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Abstract

Understanding how changes in temperature affect interspecific competition is critical for predict-
ing changes in ecological communities with global warming. Here, we develop a theoretical model
that links interspecific differences in the temperature dependence of resource acquisition and
growth to the outcome of pairwise competition in phytoplankton. We parameterised our model
with these metabolic traits derived from six species of freshwater phytoplankton and tested its
ability to predict the outcome of competition in all pairwise combinations of the species in a fac-
torial experiment, manipulating temperature and nutrient availability. The model correctly pre-
dicted the outcome of competition in 72% of the pairwise experiments, with competitive
advantage determined by difference in thermal sensitivity of growth rates of the two species. These
results demonstrate that metabolic traits play a key role in determining how changes in tempera-
ture influence interspecific competition and lay the foundation for mechanistically predicting the
effects of warming in complex, multi-species communities.

Keywords

Climate change, freshwater phytoplankton, global change, interspecific competition, metabolic
theory of ecology, nutrients, phosphate, physiological mismatches, temperature, trait-based
ecology.

Ecology Letters (2018)

INTRODUCTION

Climate change is predicted to be a major cause of species
extinctions over the next century (Field & Barros 2014), and a
considerable threat to biodiversity (Bellard et al. 2012). Sus-
ceptibility to climate change will depend on species’ environ-
mental tolerances (Pacifici et al. 2015), with those occupying
narrower thermal niches expected to be more vulnerable to
climate warming (Magozzi & Calosi 2015). Recent studies
have highlighted that changes in species interactions may also
play an important role in mediating the impacts of climate
change on populations (Dunn et al. 2009; Gilman et al. 2010;
Bellard et al. 2012; Cahill et al. 2013; Field & Barros 2014).
Indeed, the key drivers of global change (warming, CO2 and
changes in nutrient availability) are known to affect various
types of species interactions, including competition (Tylianakis
et al. 2008). Understanding how increases in temperature
affect species interactions is therefore crucial to predicting the
ecological consequences of future climate change (Dunn et al.
2009; Kordas et al. 2011; Bellard et al. 2012; Dell et al. 2014;
Reuman et al. 2014; Bestion & Cote 2018).
Metabolism shapes numerous life-history traits that deter-

mine fitness, including population growth rate, abundance,
mortality and interspecific interactions (Brown et al. 2004;
Savage et al. 2004; Dell et al. 2011). Species vary widely in
the way in which their metabolism and associated ecological
rates respond to temperature (Kingsolver 2009; Dell et al.
2011). These interspecific differences in thermal performance
curves (TPCs) can reflect differences in the magnitude (the ele-
vation of the TPC), sensitivity (the relative rate of increase in
performance with temperature), and/or thermal optima (the
temperature at which the performance is maximised) (Kordas

et al. 2011; Dell et al. 2014; Pawar et al. 2015), and can
greatly impact species interactions (Dell et al. 2014; Reuman
et al. 2014). Recent theory suggests that differences in meta-
bolic traits between consumers and resources can play a key
role in determining the effects of temperature on trophic inter-
actions (Dell et al. 2014; Gilbert et al. 2014; Pawar et al.
2015; Cohen et al. 2017). Despite advances in ecological the-
ory linking the effects of temperature to metabolism and spe-
cies interactions (O’Connor et al. 2011; Dell et al. 2014;
Gilbert et al. 2014; Amarasekare 2015; Uszko et al. 2017),
there have been very few empirical tests, and to our knowl-
edge, no large-scale experimental study has confronted recent
theoretical developments to assess whether differences in
metabolic traits between species can predict how interspecific
competition responds to warming.
In aquatic ecosystems, temperature and nutrients are the

main drivers of phytoplankton productivity (Litchman et al.
2010). Phytoplankton exhibit substantial interspecific variation
in their responses to temperature and nutrient availability
(Eppley & Thomas 1969; Tilman 1981; Aksnes & Egge 1991;
Boyd et al. 2013; Thomas et al. 2016, 2017). These interspecific
variations in metabolic and nutrient acquisition traits are
widely recognised as being important drivers of competition
(Tilman 1981), community assembly (Bulgakov & Levich 1999;
Grover & Chrzanowski 2006; Litchman et al. 2010; Edwards
2016) and ultimately the productivity of phytoplankton com-
munities (Behrenfeld et al. 2005). However, we currently lack
experimental tests of theory that can predict the dynamics of
competition from differences in metabolic traits between spe-
cies, which are essential components of models that forecast
how the structure and functioning of phytoplankton communi-
ties respond to climate change (Follows et al. 2007).
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Here, we address this fundamental knowledge gap by deriv-
ing a mathematical model to predict how changes in nutrients
and temperature affect the outcome of interspecific competi-
tion from differences between species in the metabolic traits
that characterise the TPCs of maximum growth rate and per-
formance under nutrient limitation in phytoplankton. We
parameterise our model with metabolic traits derived from six
freshwater phytoplankton species and test the model’s ability
to predict the outcome of competition in all possible pairwise
combinations of the six species in a factorial experiment,
manipulating both temperature and nutrient availability.

Theory

Our model predicts how interspecific differences in metabolic
traits affect the competitive advantage of pairs of phytoplank-
ton when both species are rare and colonising (co-invading) a
virgin environment (or patch) (see Section S1 in supporting
information for full model development). This differs from tra-
ditional resource competition (Tilman 1981) and adaptive
dynamics theory (Dieckmann & Law 1996; Diekmann 2003), in
that these frameworks assume one competitor (the resident) is
at population dynamics equilibrium while the other is intro-
duced into the system at a low density. Here, we characterise
scenarios where both species are rare and quantify the impact
of changes in temperature and resource availability on species’
relative competitive advantage. Because the two populations are
initially rare, cells grow exponentially with a constant growth
rate and negligible change in nutrient concentration over time
until they reach an equilibrium density. Therefore, before nutri-
ent concentration has been appreciably depleted, population
growth rate of the ith species (i = a or b) can be expressed as

Ni tð Þ ¼ Ni 0ð Þeli t; ð1Þ
where N is the phytoplankton cell density (cells mL�1), l the
realised population growth rate (d�1) and t the time (days).
We model growth rate li of the ith species using the Monod
eqn (Monod 1949),

li ¼
lmax;iS

KS;i þ S
; ð2Þ

where lmax is the maximum growth rate in nutrient-saturated
conditions (d�1), KS the half-saturation constant (lmol L�1)
corresponds to the concentration of limiting nutrients at
which the growth rate is 50% of lmax, and measures perfor-
mance at low nutrient concentrations. S is the nutrient (phos-
phate) concentration (lmol L�1). Maximum growth rate lmax

is tightly coupled to net photosynthesis rate (Geider et al.
1998), so its temperature dependence should follow a left-
skewed unimodal function of temperature. Within the ‘opera-
tional temperature range’ (OTR, the temperature range typi-
cally encountered by the population, see Fig. 1) lmax is
expected to increase exponentially with temperature (Martin
& Huey 2008; Angilletta 2009; Dell et al. 2011; Pawar et al.
2016). While the temperature dependence of KS is less well
known (e.g. Carter & Lathwell 1967; Ahlgren 1987; Aksnes &
Egge 1991; Sterner & Grover 1998), we assume the same form
of temperature dependence as lmax (see Section S1 for a dis-
cussion of this assumption). We therefore model lmax and KS

using the Boltzmann-Arrhenius equation (Aksnes & Egge
1991; Reuman et al. 2014),

lmax;i ¼ B0;i exp �El;i

k

1

T
� 1

Tref

� �� �
ð3Þ

KS;i ¼ K0;i exp �EK;i

k

1

T
� 1

Tref

� �� �
ð4Þ

where B0,i and K0,i are the values of lmax,i and KS,i at a reference
temperature Tref (Kelvins) and include the scaling of lmax and
KS with cell size (Section S1), El,i and EK,i are the activation
energies (eV) that phenomenologically quantify the relative rate
of change in lmax and KS with temperature, k is the Boltzmann
constant (eV�Kelvin�1) and T is the temperature (Kelvins). We
consider the parameters of eqns (3) and (4) (B0,i, K0,i, El,i, EK,i)
as ‘metabolic traits’ that characterise how resource acquisition
and growth respond to temperature.
Assuming Na(0) = Nb(0) (starting densities are equal in

experiments), we can define the competitive advantage (R) of
species a relative to species b by taking the log ratio of their
abundances at time t:

R¼ ln
Na tð Þ
Nb tð Þ ¼ la � lb ¼ S

 
B0;a exp �El;a

k
1
T� 1

Tref

� �� �
K0;a exp �EK;a

k
1
T� 1

Tref

� �� �
þ S

�
B0;b exp �El;b

k
1
T� 1

Tref

� �� �
K0;b exp �EK;b

k
1
T� 1

Tref

� �� �
þS

!
t

ð5Þ

(see Section S1). Thus, the value of R depends on differences in
the competing species’ metabolic traits, that is, on the respective
parameters that define the temperature dependence of lmax and
KS (B0,i, El,i, K0,i, EK,i) between the two species. When there are
no differences (the equivalent parameters are the same in both
species), R = 0 and both species are expected to be equally
abundant at any time point t. When there are physiological mis-
matches, R 6¼ 0, the sign of R indicates which species has a
competitive advantage: for R > 0, species a is expected to out-
number species b at time t, while the opposite is true for R < 0.
We can assess the relative importance of the metabolic traits

characterising nutrient-limited and resource-saturated growth
for predicting competitive advantage by comparing the full
model for R (eqn 5) to a simplified version that assumes nutri-
ent saturation:

R1 ¼ limS!1 RðSÞ ¼
 
B0;a exp �El;a

k

1

T
� 1

Tref

� �� �

�B0;b exp �El;b

k

1

T
� 1

Tref

� �� �!
t:

ð6Þ

In this case, species a will grow faster than species b if
R∞ > 0, and therefore if

ln
B0;a

B0;b
[

El;a � El;b

k

1

T
� 1

Tref

� �
: ð7Þ

Here, the trade-off between normalisation constants (B0,a,
B0,b) and activation energies (El,a, El,b) is explicit. At
T = Tref, the winner is determined by the ratio of the
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normalisation constants (the right hand side of the inequality
becomes zero). Species a will gain competitive advantage when
B0,a > B0,b. However, as T increases or decreases from Tref,
the relative importance of the activation energies increases,
and at sufficiently large |T–Tref|, the competitive dominant is
entirely determined by the differences in El: when T ≫Tref,
the species with the higher El has the advantage, while when
T ≪Tref, the species with the lower El will be dominant (e.g.
Fig. S1A). For narrower temperature ranges, such as those
discussed in this study, the competitive advantage is deter-
mined by differences in both normalisation constants and acti-
vation energies. This trade-off between the normalisation
constants and the activation energies in shaping how the com-
petitive advantage changes with warming is similar (but tem-
perature specific) to the trade-off functions central to adaptive
dynamics (Dieckmann & Law 1996; Diekmann 2003).
The sign of R and R∞ can change with temperature – a

“reversal” in the competitive advantage indicates that one spe-
cies can outcompete the other only within a specific tempera-
ture range (e.g. Fig. 3; Fig. S1B and Section S1). Thus, our
model makes the following key predictions: (1) differences in
individual species’ metabolic traits can predict competitive
advantage between pairs of species at a given temperature; (2)
R∞ will approximate R in predictive power at higher nutrient
concentrations, but R will better predict competitive advan-
tage at lower nutrient concentrations; and (3) the competitive
advantage will reverse with warming if the species with lower
performance at low temperature (B0) has a sufficiently higher
thermal sensitivity (El).

METHODS

Study design

We used competition experiments among pairs of six phyto-
plankton species to test the model’s predictions (see Fig. S2A for
a flow chart of the experimental design). We first determined the
temperature dependence of lmax and KS for each species indepen-
dently, which we then used to parameterise the model, allowing
us to generate predictions on the competitive advantage for each
species pair as a function of temperature and nutrient concentra-
tion. We then competed the six species in all pairwise combina-
tions at two temperatures and three nutrient concentrations.

Species and culture conditions

The six phytoplankton species are the naturally co-occurring
freshwater green algae, Ankistrodesmus nannoselene, Chlamy-
domonas moewusii, Chlorella sorokiniana, Monoraphidium min-
utum, Scenedesmus obliquus and Raphidocelis subcapitata
(Fritschie et al. 2014). We chose these six species because they
have similar cell sizes and can be cultured on the same media
[standard COMBO culture medium without animal trace
elements (Kilham et al. 1998)]. By choosing species with simi-
lar cell sizes, we aimed to minimise the effect of size on differ-
ences in metabolic traits (Section S1). Strains of each species
were ordered in October 2015 from the CCAP (Table S2A),
and grown on COMBO medium in semi-continuous culture at
15 °C on a 12 : 12 light-dark cycle with a light intensity of

90 lmol m�2 s�1, transferring cultures weekly to keep them in
exponential phase of growth until the start of each experiment.

Metabolic traits

In February 2016, we measured growth rates of each species
across gradients in temperature and phosphate concentration.
Each species was grown in a factorial experiment at 5 tempera-
tures and 13 phosphate concentrations, with 3 replicates per
combination, yielding 1170 cultures (Fig. S2A). We created 13
solutions of COMBO medium with different phosphate concen-
trations ranging from 0.01 to 50 lmol PO4

3+ L�1 (Table S2B),
a range relevant to phosphate concentrations commonly found
in lakes (Downing et al. 2001). Small tissue culture flasks
(Nunclon) filled with 40 mL of each solution were inoculated
with each species in monoculture at very low density (100
cells mL�1) ensuring that the increase in phosphate concentra-
tion due to the inoculum volume was minimal (0.01 lmol L�1).
Cells were then grown at 15, 20, 25, 30 and 35 °C, and
90 lmol m�2 s�1 on a 12 : 12 light-dark cycle. Samples were
shaken and their position rotated within the incubators daily
during the month-long experiment. Every 2 days, 200 lL was
taken and 10 lL of 1% sorbitol solution was added as a cry-
oprotectant. After 1 h of incubation in the dark, samples were
frozen at �80 °C until further analysis. Cell density was deter-
mined by flow cytometry (BD Accuri C6) on fast flux settings
(66 lL min�1), counting 10 lL per sample. During the experi-
ment, some samples failed to grow properly and were therefore
removed from the subsequent analyses.

Competition experiments

To investigate the joint effects of temperature and phosphate
availability on competition, we competed species in all pair-
wise combinations (15 pairs) at two temperatures (15 and
25 °C; a low temperature and a temperature close to the opti-
mum for most species, Fig. 1) and three phosphate concentra-
tions (one saturating [30 lmol L�1] and two limiting
[1 lmol L�1 and 0.1 lmol L�1] concentrations, chosen from
the Monod curves, Fig. 1), replicated 6 times (Fig. S2A),
yielding 540 microcosms. We also grew the six species in
monoculture at the two temperatures and three nutrient levels
to train and test an algorithm for discriminating the different
species in the competition trials (see Section S3 for more
details). We used 24 well plates filled with 2 mL of media,
inoculated them with 100 cells mL�1 of each species, and
incubated them in the same way as described above. After 5,
14 and 23 days, a 200 lL sample was taken and cell density
was determined by flow cytometry.

Data analyses

All statistical analyses were undertaken using R v3.3.2 (R
Core Team 2014).

Metabolic traits
To characterise the effects of phosphorous availability and
temperature on growth, we estimated specific growth from the
time series of cell densities. Population dynamics were fitted
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using nonlinear least squares regression to the Buchanan
three-phase linear growth model (Buchanan et al. 1997):

Nt ¼
N0 for t� tlag;
N0 þ l t� tlag

� �
for tlag\t\tmax

Nmax for t� tmax;

8<
: ð8Þ

where tlag is the duration of the lag phase (days), tmax the time
when the maximum population density is reached (days), N0

the log10 of the initial population density [log10(cells mL�1)],
Nmax the log10 of the maximum population density supported
by the environment [log10(cells mL�1)] and l the specific growth
rate (day�1). Fits to the Buchanan model were determined using
the ‘nlsLM’ function in the ‘minpack.lm’ package (Elzhov et al.
2010), which uses the Levenberg-Marquardt optimisation algo-
rithm. Parameter estimation was achieved by running 1000 dif-
ferent random combinations of starting parameters picked from
uniform distributions and returning the parameter set with the
lowest AICc score (Padfield et al. 2016).
The Monod equation (eqn 2, Monod 1949) was fitted to the

estimates of l for each species at each temperature and for each
of the three replicates using the ‘nlsLM’ function as above.

We used two approaches to describe the temperature
dependence of lmax and KS: the Boltzmann-Arrhenius model
and generalised additive models (GAMs). First, we fitted the
Boltzmann-Arrhenius model on natural log-transformed
(hereafter ‘ln’) lmax and KS within the ‘operational tempera-
ture range’, between 15 and 25 °C, using a reference temper-
ature Tref = 15 °C (eqns 3 and 4) with the ‘nlsLM’ function
as above. This analysis produced normalisation constants
and activation energies for both lmax and KS per species,
which we then used to parameterise eqns 5 and 6 in the the-
ory. Second, for each species, we fitted a GAM to ln lmax

and ln KS across the full temperature range over which the
TPCs are typically unimodal using a basis dimension of 3
and the ‘ts’ type of basis-penalty smoother with the ‘mgcv’
package.

Competition
The flow cytometer returned side scatter (SSC), forward scat-
ter (FSC), green (FL1), orange (FL2), red (FL3) and blue
(FL4) fluorescence values that can be used to define a species’
morphology and pigment composition. We used these

Ankistrodesmus Chlamydomonas Chlorella Monoraphidium Scenedesmus Raphidocelis
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Figure 1 Interspecific variation in metabolic traits. (a) Monod curves for each species, with growth rate l as a function of phosphate concentration

(lmol L�1) from 15 °C (blue) to 35 °C (dark red). Points represent the mean of the three replicates, and the Monod curve is drawn from the mean

parameters across the three replicates. Note that the phosphate concentration levels in the experiment range from 0.01 to 50 lmol L�1 but the x-axis was

cut at 8 lmol L�1 for clarity. (b) Maximum growth rate lmax and (c) the half-saturation constant KS, as functions of temperature. Red lines represent the

fit of the Boltzmann-Arrhenius within the operational temperature range (15–25 °C, white area). Black dotted lines represent the fit of the GAM over the

whole temperature range. See Tables S4A–D for more details about the temperature dependence of lmax and KS.
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quantities to quantify cell identity and thus estimate the rela-
tive abundances of each species in pairwise competition exper-
iments. We separated the dataset into three, one for training
the discrimination algorithm, one for testing its efficiency at
separating species pairs and one for the actual competition tri-
als. The training dataset was used to establish pairwise dis-
crimination functions between pairs of species, using three
different procedures: a linear discriminant analysis, a random
forest analysis and a recursive partitioning and regression tree
analysis (Section S3). These different discriminant functions
were then applied to the testing dataset to determine the accu-
racy of the various discrimination algorithms in differentiating
between pairs of species by creating in silico competition
experiments (Section S3). The linear discriminant analysis pre-
dicted the correct cell identity of each species in the in silico
pairwise experiments with 78% accuracy and was chosen for
application to the competition dataset (Fig. S3A and
Table S3A). Results were robust to the statistical method used
to discriminate between species (Section S6).
After determining species identity for each competition trial,

we computed cell density and calculated the competitive
advantage, R, of species a relative to species b by taking the
ln ratio of their densities (cells mL�1) at time t, and adding
one to each of the species’ densities to account for instances
when one species had become locally extinct. We also com-
puted a binary competitive advantage where species a (respec-
tively, species b) was competitively dominant for R > 0
(respectively, R < 0).

RESULTS

Metabolic traits

The responses of growth rate to phosphate concentration were
well fit by the Monod equation (Fig. 1a). The half-saturation
constant, KS, and the maximum growth rate, lmax, varied with
temperature, and the temperature response of these traits dif-
fered between species (Fig. 1b and c; Tables S4A-D). Maximum
growth rate exhibited unimodal temperature dependence in
Ankistrodesmus, Chlamydomonas and Raphidocelis (Fig. 1b,
Table S4C). In Chlorella and Monoraphidium, lmax increased
with temperature but did not reach a peak by 35 °C, while lmax

in Scenedesmus exhibited negligible temperature dependence
(Fig. 1b, Table S4C). KS increased with temperature for Ankis-
trodesmus, Chlamydomonas and Monoraphidium, while the
response was unimodal for Chlorella and Raphidocelis and
there was no discernible trend for Scenedesmus (Fig. 1c,
Table S4D).

Interspecific competition

The competitive advantage depended on temperature, nutrient
conditions and the identity of the species pair (Fig. 2). For
instance, for the pair Ankistrodesmus-Chlorella, Ankistrodesmus
dominated the competition at lower temperatures while Chlor-
ella dominated at higher temperatures, except at very low nutri-
ent concentrations. For some species pairs, one species
dominated across all temperatures and nutrient concentrations
– e.g. Monoraphidium always outcompeted Raphidocelis.

The theoretical competitive advantage R (eqn 5) correctly
predicted 72% of the experimental outcomes (Table 1). The
predictability of the competitive advantage did not differ
between temperatures, but it varied with nutrient concentra-
tion and depended on species identity (Table 1). Eighty-seven
per cent of the interactions involving Chlorella were correctly
predicted, while those involving Raphidocelis were the most
difficult to predict (only 52%). Indeed, removing interactions
involving Raphidocelis increased the overall predictive power
of the model to 77%. The model correctly predicted 86% of
the observed reversals in competitive advantage across tem-
peratures at the high nutrient conditions, while it was unable
to predict reversals at lower nutrient levels (Table 2). Consis-
tent with the theory, these reversals are due to the differences
in metabolic traits between species leading to the crossing of
growth rate TPCs between two competing species (eqn 7;
Fig. 3). Assuming nutrient-saturated conditions (R∞, eqn 6)
decreased the predictive power of the model (Table 1).
Accounting for interspecific differences in the temperature
dependence of KS substantially improved predictions at the
very low nutrient concentrations.
In addition to the binary competition outcome, we also

tested the model’s ability to quantitatively predict the magni-
tude of R and found a significant correlation between the pre-
dicted and observed R (Fig. S7A, Table S7A), which became
stronger when excluding Raphidocelis (Tables S7B-C). This
result suggests that the simple metabolic model can be used to
predict how environmental changes alter the relative abun-
dance of species as well as the binary outcome of pairwise
interactions.

DISCUSSION

Understanding how changes in temperature and nutrients
affect competitive interactions among phytoplankton is critical
for predicting how environmental change will shape the struc-
ture and functioning of aquatic ecosystems. We tackled this
challenge by developing, parameterising and testing a model
that predicts competition among phytoplankton from differ-
ences in the ‘metabolic traits’ that characterise the TPCs of
maximum growth rate and performance under nutrient limita-
tion. Our analyses demonstrate that the competitive advantage
of six species of freshwater phytoplankton under changing
temperatures and nutrients can be predicted with information
on just four metabolic traits.
In our experiments, the response of growth rate to phospho-

rous availability was well fit by the Monod equation. The
parameters characterising this functional response to resource
availability were temperature dependent. Over a broad range
of temperatures (15–35 °C) both the maximum growth rate
(lmax) and the half-saturation constant (KS) exhibited nonlin-
ear temperature dependence, consistent with Senft et al.
(1981). However, within the operational temperature range
(OTR), the temperature dependence of both lmax and KS was
well fit by the exponential Boltzmann-Arrhenius equation.
This result is interesting per se as, compared to lmax, the tem-
perature dependence of Ks is poorly understood (see Sec-
tion S1). Our results support the positive temperature
dependence expected by some theoretical studies (Goldman &
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Carpenter 1974; Aksnes & Egge 1991; Reuman et al. 2014).
For both lmax and KS, the activation energies and normalisa-
tion constants (value of the trait at a reference temperature)
differed among the six phytoplankton species.
We used these empirically determined metabolic traits to

parameterise our model to predict the effects of changes in
temperature and nutrients on the relative competitive advan-
tage of each species in competition with each of the others
and tested the outcome against a factorial experiment, manip-
ulating temperature and nutrient availability. Our experiment
revealed that species’ relative competitive advantage changed
substantially with temperature and nutrients. Comparing the
model’s predictions to the experimental results demonstrated
that differences in metabolic traits were a good predictor of
the relative competitive advantage of a species in pairwise
competition, with the full model correctly predicting 72% of
the experimental outcomes. Accounting for the effects of tem-
perature on nutrient-limited growth kinetics (R) was impor-
tant for predicting species’ competitive advantages under very
low nutrient concentrations (0.1 lmol PO4

3+ L�1), but as
nutrient concentration increased, knowledge of differences in
the temperature dependence of lmax was sufficient to predict
the effects of warming at intermediate (1 lmol PO4

3+ L�1)
and high (30 lmol PO4

3+ L�1) nutrient concentrations.
For some combinations, one species was dominant across

all temperatures and nutrient concentrations. In these cases,

the competitively superior species often had a higher normali-
sation constant for maximum growth rate (i.e. B0), resulting
in faster realised growth rates under all conditions (Fig. 3).
There were also frequent reversals of competitive advantage,
particularly with changes in temperature. Temperature-driven
reversals in competitive advantage were often linked to analo-
gous reversals in the competitive advantage predicted by the
model, where the superior competitor in the warm environ-
ment typically had a higher activation energy for maximum
growth rate (El, Fig. 3). The model predicted 86% of compet-
itive reversals at high nutrient levels. The poor predictability
at low nutrient concentrations may simply reflect the fact that
temperature-driven competitive reversals were generally rare
under nutrient limitation (n = 2). Indeed, the model’s overall
performance under nutrient-limited conditions was very good,
predicting outcomes in 76% of cases. The lack of tempera-
ture-driven reversals in competitive advantage under nutrient-
limited conditions suggests that normalisation constants for
lmax and KS were the main drivers of competition rather than
the activation energies, perhaps because the temperature
dependence of growth and resource uptake is heavily con-
strained at low nutrients (Thomas et al. 2017). Overall, these
results demonstrate that metabolic traits play a central role in
shaping competitive interactions among phytoplankton and
highlight that particular combinations of traits consistently
predict competitive advantage under warming – i.e. high B0

P : 0.1 µmol ⋅ L−1 P : 1 µmol ⋅ L−1 P : 30 µmol ⋅ L−1

T: 15°C
T: 25°C
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Figure 2 Predicting competitive advantage from metabolic traits. The colour indicates the identity of the competitively dominant species and strength of

competitive advantage after 14 days (median Robs over 6 replicates; see Fig S3B for Robs by replicate). The circles show the agreement of the model

predictions with the experimental outcomes (size: number of replicates correctly predicted; colour: more than half of the replicates correctly predicted, see

Table 1). If the cell density was too low to accurately predict a winner, we dropped the replicate. Thus, the number of replicates per pair, temperature and

nutrient conditions is not always 6. Eight competition trials were dropped because all replicates had too low a cell density. These are shown as grey tiles.

The total number of replicates is N = 361.
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and El. Our findings also suggest that a greater understanding
of the variation in metabolic traits at local to global scales is
urgently needed if we are to predict how the structure and
functioning of planktonic ecosystems will be affected by cli-
mate change (Litchman & Klausmeier 2008; Litchman et al.
2010).
Despite the good agreement between our model and the

median experimental outcomes, the results should be

interpreted with some caution because the experimental com-
petitive coefficients were often variable among the six repli-
cates in each pairwise interaction (Fig. S3B). Such variability
might reflect natural intrapopulation variability in traits not
captured by the model, which is parameterised by the average
trait values for each species. It could also be driven by experi-
mental precision in quantifying the competitive advantage in
small volume, high-throughput batch-culture experiments.
Future work will be needed to verify these results in smaller-
scale experiments using high-precision chemostat methods.
Nevertheless, the competitive advantages were generally
highly predictable, particularly when excluding interactions
involving Raphidocelis, suggesting that the model’s assump-
tions are nonetheless appropriate for the other five species.
The poor predictability of interactions involving Raphidocelis
warrants further attention. Our ability to discriminate and
quantify this species when in competition using the linear
discriminant algorithm was poor (Table S3A), and the confi-
dence intervals around the TPCs of lmax and KS were also
wide (Fig. 1, Tables S4A–D), which likely impaired the
performance of the model. Other factors not accounted for
in the model, such as direct interspecific interference (e.g.
through the production of toxins), might be more important
in this species’ interactions. Indeed, total polyculture
yields involving Raphidocelis were substantially lower than
expectations based on the weighted average of the monocul-
ture yields (Table S8A, Loreau & Hector 2001), indicating
strong negative interactions, consistent with interspecific
interference.
Our experiments and theory explored the short-term dynam-

ics of two species colonising virgin environment when both
are locally rare. The model can, however, also be extended to
explore scenarios where a rare species (or genotype) invades a
resident that is at population dynamics equilibrium (see Sec-
tion S1), scenarios which are central to resource competition
theory (Tilman 1981), modern coexistence theory (Chesson
2000) and adaptive dynamics (Dieckmann & Law 1996; Diek-
mann 2003). Tilman (1981) proposed that the outcome of
competition is determined by the species with the lowest R*
(in our notation, S*), that is, the species with the lowest equi-
librium resource requirements. The R* could, for this purpose,
be derived from our model with the explicit temperature-
dependent parameters we use here (lmax, KS), leading to pre-
dictions for the effects of differences in metabolic traits on
invasion under a range of warming and nutrient manipulation
scenarios. Tilman et al.’s R* concept also extends to the adap-
tive dynamics framework, where the difference in R* between
a resident and a competing genotype is equivalent to the ‘in-
vasion fitness’ criterion (e.g. see Section 4 in Diekmann 2003).
As with resource competition theory, for a competing geno-
type to successfully invade, its R* needs to be lower than that
of the resident. Differences in the temperature dependence of
species’ metabolism (or those of residents and mutants) would
therefore be expected to lead to trade-offs in invasion fitness,
comparable to those we have observed in the context of tem-
perature-driven reversals in competitive advantage owing to
species’ differences in the activation energy and normalisation
constant of maximum growth rate and the half-saturation
constant (see Fig. 3).

Table 1 Proportion of competitive advantages correctly predicted by theory

R∞ R N

Full dataset 0.63 (0.009) 0.72 (0.000) 361

By temperature

T ¼ 15 °C 0.66 (0.071) 0.73 (0.006) 188

T ¼ 25 °C 0.58 (0.100) 0.72 (0.003) 173

By nutrient

[P] = 0.1 lmol L�1 0.32 (0.800) 0.76 (0.061) 68

[P] = 1 lmol L�1 0.64 (0.025) 0.68 (0.007) 148

[P] = 30 lmol L�1 0.75 (0.004) 0.75 (0.004) 145

By species

Ankistrodesmus 0.68 (0.015) 0.80 (0.000) 136

Chlamydomonas 0.61 (0.051) 0.70 (0.005) 138

Chlorella 0.78 (0.011) 0.87 (0.001) 119

Monoraphidium 0.60 (0.067) 0.72 (0.008) 131

Scenedesmus 0.58 (0.054) 0.65 (0.005) 125

Raphidocelis 0.42 (0.831) 0.52 (0.344) 73

Results are shown for the full dataset (including competitions at both

temperatures and nutrient concentrations), by temperature, nutrient con-

centration and species (where only competitions involving each individual

species are considered in turn). The column “R∞” (eqn 6) assumes nutri-

ent-saturated conditions, while column “R” (eqn 5) explicitly captures

nutrient limitation. “N” indicates the number of competitions in each sub-

set. P values indicated in parentheses were obtained by bootstrapping (see

Section S5). The experimental competition data use the LDA discrimina-

tion method on the results at day 14. Analogous results for the random

forest and rpart discrimination methods are shown in Tables S6A-B, and

for results at day 5 and day 23 are shown in Tables S9A-B.

Table 2 Number of observed and predicted reversals in competitive

advantage between pair of species

Observed

revs.

Predicted

revs. (R∞)

Predicted

revs. (R)

Yes No N Prop. N Prop.

Full dataset 16 23 10 0.62 9 0.56

By nutrient

[P]=0.1 lmole�L�1 2 8 1 0.50 0 0.00

[P]=1 lmole�L�1 7 7 3 0.43 3 0.43

[P]=30 lmole�L�1 7 8 6 0.86 6 0.86

By species

Ankistrodesmus 7 8 5 0.71 4 0.57

Chlamydomonas 5 9 2 0.40 2 0.40

Chlorella 8 3 7 0.88 7 0.88

Monoraphidium 5 8 4 0.80 3 0.60

Scenedesmus 5 9 1 0.20 1 0.20

Raphidocelis 2 9 1 0.50 1 0.50

Observed reversals are qualified when the median R of a pair of species

across six replicates changes sign with temperature. They are compared to

reversals predicted by the model. We counted the number of times the

model correctly predicted that a specific pair of species would reverse the

sign of their competitive advantage.

© 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

Letter Predicting competition from metabolic traits 7



A key assumption of our model is that populations are ini-
tially rare and cells grow exponentially with a constant
growth rate and negligible change in nutrient concentrations
over time. This assumption was violated in several of the
experimental conditions at day 14, which were the data used
to test the theory. The median time to equilibrium density
during the single-species nutrient-gradient experiments at 15
and 25 °C was 11 and 9 days, respectively, at 0.1 lmol
PO4

3+ L�1, 11 and 7 days at 1 lmol PO4
3+ L�1, and 15 and

9 days at 30 lmol PO4
3+ L�1. At high temperatures and low

nutrient concentrations many species were no longer in the
exponential phase of growth. We assessed the impact that this
violation in the model’s assumptions might have on the
model-data comparisons by quantifying the correlation
between the competitive advantages derived at day 5 (when
all species were still in exponential growth under all condi-
tions) with those used to test the model at day 14. The
observed competitive advantages between species pairs were
correlated between day 5 and day 14 (Pearson r = 0.67 [95%
CI: 0.56, 0.75]) and between day 14 and day 23 (r = 0.54
[95% CI: 0.45, 0.62]). Furthermore, the performance of the
model in predicting the competitive advantage was also

consistent between time points, with the model correctly pre-
dicting 66% of interactions after 5 days, 72% after 14 days
and 68% after 23 days (Section S9). These results demon-
strate that the competitive advantage at day 14 carries the sig-
nature of exponential growth because the initial competitive
advantage results in an exponentially higher abundance of the
competitively superior species (Supporting Information equa-
tions (15) and (20)). That is, the advantage persists into the
phase of the two-species community assembly where the pop-
ulations are no longer growing exponentially (effectively a sta-
tionary phase because of nutrient depletion). Whether this
advantage persists at population equilibrium when nutrient
supply is constant needs to be investigated in future work. In
particular, we note that long-term equilibrium abundance,
often called ‘carrying capacity’ or K in classical ecological
theory, is thought to correlate with population growth rate,
with evidence for both positive (Mallet 2012) and negative
(Savage et al. 2004) associations.
Overall, our study shows that temperature-driven shifts in

competitive advantage among phytoplankton can be predicted
from basic information on the metabolic traits governing the
thermal responses of growth and resource acquisition. These

(a) (b) (c)

(d) (e) (f)

Figure 3 Predicting reversals in competitive advantage from mismatches in metabolic traits. (a–c) Competition between Ankistrodesmus and

Chlamydomonas, (d–f) competition between Ankistrodesmus and Chlorella. (a and d) Represent the temperature dependence of lmax derived from the

Boltzmann-Arrhenius models. In (a), lmax is always higher for Chlamydomonas, while in (d), Ankistrodesmus has a higher lmax at low temperatures, but a

lower lmax at high temperatures. This translates into different shapes of predicted R∞ with temperature, with a reversal of competitive advantage with

temperature in the Ankistrodesmus-Chlorella competition (e) while there is no reversal in the Ankistrodesmus-Chlamydomonas competition (b). These

theoretical predictions are in line with the experimental observations (c, f; N = 6 replicates per temperature plus medians as segments).
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results emphasise the potential for using metabolic traits to
predict how directional environmental change (e.g. climatic
warming) as well as environmental fluctuations influence the
ecological dynamics of phytoplankton communities. Extend-
ing our theoretical and empirical work beyond pairwise inter-
actions to complex multi-species communities will require
further work in two main areas. First, the theory will need to
be extended to understand how differences in metabolic traits
play out in the context of indirect interactions in multi-species
trophic interaction networks (Wootton 1994; Menge 1995;
Montoya et al. 2009). Second, a more comprehensive under-
standing of metabolic trait variation at local and regional
scales will be needed to expand the pairwise models to a trait-
based meta-community framework for the effects of climate
change on community dynamics.
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S1. Theory 
Our objective is to quantify how interspecific differences in metabolic traits affect the 
competitive advantage of either of a pair of competing phytoplankton species when both 
species are rare and colonizing (co-invading) a virgin environment. For this, we start with the 
well-established model of two phytoplankton populations competing for a single limiting 
nutrient (𝑆) in a chemostat-type environment (Tilman 1977, 1981): 
 

!
!!

!!!
!!

= 𝜇! − 𝐷 = !max,a !
!!,!!!

− 𝐷  (11a) 
!
!!

!!!
!!

= 𝜇! − 𝐷 = !max,b !
!!,!!!

− 𝐷  (11b) 
!!
!!
= 𝐷 𝑆! − 𝑆 − !! !max,i !

!!,!!!
𝑁!!

!!! .  (11c) 

 
Here, Ni is the 𝑖-th species density (cells·mL−1), µi is its realised growth rate (d−1), µmax,i is its 
maximum growth rate in nutrient saturated conditions (d−1), KS,i is the half-saturation constant 
(µmol·L−1) (the nutrient concentration at which realised growth is µmax/2; a measure of 
performance at low nutrient concentrations), S is the nutrient concentration (µmol·L−1), D is 
dilution rate, and S0 is the inflow concentration of nutrients. The constant αi converts units of 
nutrient to phytoplankton cell units (1000·µmol·cell−1); that is, it is the inverse of the number 
of phytoplankton cells produced per unit of resource.  
 
The Monod equation’s parameters µmax and KS are functional traits that depend on the 
species’ physiology, and play an important role in shaping competitive dynamics in 
phytoplankton communities (Tilman 1981; Bulgakov & Levich 1999). Because the nutrients 
are not replenished in our colonisation experiments, D = 0, leaving 
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To calculate the competitive advantage during colonization we can assume that because the 
two populations are rare, cells initially grow exponentially with a constant growth rate and a 
negligible change in nutrient concentration over time: 
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Then, to calculate competitive advantage when rare, we can solve eqns. 13: 
 

𝑁a 𝑡 = 𝑁a 0 𝑒!a !   (14a) 
𝑁b 𝑡 = 𝑁b 0 𝑒!b ! ,   (14b) 

 
where t is time (in days). Assuming 𝑁! 0 = 𝑁!(0) (starting densities are equal, as in the 
experiments), we can define the competitive advantage (R) of species a relative to species b 
by taking the log of the ratio of their abundances at time t: 
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𝑅 = ln !! !

!! !
= 𝜇! − 𝜇!  = 𝑆 !max,a !

!!,! ! !!
− !max,b !

!!,! ! !!
𝑡. (15) 

 
We now incorporate the effects of temperature change on the parameters µmax and Ks of eqn. 
15 to predict the effects of warming on competitive advantage. 
 
Incorporating metabolic traits 
Maximum growth rate µmax is tightly coupled to the rate of net photosynthesis (Geider et al. 
1998) and consequently, its temperature dependence is expected to be exponential up to a 
peak value (the optimum temperature), followed by a steeper exponential decline (Angilletta 
2009; Padfield et al. 2016; Schaum et al. 2017). The temperature range of the initial 
exponential increase up to the optimum is the ‘operational temperature range’ (OTR) — the 
range most likely to be encountered by the population (Martin & Huey 2008; Pawar et al. 
2016), and it can be described by 
 

𝜇max,i = 𝐵0,𝑖′  𝑚!
! exp − !!,!

!
!
!
−  !

!ref
,  (16) 

 
where 𝐵!,!!  is a mass- and temperature-independent normalization constant, i.e., the value of 
µmax,i at a reference temperature 𝑇ref (in K), Eµ,i is the activation energy (eV) that sets the 
relative rate of increase in µmax,i with temperature, k is the Boltzmann constant (eV·K-1), T is 
temperature (K), m is cell mass (size), and β is the exponent of the scaling of growth rate with 
cell size (Eppley 1972; Kagami & Urabe 2001; Brown et al. 2004; DeLong et al. 2010). We 
define  
 

𝐵!,i ≡ 𝐵!,!′𝑚!
!  (17) 

 
and therefore eqn. 16 becomes  
 

𝜇max,i = 𝐵!,i exp − !!,!
!

!
!
−  !

!ref
.  (18) 

 
Thus, interspecific differences in cell size m as well as the size scaling exponent β could 
contribute to differences in the species-specific normalization constants B0,i, although the 
species used in the experiments were specifically chosen to have approximately similar cell 
sizes (Table S2A). 

The shape of the relationship between 𝐾! and temperature is less well known, with no 
comprehensive review on the subject. Several experimental studies found positive links 
between 𝐾! and temperature in algae, plants and bacteria (Carter & Lathwell 1967; Shelef et 
al. 1970; Topiwala & Sinclair 1971; Thomas & Dodson 1974; Sawada et al. 1978; Mechling 
& Kilham 1982; Aksnes & Egge 1991; Sterner & Grover 1998), others found a hump-shaped 
relationship (Senft et al. 1981) or a negative relationship (Reay et al. 1999) while others 
found no evidence of temperature-dependence (Tilman et al. 1981; Ahlgren 1987). 
According to several theoretical studies, KS is expected to increase with temperature 
(Goldman & Carpenter 1974; Aksnes & Egge 1991; Reuman et al. 2014). We assumed 𝐾! to 
have a similar thermal response to µmax, with the temperature dependence within the OTR of 
both 𝜇max and 𝐾! following the Boltzmann-Arrhenius equation, 
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𝐾!,! = 𝐾!,! exp − !!,!
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where all parameters have the same meaning as in eqn. 16, and 𝐾!,! has been redefined to be a 
mass-scaling dependent normalization constant (𝐾!,i ≡ 𝐾0,𝑖′  𝑚!

!). Our empirical results (see 
Figure 1 in the main text) support the use of the Boltzmann-Arrhenius function within the 
OTR. Comparing our empirical results to data on the same genus when available showed that 
our relationship was in accordance with previous experiments, with a positive temperature 
dependence in Chlorella, as found by Shelef et al. (1970), and no relationship with 
temperature in Scenedesmus, as found by Ahglren (1987). However, more empirical and 
theoretical work is needed to better understand the temperature-dependence of KS. 
 
Effects of metabolic traits on the competitive advantage 
We can now substitute eqns. 18 and 19 into eqn. 15 to obtain the (relative) competitive 
advantage, 𝑅, of species a relative to species b in terms of differences in metabolic traits 
between the two species: 

𝑅 = 𝑆
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𝑡.   (20) 

 
Thus the value of 𝑅 depends on the differences in the competing species’ metabolism, that is, 
on the differences in the respective parameters that define the temperature dependence of 
𝜇max and 𝐾! (𝐵!, 𝐸!, 𝐾!, and 𝐸!). When the parameters are equivalent in both species, 𝑅 =
0, and both species are expected to be equally abundant at any time point 𝑡. When there are 
mismatches, 𝑅 ≠ 0, and the sign of 𝑅 indicates which species has a competitive advantage: 
for 𝑅 > 0, species 𝑎 is expected to outnumber species 𝑏 at time 𝑡, while the opposite is true 
for 𝑅 < 0. 
 
We can assess the relative importance of the metabolic traits characterising nutrient limited 
and resource saturated growth for predicting competitive advantage by comparing the full 
model for R (eq. 20) to a simplified version that assumes nutrient saturation (as 𝑆 → ∞): 
 

𝑅∞ = lim
!→∞

𝑅 𝑆 = 𝜇max,a 𝑇 − 𝜇max,b 𝑇 𝑡  

= 𝐵!,! exp −
𝐸!,!
𝑘

1
𝑇
−  

1
𝑇ref

−  𝐵!,! exp −
𝐸!,!
𝑘

1
𝑇
−  

1
𝑇ref

𝑡. (21) 

   
 
In this case, species 𝑎 will grow faster than species b if 𝑅! > 0, and therefore if 
 

ln !!,!
!!,!

> !!,!!!!,!
!

!
!
−  !

!ref
.  (22) 

 
Here, note that because the constants B0,i include the effects of size (eqn. 17), part of the 
mismatch in normalization constants is expected to come from differences in cell size. The 
trade-off between normalisation constants and activation energies here is explicit. At 𝑇 =
𝑇ref, the winner is entirely determined by the ratio in the normalisation constants (the right 
hand side of the inequality becomes zero). However, as 𝑇 increases or decreases from 𝑇ref, the 
relative importance of the activation energies increases, to the point that at a sufficiently large 
|𝑇 − 𝑇ref|, the winner of the competition is entirely determined by the activation energy (see 
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Figure S1A below for an example). For narrower temperature ranges, such as those discussed 
in this study, the winner is determined by differences in both normalisation constants and 
activation energies. 
 
A reversal in the competitive advantage 𝑅 (a change in its sign) with temperature change is 
also possible, and can be determined numerically. For the nutrient saturated case, the 
temperature at which 𝑅! = 0 is given by 
 

𝑇rev =
!!,!!!!,!

! !"
!!,!
!!,!

! 
!!,!!!!,!

! !ref

.    (23) 

 
Here, if there is a reversal, the species that wins at the higher temperature depends only on 
the difference in activation energies; for example, assuming a reversal takes place, if 
𝐸!,! > 𝐸!,!, species 𝑎 is expected to outcompete species 𝑏 for 𝑇 > 𝑇rev. 
 
Competitive advantage vs. competitive outcome 
In line with the empirical scenario of co-invasion and our experimental setup, the above 
theory investigates how the exponential growth phase during colonisation determines 
competitive advantage between species competing for a single limiting resource. However, in 
the long run, and once populations reach high enough population densities, density 
dependence and intraspecific competition might be expected to play an increasingly 
important role. In the experiments, we inoculated the same (small) number of cells for both 
species at the start of the colonisation experiment, and then use the density of each species 
after 14 days to test the theory. The relative abundances of each species after 14 days 
indicates which had a competitive advantage after colonizing an empty environment. Because 
the initial competitive advantage is expected to result in an exponentially higher abundance 
of the competitively superior species (SI eq. 15 and 20), we expect that the advantage at 14 
days will persist at the end of the experiment even if the species are no longer growing 
exponentially. This positive association between population growth rate and the long-term 
competitive outcome is consistent with theory and data, which suggest that equilibrium 
densities reflect the balance between density independent growth and density dependent 
regulation and thus higher intrinsic rates of increase tend to lead to higher equilibrium 
densities and competitive advantage (Mallet 2012). For reference, the median times to 
equilibrium density in the growth rate experiments were 11 and 9 days for very low (0.1 
µmol·L-1 of phosphate) nutrient concentrations respectively for 15 and 25°C, 10.5 and 7 at 
low (1 µmol·L-1 of phosphate) nutrient concentrations, and 14.5 and 9 days at high (30 
µmol·L-1 of phosphate) nutrient concentrations. Furthermore, we were also able to compare 
our theoretical predictions to results after 5 and 23 days of experiment, allowing us to check 
whether the assumption of the “carry-over signature” of competitive advantage beyond the 
exponential phase held true (Section S9). 
 
Extensions to adaptive dynamics, and Tilman’s R* theory 
The full model (eqns. (11)) can be used to study more scenarios, including invasion while 
rare (where one species is introduced while the other is at its equilibrium density), and to 
explore longer-term adaptive (competitive) dynamics. In the invasion-while-rare scenario, 
Tilman et al. (1981) show that the species with the lowest equilibrium requirements of 
nutrients (S*) will win, independent of the starting densities. In the model of eqn. (11), for 
instance, 
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𝑆!∗ =
! !!,!

!!"#,!!!
,       (24) 

 
so if a (resident) species is assumed to be at its equilibrium density, N*, and a new (invading) 
species is introduced while rare, as long as 𝑆inv∗ <  𝑆res∗ , the invasion will be successful. The 
same argument is made within the adaptive dynamics framework, where S* effectively 
represents the invasion fitness. If a mutant with a lower S* is introduced to a population, it 
will successfully invade. With the temperature dependence of µmax and KS made explicit 
using metabolic theory as we have done above, the conditions for invasion can be made 
explicitly temperature dependent and expressed in terms of mismatches between the resident 
and the invader population.  
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Figure S1A. Contour lines illustrating the competitive advantage for a range of 
parameter combinations, assuming nutrient saturation (𝑹!). The colour of the lines 
correspond to different temperatures, ranging from 15°C for the blue line, to 30°C for the red 
line. For example, for 𝐸!,!/𝐸!,!= 1 and 𝐵!,!/𝐵!,! = 0.8, species b grows faster than species a, 
but for 𝐸!,!/𝐸!,!  = 0.5 and 𝐵!,!/𝐵!,!  = 1.2, which species grows faster depends on the 
temperature. Here, 𝐵!,! = 1, 𝐸!,! = 0.55, and 𝑇ref = 15°C. Therefore, at 𝑇 = 15°C, which 
species wins is determined by 𝐵!,!/𝐵!,! (the blue line is horizontal and insensitive to the ratio 
in activation energies), while as temperatures move further away from 𝑇ref, the ratio of 
activation energies becomes increasingly important in determining the competitive 
advantage. As temperature increases beyond the range shown here, the lines become 
increasingly vertical, and as a result, insensitive to the ratio of normalization constants. 
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Figure S1B. Example of a reversal in the competitive advantage, 𝑹 , across a 
temperature range. The green line is for nutrient saturated conditions (𝑅!), and the 
grayscale lines are for different nutrient concentrations, ranging from 𝑆 = 0.1 µmol·L-1 for 
the light gray line, to 50 µmol·L-1 for the black line. The example uses parameters for 
Chlorella and Chlamydomonas, where 𝑅 > 0 means Chlorella has a competitive advantage 
over Chlamydomonas. 
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S2. Experimental design 
 

 

Figure S2A. Flow chart of the experimental design   
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Table S2A. Detailed information about the six species. 
The species were ordered from the Culture Collection of Algae and Protozoa (www.ccap.ac.uk). Cell 
diameters are calculated from microscopy pictures as the average of the longest and shortest diameter 
of the cell over 30 cells. 

Species name Class Order Strain Origin Mean 
cell 
diameter 
(µm) 

Ankistrodesmus nannoselene 
Skuja (1948) 

Chlorophyceae Sphaeropleales CCAP 
202/6A 

Siggeforsajon, 
Sweden 
(1948) 

2.8 

Chlamydomonas moewusii 
Gerlof (1940) 

Chlorophyceae Chlamydomonadales CCAP 
11/5A 

Freshwater 
 

8.1 

Chlorella sorokiniana 
Shihira& Krauss (1965) 

Trebouxiophyceae Chlorellales CCAP 
211/8K 

Austin, Texas, 
USA (1953) 

4.2 

Monoraphidium minutum(Nägeli)  
Komarkova-Legnerova (1969) 

Chlorophyceae Sphaeropleales CCAP 
278/3 

Texas, USA 4.7 

Scenedesmus obliquus (Turpin) 
Kützing (1833) 

Chlorophyceae Sphaeropleales CCAP 
276/3B 

Lund, Sweden 
(1939) 

7.1 

Raphidocelis subcapitata (formerly 
Selenastrum capricornutum) 
Printz (1913) 

Chlorophyceae Sphaeropleales CCAP 
278/4 

Akershus, 
Norway 
(1959) 

5.8 

 
 
Table S2B. Phosphate concentration levels for each solution, in µmol·L-1 and µg·L-1. 
We created 13 solutions of different phosphate concentrations ranging from 0.01 µmol·L-1 of 
phosphate to 50 µmol·L-1 of phosphate by mixing different amounts of COMBO medium without 
potassium phosphate dibasic (P- COMBO) and normal COMBO medium (P+ COMBO) in 40 mL 
tissue culture flasks. We used a modified version of the standard COMBO medium without animal 
trace solution in which we increased the fraction of carbonate by adding 10 mL of a stock solution of 
55.8 g·L-1 of sodium bicarbonate to maintain a DIC of more than 6.6 mmol·L-1 in order to prevent 
carbon limitation, which maintained a C:N:P ratio of 132:20:1 in the P+ COMBO solution, above the 
Redfield ratio of 106:16:1.  

 
Phosphate 
concentration 
(µmol·L-1 ) 

50 40 30 20 10 8 6 4 2 1 0.5 0.1 0.01 

Phosphate 
concentration 
(µg·L-1 ) 

4750 3800 2850 1900 950 760 570 380 190 95 47.5 9.5 0.95 

Amount of P+ 
COMBO (mL) 

40 32 24 16 8 6.4 4.8 3.2 1.6 0.8 0.4 0.08 0.008 

Amount of P- 
COMBO (mL) 

0 8 16 24 32 33.6 35.2 36.8 38.4 39.2 39.6 40 40 
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S3. Discrimination between species in the competition experiment 
To investigate the joint effects of temperature and phosphate availability on competition, we 
competed all species in all pairwise combinations (15 pairs) at two temperatures (15 and 
25°C; low temperature and a temperature close to the optimum for most species, Fig. 1) and 
three phosphate concentrations: one saturating [30 µmol·L-1] and two limiting [1 µmol·L-1 
and 0.1 µmol·L-1] concentrations, chosen from the Monod curves, Fig. 1), with each 
replicated 6 times (Fig. S2A), amounting to 540 samples. Along with the pairwise 
competition trials, we grew all 6 species in monoculture at the two temperatures and three 
nutrient levels. This was to train the discrimination algorithm used to separate cells from 
different species in the competition trial. The monoculture trials were divided into two 
subsets, one to train the cell discrimination algorithm, which was replicated 3 times per 
temperature and nutrient levels, and a testing subset used to test the accuracy of the cell 
discrimination algorithm, which was replicated 6 times. This testing subset was also used to 
calculate total yield in monoculture to compare it to yield in biculture (see Section S8). The 
competition experiments were carried out in two batches, a first batch in June 2016 for the 30 
µmol·L-1 and 1 µmol·L-1 P and a second batch in October 2017 for the very low nutrient 
concentration (0.1 µmol·L-1 P). This second batch was added to further explore nutrient 
limited competition as the Monod curves indicated that 1 µmol·L-1 P was above the half-
saturating constant for some species, particularly at low temperatures (see Table S4B). The 
competition experiments were carried out in 24 well plates filled with 2 mL of media and 
inoculated with 100 cells·mL-1 of each species, ensuring that the increase in phosphate 
concentration due to the inoculum volume (1 µL of sample at 2x105 cells.mL-1) or due to 
potential storages of phosphate in the cells was minimal (0.025 µmol·L-1 P). Plates were 
covered with AeraSealTM breathable membrane, minimising evaporation and contamination 
but allowing gas exchange. The competition plates were incubated in the same way as 
described for the monoculture growth curves. At day 5, 14 and 23, a 200 µL sample was 
taken and preserved as described in the metabolic traits section. Cell density was determined 
by flow cytometry on the slow flux setting (14 µL·min), counting 20 µL per sample. A 
preliminary test measuring twice the same sample on 54 samples (6 species x 9 replicates) 
gave a mean variation between cell counts of 9%. We focus on the results from day 14 in the 
main results and for the description of the discrimination algorithm method; however, 
rerunning the analyses using day 5 or day 23 gave qualitatively similar results (see 
Supplementary Section S9 for results on these two other days). 

FSC files returned by the flow cytometer were read with the Bioconductor 
‘FlowCore’ package in R, returning side scatter (SSC), forward scatter (FSC), green 
fluorescence (FL1), orange fluorescence (FL2), red fluorescence (FL3), and blue 
fluorescence (FL4) values that could be used to define species morphology and pigment 
composition and thus discriminate between species in the pairwise competition assays. We 
first filtered the data to remove noise by removing every data point where either 
ln(FSC.H)<10.3, ln(SSC.H)<3 or ln(FL3.H)<1.5, which are below minimum values observed 
for life cells of all 6 species. The training dataset was used to determine discrimination 
functions between pairs of species. We used the data collected at day 14 to train the 
discrimination algorithm, except for the P = 0.1 µmol·L-1 dataset where we pooled all of the 
data together to get a greater discrimination power as cell densities were very low under these 
conditions. We first removed outliers from this dataset by manually inspecting FSC.H by 
FL3.H clustering plots and choosing visual thresholds for these two values for each species. 
We then applied 3 different procedures to discriminate between pairs of species for each 
temperature and phosphate level: a linear discriminant analysis with the ‘lda’ function from 
the ‘MASS’ package, a random forest analysis with the ‘randomForest’ function from the 
‘randomForest’ package, and a recursive partitioning and regression tree analysis with the 
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‘rpart’ function from the ‘rpart’ package. These analyses were performed using the natural 
logarithm of the 10 variables returned by the flow cytometer (that is FSC.H, FSC.A, SSC.H, 
SSC.A, FL1.H, FL1.A, FL2.H, FL2.A, FL3.H, FL3.A, FL4.H and FL4.A, .H standing for 
height and .A for area), on each of the 15 pairs of species for each combination of 
temperature and phosphate level, except for the P = 0.1 µmol·L-1 dataset, where we pooled all 
temperatures together to get a greater discrimination power. These different discriminant 
functions were then applied to the testing dataset to test the accuracy of the predictions for the 
different discriminant methods. For each pair of species, we used the training set to create in 
silico competition experiments where 100% of the cells would pertain to one of the species. 
We applied the discrimination algorithm and calculated the percentage of times where a cell 
was wrongly attributed to the other species. We then chose the method that gave the 
maximum level of accuracy to apply to the competition dataset (Fig. S3A). The best method 
was the linear discriminant analysis, which gave 78% accuracy (Table S3A). However, we 
checked that the results were robust to the statistical method used to discriminate between 
species (Section S6 in SI). 

After determining species identity for each sample, we computed cell density and 
calculated the competitive advantage 𝑅 of species a relative to species b by taking the ln ratio 
of their densities (cells·mL-1) at time t, adding 1 to each species density for instances when 
one species became locally extinct (i.e., when density = 0). We also computed a binary 
competitive advantage where species a was competitively dominant when 𝑅 > 0 and vice 
versa. Because the efficacy of the discrimination algorithm depends on having a sufficient 
quantity of data with which to assign identities, we set a minimum threshold of Ntot = 500 
cells·mL-1. This led us to discard 171 replicates out of 540 for day 14. Furthermore, in 
comparisons with the model, we removed 9 replicates for which the observed R = 0, because 
the model necessarily predicts a non-zero R (traits characterising the TPCs for µmax and KS 
were never identical for any species pair). 
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Table S3A. Performance of the discrimination algorithms at day 14. 
 LDA: linear discriminant analysis, Random Forest analysis, RPART: recursive partitioning and 
regression tree. Summaries by (a) species for all nutrient and thermal conditions, (b) pairs of species 
for all nutrient and thermal conditions, (c) phosphate and nutrient conditions for all pairs of species. 

 
a 
Species LDA Randomforest RPART 
Ankistrodesmus 0.84 0.78 0.67 
Chlamydomonas 0.89 0.90 0.81 
Chlorella 0.74 0.77 0.62 
Monoraphidium 0.76 0.74 0.64 
Scenedesmus 0.79 0.76 0.63 
Raphidocelis 0.65 0.66 0.50 
Mean 0.78 0.77 0.65 

 
b 
Pair of species LDA Randomforest RPART 
Ankistrodesmus-Chlamydomonas 0.96 0.98 0.93 
Ankistrodesmus-Chlorella 0.91 0.65 0.52 
Ankistrodesmus-Monoraphidium 0.84 0.76 0.72 
Ankistrodesmus-Scenedesmus 0.90 0.89 0.73 
Ankistrodesmus-Raphidocelis 0.67 0.61 0.46 
Chlamydomonas-Chlorella 0.91 0.94 0.83 
Chlamydomonas-Monoraphidium 0.93 0.94 0.86 
Chlamydomonas-Scenedesmus 0.82 0.85 0.71 
Chlamydomonas-Raphidocelis 0.80 0.81 0.76 
Chlorella-Monoraphidium 0.62 0.72 0.59 
Chlorella-Scenedesmus 0.80 0.81 0.66 
Chlorella-Raphidocelis 0.57 0.72 0.49 
Monoraphidium-Scenedesmus 0.82 0.69 0.63 
Monoraphidium-Raphidocelis 0.57 0.62 0.37 
Scenedesmus-Raphidocelis 0.60 0.54 0.44 
Mean 0.78 0.77 0.65 
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c 

Temperature Nutrient LDA 
Random 

forest RPART 
15 0.1 0.62 0.62 0.58 
15 1 0.79 0.68 0.64 
15 30 0.85 0.8 0.76 
25 0.1 0.63 0.71 0.62 
25 1 0.7 0.69 0.68 
25 30 0.64 0.66 0.62 

Mean 0.71 0.69 0.65 
 
 

 
Figure S3A. Example of discrimination between species among pairs of species. 
We here show species grown at 15°C in saturating nutrient conditions (P = 30 µmol·L-1) after 14 days 
of experiment. Each dot represents a cell, here mapped on FSC.H (size proxy) and FL3.H (chlorophyll 
a proxy) characteristics from the flow cytometer. Colours represent the species predicted by the 
discrimination algorithm. The discrimination algorithm is a linear discriminant analysis trained with 
flow cytometer data (FSC.H, FSC.A, SSC.H, SSC.A, FL1.H, FL1.A, FL2.H, FL2.A, FL3.H, FL3.A, 
FL4.H, and FL4.A) from the species grown in isolates at the same temperature and nutrient 
conditions. For example, Chlamydomonas has a competitive advantage over Chlorella in these 
nutrient and temperature conditions (there are more Chlamydomonas cells). 
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Figure S3B. Competition outcomes at day 14.  
For each pair of species, the competitive advantage R. Circle colour represents the nutrient conditions 
of the trial; white circles: very low nutrient concentration (0.1 µmol·L-1 of phosphate); grey circles: 
low nutrient concentration (1 µmol·L-1 of phosphate); black circles: saturated nutrient solution (30 
µmol·L-1 of phosphate). Points represent the values of each of the 6 replicates per condition. Note that 
when the total cell density did not reach a threshold value of 500 cells·mL-1, the replicates were 
discarded (see Methods), thus for some of the very low nutrient concentration cases no replicates were 
kept for a given pair. The segment represents the median of the replicates. The dotted lines represent 
the situation where there is no competitive advantage between the species (NA = NB). The area above 
the line shows an advantage for species A (turquoise colour), while area below the line shows and 
advantage for species B (pink colour). We can see for instance that for the Ankistrodesmus-Chlorella 
pair of species, Ankistrodesmus dominates at low temperatures for all nutrient conditions while 
Chlorella dominates at high temperatures, particularly at high nutrient conditions. 
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S4. Temperature dependence of the Monod model parameters 
 
Table S4A. Metabolic traits for each alga. 
Normalization constants (𝐵! and 𝐾! resp. for 𝜇max and 𝐾!) and activation energies (𝐸! and 𝐸! resp. 
for 𝜇max and 𝐾!) derived from a Boltzmann-Arrhenius model fit on ln scales using nonlinear least 
squares to the values of 𝜇max and 𝐾! for all replicates, for temperatures between 15 and 25°C, and 
using a reference temperature 𝑇ref = 15°C (estimates ± SE). Note that for some replicates, the Monod 
model gave KS = 0. Because the Boltzmann-Arrhenius model was fit on ln scales and to avoid infinite 
values when applying the logarithm to these values, these were set to the minimum quantity of 
nutrients in the experiment, that is KS = 0.001. 

Species KS 𝜇max 

 ln𝐵! 𝐸! ln𝐵! 𝐸! 

Ankistrodesmus -6.49 ± 0.51 3.26 ± 0.59 -0.39 ± 0.04 0.27 ± 0.05 
Chlamydomonas -2.47 ± 0.63 0.96 ± 0.72 0.15 ± 0.07 0.16 ± 0.08 
Chlorella -2.71 ± 0.19 1.49 ± 0.22 -0.58 ± 0.07 0.99 ± 0.08 
Monoraphidium -3.44 ± 0.73 1.47 ± 0.83 -0.54 ± 0.09 0.59 ± 0.10 
Scenedesmus -1.30 ± 0.46 0.00 ± 0.52 0.22 ± 0.07 0.00 ± 0.08 
Raphidocelis -1.89 ± 0.52 2.30 ± 0.60 -0.50 ± 0.17 0.90 ± 0.19 

 
 

Table S4B: Half-saturation constants (KS) and degree of nutrient saturation. 
Percentage of 𝜇max at the low and very low experimental nutrient concentrations for the competition 
experiment calculated from values in Table S4A. For each species, this indicates whether species are 
close to nutrient saturation at the experimental temperature and phosphate concentration chosen for 
the competition experiment. 

 

Species KS 
Growth at 1 µmol·L-1 
as % of 𝜇max 

Growth at 0.1 
µmol·L-1 as % of 𝜇max 

 15°C 25°C 15°C 25°C 15°C 25°C 

Ankistrodesmus 0.002 0.124 100% 89% 99% 44% 
Chlamydomonas 0.085 0.309 91% 76% 54% 24% 
Chlorella 0.067 0.500 94% 67% 60% 16% 
Monoraphidium 0.032 0.233 97% 81% 76% 30% 
Scenedesmus 0.274 0.274 79% 79% 27% 27% 
Raphidocelis 0.151 3.386 87% 23% 40% 3% 
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Table S4C. Results from the GAMs of ln(𝜇max) as a function of temperature 
 For each species. See Fig. 1 for the representation of the GAMs. 

 

Species edf F p-value R2 

Ankistrodesmus 2 8.33 0.005** 0.51 
Chlamydomonas 2 3.96 0.048* 0.30 
Chlorella 2 113.6 >0.001*** 0.94 
Monoraphidium 2 70.4 >0.001*** 0.91 
Scenedesmus 2 0.34 0.716 -0.10 
Raphidocelis 2 9.60 0.003** 0.56 

 
 
Table S4D. Results from the GAMs of ln(𝐾s) as a function of temperature  
For each species. See Fig. 1 for the representation of the GAMs. 

Species edf F p-value R2 

Ankistrodesmus 2 31.6 >0.001*** 0.81 
Chlamydomonas 2 4.39 0.037* 0.33 
Chlorella 2 27.5 >0.001*** 0.79 
Monoraphidium 2 6.21 0.014* 0.43 
Scenedesmus 2 1.49 0.265 0.06 
Raphidocelis 2 12.28 0.001** 0.62 
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S5. Significance of competitive advantage predicted by the model. 
To quantify the significance of the theory’s ability to predict competitive advantage, we ran 
the analysis 10,000 times, sampling the values of 𝐵!, 𝐸!, 𝐾!, and 𝐸! independently, with 
replacement, from the pool of available values. The analysis produced 10,000 sets of 
predictions, and therefore 10,000 proportions of competitive advantages correctly predicted 
(e.g., Fig. S5A). The proportion of runs that correctly predicted a greater number of 
competitive advantages than the real parameter values are then given as the P values in Table 
1. Therefore, P=0.05 means that 500 out of 10,000 random parameter combinations correctly 
predicted a greater proportion of competitive advantages. 
 

 
 

Figure S5A. Histogram of proportions of competitive advantages correctly predicted for 
10,000 random parameter combinations. 
The real parameters correctly predicted the competitive advantage in 72% of the competitions 
(red line), and 2 of the 10,000 random parameter combinations produced a greater predictive 
power (>72% of correct predictions; runs to the right of the red line).  
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S6. Robustness of the results to different statistical methods 
We used three different methods of discrimination to determine the number of cells from 
each species, a linear discriminant analysis, a random forest analysis and a recursive 
partitioning and regression tree (rpart, see Section S3 in SI). Because the linear discriminant 
analysis was found to have the best predictive power overall (Table S3A), we used this 
method throughout the manuscript. However, we tested whether our results were robust to the 
method of species discrimination by comparing results from the competition model to 
predictions using the random forest analysis and the rpart discrimination method (Table S6A 
and S6B). The results were similar, with a lower predictive power of each variable and of the 
model due to the lower discrimination power of the two methods, but no significant 
discrepancies between species and temperature and nutrient conditions. 
 
Table S6A. Proportion of competitive advantages correctly predicted by theory using 
the random forest discrimination method at day 14.  
Analogous to Table 1 in the main text, but using the random forest discrimination method. 

 
 R∞ R N 
Full dataset 
 0.60 (0.014) 0.70 (0.000) 365 
By temperature 
𝑇 = 15°C 0.66 (0.054) 0.72 (0.003) 192 
𝑇 = 25°C 0.54 (0.138) 0.68 (0.005) 173 
By nutrient 
[P] = 0.1 µmol·L-1 0.33 (0.786) 0.78 (0.051) 69 
[P] = 1 µmol·L-1 0.59 (0.136) 0.62 (0.055) 151 
[P] = 30 µmol·L-1 0.74 (0.005) 0.74 (0.005) 145 
By species 
Ankistrodesmus 0.64 (0.015) 0.80 (0.000) 137 
Chlamydomonas 0.59 (0.012) 0.66 (0.014) 140 
Chlorella 0.75 (0.026) 0.83 (0.003) 119 
Monoraphidium 0.55 (0.151) 0.69 (0.010) 134 
Scenedesmus 0.57 (0.079) 0.62 (0.031) 126 
Raphidocelis 0.46 (0.752) 0.54 (0.239) 74 
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Table S6B. Proportion of competitive advantages correctly predicted by theory using 
the rpart discrimination method at day 14.  
Analogous to Table 1 in the main text, but using the rpart discrimination method. 

 
 R∞ R N 
Full dataset 
 0.60 (0.026) 0.68 (0.001) 367 
By temperature 
𝑇 = 15°C 0.64 (0.083) 0.71 (0.012) 193 
𝑇 = 25°C 0.55 (0.188) 0.66 (0.017) 174 
By nutrient 
[P] = 0.1 µmol·L-1 0.37 (0.741) 0.73 (0.092) 71 
[P] = 1 µmol·L-1 0.58 (0.176) 0.62 (0.073) 150 
[P] = 30 µmol·L-1 0.73 (0.014) 0.73 (0.014) 146 
By species 
Ankistrodesmus 0.65 (0.022) 0.77 (0.000) 137 
Chlamydomonas 0.56 (0.081) 0.63 (0.047) 140 
Chlorella 0.76 (0.020) 0.84 (0.003) 119 
Monoraphidium 0.56 (0.131) 0.67 (0.023) 135 
Scenedesmus 0.56 (0.124) 0.60 (0.055) 126 
Raphidocelis 0.45 (0.598) 0.55 (0.287) 77 
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S7. Quantitative relationship between theoretical and experimental outcomes 
 

 

Figure S7A. Correlation between the observed and predicted competitive advantage at day 14. 
Different species pairs are in different colours, circles are for very low nutrient concentration, 
triangle for low nutrient concentration and squares for high nutrient concentrations, and the 
type of the standard error line stands for the temperature (dotted for low temperature, solid 
for high temperature). Most of the binary experimental outcomes (sign of observed R) fall in 
the same region (grey rectangles) as the binary theoretical outcomes (sign of predicted R). 
The full line represents the results of a linear mixed model of observed R as a function of 
predicted R as a fixed effect plus pair ID, temperature and nutrients as random intercepts on 
the whole dataset, while the dashed line represents the results from the same model but 
excluding pairs involving Raphidocelis (see Table S7A and Table S7B for details about the 
model). 
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Table S7A. Results from the linear mixed model investigating observed R as a function of 
predicted R at day 14.  
Model includes predicted R as a fixed effect plus pair ID, temperature and nutrients as 
random intercepts with lmer function from lme4 package (Robs ~ Rpred + (1|temperature) + 
(1|nutrient) + (1|species pair)). N = 369. 
Factor Estimate SE t-value χ2 statistics R2 
Fixed effect     marginal R2 
Rpred 0.29 0.02 13.04 χ2 = 150, p < 2e-16 0.29 
Random effect Variance    conditional R2 
Temperature 0.08    0.54 
Nutrient 0.10     
Pair identity 2.04     
Residual 4.21     
 
 
 

Table S7B. Results from the linear mixed model investigating observed R as a function of 
predicted R at day 14 excluding pairs involving Raphidocelis.  
Model includes predicted R as a fixed effect plus pair ID, temperature and nutrients as 
random intercepts with lmer function from lme4 package (Robs ~ Rpred + (1|temperature) + 
(1|nutrient) + (1|species pair)). N = 292. 
Factor Estimate SE t-value χ2 statistics R2 
Fixed effect     marginal R2 
Rpred 0.34 0.02 14.33 χ2 = 205, p < 2e-16 0.34 
Random effect Variance    conditional R2 
Temperature 0.43    0.62 
Nutrient 0.08     
Pair identity 2.65     
Residual 4.09     
 
 

Table S7C. Link between observed and predicted R at day 14 by species.  
Results from a mixed effect model of Robs ~ Rpred + (1|temperature)+(1|nutrient)+(1|species 
pair) for each subset of competitions. 
Species Fixed Rpred effect t-value Marginal R2 Conditional R2 N 
 estimate SD     
Ankistrodesmus 0.35 0.05 6.94 0.27 0.63 138 
Chlamydomonas 0.26 0.04 6.91 0.29 0.53 141 
Chlorella 0.38 0.03 12.8 0.41 0.73 120 
Monoraphidium 0.24 0.04 6.15 0.16 0.53 136 
Scenedesmus 0.21 0.04 5.34 0.21 0.40 126 
Raphidocelis 0.02 0.04 0.52 0.01 0.43 77 
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S8. Nature of species interactions 
 
We used our experimental data to investigate the nature of the interactions between our 
species pairs. In its strictest definition, interspecific competition involves any mechanism 
whereby the fitness (e.g. per-capita rate of increase or population density) of a given species 
is reduced by the presence of another, for instance because the other species uses more 
resources. We calculated a relative density (RD) index for each species in each pairwise 
interaction, according to Fritschie et al. (2014). Relative density of each species, i was the 
ratio of species i's population density in its biculture:monoculture ratio. Ratios below 1 
indicate competitive interactions because the density in bi-culture is than than the species was 
able to acheive when in monoculture – i.e. it incurs a fitness cost due to interspecific 
competition. Conversely, ratios over 1 indicate facilitation because the focal species achieves 
a greater density when in the presence of another taxon than it was able to reach when alone. 
We found that 78.8% of pairs fell into the mutual competition scenario (where RDi < 1), 
while 17.5 % of pairs fell into an intermediate scenario where one species facilitated while 
the other species did not, and 3.7 % of pairs fell into a full facilitation scenario (Fig. S8A). 
Thus, interactions in our experiment are mainly competitive sensu stricto. Note that RD is a 
property of individual species, and any two species grown in biculture may have very 
different values of RD due to asymmetry in interaction strength. 
 
We also computed another metric of interaction strength, the deviation from expected total 
yield ∆𝑌, which is a property of the community. To do so, we computed the total cell density 
of the two species grown in competition and the total cell density of each species grown 
isolation. We calculated a deviation from expected yield ∆𝑌 according to Loreau & Hector 
(2001), as 

∆𝑌 =  𝑌! −  𝑌! =  𝑅𝑌!"
!

−  𝑅𝑌!"
!

, 

where 𝑌! is the observed yield of the two-species mixture at day 14 (in cells·mL-1), 𝑌! is the 
expected yield of the two-species mixture, and 𝑅𝑌!" and 𝑅𝑌!" are the observed and expected 
relative yields of species i in the mixture. The expected relative yield of species i in the 
mixture are equal to half of the yield observed in monoculture (as they theoretically have 
access to half of the nutrients in a two-species mixture). We studied whether the deviation 
from expected yield varied with species identity (Table S8A). Positive deviations indicate 
complementarity effects (e.g., niche partitioning or facilitation) while negative deviations 
indicate competitive interactions diminishing total biomass. In line with the RD calculations 
the vast majority interactions were negative, indicating strong resource competition 
characterised the interactions among these 6 species of algae. Interactions involving 
Raphidocelis were strongly negative, while interactions involving Scenedesmus were less 
negative and there was no distinguishable negative interaction for Chlamydomonas (Table 
S8A). 
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Figure S8A. Distribution of algal communities across an interaction gradient. 
Joint distribution of species relative densities (each data point is the mean across replicates of 
a single biculture at a specific temperature and nutrient level). Relative density (RD) is the 
mean density of the focal species in competition divided by its mean density when cultivated 
in isolation. The background colour indicates a gradient of competition strength, dark grey 
indicates that both species experienced stronger interspecific versus intraspecific competition 
(RDi < 1, N = 63), while the white background indicates that both species were facilitated 
(RDi > 1, N = 3). A small subset of interactions fell in interaction scenarios (light grey) where 
one species was facilitated while the other experienced interspecific competition (RDi < 1, 
RDj > 1, N = 14). Note that interactions involving Chlorella at the very low (P = 0.1) nutrient 
concentration where removed as the isolates for this species fell below the threshold of 500 
cells mL-1 (see Methods). 
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Table S8A. Deviation from the expected yield per species at day 14.  
Values from two tailed t-test of log!"(∆𝑌). 
Species mean Confidence 

interval 
t-value df pvalue 

Ankistrodesmus -0.32 [-0.42,-0.23] -6.99 179 >0.001*** 
Chlamydomonas -0.04 [-0.13,0.04] -1.08 177 0.281 
Chlorella -0.13 [-0.23,-0.04] -2.76 169 0.006** 
Monoraphidium -0.11 [-0.18,-0.04] -3.13 174 0.002** 
Scenedesmus -0.10 [-0.19,-0.001] -2.00 174 0.046* 
Raphidocelis -0.57 [-0.67,-0.47] -11.5 169 >0.001*** 
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S9. Competitive advantage at day 5 and day 23 
 
In addition to our main results at day 14 of the competition experiment, we also measured 
competitive advantage at day 5 and day 23. We trained linear discrimination algorithms on 
isolate data collected at day 5 for day 5 and day 14 for day 23 respectively, except for the 
very low phosphate concentration for which we trained the discrimination algorithm on the 
whole dataset to have a better discrimination function given the low density of cells. We 
chose to train the data using isolate data collected at day 14 for day 23 as the lower noise in 
the training dataset gave better discrimination results. The discrimination algorithms give 78 
% accuracy in discriminating between species at day 5, and 70 % at day 23. 
 We compared the competitive advantage at day 5 and day 23 to the results of the 
theory (Table S9A and S9B). Because of a technical problem, we lost results from 63 
samples out of 90 from 25ºC and PO4

3+ = 1 µmol L-1 at day 5. Thus comparisons for this 
phosphate level for day 5 are to be taken with caution due to low sample size. We note that 
the results are similar between days, with an overall agreement between theory and 
experiment of 56 % (𝑅!) and 66 % (R) at day 5 and of 63 (𝑅!)and 68 % (R) at day 23. 
Further, measured competitive advantage was correlated across days (Pearson r = 0.67 [0.56, 
0.75], t = 10.52, df = 137, p = 2e-16 and r = 0.53 [0.45, 0.62], t = 11.0, df = 293, p > 2e-16 
respectively for correlation between day 5 and 14 and for correlation between day 14 and 
23).This suggests that the competitive advantage at 14 day did indeed carry the signature 
from the exponential growth phase at day 5 where no species were at carrying capacity, and 
that this carry-over effect was continued over longer time periods, at a time where all species 
where at carrying capacity (median time to carrying capacity during the growth rate 
experiment at 15 and 25°C: 11 and 9 days respectively at very low nutrient concentrations 
(0.1 µmol·L-1 of phosphate), 10.5 and 7 days at low nutrient concentrations (1 µmol·L-1 of 
phosphate), and 14.5 and 9 at high nutrient concentrations (30 µmol·L-1 of phosphate)). It is 
noteworthy that the predictive power of the model is lower at day 23 than at day 14, likely 
due to the lower accuracy of the discrimination algorithm. 
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Table S9A. Proportion of competitive advantages correctly predicted by theory at day 5 
using the linear discrimination algorithm.  
Analogous to Table 1 in the main text, but for day 5.  

 
 R∞ R N 
Full dataset 
 0.56 (0.137) 0.66 (0.007) 192 
By temperature 
𝑇 = 15°C 0.50 (0.458) 0.64 (0.113) 58 
𝑇 = 25°C 0.59 (0.112) 0.67 (0.025) 134 
By nutrient 
[P] = 0.1 µmol·L-1 0.36 (0.820) 0.58 (0.262) 84 
[P] = 1 µmol·L-1 0.65 (0.182) 0.65 (0.178) 23 
[P] = 30 µmol·L-1 0.74 (0.019) 0.74 (0.016) 85 
By species 
Ankistrodesmus 0.65 (0.022) 0.86 (0.000) 74 
Chlamydomonas 0.53 (0.230) 0.65 (0.052) 57 
Chlorella 0.62 (0.054) 0.75 (0.024) 63 
Monoraphidium 0.53 (0.252) 0.71 (0.001) 72 
Scenedesmus 0.49 (0.547) 0.57 (0.140) 68 
Raphidocelis 0.56 (0.407) 0.32 (0.855) 50 
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Table S9B. Proportion of competitive advantages correctly predicted by theory at day 
23 using the linear discrimination algorithm.  
Analogous to Table 1 in the main text, but for day 23. 

 
 

 
 

 R∞ R N 
Full dataset 
 0.63 (0.000) 0.68 (0.000) 339 
By temperature 
𝑇 = 15°C 0.69 (0.001) 0.66 (0.016) 170 
𝑇 = 25°C 0.57 (0.047) 0.69 (0.001) 169 
By nutrient 
[P] = 0.1 µmol·L-1 0.38 (0.640) 0.92 (0.002) 26 
[P] = 1 µmol·L-1 0.54 (0.251) 0.55 (0.249) 159 
[P] = 30 µmol·L-1 0.77 (0.005) 0.77 (0.005) 154 
By species 
Ankistrodesmus 0.63 (0.020) 0.74 (0.000) 123 
Chlamydomonas 0.60 (0.022) 0.61 (0.045) 121 
Chlorella 0.69 (0.000) 0.73 (0.000) 115 
Monoraphidium 0.61 (0.125) 0.66 (0.038) 119 
Scenedesmus 0.66 (0.009) 0.66 (0.023) 112 
Raphidocelis 0.61 (0.016) 0.67 (0.002) 88 


