∼ N (θ∗,Σθ), and then using closed-form approximations to compute
the first two moments µ̆ and Σ̆ of (1). Design utility functions U{·} from classical literature,
which are closed-form for Gaussian distributions, find the optimal next experiment.

2. Implementation

GPdoemd, available from the GitHub repository https://github.com/cog-imperial/GPdoemd,
is a python package implementing the Olofsson et al. (2018) hybrid approach. It uses func-
tionality from the GPy (since 2012) python package for GP inference. The only other
dependencies are on the standard numpy (v1.7+) and scipy (v0.17+) packages. GPdoemd
is regularly tested for python v3.4 and up. On GitHub, we provide documentation for
installing and using GPdoemd via a PDF and Jupyter notebook demonstrations.

The modular toolbox, illustrated in Figure 1, offers a choice between different GP kernel
functions, inference methods, methods to approximate the marginal predictive distributions,
design utility functions and model discrimination criteria. New modules can be easily
implemented and added to the GPdoemd toolbox. The toolbox currently comes with the
Table 1 case studies which are mostly from literature, although collaborators developed
mixing. Researchers and engineers may try the Olofsson et al. (2018) hybrid approach and
compare the performance to competing methods.

3. Syntax and Supported Features

Assuming the rival models have been proposed, GPdoemd assists in model discrimination.

Model type A model object is initialised using a python dictionary containing the model
name (name), the model function f(x,θi) handle (call), the design variable and model pa-
rameter dimensions (dim x and dim p), the number of target dimensions (num outputs), model
parameter bounds (p bounds), experimental measurement noise (co)variance (meas noise var),
and a list of discrete design variable dimensions (binary variables). This dictionary is passed
to one of the implemented model types (Box 1 in Figure 1).
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Model dictionary 1. Model

Analytic

Numerical

GPModel

SparseGPModel

GPGriefModel

3. GP kernels

RBF

Exponential

Matern32

Matern52

Cosine

RatQuad

2. Param. estimation

diff evol

least squares

4. Param. covariance

laplace approximation

5. Approximative
marginalisation

first order taylor

second order taylor

6. Design criterion

HR

BH

BF

AW

7. Discrimination
criterion
gaussian posterior

chi2

akaike

Figure 1: The modular structure of the GPdoemd open-source software package.

Table 1: GPdoemd case studies, with the number of design variables |x| (continuous or
discrete), model parameters |θi|, target dimensions |y| and rival models M .

Name Reference |x|, (∈ Z) |θi| |y| M Type

bff1983 Buzzi-Ferraris and Forzatti (1983) 3, (0) 5 1 5 Analytic

bffeh1984 Buzzi-Ferraris et al. (1984) 2, (0) 4 2 4 Analytic

bffc1990a Buzzi-Ferraris et al. (1990) 3, (0) 2–6 1 4 Analytic

mixing - 3, (1) 1 1 5 Analytic

msm2010 Michalik et al. (2010) 3, (0) 1 1 10 Analytic

vthr2014linear Vanlier et al. (2014) 1, (0) 2–4 1 4 Analytic

vthr2014ode Vanlier et al. (2014) 3, (2) 14 1 4 Black-box

tandogan2017 Tandogan et al. (2017) 4, (0) 8–14 2 3 Black-box

Parameter estimation Given experimental data Ydata for designs Xdata, GPdoemd opti-
mises the model parameter values θ∗ using a prediction error minimisation methods (Box 2
in Figure 1): differential evolution (diff evol) or least squares with finite difference gradient
approximation (least squares). Both optimisation methods call functions in scipy.

GP kernels The GP surrogate models require a choice of GP kernel functions kx and kθ
for the GP prior GP(0, kxkθ). GPdoemd currently supports six different kernel functions
(Box 3 in Figure 1) taken from the GPy package and extended with function calls for the
second derivatives ∂2k(r)/∂r2 with respect to the distance measure r.

Model parameter covariance (Σθ) GPdoemd uses a Gaussian approximation N (θ∗,Σθ)
of the model parameter distribution and implements a Laplacian approximation of Σθ.

Approximating marginal predictive distributions The Olofsson et al. (2018) hybrid
approach approximates the marginal predictive distribution in (1) with a Gaussian distribu-
tion. The GPdoemd implements two different methods of computing the first two moments
of (1): first- and second-order Taylor approximations (Box 5 of Figure 1), using the first
and second derivatives of the GP surrogate’s predictive mean and variance.
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Figure 2: (Left) Model predictive distributions over designs x for rival models f1, f2, f3.
(Right) Three design utility functions for the model predictive distributions on the
left. Note that the different utilities, i.e. Eq. (2), prefer different next experiments.

Design criterion GPdoemd provides five different utility functions (Box 6 in Figure 1)
for designing the next experiment: HR (Hunter and Reiner, 1965), BH (Box and Hill, 1967),
BF (Buzzi-Ferraris et al., 1990) and AW (Michalik et al., 2010). Figure 2 illustrates the
difference between a few of these design criteria.

Discrimination criterion GPdoemd provides three different criteria (Box 7 in Figure 1)
for model discrimination: normalised Gaussian posteriors (Box and Hill, 1967), χ2 test
(Buzzi-Ferraris and Forzatti, 1983), and the Akaike information criterion weights (Michalik
et al., 2010). Olofsson et al. (2018) discuss trade-offs between the discrimination criteria.

3.1 Example

Assume a list dlist of model dictionaries, experimental data Xdata, Ydata with measurement
noise variance measvar, and lists X, P and Y of surrogate model training data (design, model
parameters and predictions, respectively) are given. We wish to select the optimal next
experiment from candidates Xnew.

N = Xnew.shape[0] # Number of test points

M = len( dlist ) # Number of rival models

E = Ydata.shape[1] # Number of target dimensions

mu, s2 = np.zeros(( N, M, E )), np.zeros(( N, M, E, E ))

for i,d in enumerate( dlist ):

m = GPdoemd.models.GPModel(d) # Initialise surrogate model

# Estimate model parameter values

m.param estim(Xdata , Ydata , GPdoemd.param estim.least squares , m.p bounds )

# Set−up surrogate model

RBF = GPdoemd.kernels.RBF

m.gp surrogate (Z=np.c [X[i], P[i]], Y=Y[i], kern x=RBF, kern p=RBF)

m.gp optimise ()

# Approximate model parameter covariance

m.Sigma = GPdoemd.param covar.laplace approximation( m, Xdata )

# Approximate marginal predictive distribution at test points

mu[:,i], s2[:,i] = GPdoemd.marginal.taylor first order( m, Xnew )

dc = GPdoemd.design criteria.AW(mu, s2, measvar) # Design criterion at test points

xnext = Xnew[ np.argmax(dc) ] # Optimal next experiment
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