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1. Introduction

Magic: The Gathering is a trading card game published by Wizards of the Coast [1].
The aim of most variants of the game is to reduce your opponent’s life total from
twenty to zero, thus winning the game. As it may take several turns to reduce a
player’s life total to zero, players need a mechanism to keep track of their current
life total. For this purpose, players often use a device called a spindown life counter,
shown in Figure 1. A spindown life counter is an icosahedron with a special labelling
of the faces, such that - starting with 20 life total - a player can reduce their life total
in decrements of one by rolling the icosahedron onto an adjacent face each time. A
spindown life counter appears similar to a standard icosahedral die, known in gaming
as a d20, however, the labelling of faces is different, as also shown in Figure 1.

Figure 1. Left: A spindown life counter from Magic: The Gathering. Right: A standard icosahedral die (d20).

The first author posed the question of whether it is possible to construct other
polyhedra having a similar ‘spindown’ property. Some simple experimentation revealed
that is it possible to re-label the faces of a standard six-faced die (d6) to produce a
spindown cube (see Figure 2); further experimentation revealed this to be the case for
all Platonic solids. It can also be seen that it is possible, in all these cases, to chose
the labelling such that it is not only spindown but also the face with the lowest label
adjacent to the face with the highest label. For example, it is possible to label the faces
of a cube such that producing the sequence of faces 6, 5, 4, 3, 2, 1, 6 involves only a
single roll to an adjacent face at each step. We refer to such a labelling as ‘spinround’.

This observation leads naturally to the more general questions of whether all convex
polyhedra can be labelled in a spinround manner and (if not) whether all convex
polyhedra can be labelled in a spindown manner. It is the convex polyhedra that are



(a) standard labelling - not spindown (b) minimal relabelling - spindown

Figure 2. A standard six-faced die (d6) can be relabelled in a spindown manner.

the main objects of study, because to be meaningful as a spindown life counter, each
face must be able to lie on a flat surface (such as a table) such that the entire face is
in contact with the table, with all remaining faces above the surface of the table.

To formalise these questions, we provide some definitions.

Definition 1 (Spindown Polyhedron). A spindown polyhedron with n faces is a convex
polyhedron for which there exists a one-to-one and onto labelling of faces with the
numbers 1, 2, . . . n such that the face labelled i is adjacent to the face labelled i ´ 1
for all i between 2 and n.

Definition 2 (Spinround Polyhedron). A spinround polyhedron with n faces is a spin-
down polyhedron with the additional property that the face labelled n is adjacent to
the face labelled 1.

In this article, we demonstrate that there exist non-spindown polyhedra, for exam-
ple the cuboctahedron. We also show that there is a non-spinround (but spindown)
polyhedron with fewer faces which, to the best of our knowledge, does not have a
special name in the literature. We have been able to construct the latter polyhedron
- both mathematically and as a 3D printed realisation - which we refer to as a Lich’s
Nemesis, named after the in-game properties of the card Lich’s Mirror in Magic: The
Gathering [2].

2. Face Adjacency

It is clear that whether a polyhedron is spindown or spinround is entirely determined
by the adjacency relationship between polyhedron faces. We therefore capture this
relationship as a graph.

Definition 3. The face adjacency graph of a polyhedron P is an (undirected) graph
with vertices in one-to-one correspondence with the faces of P and with edges corre-
sponding to adjacency between faces in P.

It is helpful to introduce some standard graph-theoretic definitions:

Definition 4. A Hamiltonian path is a path between two vertices of a graph that
visits each vertex exactly once. A graph is called traceable if it has a Hamiltonian
path.
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Figure 3. Face adjacency graph of a standard 6-faced die (d6).

Definition 5. A Hamiltonian cycle is a cycle (i.e. a closed loop) through a graph that
visits each vertex exactly once. If there exists a Hamiltonian cycle on a graph, then
the graph is called Hamiltonian.

Lemma 1 follows directly from the definitions given so far, providing a graph-
theoretic characterisation of spindown and spinround polyhedra.

Lemma 1. A polyhedron is spindown iff its face adjacency graph is traceable. A poly-
hedron is spinround iff its face adjacency graph is Hamiltonian.

We may now re-cast our questions in graph-theoretic terms:

(1) Is there a polyhedron whose face adjacency graph is non-Hamiltonian? (This
would be a non-spinround polyhedron).

(2) If so, is there also a polyhedron whose face adjacency graph is non-traceable?
(This would be a non-spindown polyhedron).

3. Polyhedral Graphs

In order to begin to answer these questions, we need to have a precise understanding
of exactly which undirected graphs are face adjacency graphs of polyhedra. We may do
this via a result known as Steinitz’s Theorem, which we will state after first introducing
the standard concepts of the graph of a polyhedron and 3-connectedness of a graph.

Definition 6. The graph of a polyhedron P is the graph whose vertices and edges are
in one-to-one correspondence with the vertices and edges of P, respectively.

Definition 7. A graph is said to be 3-connected if there is no set of two vertices whose
removal disconnects the graph into disjoint portions.

An example of the graph of a cube is shown in Figure 4.

Theorem 1 (Steinitz’s Theorem, [3]). A graph G is the graph of a convex three-
dimensional polyhedron, if and only if G is planar and 3-connected.

Due to the correspondence in Steinitz’s theorem, a graph G is referred to as poly-
hedral if and only if it is both 3-connected and planar. It remains, then, to relate face
adjacency graphs to graphs of polyhedra. This relationship is known as duality, and
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Figure 4. Graph of a cube.

is well-defined for polyhedral graphs, in the sense that every polyhedral graph G has
a unique polyhedral dual G1 in which the vertices of G1 correspond to the faces of G
and the edges of G1 correspond to the face adjacency relation on the vertices of G,
and moreover G is the dual of G1 as well [4]. We summarise the implications of this
relationship as Lemma 2.

Lemma 2. A non-traceable polyhedral graph is the dual of the graph of a non-spindown
polyhedron. A non-Hamiltonian polyhedral graph is the dual of the graph of a non-
spindown polyhedron.

Rosenthal [5] proved that the graph of a rhombic dodecahedron, shown in Figure 5,
is non-traceable. The dual polyhedron of the rhombic dodecahedron is the cuboctahe-
dron [6]. Therefore we may conclude that the cuboctahedron is not spindown, answering
our two questions.

Figure 5. The face adjacency graph of a cuboctahedron (also the graph of a rhombic dodecahedron) is not
traceable.

We may also use Lemma 2 to address the question of whether there may be a
smaller non-spinround polyhedron which is nevertheless spindown. It is known that the
Herschel graph, shown in Figure 6(a) is a polyhedral graph with the smallest number
of vertices not to admit a Hamiltonian cycle [7]. And so it follows that the dual of the
Herschel graph, shown in Figure 6(b) is a graph of a non-spinround polyhedron with
the fewest faces. This polyhedron is, however, spindown.
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(a) The Herschel Graph (b) Its dual

Figure 6. The Herschel graph and its dual, the graph of a non-spinround polyhedron with the fewest faces.

4. Realisation as a Polyhedron

The previous section has shown that there exists a non-spindown polyhedron, whose
graph is the dual of the Herschel Graph. In this section, we construct one such poly-
hedron.

Of all the polyhedra with a given graph, there exists a canonical one such that all
edges are tangent to a unit sphere and where the centre of gravity of the tangent points
is the origin [8]. Hart [9] provides an explicit procedure to construct such a canonical
polyhedron; the procedure takes an initial set of vertex positions in three-dimensional
space, together with a description of the faces as lists of vertices in clockwise or counter-
clockwise order, and - if it converges - produces the canonical polyhedron with the same
topological structure as the initial polyhedron.

We implemented this approach in Mathematica (a free-to-use computable document
format is available at http://bit.ly/lichnem), using an arbitrary initialisation of
vertex locations derived by imagining the x and y coordinates to be monotonic in
the x and y coordinates of the diagram of Figure 6(b) while the z coordinate of each
vertex to be rising from left-edge to centre and then falling from centre to right-edge
of the same diagram. Hart’s algorithm converges, producing the polyhedron shown in
Figure 7. To the best of our knowledge, neither the dual of the Herschel graph nor this
canonical polyhedron has a specific name in the literature; we refer to it as the Lich’s
Nemesis polyhedron, named after a card in Magic: The Gathering that allows - under
certain circumstances - life total to wrap round from one to the starting life total of
20 [2].

We have constructed a physical realisation of the Lich’s Nemesis, using the Prusa
i3 Mk2 3D printer. Interested readers wanting to print their own Lich’s Nemesis can
download the 3D-printer ‘stl file’ at http://bit.ly/lichstl.

5. Conclusion and Future Work

We can summarise the results of this article as a theorem:

Theorem 2. The cuboctahedron is a non-spindown polyhedron. The Lich’s Nemesis
polyhedron is a non-spinround polyhedron with the fewest faces.

Inspired by the game Magic: The Gathering, we initially identified that all Platonic
solids are spinround, an experimental result which, in the light of the results in this
article, we may now understand follows naturally from the fact that the set of Platonic
solids is closed under duality, combined with the fact that the graph of all Platonic
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(a) 3D graphic (b) 3D printed realisation

Figure 7. The Lich’s Nemesis Polyhedron. An interactive version can be downloaded from
http://bit.ly/lichnem, allowing the reader to see the polyhedron from all angles.

solids is Hamiltonian.
We have given examples of polyhedra that are spinround (the cube), non-spinround

but spindown (the Lich’s Nemesis), and non-spindown (the cuboctahedron).
We have leveraged the knowledge that the Herschel graph has the smallest number

of vertices for a non-Hamiltonian graph, when concluding that the Lich’s Nemesis is
a non-spinround polyhedron with the fewest faces. However, we are not aware of the
status of the cuboctahedron. It has 14 faces: is this an example of a non-spindown poly-
hedron with the fewest faces? Due to the large search space, answering this question
requires efficient search methods.
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