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ABSTRACT
Graphical analysis of complex brain networks is a fundamental area of modern neu-
roscience. Functional connectivity is important since many neurological and psy-
chiatric disorders, including schizophrenia, are described as ‘dys-connectivity’ syn-
dromes. Using EEG time series collected on each of a group of 15 individuals with
a common medical diagnosis of positive syndrome schizophrenia we seek to build a
single, representative, brain functional connectivity group graph. Disparity/distance
measures between spectral matrices are identified and used to define the normalized
graph Laplacian enabling clustering of the spectral matrices for detecting ‘outlying’
individuals. Two such individuals are identified. For each remaining individual, we
derive a test for each edge in the connectivity graph based on average estimated
partial coherence over frequencies, and associated p-values are found. For each edge
these are used in a multiple hypothesis test across individuals and the proportion
rejecting the hypothesis of no edge is used to construct a connectivity group graph.
This study provides a framework for integrating results on multiple individuals into
a single overall connectivity structure.

KEYWORDS
brain functional connectivity, EEG time series, graphical model, multivariable
power spectra, schizophrenia, spectral matrix clustering

1. Introduction

A very important area of modern neuroscience is that of graph analysis of complex
brain networks. As pointed out in the seminal paper [5], “functional brain networks
are thought to provide the physiological basis for information processing and mental
representations.” In neuroscience, functional connectivity [5, 21] denotes the symmet-
rical statistical association or dependency between elements of the system, and graphs
may be used to describe this connectivity. Many neurological and psychiatric disorders,
including Alzheimer’s disease and schizophrenia, may be described as dys-connectivity
syndromes [4, 5, 11, 24]. In this paper we consider time series methodology for build-
ing a single, representative, brain functional connectivity graph from a group of in-
dividuals with the same medical diagnosis (positive syndrome schizophrenia). We use
electroencephalogram (EEG) measurements representing cortical activity as potential,
measured over the scalp of each patient.

The EEG dataset analyzed here is discussed in more detail in Section 2. It was
acquired from a group of n = 15 patients. There were ten sensor locations on the scalp
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of each individual. The data is modelled by a stationary vector-valued time series,
{Xt}, of dimension p = 10, for each individual. For any individual, if all connections
were present, the complete graph shown in Fig. 1 is obtained.
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Figure 1. Schematic of 10 scalp sensor locations for recording EEG time series with complete graph.

The problem of clinical heterogeneity over the patient’s group is a well recognized
and difficult problem. Some differences may be resolved by combining different sorts
of measurements on the same patients [5, p. 195]. Our approach is quite different: we
seek to identify ‘outlier’ individuals, and remove them from further analyses. Using
the estimated spectral matrices for the individuals in a group, we develop a spectral
matrix clustering method using a similarity matrix constructed from spectral matrix
distances and the resulting normalized graph Laplacian. This incorporates an approach
for choosing the number of clusters, and allows us to perform clustering using a tra-
ditional clustering method, such as k-means clustering, which assumes the number
of clusters to be known a priori. We refer to our novel approach as ‘spectral matrix
clustering via the normalized graph Laplacian.’ Using this approach we identify two
outlier individuals.

This use of graphs for outlier identification via clustering, is subsidiary to our main
aim, graph representations for functional connectivity. For each individual we need
to determine if an edge in the graph (a connection between two nodes) exists. Using
frequency domain analysis, the absence of an edge is indicated by zero partial coheren-
cies for all frequencies in the frequency band. In practice the partial coherencies for
any individual will have to be estimated, and thus will include sampling variability.
Estimated partial coherencies will never be exactly zero, so that hypothesis testing is
required to test an edge to see if it should be declared to be missing. Unfortunately,
the partial coherencies to be zero-tested for every frequency in the frequency band
are correlated due to smoothing; one approach for this situations would be to follow
Dahlhaus [6] and use a test based simply on the maximum of the estimated partial
coherencies over the frequency band, but the exact asymptotic null distribution of this
test statistic is not known. Alternatively, [22, 23] employed Holm’s stepdown procedure
[14], which, while suitable for dependent tests, is very conservative. A third aproach
using p-value combiners (e.g., [32]) was discussed in [30]; here independent tests are
assumed so that other unsatisfactory adjustments are required.

Instead, we use a test statistic to test for edge inclusion which is formed as an
integrated — over frequencies — functional of the estimated spectral matrix. The
effects of tapering and smoothing are fully built into the statistical analysis. Since the
asymptotic distribution of the functional is known, p-values can be associated to the
particular graph edge for all individuals in the group, allowing us to find the proportion
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of individuals whose associated statistic rejects the hypothesis of no edge. Using this
information, a group-specific connectivity graph can be readily constructed.

1.1. Graphs and time series

A graph G = (V,E) consists of vertices V and edges E, where E ⊂ {(j, k) ∈ V × V :
j 6= k}. (Note: We only consider simple graphs where there are no loops from a vertex
to itself, nor multiple edges between two vertices.) In order to represent {Xt} the
vertices of the graph correspond to the p individual series {Xj,t}, so V = {1, . . . , p}.
Edges (j, k) ∈ E for which both (j, k) ∈ E and (k, j) ∈ E are called undirected edges.
An undirected graph is one with only undirected edges and is the type considered
here. For a p-vector-valued process there are p(p− 1)/2 unordered pairs of vertices for
its graph. Thus there are 2p(p−1)/2 possible distinct graph structures. So for our data
set there are 45 possible connections between the series (edges to the graph) and 245

possible graph structures.
In a time series graph, an edge between two vertices (or series j and k, say), cor-

responds to a direct connection between the measured series at the two locations. As
we shall see in Section 3, the absence of an edge is indicated by a corresponding zero
partial coherence for all frequencies in the frequency band for the two series. Partial
coherence is denoted γ2

jk•(\jk)(f), where {\jk} = {1 ≤ i ≤ p : i 6= j, k}, and the •(\jk)

terminology indicates that the linear effects of all the other series have been removed
from series j and k. The assessment of the interaction between series j and k thus dis-
counts the indirect effects of the other series. Partial coherence has been used elsewhere
in neuroscience (e.g., [28, 29]), but not in the same way as here. Partial coherence is de-
termined from the spectral matrix. We write Xt = [X1,t, . . . , Xp,t]

T ∈ Rp, t ∈ Z, and T

denotes transposition. Without loss of generality {Xt} may be taken to have a mean of
zero. Then the matrix-valued sequence sτ = cov{Xt+τ ,X

T
t } = E{Xt+τX

T
t }, τ ∈ Z,

is the (matrix) autocovariance sequence, and, assuming it exists, its Fourier transform
is the spectral matrix

S(f)
def
= ∆t

∞∑
τ=−∞

sτ e−i2πfτ∆t , |f | ≤ fN , (1)

where fN = 1/(2∆t) is the Nyquist frequency and ∆t is the sampling interval. In

practice we work with some estimate Ŝ(f) of S(f).

1.2. Contributions

(1) We firstly low-pass filter and downsample the data to eliminate the contami-
nating alpha rhythm around 10Hz, leaving the so-called delta frequency band
for further analysis. For individual i, we derive a test statistic for edge ` in the
connectivity graph, based on the average partial coherence over just the delta
frequency band. By drawing on [7, 8] the asymptotic null distribution of this
statistic can be deduced and hence a corresponding p-value found. The use of
the average partial coherence statistic means that multiple hypothesis testing
across frequencies is not required.

(2) For building a representative graph for the group, with regard to each possible
edge in the graph, the associated p-values for each individual in the group are
used in a multiple hypothesis test across individuals to find the proportion of
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values of the statistic rejecting the hypothesis of no edge. The edge is included
in the group graph when this proportion exceeds a given threshold.

(3) To identify (and remove) any outlying cases in the group, we use novel clustering

techniques based on the n estimated spectral matrices Ŝ(f) for the group: (i)
We calculate Kullback-Leibler disparities and Riemannian distances between the
spectral matrices. Both measures integrate across frequencies, and an analysis
of these measures suggests to define ‘distance’ matrices based on (a) the square
root of the Kullback-Leibler disparity measure and (b) the Riemannian distance.
(ii) The two distance matrices D are used to define two similarity matrices W ,
each of which defines a weighted adjacency matrix from which the normalized
graph Laplacian is constructed. The eigenvalues and eigenvectors of this latter
matrix enable the determination of the number and structure of the clusters. As
a result of our clustering, two individuals are eliminated from the study.

Remark 1. The use of the graph Laplacian for clustering is discussed in [33]
where it is called ‘spectral clustering’ since it uses the eigenvalues of the normal-
ized Laplacian matrix. It is a general method which merely requires a weighted
adjacency matrix. In our context this adjacency matrix is determined from a
similarity function involving the distances between (power) ‘spectral’ matrices.
Confusingly, this second use of ‘spectral’ is quite different to that in ‘spectral’
clustering. We refer to our novel approach as ‘spectral matrix clustering via the
normalized graph Laplacian.’ �

1.3. Development of paper

Section 2 explains the nature of the motivating data for 15 patients with a diagnosis
of positive syndrome schizophrenia, the necessary preprocessing steps and their impli-
cations for subsequent analyses. Section 3 looks at the spectral analysis methodology,
hypothesis testing machinery and test statistic, used in determining the edges for the
group graph. This is predicated on a homogeneous — in a spectral matrix sense —
group of patients. So, in Sections 4 and 5, we explain how we selected a homogeneous
group of 13 patients from the original 15. The spectral matrix data for these 13 is then
analyzed using the techniques of Section 3. Results and Conclusions are presented in
Section 6.

2. Background on the data

2.1. Data details

The data was acquired from n = 15 male forensic patients with a diagnosis of positive
syndrome schizophrenia (symptoms such as delusions, hallucinations) from the Serbsky
Institute in Moscow. All subjects gave written informed consent for the investigation.
Ethical approval came from the local Moscow ethics committee, in compliance with
national legislation and the Declaration of Helsinki; see [23] for further discussion of
this clinical dataset.

EEG was recorded using an EEG mapper from 10 scalp sites (F3, F4, C3, C4, T3,
T4, P3, P4, O1 and O2) referenced to linked ears, using a bandpass filter of 0.5−45Hz
while the patients were resting with eyes closed. The electrode positions are shown
in Fig. 1. A sample interval of ∆t = 0.01s was used when recording the data, so the

4



0 50
0

0.5

1

1.5

2

(a)

f (Hz)

0 50
0

0.5

1

1.5

2

(b)

f (Hz)

0 5 10
0

0.5

1

1.5

2

(c)

f (Hz)

Figure 2. Spectra for series 7 (O1) of EEG time series. (a) as recorded, (b) after low-pass filtering (heavy

line) (c) after low-pass filtering and down-sampling by 5. The vertical dashed line marks the frequency of 10Hz.

Nyquist frequency is fN = 1/(2∆t) = 50Hz.

2.2. Data processing

The estimated spectrum for one channel of the data, (corresponding to location O1),
and for one individual, is shown in Fig. 2(a). An enormous peak/line is seen in the
spectrum around 10Hz due to alpha waves, neural oscillations in the range of 7.5–12.5
Hz arising from synchronous and coherent electrical activity of thalamic pacemaker
cells in humans. They predominantly originate from the occipital lobe during wakeful
relaxation with closed eyes. (O1 is an occipital location). These waves must be removed
from the data before processing because (i) they will cause huge side-lobe leakage, and
(ii) they will be highly coherent and cause connections purely due to their presence.
The data was thus filtered by a Butterworth low-pass filter with cut-off 4.6Hz. The
spectrum of the filtered data is shown in Fig. 2(b) by the heavy line; as a result
of the filtering there is now no power above about 5Hz so that the majority of the
power spectrum is null. Next the data was downsampled by a factor of 5, i.e., we keep
only every fifth data point. After downsampling there is, for each patient, a total of
N = 612 points for each of the p = 10 series. The new sample interval is ∆t = 0.05s so
the new Nyquist frequency is 10Hz. After this data preprocessing, the spectral matrices
over [−10,−5] ∪ [5, 10]Hz are close to null and matrix inverses are erroneous in this
frequency band. There is no aliasing because the spectrum is already zero beyond 5Hz.
The spectrum of the filtered and downsampled data is shown in Fig. 2(c).

There is consistent evidence of abnormal cerebral oscillations in schizophrenia. Pa-
tients typically show unusually high EEG power in the low frequencies [12]. As a result
(see also [16, 23]) we shall focus our analysis on the so-called ‘delta frequency band’
f ∈ [0.5, 4]Hz. So, we define a restricted frequency interval

R def
= [fa, fb] ⊆ [0, fN ] = [0, 1/(2∆t)], (2)

with fa = 0.5Hz and fb = 4Hz with ∆t = 0.05s.
Detailed prescreening had been carried out to eliminate time periods with missing

data channels and other recording problems. Since the patients were resting with eyes
closed, and no task was performed, stationarity for the utilised series segments is a
reasonable assumption and was not contraindicated.
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3. Determining the edges for the connectivity group graph

3.1. Further background to time series graphs

Define Xj = {Xj,t : t ∈ Z} and X(\jk) = {Xi : i ∈ {\jk}}. For a time series graph,
edges between the vertices represent partial correlation between two series, so that
there is no connection between nodes j and k if and only if Xj and Xk are partially
uncorrelated given X(\jk), [6].

Using filtering, the linear effects of X(\jk) are removed from Xj to obtain the
jth ‘residual’ series {νj,t}. The kth residual series is defined likewise. The sequence
sνjνk,τ = cov{νj,t+τ , νk,t}, τ ∈ Z, is the partial cross-covariance sequence and, if it is
everywhere zero, the two residual series are partially uncorrelated and then we write
Xj⊥⊥Xk|X(\jk). With ⇐⇒ denoting ‘if and only if,’ we then have (j, k) 6∈ E ⇐⇒
Xj⊥⊥Xk|X(\jk).The resulting graph G is called a partial correlation graph.

The Fourier transform of the partial cross-covariance sequence is the partial cross-
spectral density function, denoted Sjk•(\jk)(f). The partial coherence is defined as

γ2
jk•(\jk)(f) =

|Sjk•(\jk)(f)|2

Sjj•(\jk)(f)Skk•(\jk)(f)
, |f | ≤ fN .

It is the squared partial correlation between series j and k at frequency f. Notice

(j, k) 6∈ E ⇐⇒ cov{νj,t+τ , νk,t} = 0, ∀τ ∈ Z ⇐⇒ Sjk•(\jk)(f) = 0, |f | ≤ fN
⇐⇒ γ2

jk•(\jk)(f) = 0, |f | ≤ fN . (3)

In other words, a missing edge corresponds to the partial coherence being zero over the
frequency range. Assuming S(f) is full rank, the partial coherence can be expressed
as, (e.g., [6]),

γ2
jk•(\jk)(f) =

|Sjk(f)|2

Sjj(f)Skk(f)
, (4)

where Sjk(f), is the (j, k)th element of S−1. Hence testing (j, k) 6∈ E can be done
using the null hypothesis

H0 : γ2
jk•(\jk)(f) = 0 for |f | ≤ fN . (5)

Estimated γ̂2
jk•(\jk)(f) values are found by substituting Ŝ

−1
(f) into (4).

Testing (5) was considered by Eichler [8, p. 993]. With a modification to incorporate
the sample interval, we define the test statistic

TN
def
= ∆t

∫ fN

−fN
γ̂2
jk•(\jk)(f)df. (6)

TN is the average estimated partial coherence, and measures the deviation from the
null hypothesis.

Remark 2. In our application, connectivity between two series may be due to a flow of
information between two or more spatially separate regions of the brain. Also, a more
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distant source may affect several electrodes simultaneously, through the phenomenon
of ‘volume conduction.’ Our use of partial coherence makes no assumptions about the
nature of cerebral sources and markedly reduces the impact of volume conduction by
only considering direct connections. (It is shown in [18] how ordinary — rather than
partial — covariance between two variables may be decomposed into a sum of path
weights for all paths connecting the two variables in the graph, only one of which
is the direct path.) Solving the inverse problem for source localisation in the brain
requires strong assumptions about the nature of the sources to be localised and these
assumptions would invariably affect the estimates of connectivity [23].

3.2. Restricted frequency method

We concentrate attention on the low-frequency ‘delta band’ and so are interested in
the partial coherence for f ∈ R, rather than for |f | ≤ fN . For us, testing (j, k) 6∈ E is
equivalent to testing the null hypothesis

H0 : γ2
jk•(\jk)(f) = 0, f ∈ R. (7)

Using (2), let

TN,R(j, k)
def
=

1

fb − fa

∫ fb

fa

γ̂2
jk•(\jk)(f)df. (8)

TN,R is the average value of the estimator of partial coherence over the restricted
domain R. Assuming N is large, to calculate (8) we shall use

T ′N,R(j, k) =
1

|R|
∑
l∈R

γ̂2
jk•(\jk) (fl) , (9)

(where |R| is the number of terms in the set R), because

T ′N,R(j, k) =
N∆t

|R|N∆t

∑
l∈R

γ̂2
jk•(\jk) (fl) ≈

N∆t

|R|

∫ fb

fa

γ̂2
jk•(\jk)(f)df

≈ 1

fb − fa

∫ fb

fa

γ̂2
jk•(\jk)(f)df = TN,R(j, k),

with fb − fa ≈ |R|/(N∆t). Henceforth we do not distinguish between TN,R(j, k) and
T ′N,R(j, k) since the integral approximation should be very accurate. Under H0, (7),
the partial coherence estimator has the same distribution at any frequency in R, so
the average in (9) is that of identically distributed, but correlated, terms.

3.3. Spectrum estimation

The statistics TN,R(j, k) in (8) are integrated functionals of the spectral matrix es-

timator Ŝ(f). Eichler [8] studied the asymptotic distribution (as N → ∞) of such
statistics when the spectral estimation combines tapering and spectral window (ker-
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nel) smoothing. Such an estimator is of the form

Ŝ(f)
def
=

∫ fN

−fN
Vm(f − φ)Ŝ

(D)
(f) dφ, (10)

where Vm(·) is the window. The direct spectral estimator, or tapered periodogram,

Ŝ
(D)

(f), is constructed as follows.

3.3.1. Direct spectral estimator

Given a length-N sample X0, . . . ,XN−1, form htXt where {ht}, t = 0, . . . , N −1, is a

taper with
∑N−1

t=0 h2
t = 1, and compute J(f) = ∆

1/2
t

∑N−1
t=0 htXte

−i2πft∆t . The direct

spectral estimator is Ŝ
(D)

(f)
def
=J(f)JH(f).

In [8, Assumption 3.3] conditions are stated which must be satisfied by the taper,
spectral window and the sequence of smoothing bandwidths as N → ∞, in order for
the stated asymptotic results on the statistic to hold. Some standard spectral windows
(Daniell, Bartlett) are excluded, but the Bartlett-Priestley window does satisfy the
requirements, as does the 100q% cosine taper [26, p. 209] (which we use subsequently).
Further, stated mixing condition on {Xt} must hold.

3.3.2. Bartlett-Priestley window

The Bartlett-Priestley window (also known as the quadratic or Epanechnikov window)
has the form [27, p. 447] for m ≥ 1,

Vm(f)
def
=

{
3m∆t

2

[
1− (2fm∆t)

2
]
, |f | ≤ 1/(2m∆t);

0, 1/(2m∆t) < |f | ≤ fN ,

and for |f | > fN by 2fN periodic extension. Then Vm(f) = m∆tK(m∆tf), for |f | ≤
fN , where

K(f) =

{
3
2

[
1− (2f)2

]
, |f | ≤ 1/2;

0, |f | > 1/2,
(11)

and for |f | > fN , by periodic extension.

3.3.3. Smoothed Direct Spectral Estimator

Now consider the smoothed direct spectral estimator (10). Then

Ŝ(f) =

N/2∑
k=−((N/2)−1)

∫ k/(N∆t)

(k−1)/(N/∆t)
Vm(f − φ)Ŝ

(D)
(φ) dφ

≈ 1

N∆t

N/2∑
k=−((N/2)−1)

Vm (f − fk) Ŝ
(D)

(fk) .
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At the Fourier frequencies, Ŝ (fj) is given by

1

N∆t

N/2∑
k=−((N/2)−1)

Vm (fj − fk) Ŝ
(D)

(fk) =
1

N∆t

j−(N/2)∑
l=(j+(N/2)−1)

Vm (fl) Ŝ
(D)

(fj − fl) .

Both Vm(f) and Ŝ
(D)

(f) have periodicity 2fN , so since Vm(f) is only non-zero for

|f | ≤ 1/(2m∆t) within |f | ≤ fN , we have the requirement |l| ≤ N/(2m)
def
=M, and we

obtain

Ŝ (fj) =
1

N∆t

M∑
l=−M

Vm (fl) Ŝ
(D)

(fj − fl) =

M∑
l=−M

1

2M
K
(

l
2M

)
Ŝ

(D)
(fj − fl)

=

M∑
l=−M

glŜ
(D)

(fj − fl) , (12)

where gl = 1
2MK

(
l

2M

)
, l = −M, . . . ,M, and the estimator (12) is just a discretely-

averaged tapered spectral estimator.

3.3.4. Bandwidth

In terms of finite-N estimators, let BN
def
= 1/(m∆t) = 2M/(N∆t) = 2M∆f , where

∆f is the frequency spacing. This is an approximation to the frequency width across
which the direct spectrum estimator is being smoothed, so BN is a crude bandwidth
measure. However, BN does not properly take account of the effect of tapering. The
bandwidth, BU , of the spectral window, U(f), which takes account of both tapering
and smoothing, can be expressed through its autocorrelation width [34], and is defined

by 1/BU = ∆t
∑N−1

τ=−(N−1)w
2
m,τ

(∑N−|τ |−1
t=0 ht+|τ |ht

)2
. Here {wm,τ} is the lag window

corresponding to the Bartlett-Priestley window Vm(f),

wm,τ =


1, τ = 0;
3m2

π2τ2

[
sin(πτ/m)
πτ/m − cos(πτ/m)

]
, 1 ≤ |τ | ≤ N − 1;

0, |τ | ≥ N.

Remark 3. For our dataset N = 612. The choice of q = 0.2 (20%) cosine taper along
with a choice for m determines a value BU . Use of N/(2m) = M, enables us to express
BU as a function of M. M = 9 gives BU ≈ 0.5Hz, virtually the same as that used in
the spectral estimation for the clustering scheme (Section 5). �

3.4. Distribution of normalized test statistic

Under the null hypothesis

QN,R(j, k) =
NTN,R(j, k)− µ

σ
(13)
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is asymptotically distributed as a standard Gaussian, denoted N (0, 1), where

µ
def
= mChCk,2 and σ

def
= Ch [2mCk,4/|R|]1/2 . (14)

Here |R| def
= (fb − fa)/fN = (fb − fa)2∆t. Ch is the variance inflation caused by the

normalized taper, (traditionally calculated as N
∑N−1

t=0 h4
t ), and the Ck,i are integrals

of powers of the lag window generator: Ck,i =
∫∞
−∞ k

i(u) du, where k(u) is the inverse
Fourier transform of K(f) in (11), i.e., [27, p. 447],

k(u) =
3

(πu)2

[
sinπu

πu
− cosπu

]
, u ∈ R. (15)

For the Bartlett-Priestley design we find that Ck,2 = 1.2000 and Ck,4 = 0.8676 with
Ch = 1.1159 for q = 0.2. The forms of (13) and (14) follow by applying results in [7,
p. 143] to our set-up.

We now write (13) in a computationally convenient form.

QN,R(j, k) =

N
|R|
∑

l∈R γ̂
2
jk•(\jk) (fl)− N

2MChCk,2

Ch

[
N
MCk,4/

(
2|R|
N

)]1/2
, (16)

where we have used that m = N/(2M) and (fb−fa)2∆t ≈ |R|/(N∆t)×2∆t = 2|R|/N.
Then (16) simplifies to

QN,R(j, k) =

1
|R|
∑

l∈R γ̂
2
jk•(\jk) (fl)− 1

2MChCk,2

Ch [Ck,4/ (2|R|M)]1/2
. (17)

3.5. Multiple hypothesis testing

After the analyses in section 5, we will have identified the n individuals deemed to
be forming the homogeneous group for graph construction. Suppose we relabel the
L = p(p − 1)/2 edges (1, 2), . . . , (1, p), (2, 3), . . . , (p − 1, p) as l = 1, . . . , L. Also let
li, i = 1, . . . , n, denote edge l, (corresponding to some (j, k)), for individual i, We can
write the test statistic as QN,R(li) for individual i.

Then we test the null hypotheses

H0i : edge li is missing, i = 1, . . . , n. (18)

We can do this using the false discovery rate (FDR) of [2], the expected value of the
proportion of rejections that are incorrect. Let P(1) < · · · < P(n) denote the ordered
p-values, found from QN,R(li), i = 1, . . . , n. For a given α, define Y = max{` : P(`) <
`α/n}. Then we reject the null hypotheses H0i for which Pi ≤ P(Y ); this ensures
FDR ≤ α. The proportion of values of the test statistics in the group which indicate
the connection l is present is θ = v/n, where v is the number of rejected hypotheses.
A graph can be constructed [30] by the rule that edge l is included if θ > θ0, where θ0

is some threshold. The resulting estimated graph for the positive syndrome group is
a function of α and θ0, which we denote by G(α, θ0). To keep the FDR low, we took
α = 0.01.
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3.6. Improving poor conditioning: diagonal up-weighting

The estimator Ŝ (fj) in (12) must be non-singular so that the spectal matrix can be
inverted for partial coherence estimation. If tapering were absent, non-singularity is
guaranteed if 2M+1 ≥ p, e.g., [9, p. 3007]. The situation is more complicated when, as
here, tapering is used, as the components in the sum in (12) are then correlated. The

bandwidth of Ŝ (fj) , for M = 9 and the 20% cosine taper, approximately matches that
of a multitaper estimator employing 15 tapers; we know such an equivalent estimator
will be non-singular since 15 > p with p = 10. The excess degrees of freedom is not
large however, so we would expect that the Ŝ (fj) terms would benefit from regular-

ization which can be achieved by applying some diagonal up-weighting to the Ŝ (fj)
estimates. Details of such a procedure, along with discussion of the choice of upweight-
ing parameter, are given in [22, p. 378]; here we employ an upweighting parameter of
half of one percent.

3.7. Parallelizability

In many applications the numbers of electrodes and subjects will be much larger than
the 10 and 15, respectively, encountered with the data of Section 2. To get to the
point of using the multiple hypothesis testing of Section 3.5, we need to complete the
following steps for each individual:

(1) Compute the smoothed direct spectral estimator Ŝ (f) , and its inverse, over the
delta frequency band.

(2) Calculate all the necessary test statistics QN,R(j, k) in (17).

Parallelization can be used to greatly speed up the calculation of the test statistics in
step 2. There is no dependency between the calculation of each of the test statistics. On
a multicore CPU a test statistic can be assigned to each core, and upon completion the
next statistic needing calculation is assigned. The overall timing will be close to linear
in the reciprocal of the number of cores used, as shown in [35] for a situation where
the statistics are different to ours, but again have no dependency. So the algorithm is
parallelizable with potential huge benefits.

Once all the test statistics have been computed, the extra time taken to select the
graphical model via the multiple hypothesis testing of Section 3.5, is negligible.

3.8. General comments

In our graph analysis we firstly made use of partial coherence (rather than coherence)
to ensure only direct connections were considered. Secondly, we used an integrated
functional of these partial coherencies, covering all frequencies in the delta band of
interest, with the normalized test statistic allowing for the tapering and smoothing
choices applied. Finally, we paid attention to numerical conditioning of the spectral
matrices, since their inversion is a key step. As a result of these ‘optimized’ building
blocks, we are able to have high confidence in the results of the multiple hypothesis
testing.
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4. Determining homogeneous groups for analysis. I: disparities and
distances

4.1. Disparity and distance measures

We denote n positive definite spectral matrices by Si(f), i = 1, . . . , n, and write
Si(f) ∈ H+(p), the set of p× p positive definite Hermitian matrices. We now consider
how to measure differences between such matrices, taking into account all frequencies.
We denote a disparity measure by δ(S1,S2) and a distance measure by d(S1,S2); note
that f is missing here because of the aggregation over frequencies. A properly defined
distance must satisfy all the properties of a metric:

• positivity d(S1,S2) ≥ 0; d(S1,S2) = 0 iff S1 = S2

• symmetry d(S1,S2) = d(S2,S1)
• triangle inequality d(S1,S3) ≤ d(S1,S2) + d(S2,S3)

For a disparity measure, only the first two properties necessarily hold [20, p. 333].

We shall make use of the squared Frobenius norm, ‖X‖2Fr

def
= tr{XXH}, where tr

denotes trace and H denotes Hermitian (complex-conjugate) transpose.

4.2. Kullback-Leibler disparity

A disparity measure for comparing, across frequencies, the spectral matrices, S1(f)
and S2(f), of two vector-valued time series of dimension p, was given by [19, 20].
Denoted δKL(S1,S2), it takes the form∫ fN

−fN

1
2

[
tr{S1(f)S−1

2 (f)}+ tr{S2(f)S−1
1 (f)} − 2p

]
df, (19)

and is symmetric in its arguments. It is derived via the Kullback-Leibler information
measure for discriminating between two multivariate normal densities with different
covariance matrices.

Let {λi(f)}pi=1, be the eigenvalues of S1(f)S−1
2 (f). Now

S
1/2
2 (f)[S

−1/2
2 (f)S1(f)S

−1/2
2 (f)]S

−1/2
2 (f) = S1(f)S−1

2 (f), so consequently,

S
−1/2
2 (f)S1(f)S

−1/2
2 (f) and S1(f)S−1

2 (f) share the same eigenvalues (by simi-

larity transform). But from its form , S
−1/2
2 (f)S1(f)S

−1/2
2 (f) is positive definite (and

Hermitian) and hence the eigenvalues of S1(f)S−1
2 (f) are all positive. Further, (19)

can be written as ∫ fN

−fN

p∑
i=1

1
2

[
λ

1/2
i (f)− λ−1/2

i (f)
]2

df, (20)

a form which will prove particularly useful.

Remark 4. The integrand in (19) may be rewritten as [17, p. 1726])

1
2‖S

−1/2
1 (f)S

1/2
2 (f)− S

1/2
1 (f)S

−1/2
2 (f)‖2Fr. (21)

‖C −B‖2Fr defines the squared Euclidean distance between C and B so that in this

12



sense the integrand behaves like a squared distance (between S
1/2
1 (f)S

−1/2
2 (f) and

S
−1/2
1 (f)S

1/2
2 (f)); the same conclusion was reached in [25]. �

4.3. Riemannian distance

Now S(f) ∈ H+(p), and the space H+(p) is a differentiable manifold. A manifold
equipped with a Riemannian metric is a Riemannian manifold.

Given a suitable inner product for elements in the tangent space that varies differen-
tiably along the manifold, a Riemannian distance is induced between any two members
S1(f) and S2(f) of H+(p). The minimum length curve connecting two points on the
manifold is called the geodesic. The Riemannian distance between the points is given
by the length of this curve.

One Riemannian distance, which is invariant to coordinate transformations, is of
the same form as Rao’s distance between two p-variate normal distributions with zero
means but different covariance matrices. This Riemannian distance, dR(S1(f),S2(f)),
is defined by (e.g., [10], [17, p. 1730]),

d2
R(S1(f),S2(f)) = tr{log2(S1(f)−1/2S2(f)S

−1/2
1 (f))}

= ‖ log(S
−1/2
1 (f)S2(f)S

−1/2
1 (f))‖2Fr.

Now S(f) = U(f)M(f)UH(f) where M(f) = diag(µ1(S(f)), . . . , µp(S(f))) is
the diagonal matrix having entries which are the ordered eigenvalues of S(f), and
U(f) ∈ Cp×p is the unitary matrix with ith column the eigenvector corresponding to
µi(S(f)) > 0. The matrix logarithm logS(f) is then [3, p. 429]

U(f) diag(log µ1(S(f)), . . . , logµp(S(f)))UH(f). (22)

logS(f) is also Hermitian. In addition to being a disparity measure, the Riemannian
distance satisfies the triangle inequality, and so is a true distance. It was further
pointed out in [10] that d2

R(S1(f),S2(f)) can be rewritten as d2
R(S1(f),S2(f)) =∑p

i=1 log2 λi(f) where again we denote the eigenvalues of S1(f)S−1
2 (f) by {λi(f)}pi=1.

To see this note that log2 S(f) is

U(f) diag(log2 µ1(S(f)), . . . , log2 µp(S(f)))UH(f).

Now d2
R(S1(f),S2(f)) = d2

R(S2(f),S1(f)) with the latter given by

tr{log2(S2(f)−1/2S1(f)S
−1/2
2 (f))} =

p∑
i=1

log2 µi(S2(f)−1/2S1(f)S
−1/2
2 (f)))

=

p∑
i=1

log2 λi(S1(f)S−1
2 (f)),

as required. (Except for a factor of one half, this is the expression for Rao’s distance.)
To compare power spectral matrices parameterized by frequency f , we can use the
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geodesic distance along the geodesic path connecting S1 and S2, given by [17, p. 1731],

dR(S1,S2) =

[∫ fN

−fN
d2

R(S1(f),S2(f))df

]1/2

, (23)

which involves integration over frequencies. Equivalently, this is[∫ fN

−fN
‖ log(S1(f)−1/2S2(f)S

−1/2
1 (f))‖2Fr df

]1/2

(24)

=

[∫ fN

−fN

p∑
i=1

log2 λi(f) df

]1/2

. (25)

Remark 5. We see immediately that dR(S1,S2) in (25) involves taking the square
root of the integral, whereas δKL(S1,S2) given in (19) does not. �

4.4. Comparing the KL disparity and Riemannian distance

We start by comparing the elements of the inner sums of (20) and (25), namely

1
2

[
λ

1/2
i (f)− λ−1/2

i (f)
]2

and log2 λi(f). (26)

Fig. 3 shows these functional forms in terms of λ. We see that for eigenvalues between
about 1/20 and 20 the two quantities are quite similar, but as λ gets much smaller
than 1/20 or much larger than 20 the differences quickly become quite marked. The
eigenvalues in question are those of S1(f)S−1

2 (f); if these two matrices were equal
then this quantity would be Ip and all eigenvalues would be unity. S1(f)S−1

2 (f) is in
general not Hermitian (unless the two matrices commute), but as we have seen the
product does at least have positive eigenvalues.

We know that the condition number κ, of S1(f)S−1
2 (f) satisfies [15, p. 337]

κ(S1(f)S−1
2 (f)) ≤ κ(S1(f))κ(S−1

2 (f)) = κ(S1(f))κ(S2(f)) Since S1(f) ∈ H+(p),
its condition number is the ratio of largest to smallest eigenvalue of the matrix, and
likewise for S2(f). So if S1(f) and S2(f) are well-conditioned, i.e., κ is small in each
case, S1(f)S−1

2 (f) should be quite well conditioned, and we don’t expect the ma-
trix product to have very large or very small eigenvalues. Hence the terms in (26)
should be similar. This suggests that it would be reasonable to take the square root of

δKL(S1,S2), so that δ
1/2
KL (S1,S2) and dR(S1,S2) are generally comparable quantities.

Remark 6. We know from Remark 4 that the integrand in (19) looks like a squared
distance. The same is true for the integrand in dR(S1,S2) in (23). Moreover, from the
discussion above we expect the integrands to be somewhat similar. Yet, the integral in
(23) is subsequently square-rooted, while that in (19) is not. Consequently, as suggested

above, we will indeed take the square root of the disparity measure, so that δ
1/2
KL (S1,S2)

and dR(S1,S2) are comparable quantities. �
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4.5. Distances in practice

As discussed in Section 2.2 the matrix-valued spectra are estimated at N = 612
discretized frequencies fl = l/(N∆t) for |fl| ≤ 10Hz, but we are interested in the fre-
quency interval R defined in (2). So, let R = {l ∈ Z : fl ∈ R}. The disparity/distance
between spectral matrices is found by summing over R, i.e.,

δ̃
1/2
KL (S1,S2)

def
=

[
∆f

∑
l∈R

p∑
i=1

1
2

[
λ

1/2
il − λ

−1/2
il

]2
]1/2

, (27)

and

d̃R(S1,S2)
def
=

[
∆f

∑
l∈R

p∑
i=1

log2 λil

]1/2

, (28)

where λil is the ith eigenvalue of S1(fl)S2(fl)
−1 and ∆f = 1/(N∆t) is the frequency

interval length. We now define symmetric ‘distance’ matrices DKL and DR where, for

1 ≤ i < j ≤ n, (DKL)ij = δ̃
1/2
KL (Si,Sj) and (DR)ij = d̃R(Si,Sj). These will be

utilised in the next section on clustering.

5. Determining homogeneous groups for analysis. II: clustering

Our graphical model for brain connectivity will be constructed from the estimated
spectral matrices Ŝi(f), f ∈ R. Multitaper spectral matrix estimation [26, Chapter 7]
was carried out using 15 sine tapers, for which the bandwidth of the corresponding
spectral window is about 0.52Hz; see [34]. The resulting estimated spectral matrices
were then used in the clustering, discussed next. Note that the similarity graph dis-
cussed in this section is purely constructed for the purposes of clustering individuals,
and is not related to the main connectivity group graph which we wish to construct.
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5.1. Similarity graph and graph Laplacian

The (i, j)th entry, Wij , of the weighted adjacency matrix, W , of a ‘similarity graph’ G
is determined by the similarity between the observations i and j, where 0 ≤ Wij ≤ 1,

and a larger value indicates a stronger similarity. G is undirected, so W T = W . There
are several ways to construct a similarity graph from a given distance matrix. (i) The
ε-neighbourhood graph: two vertices i, j are connected if their distance is smaller than
a certain threshold ε; then Wij = 1, otherwise, Wij = 0. In this case, weighted edges
are not necessary, because all edges are roughly of the same scale (i.e., ε). (ii) `-nearest
neighbour graphs: for every vertex i, i is connected to j, if j is among the `-nearest
neighbours of i. Because G is undirected, the direction of edges is ignored. (iii) The
fully connected graph: G is completely connected. In both the `-nearest neighbour
graph and the fully connected graph, Wij is decided by a similarity function which
needs to be defined.

Similarity determines the strength of linkage between vertices in a similarity graph.
However, there is no rigorous definition of similarity. One possible choice is the Gaus-
sian similarity function (e.g., [33]). For general distance or disparity measures, with
a given ‘distance’ matrix (D)ij = dij , the similarity function can be defined as
Wij = exp(−d2

ij/(2σ
2)). The limiting cases σ2 →∞ and σ2 = 0 correspond to one and

n clusters, respectively. So the choice of σ2 is influential and must be carefully chosen.
The effect of σ2 on W is similar to ε in the ε-neighbourhood graph [33].

For a vertex i ∈ V , the degree of i is νi =
∑n

j=1Wij . The degree matrix

D = diag(ν1, . . . , νn) is a diagonal matrix. The graph Laplacian matrix is defined as

L
def
= D−W . The normalized graph Laplacian matrix is defined as Lrw

def
= In−D−1W ,

where In is the n× n identity matrix.
The following properties of eigenvalues and eigenvectors of the normalized graph

Laplacian are important for clustering [33, Proposition 4]:

• Lrw is positive semi-definite and has n non-negative real-valued eigenvalues 0 =
λ1 ≤ · · · ≤ λn.
• The multiplicity k of the eigenvalue 0 of Lrw equals the number of connected

components U1, . . . , Uk in the graph. (A subset U of V is called a connected
component if it is connected and there is no path connecting U and V \U .)
• The eigenspace of 0 is spanned by the vectors 1Ui

of those components.

Here 1Ui
= (y1, . . . , yn)T , where yj = 1 if vj ∈ Ui and zero otherwise.

Hence (i) the number of clusters can be determined by the multiplicity of the eigen-
value 0, and (ii) the membership of each vertex is clearly defined by eigenvectors.

The clustering algorithm based on the normalized graph Laplacian Lrw and Gaus-
sian similarity, is implemented as follows:

(1) Given W ∈ Rn×n, the eigenvalues 0 = λ1 ≤ · · · ≤ λn and eigenvectors
{u1,u2, . . . ,un} of the normalized Laplacian Lrw are found.

(2) The number of clusters, k, is chosen from the pattern of the eigenvalues:
λ2, . . . , λk are very close to 0, but λk+1 is relatively large. (Note that λ1 is
always 0.)

(3) The eigenvector matrix [u1,u2, . . . ,uk] ∈ Rn×k defines n points {x1, . . . ,xn} in
Rk. Cluster the xi’s using the k-means algorithm into k clusters.

See [31, 33] for full discussion of, and justifications for, this clustering algorithm.
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Figure 4. For DKL : eigenvalues of Lrw for (a) σ2 = 40, (b ) σ2 = 60, (c) σ2 = 80, (d) σ2 = 100, (e)
σ2 = 120, and (f) σ2 = 140.
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Figure 5. For DR : eigenvalues of Lrw for (a) σ2 = 15, (b) σ2 = 20, (c) σ2 = 25, (d) σ2 = 30, (e) σ2 = 35,

and (f) σ2 = 40.

5.2. Results

In this study there were 15 patients, so that sparsity of the weighted adjacency matrix
W is not a main concern. Hence we adopt a fully-connected similarity graph and
concentrate our attention on the choice of σ in the Gaussian similarity function.

Using DKL, the eigenvalues of Lrw for σ2 ∈ {20, 40, 60, 80, 100, 120, 140} are shown
in Fig. 4. We see a persistent characteristic, namely that the first three eigenvalues
are close to zero for plots (a)-(d). In plot (d) the gap between λ3 and λ4 is large. This
suggests to take k = 3 along with σ2 = 100. The corresponding results using DR for
σ2 ∈ {15, 20, 25, 30, 35, 40} are given in Fig. 5. Fig. 5(b) shows similar behaviour to
Fig. 4(b), but generally it is more difficult to choose k.

Remark 7. Although the clustering algorithm nominally requires the first k eigenvec-
tors, the first eigenvector is a constant vector 1 and does not provide any information
to the clustering. So we need only include [u2 u3]. �
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So k = 3 was deemed the best choice and we treat each row of [u2 u3] as a point
in R2, as seen in Fig. 6, which indicates the number of clusters is 3, giving the par-

−1 0 1
−1

−0.5

0

0.5

1

 1 2 3 4 5 6 7

 8

 9101112 131415

2
n
d
 e

ig
e
n
v
e
c
to

r

3rd eigenvector

(a)

−1 0 1
−1

−0.5

0

0.5

1

 1 2 3 4 5 6 7

 8

 9101112 13
1415

2
n
d
 e

ig
e
n
v
e
c
to

r

3rd eigenvector

(b)

Figure 6. Eigenvectors corresponding to λ2 and λ3 of Lrw. The distances between estimated spectral matrices

are measured via DKL in (a), and by DR in (b).

tition {{1, . . . , 7, 9, . . . , 12, 14, 15}, {8}, {13}}. Patients 8 and 13 appear as ‘outliers’
compared to the group of 13 remaining individuals.

6. Results and Conclusions

Following the clustering in Section 5, individuals 8 and 13, identified as outliers, are
removed from the original set of 15 individuals, leaving us with a homogeneous group
of n = 13 individuals. We then seek to construct a representative connectivity graph,
i.e., a group graph, for these 13 individuals. To do this we use the methodology of
Section 3. It was explained in Section 3.5 how group connectivities may be defined in
terms of a threshold θ0. Example connectivities are shown in Fig. 7 for θ0 = 0.4, 0.5, 0.6
and 0.69, corresponding to 6 or more, 7 or more, 8 or more, 9 or more, individuals out of
the 13, respectively. The connection F3-O2 and symmetric connections C3-P3/C4-P4
are clearly quite persistent. There are no connections which are present for 9 or more
individuals. Connection F3-O2 is particularly interesting since relatively long physical
distances between connected regions, (compatible with inefficient axonal wiring), have
already been associated with schizophrenia [1].

The building of a representative connectivity group graph is not an easy task. Firstly
quite sophisticated clustering methods are required to eliminate outlying individuals.
Our novel approach of spectral matrix clustering via the normalized graph Laplacian
greatly aids clustering since it identifies the number of clusters, which then enables
use of standard k-means clustering. Having ‘cleaned’ the data, it is then necessary
to consider possible edges in a graphical model. In a time series setting even this is
difficult, since conventional hypothesis testing involves testing over the whole frequency
range of interest [30]; use of an integrated functional eliminates this complication.
Moreover, the test statistic has a simple distribution, so that p-values are easily found,
which can be used in multiple hypothesis testing over individuals; this provides the
theshold parameter θ0 which can be varied to easily view persistent connections over
the group.

Apart from these considerations, it is necessary to check that chosen spectral
smoothing parameters and taper choices correspond to bandwidths consistent with
the overall delta frequency band. Further, it is necessary that the spectral matrices
are invertible, which also constrains parameter choices.

This analytical effort is worthwhile since the production of group analyses from
EEG in schizophrenia studies, (and elsewhere), is an interesting, and important prac-
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Figure 7. Derived connectivity for a threshold of θ0 = 0.4 (top left), 0.5 (top right), 0.6 (lower left) and 0.69

(lower right).

tical task [13, 23], which informs clinical practitioners and neuroscientists about the
syndrome under study. We believe our novel approach provides a framework for inte-
grating results on multiple individuals into a single overall connectivity structure, and
is worthy of further study on other datasets.
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