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The increasing move towards open access full-text scientific literature enhances our ability

to utilize advanced text-mining methods to construct information-rich networks that no

human will be able to grasp simply from 'reading the literature'. The utility of text-mining

for well-studied species is obvious though the utility for less studied species, or those with

no prior track-record at all, is not clear. Here we present a concept for how advanced text-

mining can be used to create information-rich networks even for less well studied species

and apply it to generate an open-access gene-gene association network resource for

Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first

case-study for the methodology. By merging the text-mining network with networks

generated from species-specific experimental data, network integration was used to

enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-

based algorithm (filter) was constructed in order to automate the search for novel

candidate genes with a high degree of likely association to known target genes by (1)

ignoring established relationships from the existing literature, as they are already 'known',

and (2) demanding multiple independent evidences for every novel and potentially

relevant relationship. Using selected case studies, we demonstrate the utility of the

network resource and filter to (i) discover novel candidate associations between different

genes or proteins in the network, and (ii) rapidly evaluate the potential role of any one

particular gene or protein. The full network is provided as an open source resource.
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15 ABSTRACT

16 The increasing move towards open access full-text scientific literature enhances our ability to 

17 utilize advanced text-mining methods to construct information-rich networks that no human will 

18 be able to grasp simply from 'reading the literature'. The utility of text-mining for well-studied 

19 species is obvious though the utility for less studied species, or those with no prior track-record 

20 at all, is not clear. Here we present a concept for how advanced text-mining can be used to create 

21 information-rich networks even for less well studied species and apply it to generate an open-

22 access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative 

23 model organism for cyanobacteria and first case-study for the methodology. By merging the text-

24 mining network with networks generated from species-specific experimental data, network 

25 integration was used to enhance the accuracy of predicting novel interactions that are 

26 biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the 

27 search for novel candidate genes with a high degree of likely association to known target genes 

28 by (1) ignoring established relationships from the existing literature, as they are already 'known', 

29 and (2) demanding multiple independent evidences for every novel and potentially relevant 

30 relationship. Using selected case studies, we demonstrate the utility of the network resource and 

31 filter to (i) discover novel candidate associations between different genes or proteins in the 

32 network, and (ii) rapidly evaluate the potential role of any one particular gene or protein. The full 

33 network is provided as an open source resource.

34
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35 INTRODUCTION

36 Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803) was the first photobiological 

37 organism to be sequenced in 1996 (Kaneko et al. 1996). It is a unicellular prokaryote with a 

38 compact genome (~3.5 Mbp) that is capable of non-facilitated DNA-uptake and homologous 

39 recombination. It has been extensively studied as a model for photosynthesis and cyanobacteria 

40 in general (Ikeuchi & Tabata 2001), and more recently it has been considered also as a potential 

41 host for biotechnology in which solar energy is directly converted into chemical energy and 

42 feedstock (Rosgaard et al. 2012).

43

44 Compared to other photobiological model species, such as Arabidopsis thaliana (De Bodt et al. 

45 2012), there is still a relative lack of systems biology resources for Synechocystis 6803 and 

46 cyanobacteria in general. The online ‘CyanoBase’ portal has played an important role in 

47 providing information from genome sequencing data for the cyanobacteria community (Nakao et 

48 al. 2010). However, as far as we are aware, there are only two other online databases for easy 

49 access of a collection of omics data sets (CyanoEXpress (Hernandez-Prieto & Futschik 2012) 

50 and RegCyanoDB (Nair et al. 2017)). Transcriptome data sets included in the CyanoEXpress 

51 repository have mainly been analyzed in respective original publications by differential or simple 

52 clustering analysis; Efforts to utilize cyanobacteria systems biology data sets for graph-based 

53 network analysis are otherwise rare (Bhadauriya et al. 2007; Lv et al. 2015) Similarly, there is 

54 only one online graph-based network analysis platform that includes cyanobacteria species 

55 (STRING (Franceschini et al. 2013)). The STRING network, however, lacks cyanobacteria-

56 specific data apart from its genome sequence. To complicate matters further, the majority 

57 (55.1%) of genes in CyanoBase remain “unknown” (Fujisawa et al. 2017). In part this reflects 

58 the early date of the first sequencing and persistence of historical archives of annotations in some 

59 databases, however, it also reflects the fact that very few studies have been carried out with 

60 Synechocystis 6803 in comparison with other model species. For example, 350,630 articles 

61 including the term ‘Escherichia coli’ were found in PubMed July 2017 whilst only 3,853 

62 included the term ‘Synechocystis’ (Fig. S1).

63

64 Text-mining is a developing technology with increasing potential for scientific utilization, 

65 especially given the recent trend towards open access in the scientific literature (Gonzalez et al. 

66 2016; Van Landeghem et al. 2011). One opportunity with text-mining is to aggregate knowledge 

67 from the massive volume of available literature and generate detailed maps of knowledge that 

68 would be difficult to obtain otherwise. Naturally, the utility of such network-based aggregation 

69 depends on the quantity and quality of the source data (Fig. S1), as well as the method of 

70 extracting the information, aggregating it and visualizing it in a meaningful manner for humans. 

71 The lack of existing literature for poorly (or not at all) studied organisms is typically addressed 

72 by clustering homologous genes into groups (gene families) based on sequence homology (Van 

73 Landeghem et al. 2011). Relationships between any two gene families can then be extracted from 

74 the entire accessible literature, allowing species-independent bibliome networks to be created. 
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75 This has significant implications for lesser studied species as it considerably broadens the 

76 quantity of available data for network construction.

77

78 Intuitively, a text-mining network comprises interactions that are already ‘known’ and thus not 

79 ‘novel’ in the strict sense. Novel interactions can be hypothesized, through indirect connections 

80 that involve two or more known connections, but these will lack evidence unless that information 

81 was present in the article but not extracted. Therefore, in order to identify novel connections that 

82 are more likely to be true, we integrated a PubMed and PubMed Central based bibliome network 

83 with complementary networks created using available large-scale experimental data sets 

84 (transcriptome, protein-protein interaction). This increases the network depth (i.e. number of 

85 nodes and edges) and the presence or absence of complementary omics-based edges lends 

86 positive or negative support, respectively, for indrect text-mining links. The criteria for a 

87 genuinely interesting novel relationship was then set to require at least two independent pieces of 

88 ‘evidence’. Hence, in order to facilitate the search for potential novel gene-gene associations in 

89 large networks, we developed a filter to identify only those interactions that are (1) not directly 

90 linked by text-mining events yet (2) supported by links from multiple data sources. This then 

91 allows a search for both novel genes in sub-systems of interest and identification of a context 

92 (and thereby possible biological role) for orphan genes aided by gene ontology analysis. This 

93 study illustrates that text-mining not only helps identify novel genes with particular 

94 physiological, regulatory or metabolic roles but also allows network clusters and patterns with 

95 likely coordinated functions to be identified. 

96

97 We are interested in the metabolism of cyanobacteria, as a potential host for sustainable 

98 biotechnology. As a proof of concept, we therefore first applied this methodology to create a 

99 network resource for the cyanobacterium Synechocystis sp. PCC 6803 and provide case study 

100 examples with a focus on metabolic processes of interest, including the metabolism of NADPH, 

101 nitrogen, Fe-S and alkanes.

102

103

104 METHODS

105

106 Construction of the networks

107 Molecular interaction networks were retrieved and constructed from publicly available databases 

108 and from the literature, as follows:

109

110 Networks constructed using microarray and yeast-2-hybrid data

111 To create a Synechocystis 6803 co-expression network, 68 data sets from a large scale 

112 transcriptomics study (Singh et al. 2010) were used. The transcriptome data was collected and 

113 stored as fold change (log2 (treatment/control)) of gene expression values in tab-delimited text 

114 files. The data was thereafter subjected to further analyzing after importation into the analyzing 
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115 and visualizing platforms Cytoscape 2.8.2, 3.0.1 and 3.3.1 (Shannon et al. 2003; Smoot et al. 

116 2011), depending on available plugins. The ExpressionCorrelation plugin (Hui et al. 2008) was 

117 employed to generate a co-expression network using the expression values. A similarity matrix 

118 was calculated using the Pearson correlation coefficient with a strength threshold of ±0.7. In 

119 order to identify an appropriate threshold, the ExpressionCorrelation plug-in histogram function 

120 was used to select a reasonably sized network. The obtained co-expression based gene network 

121 (1886 nodes and 10187 edges) is referred to as CoEx. A second yeast two-hybrid (abbreviated 

122 Y2H) protein-protein interaction network was constructed by importing into Cytoscape a list of 

123 identified protein-protein interactions from an available data set (Fields & Song 1989; Sato et al. 

124 2007). 

125

126 Text-mining data

127 BioContext (Gerner et al. 2012) and EVEX (Van Landeghem et al. 2013b) are one of only few 

128 resources providing gene/protein association from the entire literature databases that have been 

129 made publicly available. Both EVEX and BioContext apply their text-mining tools to PubMed 

130 abstracts and PubMed Central (PMC) full-text articles. While BioContext uses more tools to 

131 potentially increase the number of extracted events (36 million) from the 2011 released data set, 

132 EVEX includes more events (40 million events) in its larger and more recently updated data set 

133 released in 2012.

134

135 Besides having more extracted events, EVEX also aggregates events of genes in the same family 

136 providing hypothetical network where gene/protein association can be conveniently inferred 

137 from closely related sequences. Though both resources are considered equivalent extracting the 

138 same information from the same data set, we consider EVEX database a more suitable text-

139 mining resource for our studies, due to its data on gene-family association and more recently 

140 updated articles.

141

142 The network from the EVEX database is composed of two data sets following the different 

143 releases of EVEX namely, EVEX-2011 and EVEX-2013. EVEX-2011 (Van Landeghem et al. 

144 2011) is the first public release of the EVEX text-mining database which covers the literature up 

145 until June 2011 (http://www.evexdb.org/ (Van Landeghem et al. 2013a; Van Landeghem et al. 

146 2013b; Van Landeghem et al. 2011)) . EVEX-2013 (Van Landeghem et al. 2013b) was released 

147 with the extended coverage of articles from June 2011 up to June 2012 and an updated gene 

148 family assignment. Both of the EVEX data sets (EVEX-2011 and EVEX-2013) were combined 

149 and used in the present study.

150  

151 EVEX data was generated using natural language processing tools primarily based on machine 

152 learning (ML) to automatically extract cellular processes and interactions among genes and their 

153 products such as RNAs and proteins (genes for short). The tools perform three significant steps 

154 namely “name entity recognition”, “event extraction” and “name entity normalization”, which 
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155 will be discussed here briefly. Firstly, the tools perform name entity recognition by identifying 

156 the gene mentions in the documents. The systems then extract the biological events for each gene 

157 mention by identifying words or phrases discussing cellular process such as regulation and 

158 phosphorylation and link them to corresponding genes. Finally, to be able to link the genes to 

159 information in other databases, genes are normalized by mapping to the Entrez Gene database 

160 and respective family identifiers. In case of organism ambiguity, i.e when the organism is not 

161 explicitly stated for a particular mention thus preventing it from being normalized to a single 

162 unique identifier, the mention is only mapped to a gene family. Full details of the EVEX text-

163 mining pipeline generating has been described previously (Van Landeghem et al. 2013b).

164

165 The text-mining network was constructed by retrieving Synechocystis 6803 genes (nodes) and 

166 their associations (edges) from the EVEX database. This was extended by the addition of 

167 associations of all Synechocystis 6803 gene homologs originating from the Ensembl resource and 

168 the GENIA corpus (Kim et al. 2008). 

169

170 The EVEX network was further enriched with additional information obtained from the EVEX 

171 database. The edge attributes included all the organisms for which the relationship was reported, 

172 the taxonomic distance between each organism and Synechocystis 6803, fine-grained details of 

173 the relationship such as the types of the regulation (positive, negative and unspecified), 

174 speculation, negation and text-mining prediction confidence score. The node attributes also 

175 include Synechocystis 6803 gene descriptions, symbols, synonyms, and Entrez Gene identifiers.

176

177 Finally, in the NCBI Entrez Gene record, the functions of a well-characterized gene are 

178 described by human annotators based on experimental evidence. While generally very useful, 

179 oftentimes these descriptions lack specificity, e.g. for genes annotated as “hypothetical”. Further, 

180 new sequences with no supporting evidence naturally lack this annotation altogether. 

181

182 To address this deficiency, we also provide descriptions based on the single most prevalent 

183 function among the genes in each family. For a small gene family (i.e. <5 genes), the diverse 

184 descriptions can be manually combined and selected to represent the common functions of genes 

185 in a given family. However, this process is not suitable for a large family with thousands of 

186 genes. Here we used the method called “canonicalization” described in (Van Landeghem et al. 

187 2011) to select the representative description of the family. First, we collected the descriptions of 

188 all genes in a family from NCBI Entrez Gene records. We then reduced the orthographic 

189 differences by lowering the case and removing all non-alphanumeric characters such as empty 

190 space, parentheses and apostrophes. The description of the gene family is the most common 

191 canonical form of descriptions shared by most genes in the family.

192

193 The three networks, CoEX, Y2H and EVEX, were thereafter integrated using the Cytoscape tool 

194 “Advanced network merge”. The merge was carried out based on the Entrez Gene identifiers. 
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195 For those data sets that did not contain such node identifiers, these were obtained by mapping 

196 through CyanoBase gene identifiers. The resulting merged network (IntNet) is provided as 

197 supplementary file S1 and the attribute annotations are listed in supplementary file S2. Although 

198 the constructed networks inherently contain complex structures (Kashtan et al. 2004), the present 

199 work has only focused on simpler triad motifs.

200

201 Annotations for genes defined as “unknown” and “hypothetical”

202 In this study, we were interested in the information gained for non-annotated proteins when 

203 integrating multiple types of data. We primarily used annotation data from CyanoBase 

204 downloaded on 22nd of June 2012 to annotate the network. Genes which were not annotated or 

205 annotated as ‘unknown’ or ‘hypothetical’ in CyanoBase were instead annotated with their gene 

206 family description from Entrez Gene as described above. The latest CyanoBase annotation for 

207 Synechocystis 6803 genome sequence released in 2015 is used as gold standard for comparison 

208 with gene family assignment. The data was downloaded on 2nd of February 2018.

209

210 Automated rule-based filtration using a script

211 Guilt-By-Association networks were created by extending selected nodes through existing edges 

212 in the network to include also their direct neighbours, an automated process in Cytoscape termed 

213 "First neighbours of selected nodes (undirected)". The filter was developed to find simple 

214 triangular patterns (three nodes connected by three edges, also called a triad motif (Milo et al. 

215 2002)) from the integrated network, in order to identify relationships between selected key genes 

216 (i.e. known or relevant genes for the interested study) and candidate genes (potentially related to 

217 key gene) that are most likely to be of interest. The rules of the filter were defined as follows, 

218 except where indicated: (i) The triangular pattern needs to have at least two different data-types 

219 and (ii) no direct EVEX edge originating from Synechocystis 6803 is allowed between a key-

220 gene and a candidate gene, as it is therefore already known. In order to facilitate future follow-up 

221 analysis, the clusters were also ranked. The ranking of the entire pattern was given according to 

222 the following order: 1) EVEX (link coming from article based on Synechocystis 6803), 2) EVEX 

223 (link coming from article based on any other organism than Synechocystis 6803), 3) CoEx, 4) 

224 Y2H. Additional ranking rules were constructed to classify the most relevant candidate genes; (j) 

225 does the putative candidate have additional interactions with other key genes, (jj) do genes with 

226 direct interactions have additional indirect links and (jjj) do additional direct or indirect 

227 interaction exist in the extracted pattern. These rules prioritize candidates that are well connected 

228 within the network and more related to the metabolism involving key genes.

229

230 The script for the filter was written in Python to query the integrated network via the Cytoscape 

231 plugin CytoscapeRPC (Bot & Reinders 2011). CytoscapeRPC recognizes the script as a client 

232 and allows the script to query or modify the networks. The purpose of the filter was to identify 

233 candidate genes (CG script) related to known key genes in metabolism of interest. A second 

234 script was also prepared in order to allow the functional prediction of “hypothetical protein” (HP 
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235 script), i.e. by identifying the function of unknown proteins from a group of functional proteins 

236 they are associated with. The ranking is identical to the filter script where we only substituted the 

237 role of “key genes” and “candidate genes” (Supplementary file S3) with “functional protein” (i.e. 

238 proteins with verified function) and “hypothetical protein” (Supplementary file S4) respectively. 

239

240 Computational requirements and potential applications on other organisms

241 The Synechocystis 6803 network is relatively small compared to other organism networks such 

242 as humans which have in general both larger numbers of nodes and edges (e.g. 13,418 nodes and 

243 265,738 edges) (Hakala et al. 2013). The time required to generate networks is thus only a matter 

244 of seconds on a general desktop machine. However, the integration of the network requires 

245 identifier compatibility, a general problem in integrating data from different database sources, 

246 e.g. NCBI Entrez Genes and Taxonomy databases. In this study, this task took us a few hours to 

247 manually ensure the compatibility and accuracy of the data.

248

249 Text mining Performance

250 Due to the variance and ambiguity inherent to human language, extracting biological knowledge 

251 from text is fundamentally a demanding task requiring a complex system composed of multiple 

252 components. While most individual components of the systems are typically evaluated in 

253 isolation by their respective developers, evaluating the integrated system is difficult due to the 

254 relative lack of gold-standard data sets. In our previous work, we estimated the performance of 

255 TEES, the text-mining system used in creating the EVEX database, by manually evaluating the 

256 text-mining network of E. coli NADPH metabolism. The result showed that the system can 

257 perform well on event extraction and gene family assignment, achieving 53% and 72% accuracy, 

258 respectively (Kaewphan et al. 2012). The two estimates roughly correspond to, and further verify 

259 the evaluation results of TEES on human metabolism (Björne et al. 2010). Therefore, we can 

260 expect the accuracy of the system in the extraction of the Synechocystis 6803 network to be 

261 similar as well.

262

263

264 RESULTS AND DISCUSSION

265

266 A major challenge in the evaluation of complex biological networks that have not been manually 

267 curated is to know if any of its relationship links (i.e. network edges) are (1) novel and (2) 

268 correct. By integrating networks built from experimental data and text-mining it should be 

269 possible to rapidly tell whether relationships suggested from experimental data are already 

270 known a priori from the literature or, the reverse. If the underlying analytical data is independent 

271 and complementary to the text-mining data, it should also be possible to boost our ability to 

272 evaluate the relative likelihood that a relationship in the integrated network is true or not 

273 (through cognitive or rule-based interpretation). This assumes that multiple pieces of evidence 

274 from genuinely independent experimental data, all implying a similar conclusion, will increase 
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275 the likelihood that a suggested relationship is true. In the present study, these two concepts were 

276 applied to create a meta-network based on two network-types: (1) experimental ((i) 

277 transcriptome and (ii) protein-protein interactome) and (2) literature. The methodology was 

278 applied to the metabolism of Synechocystis 6803 as a specific case study.

279

280 Network construction

281 A species-independent text-mining network (here abbreviated EVEX) was created by first 

282 assigning all genes in the Synechocystis 6803 genome to gene families using Ensembl Genomes 

283 (Kersey et al. 2012). All events extracted using the TEES software (Van Landeghem et al. 

284 2013b) for these selected gene families were thereafter compiled and imported into Cytoscape 

285 (Cline et al. 2007). The thus created text-mining network was therefore composed of all 

286 machine-readable interactions (defined a priori, i.e. ‘examples of event triggers’) between any 

287 two gene families that contain at least one homolog in Synechocystis 6803, accessing all 

288 literature for all species in PubMed abstracts and PubMed Central Open Access full-texts up to 

289 June 2012. In this network, the nodes represent Synechocystis 6803 gene symbols and edges 

290 linking the nodes represent relationships (grouped into categories of binding, regulation or 

291 indirect regulation) between gene families. As a comparison, the text-mining network created 

292 using publications studying only Synechocystis 6803 (85 nodes, 81 edges) was significantly 

293 smaller than that using the species-independent approach (806 nodes, 3023 edges) (Fig. 1). 

294

295 For the transcriptome-based network (here abbreviated CoEx), a co-expression network was 

296 constructed using a collection of published microarray data that until now only had been 

297 collectively studied with a data-degrading normalization using discrete values (Singh et al. 

298 2010). We created a co-expression network (1886 nodes, 10187 edges) with the Cytoscape 

299 plugin ExpressionCorrelation (Hui et al. 2008). For the protein-protein interaction network (here 

300 abbreviated Y2H), we used an available qualitative protein-protein interaction data set (1920 

301 nodes, 3236 edges) generated in a high-throughput screening with the yeast-two hybrid method 

302 (Fields & Song 1989; Sato et al. 2007). 

303

304 The integration of all three networks in Cytoscape using the advanced network merge plugin 

305 resulted in a combined network (IntNet) of 2,842 nodes and 16,446 edges (Supplementary file 

306 S1), representing 76% of the genome and all of its native plasmids (Kaneko et al. 1996) (Fig. 2). 

307 In order to ensure that all the three integrated networks were independent, two edges in the 

308 EVEX network (slll0041-sll0269, sll0041-slr1636), which originated from the paper first 

309 reporting the data used for the Y2H network, were removed from IntNet.

310

311 Global properties

312 Overall, IntNet displayed surprisingly little overlap between different data-types. While 52% of 

313 the nodes (1468) are represented in at least two networks, only 11% are represented in all three 

314 (Fig. 3).  The distribution of source organisms used in the species-independent text-mining 
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315 network is summarized based on domains and supergroups in Figure 4. Most relationships in the 

316 EVEX network originate from studies with bacteria, the same domain of life as Synechocystis 

317 6803. Within the Bacteria domain Escherichia coli dominates, reflecting the number of 

318 publications in PubMed (Fig. S1). The second most represented group of organisms that 

319 contributed to the Synechocystis 6803 text-mining network belongs to the Metazoa, with human, 

320 rat and mouse being the most common contributors. 

321

322 An additional benefit with the integration of different data-types was the enhancement in the 

323 number of meaningful annotations afforded by combining annotations in CyanoBase (Nakao et 

324 al. 2010) with those provided by the gene family assignments. In the microarray data set 1913 

325 genes (46.5% of genome) were annotated (from CyanoBase) as ‘hypothetical’ or ‘unknown’. The 

326 integration with the species-independent text-mining network increased the number of 

327 meaningful annotations in the complete network (IntNet) by 402 additions (from 53.5% to 67.6% 

328 of the genome) through the addition of gene family annotations (listed in Supplementary file S5).

329

330 To shed light on the quality of automatic functional annotation using gene family assignment, we 

331 used the latest annotations of Synechocystis 6803 from Cyanobase database (Fujisawa et al. 

332 2017) as gold standard data set to compare with our annotation. The comparison focused on the 

333 family assignments which were used on proteins defined as ‘unknown’ or ‘hypothetical' in 

334 CyanoBase version 2012, not the difference between the two releases. Among 402 annotated 

335 genes, the functions of 126 Synechocystis 6803 genes (31.3%) are still unknown or unannotated, 

336 while our approach suggests the functions shared by most of the proteins in the family. About 

337 one third of our annotations overlapped, with 67 genes (16.7%) receiving an annotation identical 

338 to CyanoBase 2015, and 54 genes (13.4%) where either annotation is a substring of the other. 

339 The rest of the annotations, 38.6%, either differed in their specificity, one being more general 

340 than the other, or were entirely unrelated. Overall, we can see that functional annotation based on 

341 gene families add value over even the latest Cyanobase release, providing annotation to a 

342 number of genes which otherwise would have had none, and can thus be used to facilitate the 

343 annotation process and support the interpretation of results.

344

345 Automated rule-based filtration of candidates with a high likelihood of real relationship

346 Smaller first neighbour (Guilt-By-Association, GBA) sub-networks were first constructed for 

347 each of the case study key gene sets. Our impression was that although GBA networks were very 

348 useful, the associated cognitive interpretation (here defined as ‘manual’) was dominated/biased 

349 by already existing knowledge and/or relationships only supported by a single data type. In 

350 addition, it is possible that potentially interesting relationships would not be perceived owing to 

351 the daunting complexity of larger GBA networks. We therefore developed a filter to identify 

352 smaller motifs (also called clusters) that would enhance the search for potentially novel and 

353 relevant relationships between selected key genes (known or relevant genes for the study of 

354 interest) and candidate genes (having potential relationship to key gene(s)). The filter was set to 
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355 demand at least two different data-types between a key gene and candidate gene, and direct 

356 EVEX edges between key genes and candidate genes were allowed only if they did not originate 

357 from a study using Synechocystis 6803. The output from the filter is both different and 

358 complementary to a conventional GBA analysis since (1) relationships based only on existing 

359 knowledge (i.e. direct EVEX edges) with key genes are discarded, and (2) only patterns with 

360 multiple supportive evidence (i.e. more than one edge-type) are accepted. Despite these efforts, 

361 an unknown proportion of the edges in IntNet, and motifs extracted therefrom using the filter, are 

362 still likely to be false positives.

363

364 Utilization of the integrated network to obtain novel biological insight

365 What can we use IntNet and its filtered derivative networks for? The diverse utility of interaction 

366 networks has been described previously (Franceschini et al. 2013). Apart from general properties 

367 and patterns on a genome-scale level (as described above) we considered two utilities of 

368 particular value for biological studies using lesser studied species: (1) To identify novel 

369 candidate genes with potential relationships between two or more key genes representing an 

370 important biological process, and (2) to probe the possible role of an otherwise unknown gene or 

371 gene set that has been identified by other means. The first utility would be particularly valuable 

372 with poorly studied organisms for the collation of members of pathways or other similar systems 

373 that do not display co-existence in the form of operons. The second utility, on the other hand, 

374 would be important as a follow-up to other studies that have identified genes or proteins by 

375 experimental means (e.g. affinity chromatography, yeast-2-hybrid). To evaluate these utilities, 

376 we employed key gene sets from selected case studies (Table 1) to (i) extract first neighbor 

377 GBA-clusters and (ii) sub-clusters generated from all candidate genes (and associated triangular 

378 patterns) derived using the automated script. The key gene sets were decided prior to the study 

379 based on the research interests of the group. The clusters and networks generated by both 

380 methods were thereafter evaluated manually in order to verify potentially interesting and novel 

381 candidate genes and to benchmark the overall approach. 

382

383 Case Study 1 - Novel candidates with a potential relationship to SigE

384 SigE (sll1689) is a sigma factor that has been demonstrated to influence central carbon 

385 metabolism with broad impact, as evidenced by a shift in the distribution of central carbon 

386 metabolites in response to the deletion of sigE or over-expression of SigE (Kloft et al. 2005; 

387 Sundaram et al. 1998). The first neighbour GBA and script-based clusters are shown in Figure 

388 5A, including several interesting candidates. Firstly, we noted a link between SigE and slr1055 

389 (ChlH), a light- and Mg2+-dependent anti-sigma factor shown previously to have specificity for 

390 SigE (Osanai et al. 2009). However, this link was not based on the article that demonstrated this 

391 relationship in the first place (Osanai et al. 2009). Instead, SigE connects with ChlH through 

392 edges of all three network types, a direct Y2H edge, the lead to identifying the role of slr1055 in 

393 the first place (Osanai et al. 2009), and indirect edges via sll0306 (SigB, EVEX) and sll1886 

394 (hypothetical protein, CoEx). The experimentally confirmed relationship between ChlH and SigE 
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395 therefore verifies the conclusion of the relationship that can be drawn from the present network 

396 even in the absence of the direct text-mining link.

397

398 Several known proteins with an established role in nitrogen-metabolism (e.g. NtcA, PII (Kloft et 

399 al. 2005)), or the circadian clock (KaiB (Hitomi et al. 2005) ) were also found to be connected to 

400 SigE, in addition to others without any meaningful annotation. The automated script (Fig. 5B) 

401 suggested a central role for sll1886 (annotated as hypothetical protein) with a close connection to 

402 SigE. Sll1886 harbors a putative zinc binding domain and shows weak homology to di-haem 

403 cytochrome C (Vandenberghe et al. 1998), suggesting the possible involvement of electron-

404 transfer. Interestingly, a manganese transport component (MntB, sll1600) was also part of the 

405 script-based cluster which is relevant given that ChlH is Mg2+-dependent.

406

407 In comparison, we also searched for candidate genes to SigE using STRING-db (Franceschini et 

408 al. 2013) with sll1689 as input (Fig. 5C). This produced a network of 11 nodes at the default 

409 setting. When the script- and STRING-db based networks were compared, the intersection 

410 between the two networks contained only three genes; sll1689, sll1423 (ntcA) and sll0687 (sigI). 

411 Interestingly, whilst the STRING network contained an association with glnA, the script-based 

412 network contained an association with glnB - both genes have important roles in nitrogen 

413 metabolism (Herrero et al. 2001). Overall, many of the nodes in the STRING network (Fig. 5C) 

414 are related to gene transcription (RNA polymerase related gene products), whilst the script-

415 network (Fig. 5B) is dominated by genes with a known role in nitrogen metabolism, as has also 

416 been confirmed experimentally (Muro-Pastor et al. 2001). The former network has no ‘unknown’ 

417 members, whilst at least one completely unknown, yet intricately connected, member (sll1886) is 

418 present in the latter network. Notably, sll1886 is co-located on the genome to a “two-component 

419 sensor histidine kinase” (sll1888) which also is a member of the same CoEx network as sll1886 

420 and ntcA (sll1423) (Fig. 5A, 5B). This strengthens the argument that sll1886 may play an 

421 important role in nitrogen metabolism. 

422

423 Case study 2 –NADP(H)-metabolism

424 The role of the pentose phosphate pathway (PPP) in cyanobacteria under daylight conditions is 

425 not entirely clear given that NADP+ is a major electron acceptor of electrons generated by water-

426 splitting photosynthesis. A part of the metabolic flux through the carbon fixing CBB cycle has 

427 been measured to pass through the oxidative branch of PPP (oxPPP) under daylight conditions 

428 (Young et al. 2011) though the optimal solution for biomass flux in stoichiometric models did 

429 not incorporate any oxPPP flux (Knoop et al. 2013). We were curious about the metabolic role 

430 that key-enzymes responsible for NADP+-reduction in fermentative microorganisms may have in 

431 an autotrophic system and how they are regulated. The objective in the following analysis was 

432 therefore to use the network analysis in order to identify novel CGs.

433
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434 A first neighbour GBA of IntNet with all pre-defined six NADPH key genes generated a 

435 complex network of 72 nodes and 194 edges (Fig. 6A) (Supplementary file S6), including OpcA, 

436 the unique cyanobacterial Zwf activator (Hagen & Meeks 2001). In contrast, only two of the 6 

437 key genes listed for NADP(H)-metabolism were retained by the script (Fig. 6B, 18 nodes and 50 

438 edges): Zwf (slr1834, catalyzing the first committed step of metabolic flux into PPP) and Icd 

439 (slr1289), catalyzing the only NADP+-reducing step of the TCA-“cycle”.

440

441 Looking closer at the script-based network, Zwf forms a motif with slr0952 (annotated as 

442 fructose-1,6-bisphosphatase (FBPase)) and sll0508 (annotated ‘unknown protein’) via three 

443 different data-types (Fig. 6C). Sll0508 has low similarity to other proteins and there are no hits 

444 from a search with the SIB Motif Scan (incl. Pfam, PROSITE, HAMAP etc.). This slr0952-

445 containing motif is interesting as it suggests a link between oxPPP and gluconeogenesis. In other 

446 cyanobacteria, multiple FBPases have been identified and some of the encoding genes are co-

447 located with zwf (Summers et al. 1995).

448

449 Another interesting CG, found only in the CoEx network, is Slr1194. This node is annotated as a 

450 '1 protein' that exhibits a high percentage similarity to a 'Mo-dependent nitrogenase family' 

451 protein in Cyanothece sp. PCC 7424, and links to Zwf via slr1793 (talB) and slr1734. The latter 

452 gene is a homolog of OpcA, an allosteric regulator and activation factor of Zwf in other 

453 cyanobacteria (Hagen & Meeks 2001). 

454

455 Zwf also forms several motifs with rpaB (slr0947) that also include the PPP genes gnd (sll0329) 

456 and talB (slr1793) (Fig. 6B). RpaB is a regulator involved in controlling energy transfer between 

457 phycobilisomes and PSII or PSI. The relationship between RpaB and genes encoding enzymes in 

458 PPP suggests the possibility that also PPP flux may be controlled at least in part by RpaB in 

459 response to light quality and/or quantity, or another signal reflecting the internal redox-status.

460

461 Case Study 3 - Probing the role of an incompletely known gene or gene set - PntAB

462 Synechocystis 6803 harbors two genes (slr1239 (pntA) and slr1434 (pntB)) encoding a putative 

463 dimeric NADPH:NADH-transhydrogenase. PntAB has been shown to catalyze the proton 

464 gradient dependent transfer of electrons from NADH to NADP(H) in E. coli (Sauer et al. 2004). 

465 In Synechocystis 6803, we would expect under optimal photosynthetic conditions that NADP+ is 

466 efficiently reduced by PetH, the Ferredoxin:NADP-oxidoreductase linked to PSI. PntAB may 

467 therefore only be important for the supply of NADP(H) under conditions of limiting light (e.g. 

468 during the night) and/or in order to re-oxidize NADH formed by NAD(H)-dependent reactions 

469 (Kämäräinen et al. 2017). Hence, although PntAB is well-known in fermentative microorganisms 

470 it remains unclear what role it may have in cyanobacteria, thereby falling into the category of 

471 incompletely known genes.

472

PeerJ reviewing PDF | (2017:12:22526:1:1:NEW 21 Mar 2018)

Manuscript to be reviewed



473 No motifs satisfying the criteria of the script-based filter were found including either PntA 

474 (slr1239) or PntB (slr1434). Nevertheless, a GBA-cluster was extracted using both genes as key 

475 genes (Fig. 6D). Both slr1239 and slr1434 form a co-expression based cluster with an operon 

476 (slr0144-slr0152) called Pap (Photosystem II assembly proteins) (Wegener et al. 2008) and the 

477 essential ferredoxin PetF (slr0150; Fig. 6E). The connection is quite convincing as PntA shows 

478 CoEx edges with slr0144 whilst both PntB and PetF share CoEX edges with several of the other 

479 genes in the operon, though not slr0144. The presence or absence of the Pap operon does not 

480 influence growth under so far tested conditions, although deletion mutants display a reduced 

481 capacity to evolve di-oxygen (Wegener et al. 2008). Why would there be a connection between 

482 the Pap operon and PntAB? PntAB has the role in fermentative microorganisms of catalyzing 

483 electron-transfer between one major electron acceptor-donor and another, though not ferredoxin. 

484 Several genes of the Pap operon are predicted to contain Fe-S clusters, co-factors that typically 

485 also are involved in electron transfer, the only common theme so far; this connection deserves 

486 further experimental attention to resolve.

487

488 Case study 4 - Iron sulphur cluster metabolism 

489 As mentioned above, iron-sulphur (Fe-S) clusters are inorganic protein co-factors that are 

490 typically involved in electron transfer. They are assembled in cyanobacteria using the SUF 

491 system, even though genes with homology to members of the ISC system (the dominant system 

492 in E. coli) also are present in the Synechocystis 6803 genome (Balasubramanian et al. 2006). It 

493 has been established that SufR (sll0088) is an Fe-S containing negative transcriptional regulator 

494 of the remaining SUF members (sufA, sufB, sufC, sufD, sufS) (Wang et al. 2004). Interestingly, a 

495 first neighbour GBA with all of the above key genes (Fig. 7A, Supplementary file S6) resulted in 

496 a single cluster with two divided parts, an upper part containing all the catalytic SUF members, 

497 and a second lower part containing SufR. Even though SufR is clearly the transcriptional 

498 regulator of the other SUF members, there is surprisingly no direct connection between SufR and 

499 the other SUF members. Instead, SufR forms an intense CoEx cluster with a series of genes 

500 annotated mainly as ‘hypothetical’. Three of these are iron-related proteins: PerR (slr1738), 

501 sll1202 (homolog to iron transporters) and BfrA (sll1341; bacterioferritin homolog). In contrast, 

502 the upper SUF operon cluster contains four genes encoding predicted Fe-S containing proteins: 

503 The PSI subunit psaA (slr1834), bioB (slr1364), sll0031 (hypothetical) and spoT (slr1325). A 

504 possible reason for the lack of a direct association between SufR and the remaining SUF operon 

505 may be that SufR is not the only regulatory factor controlling SUF expression, or that its control 

506 is conditional.

507

508 Filtration of IntNet using all Fe-S key genes generated two smaller clusters (Fig. 7B). Whilst no 

509 obvious insight was obtained from the SufR-containing motif, the second cluster contained three 

510 SUF operon members connected both by EVEX and CoEx. Interestingly, all text-mining edges 

511 originated from a diverse collection of bacteria that did not include any cyanobacteria.

512
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513 Case study 5 - Alkane biosynthesis

514 The two genes encoding the catalytic enzymes of the alkane biosynthesis pathway (Schirmer et 

515 al. 2010), and which is present in most but not all cyanobacteria, forms an extended apparent 

516 operon in most species where it is found (Klähn et al. 2014). Since the alkane biosynthesis 

517 reaction so far does not work as efficiently as needed for economically sustainable fuel 

518 production (Eser et al. 2011; Kallio et al. 2014), we were curious whether missing elements 

519 required for effective catalysis could be represented in this apparent operon. In Synechocystis 

520 6803, however, only three of the apparent operon members are co-located on the genome, 

521 sll0207-sll0209. For the assembly of key genes, we therefore included homologs in 

522 Synechocystis 6803 to the most commonly observed members of the alkane biosynthesis operon 

523 in cyanobacteria in general (Table 1), even if they are not co-located on the genome in 

524 Synechocystis 6803. In this analysis (Fig. 8, Supplementary file S6), however, most of the operon 

525 members did not form a joint cluster with the exception of slr0426. A possible contributing 

526 reason for this outcome is that the biosynthetic system is unique to cyanobacteria (Schirmer et al. 

527 2010) and that it has not yet been studied much. Consequently, it is not well-represented in the 

528 EVEX network.

529

530 Case study 6 – Screening for the role of genes annotated as ‘hypothetical’ or ‘unknown’

531 We considered the possibility to utilize the script in order to obtain an insight into the possible 

532 role of all genes that are annotated as ‘hypothetical’ or ‘unknown’. The rationale was that the 

533 local context of genes without an annotation may provide insight into its possible role and that 

534 the script would allow the most important local context to be identified. All genes without an 

535 annotation were therefore employed, one at a time, as an entry gene for the automated script. The 

536 criteria of this script demanded as previously that more than one relationship type was present, 

537 plus the additional new demand that at least one of the members of the local context had an 

538 existing annotation. Over 5% of hypothetical/ unknown genes (112/1913) satisfied these criteria. 

539 The combined network with filtered motifs was composed of 331 nodes (Fig. 9A; Supplementary 

540 file S7). Around 60% of these patterns were derived from a combination of CoEx/Y2H and 

541 around 40% from EVEX/(CoEX/Y2H). These 112 putative genes represent a list of potentially 

542 interesting genes to be studied further (Supplementary file S8). Many of the entry genes with 

543 highest ranking have a local context with a clear single focus. For example, sll0543 forms a 

544 cluster with genes encoding three key members of PSI (psaC, psaB, psaD) (Fig. 9B). In contrast, 

545 a similar analysis with STRING places sll0543 in a cluster of 8 genes annotated as ‘hypothetical 

546 protein’ and one as ‘indole-3-glycerol-phosphate synthase’. In another example, the slr0144-48 

547 Pap operon (see case study 3) is once again identified (Fig. 9C). Interestingly, in this search, the 

548 Pap operon genes form a cluster together with two PSI subunits (psaB and psaD): the only earlier 

549 study linked the Pap operon to PSII, not PSI (Wegener et al. 2008). Other selected findings 

550 include unknown genes slr0723 and sll1774 forming an intricate cluster with two genes encoding 

551 proteins with a role in pili biogenesis (slr0161, slr0163) and another gene linked to chemotaxis 

552 (slr1043). The ‘unknown protein’ slr1187 forms a cluster with three NADH dehydrogenase 

PeerJ reviewing PDF | (2017:12:22526:1:1:NEW 21 Mar 2018)

Manuscript to be reviewed



553 subunits (slr1279-81) (Fig. 9D), and the ‘hypothetical protein’ slr2003 forms a cluster with two 

554 nitrate/nitrite transport system components (slr1450-51) (Fig. 9E).

555

556

557 CONCLUSIONS

558 This study incorporates species-independent text-mining for the creation and evaluation of 

559 biological networks. Although it is evaluated first with an established model organism, this 

560 approach is likely to have even greater utility with “new” species that until now have not been 

561 studied, particularly if it can be complemented by omics analysis at a sufficient depth to enable 

562 supporting networks to be constructed and integrated with the text-mining network.

563

564 Although the analysis of the Synechocystis 6803 network was constrained in scope, this 

565 hypothesis-generating process uncovered many leads and potential insights into its metabolism 

566 and potentially also cyanobacteria in general. For example, the strong apparent connection 

567 between the Pap operon and both PSI and PntAB, in addition to PSII as earlier reported. The lack 

568 of a clear connection between the alkane biosynthesis genes and other members of its apparent 

569 operon in other cyanobacteria was also surprising, though negative. Other leads included sll1886, 

570 SigE and nitrogen metabolism, sll0508/slr0952 and NADPH-metabolism, RpaB/slr0947 and 

571 PPP, sll0543 and psaBCD, slr1187 and ndhCJK, and slr2003 and nrtAB. Thus, a large number of 

572 candidate genes with potential involvement in important biological processes in cyanobacteria 

573 were identified in only the small selection of case studies presented here, the entire network 

574 certainly contains many more.

575

576 The filter allows the potentially most important candidates to be selected given that it relies 

577 exclusively on connections that are supported by multiple and independent evidence. It must be 

578 pointed out, however, that these automated procedures cannot replace the need for further in-

579 depth cognitive analysis of existing literature, though it may have an important guiding role, and 

580 final experimental verification. The script is expected to speed up the identification of the most 

581 interesting candidates and allow researchers to place a focus for further cognitive and 

582 experimental work, and in so doing contribute to reducing the proportion of ‘unknown’ or 

583 ‘hypothetical’ proteins.

584

585 The analysis of Synechocystis 6803 is likely to be further enhanced by future high-quality omics 

586 data sets, ideally from the same condition(s). In general, an extension of the EVEX event capture 

587 to include also metabolites would enable metabolic stoichiometric networks to also be included. 

588 Greater access to full-text articles is also likely to enhance the network richness and 

589 accumulation of multiple independent lines of evidence.

590

591
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598 Supplementary Information

599 Supplementary Figure 1. The number of publications for cyanobacteria in comparison to other 

600 model species such as Escherichia coli. The search terms ‘Synechocystis’ (representing 

601 Synechocystis sp. PCC 6803), ‘Cyanobacteria’, ‘Arabidopsis” (representing the model plant 

602 Arabidopsis thaliana) and ‘Escherichia coli’ were entered into PubMed ( 

603 http://www.ncbi.nlm.nih.gov/pubmed ) July 2017. The numbers shown in the figure were 

604 obtained from this website by selecting “Results by year”.

605 S1 File. Cytoscape file containing independent and merged networks. Opens with Cytoscape 3.1

606 S2 File. Text-file describing the annotations in the Cytoscape files

607 S3 File. Python file containing candidate gene script (filter)

608 S4 File. Python file containing hypothetical gene script

609 S5 File. Text-file containing annotations from EVEX/CyanoBase

610 S6 File. Cytoscape file containing the first neighbour GBA and script-based clusters used in the 

611 case studies. Opens with Cytoscape 3.1

612

613 S7 File. Cytoscape file containing all genes in the genome of Synechocystis 6803 without an 

614 annotation that forms a motif with at least two other nodes via at least two different data-types 

615 (i.e. edges), of which one is direct and the second is indirect, and at least one of the members of 

616 the motif has an existing annotation. Opens with Cytoscape 3.1

617

618 S8 File. Text-file containing list of possible candidates of hypotheticals

619
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Figure 1(on next page)

Species-independent text-mining generates a larger network compared to a species-

specific network

Text-mining network extracted from EVEX using events extracted from (A) all accessible

articles or (B) only those articles including the organism name Synechocystis 6803. The same

layout was used in both cases. In the case of (B), only those edges, and their connecting

nodes, originating from literature using the species ‘Synechocystis 6803’ were retained.
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Entire EVEX network (806 nodes, 3023 edges) Synechocystis 6803 specific EVEX network

(85 nodes, 81 edges)

A B
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Figure 2(on next page)

Overview of the approach – Integration of networks created using three distinct data-

types

(A) The selected data sets Y2H, microarray and text-mining were retrieved and pre-

processed. (B) Networks were constructed in Cytoscape and (C) merged (IntNet) with the

“advanced network merge”- plugin. (D) As an example, the NADP(H)-metabolism key gene

slr1843 was extracted by guilt-by-association (GBA). Automated rule-based prediction was

used to extract patterns with possible novel candidate genes. A spring embedded layout was

used to construct the Cytoscape view. Data-types are visualized with different colours (Y2H,

red; CoEx, green; EVEX blue) to easily distinguish between them.
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Figure 3(on next page)

The distribution of nodes across the three (Y2H, CoEx and EVEX) networks
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Figure 4(on next page)

The phylogenetic origin of the text-mining events used to construct the species-

independent network

Escherichia coli K-12 is the most studied organism as demonstrated by the biggest red

(number of events) and blue (number of articles) circles. Only the species (all prokaryotes)

that contributed most to the species-independent network are shown.
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Figure 5(on next page)

Cluster analysis with SigE (sll1689)

(A) The first neighbor guilt-by-association (GBA) network using only SigE as key gene. (B) The

combined network of motifs extracted with the rule-based script. (C) Network generated by

STRING database August 23, 2014, using standard settings and sll1689 as input. Solid EVEX

edges originate from any organism other than Synechocystis 6803. Dotted EVEX edges

originate from Synechocystis 6803. Black edges originate from STRING database. The key

genes are indicated by a white node.
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Figure 6

Cluster analysis with NADPH-related genes

(A) The first neighbor guilt-by-association (GBA) network using all NADPH-related key genes

(Table 1). (B) The combined network of motifs extracted with the rule-based script. (C)

Predicted pattern extracted from the script result B. (D) First neighbor GBA using PntA

(slr1239) or PntB (slr1434) as input. (E) Red dotted box indicates members of the Pap

operon. Solid EVEX edges originate from any organism other than Synechocystis 6803.

Dotted EVEX edges originate from Synechocystis 6803.
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Figure 7

Cluster analysis with Iron Sulfur cluster related key genes

(A) The first neighbor guilt-by-association (GBA) using all members of the SUF operon as key

genes (Table 1). Red asterisks indicated genes encoding proteins with a predicted Fe-S

cluster binding motif. (B) Two motifs generated by the rule-based filtering script using the

same key genes. Solid EVEX edges originate from any organism other than Synechocystis

6803. Dotted EVEX edges originate from Synechocystis 6803.
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Figure 8

Cluster analysis with members of the apparent alkane operon

The first neighbor guilt-by-association (GBA) of IntNet using two genes encoding catalytic

enzymes in alkane biosynthesis pathways and its four most commonly observed co-locating

genes in all cyanobacteria. Solid EVEX edges originate from any organism other than

Synechocystis 6803. Dotted EVEX edges originate from Synechocystis 6803. The key genes

are indicated by white nodes.
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Figure 9(on next page)

Cluster analysis for the role of genes annotated as ‘hypothetical’ or ‘unknown’

(A) The combined network of motifs extracted with the rule-based script. (B) sll0543, as an

example pattern with highest ranking, forms a cluster with genes encoding three key

members of PSI (psaC, psaB, psaD). (C) slr0144-48 as another example (see Fig. 6D). (D) The

‘unknown protein’ slr1187 forms a cluster with three NADH dehydrogenase subunits

(slr1279-81) (E) ‘hypothetical protein’ slr2003 forms a cluster with two nitrate/nitrite

transport system components (slr1450-51).
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Table 1(on next page)

List of key genes used in the case studies

Key genes identified for alkane biosynthesis were based on the consensus operon structure

in cyanobacteria (Klähn et al. 2014)
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1

NADPH metabolism Gene name Annotation (Cyanobase)

slr1239 pntA pyridine nucleotide transhydrogenase alpha subunit

slr1434 pntB pyridine nucleotide transhydrogenase beta subunit

slr1843 zwf glucose 6-phosphate dehydrogenase

slr1289 icdh isocitrate dehydrogenase

slr1643 fnr (PetH) ferredoxin-NADP oxidoreductase

ssl0020 petF ferredoxin I

Iron sulfur cluster metabolism

 
sll0088 sufR hypothetical protein (transcriptional regulator, suf)

slr0074 sufB ABC transporter subunit

slr0075 sufC ABC transporter ATP-binding protein

slr0076 sufD hypothetical protein (FeS assembly protein)

slr0077 sufS/nifS cysteine desulfurase

slr1417 sufA hypothetical protein YCF57 (FeS assembly protein)

Alkane biosynthesis

sll0209 aar acyl-ACP reductase

sll0208 ado aldehyde deformylating oxygenase

sll0207 rfbA glucose-1-phosphate thymidylyltransferase

sll0728 accA Acetyl-CoA carboxylase alpha subunit

slr0315 probable oxidoreductase

slr0426 folE GTP cyclohydrolase I

Sigma factor

Sll1689 sigE group2 RNA polymerase sigma factor SigE

2

3

4
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