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1 Introduction

The potential between a quark-antiquark pair is one of the most important observables

that can be considered in a gauge theory. The order parameter to diagnose phases of this

potential is given by a Wilson loop operator supported along two antiparallel lines — the

worldlines of the quark and the antiquark. In the context of N = 4 super Yang-Mills

(SYM) theory and its holographic dual, some of the computations of this quantity can be

found for example in [1–5].

In this note, we focus on a variant of N = 4 SYM obtained by the insertion of a

codimension-1 defect, an example of defect conformal field theory (dCFT). The defect can

be located at, say, x3 = 0 and separates the four-dimensional spacetime into two regions

(positive and negative x3), where the theory has gauge groups SU(N) and SU(N−k) [6–9];

see [10] for a recent review. Besides this breaking of the gauge group on one side of the

defect, the original superconformal symmetry PSU(2, 2|4) of N = 4 SYM also gets broken

down to the subgroup OSp(4|4). The action of this theory comprises the standard N = 4

SYM action in the so-called ‘bulk spacetime’ (namely, the region x3 6= 0), the action of
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3-dimensional hypermultiplets living on the defect, and an interaction term coupling bulk

and defect degrees of freedom [11, 12]. All fields are zero on the vacuum, save for three

of the six scalars, which acquire a vacuum expectation value depending on the distance x3
from the defect:

〈ΦI(x)〉cl = − 1

x3
tI ⊕ 0(N−k)×(N−k) , I = 1, 2, 3 , x3 > 0 , (1.1)

where tI are a k-dimensional irreducible representation of the SU(2) algebra. This leads to a

complicated mass mixing problem and non-constant mass terms for the Higgsed fields that

was recently diagonalized by making use of fuzzy-sphere coordinates [13, 14]. Moreover,

correlation functions are less constrained due to the breaking of the symmetry and, for

example, already the 1-point functions can be non-vanishing.

Interestingly, this dCFT enjoys a holographic dual, given by a fuzzy-funnel solution

of the probe D5/D3-brane system [9], in which the D5-brane wraps an AdS4 × S2 inside

AdS5 × S5 and couples to a background gauge field carrying k units of flux through the

2-sphere. In particular, the D5-brane forms an angle with the AdS boundary that is

determined by k. The presence of this extra parameter makes this setup amenable to a

certain double-scaling limit in the planar regime

N � k � 1 , λ� 1 , κ ≡ πk√
λ

= constant , (1.2)

which allows for a comparison between gauge theory and string theory computations for

large κ; see, for instance, [15–18].

Our main goal is to compute the quark-antiquark potential in this dCFT both at

weak and strong coupling. This amounts to computing the expectation values of a Wilson

operator supported along a pair of antiparallel lines at a certain distance and orientation

from the defect, as we explain in detail below. Moreover, we allow for the quark and

antiquark lines to couple to different scalars of the N = 4 gauge multiplet.

The weak coupling computation, which is the subject of section 2, is performed on

the gauge theory side and presents a few challenges related to the complicated form of the

propagators that have to be integrated along the two lines [14, 18] and to the fact that, as

we mentioned above, some fields have non-vanishing 1-point functions at tree level in the

presence of the defect. Our final result for this computation (2.20)–(2.23) is organized as

a sum of a quark-antiquark potential term and a particle-defect contribution.

In section 3, we perform instead the strong coupling computation of the Wilson loop

expectation value, consisting in finding the minimal area string worldsheets with boundaries

along the two lines. There are two such configurations, a connected U-shaped one, and

a pair of disconnected ones, joining each individual line with the D5-brane. These two

configurations are separated by a Gross-Ooguri phase transition [19–21] which takes place

at certain critical values of the parameters and which we analyze in section 4. These

strong coupling results can be successfully compared with the corresponding gauge theory

expressions in the double-scaling limit above (1.2).

We hope that our analysis might be a useful reference for future computations of this

quantity using the tools of integrability, as was done, for example, for the cusp anomalous
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dimension in the TBA approach of [5], in the quantum spectral curve approach of [22],

or using a method based on supersymmetric localization as in [23]. The analysis of the

string fluctuations around our string configurations should also be possible within the

current technology (either using the Gelfand-Yaglom theorem [3, 24, 25] or heat kernel

methods [26]) and could be worthwhile to consider. This would give the first subleading

correction in large λ to our results of section 3 and presumably modify the order of the

transitions discussed in section 4. Another direction worth exploring would be extending

this analysis beyond the probe approximation, considering, instead of a single D5-brane,

the backreacted geometries of [27–29], along the lines of what was done in [30] for the

so-called Janus solutions. In particular, it would be interesting to follow what happens to

the phase transitions we encounter as the D5-brane dissolves into the fluxes of the bubbling

geometries.

2 Antiparallel Wilson lines at weak coupling

Let us consider a Wilson operator1

W = trP exp

∫
C
dαA(α) , A = iAµẋ

µ − |ẋ|θIΦI (2.1)

supported along a pair of antiparallel lines. Specifically, the path C and the scalar couplings

θI can be taken, without loss of generality, to be given by

xµ(α) = ∓αnµ +mµ
∓ , θI = θI∓ ≡ (0, 0, sinχ∓, 0, 0, cosχ∓) , (2.2)

where the two signs correspond to the two lines, parametrized by α ∈ (−T, 0) and α ∈
(0, T ), respectively. Here nµ = (1, 0, 0, 0) and mµ

± = (0, 0,±d cosφ,L±d sinφ) are constant

vectors and T is an IR cutoff regularizing the lines’ infinite length.2 The lines lie at a

relative distance 2d and run parallel to the defect in the half-space x3 > 0. They determine

a plane that forms an angle φ ∈ [0, π] with the direction of the defect and their symmetry

axis is at a distance L > d sinφ from the defect, see figure 1. Note that both lines are

contained in the same half-space, where the gauge group is the SU(N) broken by the scalar

expectation value (1.1). The angles χ± ∈ [0, π] control the linear combinations of the

massive Φ3 and massless scalar Φ6 in the generalized connection A in (2.1). The expectation

value of the Wilson loop will depend on the R-symmetry angles χ± and, since the defect

(partially) breaks the Lorentz symmetry of the theory, also on the orientation φ and on

the dimensionless ratio L/d, in addition to the gauge theory parameters gYM, k, and N .

1Here and in the following we fix the signature of the boundary theory to be Euclidean, even though

we label coordinates as xµ = (x0, x1, x2, x3) to be consistent with the existing literature on the subject.

We also limit ourselves to considering particles in the fundamental representation of the gauge group. It

would however be interesting to extend our analysis to higher rank representations, like the symmetric and

antisymmetric ones.
2This is the usual cut-off regularization of the contour via two semi-infinite lines used in [31, 32]. It is

reminiscent of the parametrization induced by the conformal mapping of a cusp to a pair of lines and it is

equivalent to the choice α ∈ (−T/2, T/2) of [17] after a translation in the lines’ direction.
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L
d

φ

x3

Figure 1. Relative alignment of the two antiparallel lines (running along the x0 direction perpen-

dicular to the plane) with respect to the defect located at x3 = 0.

The one-loop computation of the expectation value follows closely what was done for

the single line in [17], with the obvious difference that there are going to be now graphs

with propagators connecting the two lines. As a first step, it is convenient to split the

generalized connection A as

A = Acl + Ã , (2.3)

where Acl is a tree level term and Ã takes into account quantum corrections to the line,

which, as we shall see, come in two varieties: tadpoles and rainbows (or ladders). Corre-

spondingly, one can define the propagator along C and its classical part as

U(α, β) = P exp

∫ β

α
dτA(τ), U cl(α, β) = P exp

∫ β

α
dτAcl(τ) . (2.4)

The classical field receives contribution from the classical value of the massive scalar Φ3

Acl(τ) = − sinχ∓〈Φ3(τ)〉cl =
sinχ∓
L∓

t3 , (2.5)

with the two signs corresponding, again, to τ ∈ (−T, 0) and τ ∈ (0, T ), respectively. Here

we have defined L± ≡ L ± d sinφ and t3 is the diagonal generator of the k-dimensional

representation of SU(2) with eigenvalues dk,i = 1
2(k − 2i + 1) labelled by i = 1, . . . k. As

in (1.1), it must be extended to an N×N matrix by filling the remaining entries with zeros:

t3 ⊕ 0(N−k)×(N−k) (which we still denote by t3 for simplicity). For example, the classical

propagator between points on different lines is diagonal and given by

U cl (α, β) = exp

[(
β sinχ+

L+
− α sinχ−

L−

)
t3

]
, α ∈ (−T, 0) , β ∈ (0, T ) . (2.6)

The Wilson loop operator (2.1) is then defined by closing the loop at T → ∞ and

tracing over the color indices W = trU(−T, T ). The weak-coupling expansion of the
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Wilson loop reads3

〈W〉 ≡ 〈W〉cl + 〈W〉tadpole + 〈W〉rainbow + . . .

= trU cl(−T, T ) +

∫ T

−T
dα 〈tr[U cl (−T, α) Ã (α)U cl (α, T )]〉

+

∫ T

−T
dα

∫ T

α
dβ 〈tr[U cl (−T, α) Ã (α)U cl (α, β) Ã (β)U cl (β, T )]〉+ . . . (2.7)

where corrections higher than one-loop in g2YM are neglected. The leading order is trivially

obtained from (2.6) with β = −α = T . At finite k and large T , it evaluates to

〈W〉cl = N − k + exp

[
T
k − 1

2

(
sinχ+

L+
+

sinχ−
L−

)]
. (2.8)

The first addends stem from the massless fields, namely the trace over the zero (N − k)×
(N − k) block, and equal the trivial contribution of N = 4 SYM theory with gauge group

SU(N − k). The massive fields account instead for the exponential term.

At one-loop, the tadpole diagrams decompose into

〈W〉tadpole =

∫ T

−T
dα [U cl (−T, α)]ij〈[Ã (α)]jl〉[U cl (α, T )]li +

∫ T

−T
dα 〈[Ã (α)]aa〉 , (2.9)

where i, j, . . . = 1, . . . , k and a, b . . . = k + 1, . . . , N label the matrix elements of t3 in the

upper k× k block and in the lower (N − k)× (N − k) block, respectively. Repeated indices

are summed over. One-point functions of massless gauge fields vanish, 〈[Ã]ab〉 = 0, and in a

supersymmetric-preserving regularization scheme those of the massive fields vanish as well,

〈[Ã]ij〉 = 0 [13, 14]. As a consequence, the total contribution of tadpole diagrams is zero.

The only contribution at one loop comes then from the rainbow/ladder diagrams. We

adhere to the notation of [18] for organizing them into a sum

〈W〉rainbow = T1 + T2 + T3 + T4 , (2.10)

after specializing again to the intervals i, j, l, . . . = 1, . . . , k and a, b, . . . = k+1, . . . , N . The

first piece

T1 =

∫ T

−T
dα

∫ T

α
dβ

〈[
U cl (−T, α)

]
ij

[
Ã (α)

]
jl

[
U cl (α, β)

]
lm

[
Ã (β)

]
mn

[
U cl (β, T )

]
ni

〉
(2.11)

contains only the components of the k×k block, whose number equals the dimension of the

adjoint representation of SU(k) and grows like k2. Therefore, in the planar limit N � k,

the term T1 becomes negligible in comparison to the other T ’s, which are proportional to

N2. The term

T4 =

∫ T

−T
dα

∫ T

α
dβ
〈[
U cl (−T, α)

]
ab

[
Ã (α)

]
bc

[
U cl (α, β)

]
cd

[
Ã (β)

]
de

[
U cl (β, T )

]
ea

〉
(2.12)

3Note that in [17] what we call ‘tadpole’ was called ‘lollipop’ and what we call ‘rainbow/ladder’ was

called ‘tadpole’.
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involves the field components of the (N−k)×(N−k) block and captures those components

of the scalars and gauge field of N = 4 SYM that remain massless in presence of the defect.

We have a non-vanishing integrand only when the points sit on different lines

T4 =
g2YM

4π2
(N − k)2 − 1

2

∫ 0

−T
dα

∫ T

0
dβ

1 + cos(χ+ − χ−)

(α+ β)2 + 4d2
' λN

16π
(1 + cos(χ+ − χ−))

T

d
,

(2.13)

where the last relation is valid in the planar limit and for large T . The sources of the

k-dependence are the pieces involving the off-diagonal blocks of the generalized connection

T2 =

∫ T

−T
dα

∫ T

α
dβ

〈[
U cl (−T, α)

]
ij

[
Ã (α)

]
ja

[
U cl (α, β)

]
ab

[
Ã (β)

]
bl

[
U cl (β, T )

]
li

〉
,

T3 =

∫ T

−T
dα

∫ T

α
dβ

〈[
U cl (−T, α)

]
ab

[
Ã (α)

]
bi

[
U cl (α, β)

]
ij

[
Ã (β)

]
jc

[
U cl (β, T )

]
ca

〉
.

(2.14)

Integrals with α, β of equal sign connect points on the same line (‘rainbows’), while those

with α, β of opposite sign correspond to a propagator exchanged between different lines

(‘ladders’).

The free correlators of the scalar and gauge fields with mixed indices are evaluated in

terms of the massive scalar propagators [14]. For the rainbows one has〈[
Ã (α)

]
ia

[
Ã (β)

]
bj

〉
=

〈[
Ã (α)

]
ai

[
Ã (β)

]
jb

〉
= δijδab sin2 χ±

(
k + 1

2k
Km2=

(k−2)2−1
4 +

k − 1

2k
Km2=

(k+2)2−1
4 −Km2= k2−1

4

)
, (2.15)

while for the ladders one has〈[
Ã (α)

]
ia

[
Ã (β)

]
bj

〉
=

〈[
Ã (α)

]
ai

[
Ã (β)

]
jb

〉
= δijδab

[
(1 + cos(χ+ − χ−))Km2= k2−1

4

+ sinχ− sinχ+

(
k + 1

2k
Km2=

(k−2)2−1
4 +

k − 1

2k
Km2=

(k+2)2−1
4 −Km2= k2−1

4

)]
. (2.16)

All the propagators above have arguments Km2
(α, β) and can be written in terms of

integrals of Bessel functions (A.6)–(A.7). Specifically, for the rainbows one has

Km2
(α, β) = g2YML±

∫ ∞
0

rdr

(2π)2
sin (r (β − α))

(β − α)
Iν (rL±)Kν (rL±) , (2.17)

with the two signs associated to the 0 < α < β and α < β < 0 cases, respectively. For the

exchange diagrams, one has instead

Km2
(α, β) = g2YM

√
L+L−

∫ ∞
0

rdr

(2π)2

sin

(
r
√

(β + α)2 + 4d2 cos2 φ

)
√

(β + α)2 + 4d2 cos2 φ
Iν (rL−)Kν (rL+) .

(2.18)
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In these expressions, ν = (m2+ 1
4)1/2. Details on how to proceed with the computation of T2

and T3 are given in appendix A. Here we limit ourselves to reporting the final contributions,

which are given by rainbows on the two separate lines

(T2 + T3)rainbows,± = λTd
k − 1

2

sin3 χ±
L2
±

∫ ∞
0

dr

(2π)2

exp
[
k−1
2 T

(
sinχ+

L+
+ sinχ−

L−

)]
r2 +

(
k−1
2 d sinχ±

L±

)2
×
[
rI ′k

2

(
rL±
d

)
K k

2

(
rL±
d

)
+

1

2
I k

2

(
rL±
d

)
K k

2

(
rL±
d

)
− 1

2

]
. (2.19)

Here λ = g2YMN is the ’t Hooft coupling. The factor of N in λ comes from the trivial sum

over a = 1, . . . N − k ' N , in the planar limit we are considering. These expressions agree

with the result for a single Wilson line [17] once one identifies L± = x3 and χ± = χ, χ∓ = 0,

and rescales r → rd/x3. In the limit k � N , the one-loop expectation value (2.7) is the

sum of T4 in (2.13) and T2 + T3 in (2.19). The quark-antiquark potential in N = 4 SYM

with trivial vacuum [31–33] (labeled with an I in the following) can be read off from T1:

1

N − k
〈W〉I1−loop =

T1
N − k

≡ e−T V
I
1−loop , V I

1−loop = − λ

8π

1 + cos (χ+ − χ−)

2d
. (2.20)

The (sum of the) particle-defect potentials for the two Wilson lines (labeled with a II) can

instead be obtained from the remaining terms. Expanding 〈W〉II = e−T (V
II
cl +V II1-loop+...) '

(1− TV II
1-loop + . . .)e−TV

II
cl as in [17, 18], one obtains

〈W〉II1−loop = T1 + T2 + T3 ≡ −T V II
1−loope

−T V IIcl , (2.21)

with

V II
cl = −k − 1

2

(
sinχ−
L−

+
sinχ+

L+

)
,

V II
1−loop = −λk − 1

2
d
∑
i=±

sin3 χi
L2
i

∫ ∞
0

dr

(2π)2
1

r2 +
(
k−1
2 d sinχi

Li

)2
×
[
rI ′k

2

(
rLi
d

)
K k

2

(
rLi
d

)
+

1

2
I k

2

(
rLi
d

)
K k

2

(
rLi
d

)
− 1

2

]
. (2.22)

The integral in r in V II
1−loop can be performed analytically at large k, after rescaling r →

kr/2 and using the asymptotic behaviors (A.10). The result is

V II
1−loop ' −

λ

8π2k

[
sin2 χ−

(
π
2 − χ−−

1
2 sin 2χ−

)
L− cos3 χ−

+
sin2 χ+

(
π
2−χ+− 1

2 sin 2χ+

)
L+ cos3 χ+

]
. (2.23)

In the double scaling limit (1.2) and for small λ/k2, these expressions can be compared to

the strong-coupling result reported below in (3.10). The analysis in section 4 will confirm

that only the classical solution made of two separate worldsheets spanning the Wilson

lines [15] is admissible in this regime. Therefore, the agreement found in [17] for a single

Wilson line extends straightforwardly to the antiparallel lines.
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3 String solutions at strong coupling

The defect N = 4 SYM theory is dual to type IIB string theory in AdS5×S5 with a probe

D5-brane wrapping a AdS4 × S2 subspace and ending at the position of the defect on the

boundary [15].

The AdS5 × S5 metric can be taken to be

ds2 =
dy2 + dx20 + dx21 + dx22 + dx23

y2
+ dψ2 + sin2 ψ dΩ2

2 + cos2 ψ dΩ̃2
2 , (3.1)

with Ω2 and Ω̃2 denoting two 2-spheres in the S5. The background gauge field F =

−κ vol(Ω2) carries κ units of magnetic flux on the untilded sphere, with κ = πk/
√
λ. The

D5-brane, whose worldvolume coordinates are (x0, x1, x2, y,Ω2), intersects AdS5 along a

AdS4 subspace that is tilted with respect to the AdS boundary y = 0 by an angle given

by κ. It also wraps the untilded equatorial 2-sphere in S5 at ψ = π/2, sits at a fixed point

inside Ω̃2, and has

y =
1

κ
x3 . (3.2)

The constraint N � k ensures that the brane backreaction on the target space geometry

can be neglected.

The expectation value of a Wilson loop in the defect field theory is given by the

partition function of a fundamental string propagating in AdS5 × S5 and with endpoints

attached to the Wilson loop’s contour on the boundary. In the bulk, the string either does

not intersect the brane or it stretches from the boundary to the brane,4 see figure 2. In

the latter case, the emission/absorption of a string by a D-brane requires the worldsheet

to meet the brane at a right angle, corresponding to Neumann boundary conditions along

the brane and to Dirichlet boundary conditions transverse to the brane [35].

3.1 Disconnected solution

One possible configuration consists of two disconnected pieces stretching between one of the

lines on the AdS boundary and the brane in the bulk. The individual sheets — selected here

by taking either the upper or lower sign — were constructed in [15] and have embeddings

given by5

y (σ) =
1√
A

sn

(√
Aσ,

B

A

)
, x0 = τ , x2 = ±d sinφ , ψ = mσ + χ± ,

x3 (σ) = L± −
1√
|B|

[
E

(
arcsin

(√
Ay(σ)

)
,
B

A

)
− F

(
arcsin

(√
Ay(σ)

)
,
B

A

)]
, (3.3)

4This string configuration has similarities with the minimal surfaces used for computing entanglement

entropy at strong coupling via the AdS4/BCFT3 correspondence [34].
5In the Abramowitz & Stegun/Mathematica notation, see appendix A of [36]: sn is the Jacobi elliptic

sine and sn−1 its inverse; am is the Jacobi amplitude; F,E are the incomplete elliptic integrals of the first

and second kind; K,E are the complete elliptic integral of the first and second kind.
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(a) (b)

Figure 2. The D5-brane (3.2) (blue) and the minimal surfaces corresponding to two disconnected

worldsheets (orange) and the connected surface (green). On the left, the antiparallel lines (2.2)

run at constant distance x3 = L± from the defect located at x3 = y = 0. The double-scaling

limit (1.2) with κ � 1, relevant for matching results in the dual gauge theory, corresponds to the

AdS4 hyperplane of the brane making a tiny angle with the boundary y = 0. On the right, the

strings run along a longitude of S5.

with

τ ∈ R , σ ∈ (0, σ1) , A =
m2 +

√
m4 + 4c2

2
, B =

m2 −
√
m4 + 4c2

2
. (3.4)

The surface is parametrized by four integration constants, c,m, σ1, y1, which are determined

by the geometrical data L, d, φ, κ and χ± via the system of equations

y1 =
1√
A

sn

(√
Aσ1,

B

A

)
, mσ1 =

π

2
− χ± , 0 = 1−m2y21 − c2

(
1 + κ2

)
y41 ,

κy1 = L± −
1√
|B|

(
E

(
arcsin

(√
Ay1

)
,
B

A

)
− F

(
arcsin

(√
Ay1

)
,
B

A

))
. (3.5)

The algorithm to invert these equations and express the integration constants in terms of

the physical parameters is presented in appendix B. The string solution ends on the pair

of lines (2.2) at σ = 0. It also attaches perpendicularly to the D5-brane at σ = σ1 because

the following Dirichlet-Neumann boundary conditions are satisfied

x3 (σ1)− κy (σ1) = 0 , κx′3 (σ1) + y′ (σ1) = 0 . (3.6)

The total classical area is regularized as usual by cutting both sheets (explicitly la-

beled by i = ± below) at y = ε and then renormalized by dropping the resulting 1/ε-
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Figure 3. Contour plot of the coefficient Cdisc of the particle-defect potential (3.9) as function of

χ and κ.

divergence [37]

Sdisc =
∑
i=±

Sidisc =

√
λ

4π

∑
i=±

∫ T

0
dτ

∫ y1

ε

2dy

y2
√

(1−Ay2) (1−By2)

→
√
λ

2π
T
∑
i=±

[
− 1

y1

√(
1−Ay21

) (
1−By21

)
−
√
AE

(
arcsin

(√
Ay1

)
,
B

A

)
+
√
AF

(
arcsin

(√
Ay1

)
,
B

A

)]
. (3.7)

Note that the integrands in the expressions above depend on the index i once the physical

parameters are made explicit. The sum of the potential energies between a single Wilson

line and the defect is evaluated from the on-shell action [15]

Vdisc =
∑
i=±

V i
disc =

∑
i=±

Sidisc
T

=

√
λ

2π

∑
i=±

−
√(

1−Ay21
) (

1−By21
)

y1
− c (L± − κy1)

 , (3.8)

where the elliptic integrals simplify thanks to (3.5). In particular, the result (B.5) of

appendix B shows that

V ±disc =

√
λCdisc(χ±, κ)

L±
, (3.9)

where the coefficients Cdisc determine the strength of the force exerted by the defect on

a single Wilson line. They vanish for χ± = 0 (when the Wilson line couples only to the

massless scalar Φ3) and increase in magnitude for χ± → π/2 and κ→∞, see figure 3.

The result (3.8) was derived in the planar limit at strong coupling λ � 1. In this

regime, one can further consider the double-scaling limit (1.2) of [15–18] and reproduce the
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result of [15] when the effective coupling λ/k2 is taken to be small

Vdisc = −k − 1

2

∑
i=±

[
sinχi
Li

+
1

4π2Li

sin2 χi
cos3 χi

(
π

2
− χi −

1

2
sin 2χi

)
λ

k2
+O

(
λ2

k4

)]
. (3.10)

3.2 Connected solution

The other possible string configuration has the shape of an infinite tunnel sitting on the

lines (2.2) in the subspace (x0, x2, y). It is given piecewise by

y (σ) =
1√
C

sn

(√
Cσ,

D

C

)
,

x2 (σ) = −d cosφ+
cosφ√
|D|

[
E

(
am

(√
Cσ,

D

C

)
,
D

C

)
−
√
Cσ

]
,

x3 (σ) = L− +
sinφ√
|D|

[
E

(
am

(√
Cσ,

D

C

)
,
D

C

)
−
√
Cσ

]
, (3.11)

when σ ∈ (0, σ22 ] and by

y (σ) =
1√
C

sn

(√
C (σ2 − σ) ,

D

C

)
,

x2 (σ) = d cosφ− cosφ√
|D|

[
E

(
am

(√
C (σ2 − σ) ,

D

C

)
,
D

C

)
−
√
C (σ2 − σ)

]
,

x3 (σ) = L+ −
sinφ√
|D|

[
E

(
am

(√
C (σ2 − σ) ,

D

C

)
,
D

C

)
−
√
C (σ2 − σ)

]
, (3.12)

when σ ∈ [σ22 , σ2). It sweeps out a longitude of the S5, ψ (σ) = nσ+χ−, in the full interval

σ ∈ (0, σ2). Here we defined the shorthand notation

C =
n2 +

√
n4 + 4

(
c21 + c22

)
2

, D =
n2 −

√
n4 + 4

(
c21 + c22

)
2

. (3.13)

The solution is translationally invariant along the time τ ∈ R and enjoys reflection sym-

metry through the plane x3 = L. It reaches the two straight lines for σ = 0 and σ = σ2
and it has maximal extension y (σ2/2) = C−1/2 inside the bulk. In appendix B we solve

the system of equations

σ2 =
2√
C

K

(
D

C

)
, d =

1√
|D|

[
E

(
D

C

)
− K

(
D

C

)]
, tanφ =

c2
c1
, ∆χ =

2n√
C

K

(
D

C

)
,

(3.14)

that relate the integration constants c1, c2, n, σ1 in the string parametrization to the phys-

ical parameters d, φ and ∆χ ≡ χ+ − χ−. We shall see below that the existence of the

solution is also controlled by the tilt of the brane, κ, with respect to the AdS boundary.
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Equipped with these results, we can now compute the total energy of the connected

configuration. The on-shell action equals

Sconn =

√
λ

4π
2

∫ T

0
dτ

∫ 1/
√
C

ε

2dy

y2
√

(1− Cy2) (1−Dy2)
→ −

√
λ

π
T
√
C

[
E

(
D

C

)
− K

(
D

C

)]
,

(3.15)

and the quark-antiquark potential at strong coupling becomes

Vconn =
Sconn
T

= −
√
λ

π

√
C

[
E

(
D

C

)
− K

(
D

C

)]
≡
√
λCconn(|∆χ|)

2d
. (3.16)

This is a Coulomb potential in the relative distance 2d between the lines, with a negative

coefficient Cconn depending only on the difference of R-symmetry angles |χ+ − χ−|. Using

the formulas in appendix B, it is easy to see that the ‘strength’ Cconn of the interparticle

potential decreases in magnitude as |∆χ| increases and eventually vanishes for |∆χ| = π.

Note that, unlike what happens in the absence of the defect [1], the connected string

solution exists only in a certain range of the physical input (L±/d, φ,∆χ, κ). Outside of the

allowed range, it ceases to be a solution because it would be cut by the D5-brane — either

along two lines in AdS5 or on a point in S5. On the other hand, the disconnected sheets (3.3)

terminate on the brane with the right boundary conditions (3.6) by construction, see the

derivation in [15].

A critical set of parameters (L0/d0, φ0,∆χ0, κ0) separates the two regions where the

connected solution either exists or is not admissible. The existence depends on the relative

position of the string and the brane. In S5 we require that the string never crosses the

equator ψ = π/2 during its motion along a longitude (3.3), which is guaranteed if the

endpoints sit in the same hemisphere for χ± ∈ [0, π2 ) or χ± ∈ (π2 , π]. The discussion in

AdS5 is more involved. In the Poincaré plane (x3, y) in figure 2, the connected solution

is a downward U-shaped curve centered at x3 = L and the brane (3.2) is a line of slope

1/κ originating from the defect x3 = y = 0 in the boundary. The critical configurations

correspond then to the classical string and brane being tangent. Correspondingly,

x3 (σ0)− κ0y (σ0) = 0 (3.17)

has a unique solution for σ0 ∈ (0, σ22 ]. Solving this equation determines the critical slope

κ0 = κ0(L0/d0, φ0,∆χ0). The connected configuration exists for κ < κ0, when it remains

below the brane without crossing. Alternatively, one can focus on the dimensionless ratio

L/d and state that the existence is guaranteed when the U-shaped surface is far from the

defect for L/d > L0/d0, where we now think of this quantity as a function of (φ0,∆χ0, κ0).

Here we just quote the result for κ0 = κ0(L0/d0, φ0,∆χ0) and relegate the derivation

to appendix C. For φ0 ∈ (0, π), the auxiliary parameter y0 can be obtained from

D
C

(√
Cy0

)3
√

1− Cy20
√

1−Dy20
+ E

(
arcsin

(√
Cy0

)
,
D

C

)
−F

(
arcsin

(√
Cy0

)
,
D

C

)
+

L−,0
d0 sinφ0

[
E

(
D

C

)
− K

(
D

C

)]
= 0 , (3.18)
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Figure 4. Contour plot of tanh κ0 obtained from (3.19) as a function of L0/d0 and φ0 for fixed

∆χ0 = π
4 . The white region with L0/d0 ≤ sinφ0 is prohibited because the anti-parallel lines (2.2)

live in the same subspace x3 > 0 with respect to the defect. Contour lines move to the right of the

plot for increasing ∆χ0 within the interval
[
0, π2

]
.

resulting in

κ0 =
sinφ0

√
|D|
C Cy0

2√
1− Cy02

√
1−Dy20

, (3.19)

see figure 4. The limiting cases φ0 = 0, π are more straightforward and simply give

κ0 = L0

√
C .

4 Critical behaviors

In this section, we focus on specific configurations in parameter space and analyze the

emergence of Gross-Ooguri phase transitions [19] in the expectation value of the Wilson

loop (2.1) for λ � 1. To this scope, one has to consider the strong-coupling behavior of

the free energy

F ≡ − 1

T
logZstring ' Vdisc + Vconn (4.1)

associated to the string partition function Zstring. In the semiclassical approximation, the

string saddle points contribute with (3.9) and (3.16), which we redefine as

V̄disc ≡ λ−1/2d Vdisc = λ−1/2d (V −disc + V +
disc) ≤ 0 , V̄conn ≡ λ−1/2d Vconn ≤ 0 , (4.2)

in order to work with dimensionless quantities. These depend on five independent para-

meters

φ ∈ [0, π] ,
L

d
> sinφ , χ+, χ− ∈ [0, π] , κ ≥ 0 . (4.3)
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Given a set of values for these parameters, the dominant contribution to the free energy

comes from the lowest element between V̄disc and V̄conn, which will be denoted by V̄ . We

induce phase transitions by varying the lines-defect separation L for various regimes of the

other parameters, which are kept fixed. The explicit expressions for Cdisc and Cconn needed

to perform this analysis are derived in appendix B.

We begin with a qualitative understanding of the critical behaviors of the free energy.

Let us assume κ to be finite and restrict χ± to the interval
(
0, π2

)
, in order to limit the

geodesic motion in S5 to the upper hemisphere 0 < ψ < π
2 . The discussion in section 3.2

guarantees that connected and disconnected phases coexist when the lines are sufficiently

far from the defect, namely when L/d� 1. The interparticle energy V̄conn dominates over

the particle-defect potential V̄disc. In fact, the total area V̄disc of the surfaces spanning the

individual lines vanishes from below for L/d → ∞,6 so it is larger than the area of the

connected configuration given by the negative constant V̄conn.

As L/d decreases, the area of the disconnected sheets becomes more negative and the

system displays one of the following two behaviors:

(i) Zeroth-order transition. The connected solution hits the brane in AdS5 when the con-

nected potential is still energetically favorable, V̄disc > V̄conn. The result is that V̄disc
has a discontinuity at the transition point L0/d0 (see below (3.17)). No other critical

phenomena occur up to the minimum distance L/d = sinφ because the disconnected

phase remains the only saddle point.

(ii) First-order transition. A transition to the disconnected phase occurs when the area

of the connected solution starts exceeding the area of the disconnected sheets at the

critical value L1/d1. The connected phase continues to exist as an unstable saddle

point up to L0/d0. The transition point at L1/d1 is characterized by V̄disc = V̄conn,

but the derivatives of the potentials with respect to L/d cannot be equal as well.

The physical parameters set the values of L0/d0 and L1/d1 and eventually select the

type of transition, as visible in figure 5. We expect the discontinuity in the potential

to be smoothened at finite (but still large) λ. It would be then interesting to compute

such corrections, as mentioned in the Introduction. It is interesting to observe that the

connected solution does not survive the double-scaling limit (1.2) with large κ. This would

in fact violate the constraint κ < κ0 with κ0 finite (see below (3.17)) that guarantees the

non-intersection between the worldsheet and the brane in AdS5.

After these heuristic considerations, we analyze more quantitatively a few examples of

antiparallel lines. In each case, we fix the R-symmetry couplings on the lines and calculate

the control parameters L0/d0 and L1/d1. The derivation of these results is presented in

appendix D.

6The vanishing of the disconnected potential can be qualitatively understood from figure 2. When the

lines are placed far from the defect, the brane is well above the AdS boundary and each sheet tends to

a Poincaré half-plane, stretched along x3 and y. The regularized area of such surface is zero [37], see

also [26, 38, 39].
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Figure 5. Rescaled potentials V̄disc (orange, solid) and V̄conn (green, dashed) in (4.2). Left panel:

the system with φ = 45◦, χ− = 20◦, χ+ = 30◦, κ = 5 shows a zeroth-order transition at L/d =

L0/d0 ≈ 8.39. Right panel: the system with φ = 45◦, χ− = 70◦, χ+ = 80◦, κ = 1 shows a first-order

transition at L/d = L1/d1 ≈ 3.21.

Case χ− = 0. The Wilson loop couples to the massless Φ6 for α < 0 and to sinχ+Φ3 +

cosχ+Φ6 for α > 0. The negative line does not feel any force exerted by the defect

(V −disc = 0) and only the positive line contributes to V̄disc. In the limit ∆χ = χ+ → 0, the

potentials simplify

V̄disc =
− κ

2πχ+ − 1
16κχ

2
+

L
d + sinφ

+O
(
χ3
+

)
, V̄conn = − 2π2

Γ4
(
1
4

) +
π

Γ4
(
1
4

)χ2
+ +O

(
χ4
+

)
, (4.4)

resulting in

L1

d1
= − sinφ+

κΓ
(
1
4

)4
4π3

χ+ +
Γ
(
1
4

)4
32π2κ

χ2
+ +O(χ3

+) . (4.5)

The critical distance for φ = 0, π is

L0

d0
=
κΓ
(
1
4

)2
√

2π3/2
+ κ

Γ
(
1
4

)4 − 8π2

4
√

2π5/2Γ
(
1
4

)2χ2
+ +O(χ4

+) . (4.6)

It can be calculated only numerically for other values of φ.

Case χ− = π
2
. The Wilson loop couples to the massive Φ3 for α < 0 and to sinχ+Φ3 +

cosχ+Φ6 for α > 0. The discussion below (3.9) shows that the potential energy between

the defect and negative line is maximal for χ− = π
2 at given κ and distance L−. In the

limit χ+ → π
2 , the configurations can be studied analytically, giving

V̄disc = − Ldz2

πL−L+
+

zd

4π sn−1
(

(1 + κ2)−1/4 ,−1
)
L+

(π
2
− χ+

)2
+O

(π
2
− χ+

)4
,

V̄conn = − 2π2

Γ4
(
1
4

) +
π

Γ4
(
1
4

) (π
2
− χ+

)2
+O

(π
2
− χ+

)4
, (4.7)
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resulting in

L1

d1
=

G

4π3
+

Γ4
(
1
4

)
z
(
π
2 − χ+

)2
16π4sn−1

(
(1 + κ2)−1/4 ,−1

)√
Γ8
(
1
4

)
z4 + 16π6 sin2 φ

×
[
4π2 sinφ+G

(
2zsn−1

((
1 + κ2

)−1/4
,−1

)
− π

)]
+O

(π
2
− χ+

)4
, (4.8)

where

G = Γ4

(
1

4

)
z2 +

√
Γ8

(
1

4

)
z4 + 16π6 sin2 φ ,

z =
κ

(1 + κ2)1/4
+ E

(
arcsin(1 + κ2)−1/4,−1

)
− sn−1

((
1 + κ2

)−1/4
,−1

)
. (4.9)

The other critical distance is given by

L0

d0
=
κΓ
(
1
4

)2
√

2π3/2
+ κ

Γ
(
1
4

)4 − 8π2

4
√

2π5/2Γ
(
1
4

)2 (π2 − χ+

)2
+O

(π
2
− χ+

)4
, (4.10)

for φ = 0, π and it is calculated only numerically for the other values of φ.

Case χ+ = χ−. The lines couple to the same scalar combination sinχ+Φ3 + cosχ+Φ6

and the quark-antiquark potential takes the simple form

V̄conn = − 2π2

Γ4
(
1
4

) . (4.11)

The study of the line-defect potentials is viable analytically only in some limits. For

example, we can take χ+ → 0, for which one has

V̄disc =
2Ld

L2
−

[
− κ

2π
χ+ −

1

16κ
χ2
+ +O

(
χ3
+

)]
, (4.12)

resulting in

L1

d1
= sinφ+

Γ4
(
1
4

)
κ

4π3
χ+ +O(χ2

+) . (4.13)

The other possible limit is χ+ → π
2 , in which we have that

V̄disc = − Ld

πL−L+

z2 − z

2sn−1
(

(1 + κ2)−1/4 ,−1
) (π

2
− χ+

)2
+O

(π
2
− χ+

)4 , (4.14)

resulting in

L1

d1
=

G

4π3
+O

(π
2
− χ+

)2
. (4.15)

For any χ±, the critical distance L0/d0 is

L0

d0
=
κΓ
(
1
4

)2
√

2π3/2
(4.16)

for φ = 0, π and it is calculated only numerically for the other values of φ.
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Case χ± = 0. This is the constant angle configuration ∆χ = 0 in which the Wilson

lines couple to Φ6. The scalar is massless and we simply have

V̄disc = 0 , V̄conn = − 2π2

Γ4
(
1
4

) . (4.17)

The connected phase is stable for L/d > L0/d0, the disconnected one for sin φ < L/d <

L0/d0, with L0/d0 as in the previous case (4.16).
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A Details of the perturbative computation

To compute T2 and T3, we plug (2.17)–(2.18) into (2.15)–(2.16), use that the trivial sum

over a yields N − k ' N , and define

f (x) ≡
k∑
i=i

exp

(
T

d
dk,ix

)
=

sinh
(
k
2
T
d x
)

sinh
(
1
2
T
d x
) . (A.1)

It is also convenient to rescale r → r/d , α→ αT, β → βT and decompose

T2 + T3 = (T2 + T3)rainbow,− + (T2 + T3)rainbow,+ + (T2 + T3)ladder . (A.2)

Let us write down these individual contributions, starting with

(T2 + T3)rainbow,− = λ
T 2

d3
L− sin2 χ−

∫ ∞
0

rdr

(2π)2

∫ 0

−1
dα

∫ 0

α
dβ

sin
(
r Td (β − α)

)
T
d (β − α)

×
[
f

(
d sinχ+

L+
+ (1 + α− β)

d sinχ−
L−

)
+ f

(
(β − α)

d sinχ−
L−

)]
×
[
k + 1

2k
I k−2

2
K k−2

2
+
k − 1

2k
I k+2

2
K k+2

2
− I k

2
K k

2

]
, (A.3)
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where the argument of all Bessel functions in the third line is rL−/d. The expression

for (T2 + T3)rainbow,+ is simply obtained by replacing χ− → χ+ and L− → L+ and by

integrating α between 0 and 1 and β between α and 1. One can also work out the expression

for the ladder term

(T2 + T3)ladder = λ
T 2

d3

√
L−L+

∫ ∞
0

rdr

(2π)2

∫ 0

−1
dα

∫ 1

0
dβ

sin

(
r
√

T 2

d2
(β + α)2 + 4 cos2 φ

)
√

T 2

d2
(β + α)2 + 4 cos2 φ

×
[
f

(
(1−β)

d sinχ+

L+
+ (α+1)

d sinχ−
L−

)
+ f

(
β
d sinχ+

L+
− αd sinχ−

L−

)]
×
[
(1 + cos(χ+ − χ−))I k

2
K k

2

+ sinχ− sinχ+

(
k + 1

2k
I k−2

2
K k−2

2
+
k − 1

2k
I k+2

2
K k+2

2
− I k

2
K k

2

)]
, (A.4)

where the Bessel functions I have argument rL−/d and the Bessel functions K have argu-

ment rL+/d.

The next step consists in using integration by parts on the Bessel functions with the

help of the relations (A.9) reported below, to make α and β disappear from the denomi-

nators. The expressions are not particularly illuminating and we do not report them here.

Approximating f (x) ' exp
(
k−1
2

T
d |x|

)
in the limit of large T , one can calculate the inte-

grals over α and β. The ladders scale as exp
(
k−1
2L T (sinχ− + sinχ+)

)
at most,7 so they

are suppressed compared to the rainbows for any values of the physical parameters. In the

end, one obtains the expressions in (2.19).

A.1 Bessel functions

We collect here some useful properties about the Euclidean propagator of massive fields

that we have used in the weak coupling computation. Explicitly, this reads [40]

Km2
(x, y) =

g2YM

16π2
2F1

(
ν − 1

2 , ν + 1
2 ; 2ν + 1,−ξ−1

)(
2ν + 1

ν + 1/2

)
x3y3 (1 + ξ) ξν+1/2

, ξ =

∑3
i=0(xi − yi)2

4x3y3
, (A.5)

where ν = (m2 + 1
4)1/2 and the vectors ~x = (x0, x1, x2) and ~y = (y0, y1, y2) lie in the

directions parallel to the defect. Modified Bessel functions appear in its integral represen-

tation [13, 14]

Km2
(x, y) = g2YM

√
x3y3

∫ ∞
0

rdr

(2π)2
sin (r |~x− ~y|)
|~x− ~y|

Iν
(
rx<3

)
Kν

(
rx>3

)
, (A.6)

7The estimate derives from
∣∣∣∫ 0

−1
dα
∫ 1

0
dβ g(α, β) cos(h(α, β))

∣∣∣ ≤ ∫ 0

−1
dα
∫ 1

0
dβ |g(α, β)| applied on (A.4)

after partial integration.

– 18 –



J
H
E
P
1
0
(
2
0
1
7
)
0
7
9

with x<3 = min(x3, y3) and x>3 = max(x3, y3). The integrand develops an oscillating

behavior ∼ sin r at infinity if x3 = y3, which is cured by dimensional regularization [13, 14]

Km2
(x, y) = g2YMx3

∫ ∞
0

r1−2εdr

(2π)2
sin (r |~x− ~y|)
|~x− ~y|

Iν (rx3)Kν (rx3) +O(ε) , (A.7)

because
∫∞
0 r−2ε sin r → 1 remains finite when the cutoff is removed as ε→ 0+.

The following relations for the derivatives of Bessel functions

I ′ν(z) = Iν±1(z)± ν

z
Iν(z) , K ′ν(z) = −Kν±1(z)± ν

z
Kν(z) (A.8)

allow to recast the combinations (A.3)–(A.4) into total derivatives with a 6= b, ν > 0

zIν (az)Kν (bz)−
ν − 1

2

2ν
zIν+1 (az)Kν+1 (bz)−

ν + 1
2

2ν
zIν−1 (az)Kν−1 (bz)

=
d

dz

[
z

a (a+ b)
I ′ν (az)Kν (bz) +

z

b (a+ b)
Iν (az)K ′ν (bz) +

1

2ab
Iν (az)Kν (bz)

]
,

zIν (az)Kν (az)−
ν − 1

2

2ν
zIν+1 (az)Kν+1 (az)−

ν + 1
2

2ν
zIν−1 (az)Kν−1 (az)

=
d

dz

[
− 1

2a2
+

z

a2
I ′ν (az)Kν (az) +

1

2a2
Iν (az)Kν (az)

]
,

zIν (az)Kν (az) =
d

dz

[
π

4a2 sinπν

((
a2z2 + ν2

)
(I−ν (az)− Iν (az)) Iν (az)

−z2I ′−ν (az) I ′ν (az) + z2I ′2ν (az)
) ]

,

zIν (az)Kν (bz) =
d

dz

[
z

b2 − a2
(
Iν (az)K ′ν (bz)− I ′ν (az)Kν (bz)

)]
. (A.9)

The expressions in square brackets are finite for z = 0 and asymptote to zero for z →∞ if

0 < a < b. We also need the asymptotic behavior for ν →∞

Iν (νz) ∼ eνξ

ζ
√

2πν

[
1 +

1

ν

(
3

24ζ
− 5

24ζ3

)
+O

(
1

ν2

)]
,

Kν (νz) ∼ πe−νξ

ζ
√

2πν

[
1− 1

ν

(
3

24ζ
− 5

24ζ3

)
+O

(
1

ν2

)]
, (A.10)

with ζ =
(
1 + z2

)1/4
and ξ = ζ2 + log z

1+ζ2
.

B Parameters

The string solutions in section 3 are found in terms of integration constants, like c,m, σ1, y1
and so on, which do not have a physical meaning. It is therefore necessary to translate these

integration constants into the physical parameter of the theory, which are the geometrical

data L, d, φ, χ± and the gauge theory data gYM, k, and N .
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B.1 Disconnected solution

The equations (3.5) can be solved for c,m, σ1, y1 in the following order. First, one uniquely

determines u ≡ c/m2 > 0 from combining (3.5) into

∣∣∣π
2
− χ±

∣∣∣ =

√
2 sn−1

√
(1+
√
1+4u2)

(
−1+
√

1+4u2(1+κ2)
)

2u
√
1+κ2

, 1−
√
1+4u2

1+
√
1+4u2


√

1 +
√

1 + 4u2
, (B.1)

and using (3.4) to calculate the dimensionless quantities

Ā ≡ A

m2
=

1 +
√

1 + 4u2

2
, B̄ ≡ B

m2
=

1−
√

1 + 4u2

2
,

ȳ1 ≡ |m| y1 =

√√
1 + 4u2 (1 + κ2)− 1

2u2 (1 + κ2)
. (B.2)

Next, one solves for the unknown m in terms of all quantities above through (3.5)

m =
sign

(
π
2−χ±

)
L±

κȳ1 +
1√∣∣B̄∣∣E

(
arcsin

(√
Ā ȳ1

)
,
B̄

Ā

)
− 1√∣∣B̄∣∣F

(
arcsin

(√
Āȳ1

)
,
B̄

Ā

) ,
(B.3)

and finally one calculates the remaining parameters appearing in the disconnected sur-

faces (3.3)

c = um2 , σ1 =
1√
A

sn−1
(√

Āȳ1,
B̄

Ā

)
. (B.4)

In section 4, we write the sum of the Wilson line-defect potentials (3.8) in a useful form

V̄disc ≡ λ−1/2d Vdisc

=
∑
i=±

|m|d
2π

−
√(

1− Āȳ21
) (

1− B̄ȳ21
)

ȳ1
−
√
Ā E

(
arcsin

(√
Ā ȳ1

)
,
B̄

Ā

)

+
√
Ā F

(
arcsin

(√
Ā ȳ1

)
,
B̄

Ā

)]
, (B.5)

where Ā, B̄, ȳ1 are eventually functions of u only and the spacetime dependence of each

summand is contained in their prefactors |m|d ∝ (L±/d)−1. The dependence on i =

± appears explicitly after expressing the integration constants in terms of the physical

parameters. In figure 3, we report the Cdisc coefficient in the particle-defect potential as a

function of χ and κ.

B.2 Connected solution

The previous analysis can be repeated to express c1, c2, n, σ1 as functions of the physical

parameters d, φ,∆χ from (3.14). We find v ≡
√
c21 + c22/n

2 > 0 by solving the first and
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second equations in (3.14) in the form

|∆χ| = 2
√

2√
1 +
√

1 + 4v2
K

(
1−
√

1 + 4v2

1 +
√

1 + 4v2

)
. (B.6)

The other parameters follow from (3.13)–(3.14)

n =

√
2 sign (∆χ)

d

√∣∣∣1−√1 + 4v2
∣∣∣
[
E

(
1−
√

1 + 4v2

1 +
√

1 + 4v2

)
− K

(
1−
√

1 + 4v2

1 +
√

1 + 4v2

)]
,

C = n2
1 +
√

1 + 4v2

2
, D = n2

1−
√

1 + 4v2

2
,

c1 = n2v cosφ , c2 = n2v sinφ , σ2 =
2√
C

K

(
D

C

)
. (B.7)

The generalized quark-antiquark potential (3.16) can be put into a more explicit form

V̄conn ≡ λ−1/2d Vconn = −1 +
√

1 + 4v2

2πv

[
E

(
1−
√

1 + 4v2

1 +
√

1 + 4v2

)
− K

(
1−
√

1 + 4v2

1 +
√

1 + 4v2

)]2
.

(B.8)

To compare with the original result in [1], let us use Lorentz symmetry to place the an-

tiparallel lines in the plane x3 = L (i.e. φ = 0). The energy in (4.13) of [1]

E = −U0

π

[
E
(
l2 − 1

)
− K

(
l2 − 1

)]
(B.9)

coincides with (3.16) through the replacements

U0 →
√
λ

2π

√
C , l→ |n|√

C
, l2 − 1→ D

C
, L→ 2d , ∆θ → |∆χ| . (B.10)

Note that the case of constant R-symmetry coupling χ+ = χ− [1, 3] simplifies further to

v =∞ , C = −D = c1 =
2π3

Γ(1/4)4d2
, σ2 =

Γ4
(
1
4

)
d

4π2
, c2 = n = 0 , (B.11)

and

Vconn = −4π2
√
λ

Γ4
(
1
4

) 1

2d
= − π

√
λ

4K2
(
1
2

) 1

2d
. (B.12)

C The critical κ0 for the connected solution

In this appendix, we prove (3.18), thus providing a solution to the equation (3.17) for the

critical value κ0. We refer to (3.11), which are valid in the expected range σ0 ∈
(
0, σ22

)
of

the string-brane tangent points.
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For φ0 ∈ (0, π), we eliminate σ0 for y0 ≡ y(σ0) to write (3.17) as

κ0 =
x3 (y0)

y0
=

sinφ0√
Cy0

√
C

|D|

[
E

(
arcsin

(√
Cy0

)
,
D

C

)
− F

(
arcsin

(√
Cy0

)
,
D

C

)]

+
L−,0√
Cd0y0

√
C

|D|

(
E

(
D

C

)
− K

(
D

C

))
. (C.1)

The function x3 (y)/y has a global minimum in the interval y ∈ (0, 1/
√
C). The uniqueness

of σ0 provides the defining equation of y0 (3.18)

0 =
d

dy

(
x3 (y)

y

)∣∣∣∣
y=y0

∝
D
C

(√
Cy0

)3
√

1− Cy02
√

1−Dy02
+ E

(
arcsin

(√
Cy0

)
,
D

C

)
(C.2)

− F
(

arcsin
(√

Cy0

)
,
D

C

)
+

L−,0
d0 sinφ0

[
E

(
D

C

)
− K

(
D

C

)]
.

The formula above is also useful to simplify (C.1) to (3.19).

The cases φ0 = 0, π have to be considered separately, because now the U-shaped

solution in the (x3, y) plane shrinks to a vertical segment stretched between y = 0 and

y = 1/
√
C at fixed x3 = L0. It is straightforward to conclude that the string-brane tangent

point coincides with the upper endpoint (x3, y) = (L0, 1/
√
C), so the solution of (3.17) is

κ0 = L0

√
C .

D Examples of string configurations

Here we collect explicit expressions for the string solutions for some specific values of the

parameters, both for the disconnected and connected cases.

D.1 Disconnected solution

Cases χ± → 0 or χ± → π. We handle these limits simultaneously because the left-

hand side of (B.1) tends to π/2 in both cases. For notational convenience, here we introduce

w ≡ χ± if χ± → 0 and w ≡ π − χ± if χ± → π. Solving (B.1) for u→ 0

∣∣∣π
2
− χ±

∣∣∣ =
π

2
− κu− 3πu2

8
+O(u)3 , (D.1)

leads to

u =
w

κ
− 3πw2

8κ3
+O(w3) . (D.2)
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Successive applications of (B.4) and (3.8) yield

c =
1

L2
±

[
κ2u+

πκ

2
u2 +

(
π2

16
− κ2

(
κ2 + 3

))
u3 +O

(
u4
)]

,

m =
1

L±

[
κ+

π

4
u−

κ
(
κ2 + 3

)
u2

2
+O

(
u3
)]

,

A =
1

L2
±

[
κ2 + πκu+

(
π2

16
− κ2

(
κ2 + 2

))
u2 +O

(
u3
)]

,

B =
1

L2
±

[
−κ2u2 − πκ

2
u3 +

(
κ2
(
κ2 + 4

)
− π2

16

)
u4 +O

(
u4
)]

,

y1 =
L±
κ

[
1− 1

4κ
u+

(
1 +

π2

16κ2

)
u2 +O

(
u3
)]

,

σ1 = L±

[
π

2κ
−
(

1 +
π2

8κ2

)
u+

π
(
8κ4 + 20κ2 + π2

)
32κ3

u2 +O
(
u3
)]

,

V ±disc = −
√
λ

L±

[
κ2u

2π
+
κu2

4
+

(
π

32
−
κ2
(
κ2 + 3

)
2π

)
u3 +O

(
u4
)]

. (D.3)

Cases χ± → π
2
. The solution of (B.1) for u→∞∣∣∣π

2
− χ±

∣∣∣ = sn−1
((

1 + κ2
)−1/4

,−1
) 1√

u
+O(u−3/2) (D.4)

reads

u =
sn−1

((
1+κ2

)−1/4
,−1

)
(
π
2 − χ±

)2 +
1

2

1−
E
(

arcsin
((

1+κ2
)−1/4)

,−1
)

sn−1
(

(1 + κ2)−1/4 ,−1
)

+O
(π

2
− χ±

)2
.

(D.5)

We calculate (B.4) and plug it into (3.8) to obtain

V ±disc = −
√
λ

2πL±

z2 − z

2sn−1
(

(1 + κ2)−1/4 ,−1
) (π

2
− χ±

)2
+O

(π
2
− χ±

)4 , (D.6)

with

z = κ
(
1 + κ2

)−1/4
+ E

(
arcsin

((
1 + κ2

)−1/4)
,−1

)
− sn−1

((
1 + κ2

)−1/4
,−1

)
. (D.7)

D.2 Connected solution for ∆χ→ 0

The solution of (B.6) for v →∞

|∆χ| =
Γ2
(
1
4

)
2
√

2πv1/2
− π3/2√

2Γ2
(
1
4

)
v3/2

+O(v−5/2) (D.8)
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reads

v =
Γ4
(
1
4

)
8π (∆χ)2

− 4π2

Γ4
(
1
4

) +O
(
∆χ2

)
. (D.9)

Using this, one obtains

n =
sign(∆χ)

d

[ √
2π3/2

Γ2
(
1
4

)
v1/2

−
Γ2
(
1
4

)
16
√

2πv3/2
+O(v−5/2)

]
,

C =
1

d2

[
2π3

Γ4
(
1
4

) +
π

8v

(
8π2

Γ4
(
1
4

) − 1

)
+O(v−2)

]
,

D =
1

d2

[
− 2π3

Γ4
(
1
4

) +
π

8v

(
8π2

Γ4
(
1
4

) + 1

)
+O(v−2)

]
, (D.10)

σ2 = d

[
Γ4
(
1
4

)
4π2

+
1

2v

(
Γ8
(
1
4

)
64π4

− 1

)
+O(v−2)

]
,

√
c21 + c22 =

1

d2

[
2π3

Γ4
(
1
4

) − π

8v
+O(v−2)

]
,

V = −
√
λ

d

[
2π2

Γ4
(
1
4

) − 1

8v
+O(v−2)

]
= −
√
λ

d

[
2π2

Γ4
(
1
4

) − π (∆χ)2

Γ4
(
1
4

) +O
(
∆χ4

)]
.
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