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Abstract: This work investigates the control of nonlinear underactuated mechanical systems with 

matched and unmatched constant disturbances. To this end, a new control strategy is proposed 

which builds upon the interconnection-and-damping-assignment passivity-based-control (IDA-

PBC), augmenting it with an additional term for the purpose of disturbance compensation. In 

particular, the disturbances are estimated adaptively and then accounted for in the control law 

employing a new matching condition of algebraic nature. Stability conditions are discussed and, for 

comparison purposes, an alternative controller based on partial feedback-linearization is presented. 

The effectiveness of the proposed approach is demonstrated with numerical simulations for three 

motivating examples: the inertia-wheel pendulum; the disk-on-disk system; the pendulum-on-cart. 

Keywords: Adaptive Control; Underactuated Mechanical Systems; Nonlinear Control; Matched 

and Unmatched Disturbances. 

1. Introduction 

Control of underactuated mechanical systems represents a challenging engineering problem 

which has motivated a vast body of research in recent years. The most notable results include the 

method of Controlled Lagrangians (CL) based on the Euler-Lagrange formulation [1], [2], and the 

interconnection-and-damping-assignment passivity-based control (IDA-PBC) for Port-controlled 

Hamiltonian (PCH) systems [3]. Although these approaches have proved effective for a wide range 

of applications [4] including discrete-time systems [5], most studies have been focussing on ideal 

systems free from uncertainties and disturbances [6]. However, the practical importance of 

disturbances in real systems has recently been attracting increasing interest within the research 

community. Important results in this sense include the investigation of linear viscous friction within 

CL [7], [8]. In parallel, the effect of continuous and smooth physical dissipation within IDA-PBC 

was studied in [9], [10], while Dahl friction on actuated joints was considered in [11]. Recently, an 

IDA-PBC design with adaptive friction compensation was proposed in [12]. Besides IDA-PBC, a 

sliding-mode-control formulation was proposed in [13] for underactuated mechanical systems with 

Coulomb friction of known amplitude. Furthermore, an H-infinity control was proposed for the 

inertia-wheel pendulum with bounded disturbances in [14] and an adaptive neural network control 

was employed to compensate friction forces for the Furuta pendulum in [15]. 

In summary, most research on nonlinear underactuated mechanical systems with disturbances 

has been focusing on friction, while the constant disturbance rejection problem has remained 

relatively unexplored. Initial results in this respect were presented in [16], [17], where integral 

control was overlaid to IDA-PBC in order to compensate constant matched disturbances (i.e. only 

affecting the actuated joints). More sophisticated integral IDA-PBC designs for underactuated 

mechanical systems with matched disturbances, constant or bounded, were proposed in [18], [19]. 

The extension of integral IDA-PBC to the case of unmatched disturbances for mechanical systems 
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with constant inertia matrix was investigated in [20]. In this respect, it must be highlighted that 

unmatched disturbances represent a particularly challenging condition even for linear systems, since 

control input and disturbances are not linearly dependent [21], [22]. Additionally, differently from 

friction, constant disturbances do not vanish at equilibrium. As a result, the control of underactuated 

mechanical systems with constant unmatched disturbances remains an active area of research. 

In this work the control of nonlinear underactuated mechanical systems with constant 

matched and unmatched disturbances is investigated. The main contribution is a new IDA-PBC 

design which includes a disturbance-compensation term resulting from a new matching condition of 

algebraic nature. Additionally, the disturbances are estimated adaptively hence no prior knowledge 

of their value is required. Stability conditions are discussed and, for comparison purposes, an 

alternative solution based on partial feedback-linearization is also presented. Differently from other 

approaches, the proposed method is also applicable to systems with non-constant inertia matrix and 

non-vanishing unmatched disturbances. The effectiveness of the new control is demonstrated with 

simulations for three motivating examples: the inertia-wheel pendulum, the disk-on-disk system, 

and the pendulum-on-cart system. 

The rest of the paper is organised as follows: Section 2 contains a brief review of IDA-PBC, 

while Section 3 outlines the problem formulation. Section 4 presents the new IDA-PBC design, 

discusses stability conditions, and briefly outlines an alternative approach based on partial 

feedback-linearization. Section 5 presents simulation results for the inertia-wheel pendulum, the 

disk-on-disk system, and the pendulum-on-cart. Section 6 contains concluding remarks and 

suggestions for future work. 

2. Overview of IDA-PBC 

Consider an underactuated mechanical system with position 𝑞 ∈ ℝ𝑛, momenta 𝑝 = 𝑀�̇� ∈ ℝ𝑛, 

control input 𝑢 ∈ ℝ𝑚 and mapping 𝐺(𝑞) ∈ ℝ𝑛×𝑚, with rank(𝐺) = 𝑚 < 𝑛. Define the open-loop 

Hamiltonian 𝐻 = 𝑇(𝑞, 𝑝) + 𝑉(𝑞), where 𝑇(𝑞, 𝑝) =
1

2
𝑝𝑇𝑀−1𝑝 is the kinetic energy, 𝑀(𝑞) is the 

positive definite and invertible inertia matrix, and 𝑉(𝑞) is the open-loop potential energy. The open-

loop system dynamics is defined as follows [23]: 

[
�̇�
�̇�
] = [

0 𝐼𝑛

−𝐼𝑛 0
] [

∇𝑞𝐻

∇𝑝𝐻
] + [

0
𝐺
] 𝑢 (1) 

The 𝑛 × 𝑛 identity matrix is indicated with 𝐼𝑛, the symbol ∇𝑞(∙) represents the vector of partial 

derivatives in 𝑞, the symbol ∇𝑝(∙) represents the vector of partial derivatives in 𝑝, and the 

dependency on 𝑞, 𝑝 is omitted for brevity. The control aim typically corresponds to stabilising the 

equilibrium (𝑞, 𝑝) = (𝑞∗, 0), which is unstable in open-loop and satisfies the condition ∇𝑞𝑉(𝑞∗) =

0. To this end, the IDA-PBC control is constructed to achieve the following closed-loop dynamics 

[3], where 𝐻𝑑 =
1

2
𝑝𝑇𝑀𝑑

−1𝑝 + 𝑉𝑑 is the closed-loop Hamiltonian and 𝑞∗ = argmin(𝑉𝑑) corresponds 

to a strict minimum of the closed-loop potential energy 𝑉𝑑. 

[
�̇�
�̇�
] = [

0 𝑀−1𝑀𝑑

−𝑀𝑑𝑀−1 𝐽2 − 𝐺𝑘𝑣𝐺
𝑇] [

∇𝑞𝐻𝑑

∇𝑝𝐻𝑑
] (2) 

The parameter 𝑀𝑑 = 𝑀𝑑
𝑇 > 0 is the closed-loop inertia matrix, 𝐽2 = −𝐽2

𝑇 is a free-parameter matrix 

typically defined as a linear function of the momenta, and 𝑘𝑣 = 𝑘𝑣
𝑇 > 0 is a constant gain matrix. 
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Introducing 𝐺† = (𝐺𝑇𝐺)−1𝐺𝑇, the IDA-PBC control law that achieves the closed-loop dynamics 

(2) is the sum of an energy-shaping component 𝑢𝑒𝑠, which assigns the closed-loop equilibrium 𝑞∗, 

and of a damping-assignment component 𝑢𝑑𝑖, which injects damping in the system: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖

𝑢𝑒𝑠 = 𝐺†(∇𝑞𝐻 − 𝑀𝑑𝑀−1∇𝑞𝐻𝑑 + 𝐽2𝑀𝑑
−1𝑝)

𝑢𝑑𝑖 = −𝑘𝑣𝐺
𝑇∇𝑝𝐻𝑑

 (3) 

The matrix 𝑀𝑑 and the potential energy 𝑉𝑑, which are defined as part of the IDA-PBC design, 

should satisfy the following partial-differential-equations (PDE), termed kinetic-energy PDE and 

potential-energy PDE, where 𝐺⊥ is a full-rank left annihilator of 𝐺 so that 𝐺⊥𝐺 = 0: 

𝐺⊥ (∇𝑞 (
1

2
𝑝𝑇𝑀−1𝑝) − 𝑀𝑑𝑀−1∇𝑞 (

1

2
𝑝𝑇𝑀𝑑

−1𝑝) + 𝐽2𝑀𝑑
−1𝑝) = 0 (4) 

𝐺⊥ (∇𝑞𝑉 − 𝑀𝑑𝑀−1(∇𝑞𝑉𝑑)) = 0 (5) 

If (4),(5) are satisfied ∀(𝑞, 𝑝) ∈ ℝ2𝑛, control (3) in closed-loop with (1) achieves stability of the 

equilibrium (𝑞, 𝑝) = (𝑞∗, 0), and if 𝛻𝑞𝑉𝑑(𝑞∗) = 0 and ∇𝑞
2𝑉𝑑(𝑞∗) > 0 the equilibrium is a strict-

minimum of 𝑉𝑑. Finally, asymptotic stability is concluded if the output 𝑦 = 𝐺𝑇∇𝑝𝐻𝑑 is detectable. 

3. Problem Formulation 

In this section an underactuated mechanical systems with disturbances 𝛿 ∈ ℝ𝑛 is considered: 

[
�̇�
�̇�
] = [

0 𝐼𝑛

−𝐼𝑛 0
] [

∇𝑞𝐻

∇𝑝𝐻
] + [

0
𝐺
] 𝑢 − [

0
𝛿
] (6) 

The following assumptions are introduced and briefly discussed. 

Assumption 1: The matching conditions (4),(5) are satisfied ∀(𝑞, 𝑝) ∈ ℝ2𝑛 resulting in a stabilising 

controller (3) for system (1), and the output 𝑦 = 𝐺𝑇∇𝑝𝐻𝑑 is detectable, as defined in [3]. 

Assumption 2: The disturbance 𝛿 ∈ ℝ𝑛 is constant but unknown. 

Assumption 3: There exists an assignable equilibrium 𝑞∗ which is unstable in open-loop and 

satisfies the following conditions: 

𝐺⊥(∇𝑞𝑉(𝑞∗) + 𝛿) = 0 (7) 

∇𝑞
2𝑉(𝑞∗) ≠ 0 (8) 

While Assumption 1 is typically verified by classical examples, the solution of the PDE (4),(5) can 

be a limiting factor in practical applications and has been the subject of extensive research [24], 

[25]. Assumption 2 restricts the study to constant disturbance, which are the focus of this work. This 

is a specific class of disturbances that has practical relevance for underactuated systems [18]. The 

case of varying matched disturbances within the context of discrete-time systems was studied in 

[26], while the extension to varying unmatched disturbances is part of future work. Assumption 3 

requires the existence of an open-loop unstable equilibrium, which is a common prerequisite for 

IDA-PBC. In particular, computing (6) at the equilibrium (𝑞, 𝑝) = (𝑞∗, 0) and pre-multiplying by 

𝐺⊥ recovers (7), while open-loop instability implies (8). Notably, 𝑞∗ depends on the unmatched 



5 

 

disturbance 𝐺⊥𝛿 and on the mechanical structure of the system according to (7). If 𝐺⊥∇𝑞𝑉 is 

bounded, (7) imposes a bound on the maximum value of the unmatched disturbance that can be 

compensated. This limitation also applies to the baseline IDA-PBC (3) and to the integral IDA-PBC 

designs [17], [18] (ref. Section 5). 

Finally, the control aim for system (6) under Assumption 1-3 corresponds to stabilising the 

equilibrium (𝑞, 𝑝) = (𝑞∗, 0). 

4. Main Result 

The proposed control strategy entails two main steps: I) the adaptive estimation of the 

disturbances; II) the inclusion of a disturbance-compensation term within the IDA-PBC (3). The 

first step is addressed in the following proposition which employs the Immersion & Invariance 

method [27], [28]. 

Proposition 1: Consider system (6) under Assumption 1-2 and define the vector of estimation errors 

𝑧 ∈ ℝ𝑛 as: 

𝑧 = �̃� − 𝛿 = �̂� + 𝛽(𝑝) − 𝛿 (9) 

where the disturbance estimate is 𝛿 = 𝛿 + 𝛽(𝑝) and 𝛿, 𝛿, 𝛽(𝑝) ∈ ℝ𝑛. In particular, the functions 𝛿 

and 𝛽(𝑝) are the state-independent part and the state-dependent part of the disturbance estimate 𝛿. 

The estimation errors 𝑧 are bounded and converge to zero employing the following adaptation law 

with 𝛼 > 0: 

�̇� = −∇𝑝𝛽𝑇(−∇𝑞𝐻 + 𝐺𝑢 − 𝛿 − 𝛽)

𝛽 = −𝛼𝐼𝑛𝑝
 (10) 

Proof: Computing the time-derivative of (9) and substituting (6),(9) we obtain: 

�̇� = �̇̂� + ∇𝑝𝛽
𝑇(−∇𝑞𝐻 + 𝐺𝑢 − �̂� − 𝛽 + 𝑧) (11) 

Substituting (10) into (11) gives: 

�̇� = −𝛼𝐼𝑛𝑧 (12) 

Choosing the Lyapunov function candidate 𝑊 =
1

2
𝑧𝑇𝐼𝑛𝑧, computing its time-derivative and 

substituting (12) gives: 

�̇� = 𝑧𝑇�̇� = −𝛼(𝑧𝑇𝐼𝑛𝑧) ≤ 0 
(13) 

As a result, 𝑧 is bounded and converges to zero exponentially concluding the proof ■ 

While 𝛿 is unknown, computing the estimate 𝛿 allows verifying that Assumption 3 holds for 

the assignable equilibrium 𝑞∗ (ref. Section 5). To construct the new control law for system (6) we 

introduce the disturbance estimate 𝛿 in the potential-energy PDE (5) as follows, where 𝑉𝑑
′  is the 

new closed-loop potential energy: 

𝐺⊥ (∇𝑞𝑉 + 𝛿 − 𝑀𝑑𝑀−1(∇𝑞𝑉𝑑
′)) = 0 (14) 

Considering that under Assumption 1 there exist a solution 𝑉𝑑
′  of (14), without loss of generality we 

introduce the term Λ(𝑞) = ∇𝑞𝑉𝑑
′ − ∇𝑞𝑉𝑑. Subtracting (5) from (14) and substituting Λ(𝑞) gives: 



6 

 

𝐺⊥(𝛿 − 𝑀𝑑𝑀−1Λ(𝑞)) = 0 (15) 

which shall be verified for all 𝑞 ∈ ℝ𝑛. Additionally, the equilibrium 𝑞∗ is a strict-minimum of 𝑉𝑑
′  if 

𝛻𝑞𝑉𝑑
′(𝑞∗) = 0 and ∇𝑞

2𝑉𝑑
′(𝑞∗) > 0, which correspond to the following conditions on Λ(𝑞): 

∇𝑞𝑉𝑑(𝑞∗) + Λ(𝑞∗) = 0 (16) 

∇𝑞
2𝑉𝑑(𝑞∗) + ∇𝑞Λ(𝑞∗) > 0 (17) 

Notably, combining (16) and (7) while replacing the disturbance by its estimate verifies (14) at the 

equilibrium 𝑞∗. Finally, the new control law which represents the main contribution of this work is 

obtained adding to (3) the disturbance-compensation term 𝑢∗: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = 𝐺†(𝛿 − 𝛼𝐼𝑛𝑝 − 𝑀𝑑𝑀−1Λ(𝑞))

�̇� = 𝛼𝐼𝑛(−∇𝑞𝐻 + 𝐺𝑢 − 𝛿 + 𝛼𝐼𝑛𝑝)

 (18) 

In particular, introducing (15) the matching conditions (4),(5) and their respective solutions 𝑀𝑑 , 𝑉𝑑 

remain unchanged. In this sense, (15) can be interpreted as an additional matching condition of 

algebraic nature, which is therefore always solvable, and relates the disturbance estimate 𝛿 to Λ(𝑞) 

by means of the coupling term 𝑀𝑑𝑀−1. 

Theorem 1: Consider system (6) under Assumption 1-3 in closed-loop with control (18), where Λ(𝑞) 

is defined according to (15),(16),(17) and 𝛿 is estimated according to (10). Then 𝑞∗ is a strict 

minimum of 𝑉𝑑
′ , all trajectories 𝑞(𝑡), 𝑝(𝑡) are bounded and the equilibrium (𝑞, 𝑝) = (𝑞∗, 0) is 

asymptotically stable for some parameters 𝛼, 𝑘𝑣 > 0. 

Proof: To prove the first claim we observe that 𝑞∗ is a strict-minimum of 𝑉𝑑
′  due to (16),(17).  

To prove the stability claim we substitute (18) into (6) obtaining the following cascaded system: 

[
�̇�
�̇�
] = [

0 𝑀−1𝑀𝑑

−𝑀𝑑𝑀−1 𝐽2 − 𝐺𝑘𝑣𝐺
𝑇] [

∇𝑞𝐻𝑑 + Λ(𝑞)

∇𝑝𝐻𝑑
] + [

0
𝑧
] 

�̇� = −𝛼𝐼𝑛𝑧 

(19) 

 

(20) 

Since the kinetic-energy PDE (4) is unchanged, ∇𝑝𝐻𝑑
′ = ∇𝑝𝐻𝑑, and ∇𝑞𝐻𝑑

′ = ∇𝑞𝐻𝑑 + Λ(𝑞). We 

initially consider system (19) with 𝑧 = 0. Choosing the Lyapunov function candidate 𝐻𝑑
′ =

1

2
𝑝𝑇𝑀𝑑

−1𝑝 + 𝑉𝑑
′ , and computing its time-derivative gives: 

𝐻𝑑
′̇ = ∇𝑞𝐻𝑑

′ 𝑇
�̇� + ∇𝑝𝐻𝑑

𝑇�̇� = −∇𝑝𝐻𝑑
𝑇𝐺𝑘𝑣𝐺

𝑇∇𝑝𝐻𝑑 ≤ 0 (21) 

Consequently, the equilibrium (𝑞, 𝑝) = (𝑞∗, 0) is asymptotically stable if 𝑧 = 0. According to 

Proposition 1, 𝑧 is vanishing exponentially hence (𝑞∗, 0) is also a locally stable equilibrium for the 

complete system (19)-(20). In order to prove global asymptotic stability it is necessary to establish 

boundedness of the trajectories 𝑞(𝑡), 𝑝(𝑡) [29], [30]. To this end we consider the Lyapunov 

function candidate 𝑊′ = 𝐻𝑑 +
1

2
𝑐2𝑧

𝑇𝑧  and observe that 𝑊′ ≥ 𝐻𝑑 ≥
1

2
𝑝𝑇𝑀𝑑

−1𝑝 ≥ 𝑐1|𝑝|2, where 

𝑐1, 𝑐2 are arbitrary positive constants. Computing the time derivative of 𝑊′ along the trajectories of 

(19)-(20) gives: 
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𝑊′̇ = −∇𝑝𝐻𝑑
𝑇𝐺𝑘𝑣𝐺

𝑇∇𝑝𝐻𝑑 + ∇𝑝𝐻𝑑
𝑇𝑧 − 𝛼𝑐2(𝑧

𝑇𝐼𝑛𝑧) ≤ 0 (22) 

Employing Young’s inequality in (22) and introducing the positive constants 𝑐3, 𝑐4 gives: 

𝑊′̇ ≤ 𝑐3|𝑝||𝑧| − 𝛼𝑐2|𝑧|
2 ≤ 𝑐3𝑐4|𝑝|2 + (

𝑐3

4𝑐4
− 𝛼𝑐2) |𝑧|2 ≤ 𝑐3𝑐4|𝑝|2 ≤

𝑐3𝑐4

𝑐1
𝑊′ (23) 

which holds true for some 𝛼𝑐2 >
𝑐3

4𝑐4
> 0. Invoking the Comparison Lemma [31] in (23) confirms 

that 𝑊′ ≥ 𝐻𝑑 is bounded. Consequently 𝐻𝑑 ≥
1

2
𝑝𝑇𝑀𝑑

−1𝑝 is bounded and therefore 𝑞(𝑡), 𝑝(𝑡) are 

bounded [32]. Finally, the equilibrium (𝑞, 𝑝) = (𝑞∗, 0) is asymptotically stable ■ 

Corollary 1: If in addition to the conditions stated in Theorem 1 the disturbances are only matched, 

the equilibrium 𝑞∗ is asymptotically stable if 𝜆𝑚𝑖𝑛{𝐺𝑘𝑣𝐺
𝑇}𝛼 > 1/4, where 𝜆𝑚𝑖𝑛{∙} represents the 

minimum eigenvalue of its argument. 

Proof 

In case of matched disturbances 𝑧 ∈ ℝ𝑚, (22) can be expressed as follows with 𝑐2 = 1: 

𝑊′̇ = −[∇𝑝𝐻𝑑
𝑇 𝑧𝑇] [

𝐺𝑘𝑣𝐺
𝑇 −𝐼𝑚/2

−𝐼𝑚/2 𝛼𝐼𝑚 ] [
∇𝑝𝐻𝑑

𝑧
] ≤ 0 (24) 

Recalling that rank(𝐺𝑘𝑣𝐺
𝑇) = 𝑚 and employing a Schur complement argument, (24) holds true if 

𝜆𝑚𝑖𝑛{𝐺𝑘𝑣𝐺
𝑇}𝛼 > 1/4 concluding the proof ■ 

Remark 1: If system (6) has a constant inertia matrix 𝑀, the kinetic-energy PDE (4) is trivially 

satisfied with 𝐽2 = 0 and a constant 𝑀𝑑. If in addition 𝐺⊥ is constant, then (15),(16),(17) admit a 

constant solution Λ(𝑞) = Λ(𝑞∗) = −∇𝑞𝑉𝑑(𝑞∗) and consequently (17) reduces to the strict-minimum 

condition for the disturbance-free system: ∇𝑞
2𝑉𝑑(𝑞∗) > 0. This is the case for the inertia-wheel 

pendulum and the disk-on-disk systems. Alternatively, if the disturbance is only matched (i.e. 

𝐺⊥𝛿 = 0), then (15) can be solved with Λ(𝑞) = 0 resulting in 𝑢∗ = 𝐺†𝛿 and (17) reduces again to 

∇𝑞
2𝑉𝑑(𝑞∗) > 0. In general, Λ(𝑞) is not constant and not null hence it contributes to the control input. 

If for comparison purposes, the unmatched disturbance 𝐺⊥𝛿 is ignored in the control law, the 

Lyapunov derivative (21) becomes �̇�𝑑 = −∇𝑝𝐻𝑑
𝑇𝐺𝑘𝑣𝐺

𝑇∇𝑝𝐻𝑑 + ∇𝑝𝐻𝑑
𝑇𝐺⊥𝛿 which is in general not 

negative semi-definite hence convergence to the equilibrium 𝑞∗ cannot be concluded. 

Remark 2: A physical interpretation of Λ(𝑞) as non-conservative forces is possible drawing a 

parallel to the Euler-Lagrange formulation as outlined below. Defining the open-loop Lagrangian 

𝐿 =
1

2
�̇�𝑇𝑀�̇� − 𝑉 and the closed-loop Lagrangian 𝐿𝑐 =

1

2
�̇�𝑇𝑀𝑐�̇� − 𝑉𝑐, the open-loop dynamics (6) 

with the disturbance estimate 𝛿 and the corresponding closed-loop dynamics are respectively: 

𝑑

𝑑𝑡
∇�̇�𝐿 − ∇𝑞𝐿 = 𝐺𝑢 − 𝛿 (25) 

𝑑

𝑑𝑡
∇�̇�𝐿𝑐 − ∇𝑞𝐿𝑐 = −Λ(𝑞)  (26) 

Since 𝑀,𝑀𝑐 are invertible and positive definite, (25) and (26) can be rewritten as: 

�̈� = 𝑀−1 (𝐺𝑢 − 𝛿 + ∇𝑞 (
1

2
�̇�𝑇𝑀�̇�) − ∇𝑞(𝑀�̇�)�̇� − ∇𝑞𝑉) (27) 
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�̈� = 𝑀𝑐
−1 (∇𝑞 (

1

2
�̇�𝑇𝑀𝑐�̇�) − ∇𝑞(𝑀𝑐�̇�)�̇� − ∇𝑞𝑉𝑐 − Λ(𝑞)) (28) 

Equating (27) and (28) gives the following matching conditions that correspond to (4),(5),(15) if 

𝑉𝑐 = 𝑉𝑑; 𝑀𝑐 = 𝑀𝑀𝑑
−1𝑀; 𝐽2 = 𝑀𝑑𝑀−1 (∇𝑞(𝑀𝑀𝑑

−1𝑝)
𝑇

− ∇𝑞(𝑀𝑀𝑑
−1𝑝))𝑀−1𝑀𝑑 [23]: 

𝐺⊥ (∇𝑞 (
1

2
�̇�𝑇𝑀�̇�) − ∇𝑞(𝑀�̇�)�̇� − 𝑀𝑀𝑐

−1 (∇𝑞 (
1

2
�̇�𝑇𝑀𝑐�̇�) − ∇𝑞(𝑀𝑐�̇�)�̇�)) = 0

𝐺⊥ (∇𝑞𝑉 − 𝑀𝑀𝑐
−1(∇𝑞𝑉𝑐)) = 0

𝐺⊥(𝛿 − 𝑀𝑀𝑐
−1Λ(𝑞)) = 0

 (29) 

Remark 3: For comparison purposes an alternative control approach based on feedback-linearization 

[33] is briefly outlined although the control aim is different from that of IDA-PBC. Consider system 

(6) in Euler-Lagrange form (27) for the case 𝑛 = 2 with 𝑞 = (𝑞1, 𝑞2) and define the position error 

�̃�1 = 𝑞1
∗ − 𝑞1, where 𝑞1

∗ is the desired equilibrium with the following target dynamics: 

�̇̃�1 = 𝑞1
∗̇ − 𝑞1̇

�̈̃�1 = 𝑞1
∗̈ − 𝑞1̈ = −𝑘𝑝�̃�1 − 𝑘𝑑 �̇̃�1

 (30) 

where 𝑘𝑝, 𝑘𝑑 > 0 are tuning parameters. Substituting �̈�1 from (27) and considering that 𝑞1
∗̇, 𝑞1

∗̈ = 0 

for setpoint regulation, the partial feedback-linearization control law is: 

𝑢 =
−[1 0]𝑀−1 (−𝛿 + ∇𝑞 (

1
2 �̇�𝑇𝑀�̇�) − ∇𝑞(𝑀�̇�)�̇� − ∇𝑞𝑉) + 𝑘𝑝�̃�1 + 𝑘𝑑 �̇̃�1

[1 0]𝑀−1𝐺
 (31) 

It follows from Proposition 1 and from (30) (see details in [33]) that �̃�1 converges to zero for 

𝑘𝑝, 𝑘𝑑 > 0. Similarly, the control law for the position error �̃�2 = 𝑞2
∗ − 𝑞2  is: 

𝑢 =
−[0 1]𝑀−1 (−𝛿 + ∇𝑞 (

1
2 �̇�𝑇𝑀�̇�) − ∇𝑞(𝑀�̇�)�̇� − ∇𝑞𝑉) + 𝑘𝑝�̃�2 + 𝑘𝑑 �̇̃�2

[0 1]𝑀−1𝐺
 (32) 

While IDA-PBC (18) aims to stabilise 𝑞∗ = (𝑞1
∗, 𝑞2

∗),  the control aim of (31) is only the dynamics 

of �̃�1 and no conclusion can be drawn about 𝑞2 (conversely for (32)). Nevertheless, (31) can in 

theory stabilise any position 𝑞1
∗ ∈ ℝ, even if Assumption 3 is not satisfied. 

5. Simulation Results 

5.1. Inertia-wheel pendulum 

This system consists of an unactuated pendulum with a balanced actuated rotor at the tip and 

the equations of motion are defined as follows, where 𝑎1, 𝑎2, 𝑎3 are constant positive parameters: 

[
𝑎1 𝑎2

𝑎2 𝑎2
] [

𝑞1̈

𝑞2̈
] + [

−𝑎3sin(𝑞1)
0

] = [
0
1
] 𝑢 − [

𝛿1

𝛿2
] (33) 

The pendulum angle 𝑞1 ∈ (−𝜋/2; 𝜋/2) is measured from the vertical, while the rotor angle 𝑞2 is 

measured relative to the pendulum. The open-loop potential energy is 𝑉 = 𝑎3cos(𝑞1) and 𝑀 is 
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constant, therefore (4),(5) are solvable with 𝐽2 = 0 and a constant 𝑀𝑑 = (𝑎1𝑎2 − 𝑎2
2) [

𝑚1 𝑚2

𝑚2 𝑚3
] 

hence a stabilising controller (3) can be constructed (ref. Appendix). 

Evaluating (7) and replacing the disturbances with their estimates, the open-loop unstable 

equilibrium of (33) is 𝑞∗ = (𝑞1
∗, 𝑞2

∗) with 𝑞1
∗ = sin−1(𝛿1/𝑎3). Notably, Assumption 3 is only 

satisfied if |𝛿1| ≤ 𝑎3, which limits the magnitude of the unmatched disturbance that the system can 

withstand depending on the parameter 𝑎3. It must be highlighted that this is not dependent on the 

specific IDA-PBC design but is common to (3) and to the integral IDA-PBC designs [17], [18]. 

Conversely, no condition is imposed on the matched disturbance 𝛿2 and 𝑞2
∗ can be freely chosen. 

Since 𝐺,𝑀,𝑀𝑑 are constant, Λ(𝑞) is also constant and is defined as follows (see Remark 1), where 

𝛾 = −(𝑚2𝑎1 − 𝑚1𝑎2)/((𝑚1 − 𝑚2)𝑎2) and 𝑘𝑝 > 0 is a tuning parameter (ref Appendix): 

Λ(𝑞) = Λ(𝑞∗) = −∇𝑞𝑉𝑑(𝑞∗) = [

𝛿1

(𝑚1 − 𝑚2)𝑎2
− 𝑘𝑝𝛾2𝑞1

∗

−𝑘𝑝𝛾𝑞1
∗

] (34) 

Verifying the strict-minimum conditions confirms that (16) is trivially satisfied, while from (17) we 

have ∇𝑞
2𝑉𝑑(𝑞1

∗, 𝑞2
∗) > 0, ∀𝑞2

∗, ∀𝑞1
∗ ∈ (−𝜋/2; 𝜋/2) if 𝑚1 < 𝑚2. In conclusion 𝑞∗ is a strict-minimum 

of 𝑉𝑑
′  and the control law (18) is defined as follows, where 𝑢𝑒𝑠, 𝑢𝑑𝑖 are defined as in [17] and 𝛾3is a 

constant parameter (ref. Appendix): 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = 𝛿2 − 𝛿1

(𝑚2 − 𝑚3)

(𝑚1 − 𝑚2)
+ 𝑘𝑝𝛾3𝛾𝑞1

∗ (35) 

The disturbance estimates 𝛿1 = �̂�1 + 𝛽1 and 𝛿2 = 𝛿2 + 𝛽2 are computed according to (10): 

�̂�̇ 1 = 𝛼 (𝑎2𝑎3 sin(𝑞1) − 𝑎2 𝑢 − 𝑎2�̃�1 + 𝑎2�̃�2)

�̂�̇ 2 = 𝛼 (−𝑎2𝑎3 sin(𝑞1) + 𝑎1𝑢 + 𝑎2�̃�1 − 𝑎1�̃�2)

𝛽1 = −𝛼(𝑎1𝑎2 − 𝑎2
2)�̇�1

𝛽2 = −𝛼(𝑎1𝑎2 − 𝑎2
2)�̇�2

 (36) 

Simulations were conducted for system (33) with initial position 𝑞1 = 0.1; 𝑞2 = 0.2 and 

𝑝 = 0 employing the parameters 𝑎1 = 0.0124; 𝑎2 = 0.0025; 𝑎3 = 0.4446; 𝑚1 = 0.40; 𝑚2 =

1.08; 𝑚3 = 5. Control (35) was implemented with the parameters 𝑘𝑝 = 1;  𝑘𝑣 = 0.001; 𝛼 = 50. 

The Integral IDA-PBC design [17] was employed for comparison purposes with the parameters 

𝑘𝑝 = 1; 𝑘𝑣 = 0.001; 𝐾𝑖 = 0.0015. 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 +
𝑘𝑣𝐾𝑖

(𝑎1𝑎2 − 𝑎2
2)(𝑚1𝑚3 − 𝑚2

2)
(𝑚2𝑎1 − 𝑚1𝑎2)𝑥𝑣 − 𝐾𝑖𝑘2𝑘𝑝(𝑞2 + 𝛾𝑞1)

�̇�𝑣 = 𝑘𝑝(𝑞2 + 𝛾𝑞1)

 (37) 

Figure 1 represents 𝑞1, 𝑞2 in the presence of the disturbances 𝛿1 = 0; 𝛿2 = −0.1 only 

affecting the actuated rotor. The results confirm that both control (35) and the Integral IDA-PBC 

(37) effectively compensate matched disturbances stabilising the assignable equilibrium 𝑞∗ = (0,0). 

Conversely, the baseline IDA-PBC (3) would result in noticeable steady-state errors on both 

positions 𝑞1, 𝑞2 [17]. Figure 2 refers to the disturbances 𝛿1 = −0.2; 𝛿2 = −0.1 affecting both joints 

and in this case the assignable equilibrium is 𝑞∗ = (𝑞1
∗, 0), where 𝑞1

∗ = sin−1(𝛿1/𝑎3) = −0.467. 
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With the Integral IDA-PBC (37) the position settles at 𝑞 = (−0.467,3.50) corresponding to a large 

error on 𝑞2. Increasing 𝐾𝑖, 𝑘𝑝 in (37) slightly improves performance up to a certain point (e.g. the 

position settles at 𝑞 = (−0.467,3.40) with 𝑘𝑝 = 10,𝐾𝑖 = 0.015), however much larger values (e.g. 

𝑘𝑝 = 100, 𝐾𝑖 = 0.15) can lead to instability. Conversely, control (35) correctly stabilises the 

equilibrium 𝑞∗, while the disturbances are accurately estimated by the adaptation law (36) resulting 

in a smooth control input (Figure 3). In conclusion, while both controllers (35) and (37) stabilise the 

equilibrium position 𝑞1
∗ = −0.467, only control (35) can regulate 𝑞2 to its desired value 𝑞2

∗ = 0 in 

the presence of unmatched disturbances. Comparable results are achieved for larger disturbances, as 

long as Assumption 3 is satisfied. 

 
Figure 1.  Position of pendulum and rotor with 𝛿1 = 0; 𝛿2 = −0.1: (a) Integral IDA-PBC (37); (b) 

control (35). 

 
Figure 2.  Position of pendulum and rotor with 𝛿1 = −0.2; 𝛿2 = −0.1: (a) Integral IDA-PBC (37); 

(b) control (35).  
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Figure 3.  Control (35) with 𝛿1 = −0.2; 𝛿2 = −0.1: (a) disturbance estimates; (b) control input. 

5.2. Disk-on-disk system 

The disk-on-disk system consists of one unactuated disks that rolls without slipping on an 

actuated disk. The equations of motion for this system are defined as follows, where 

𝑚11, 𝑚12, 𝑚22, 𝑚3 are constant parameters: 

[
𝑚11 𝑚12

𝑚12 𝑚22
] [

𝑞1̈

𝑞2̈
] + [

0
−𝑚3sin(𝑞2)

] = [
1
0
] 𝑢 − [

𝛿1

𝛿2
] (38) 

The angle 𝑞1 of the actuated disk and the angle 𝑞2 ∈ (−𝜋/2; 𝜋/2) of the unactuated disk are 

measured from the vertical. The open-loop potential energy is 𝑉 = 𝑚3cos(𝑞2) and 𝑀 is constant, 

therefore (4),(5) are solvable with 𝐽2 = 0 and a constant 𝑀𝑑 = [
𝑘1 𝑘2

𝑘2 𝑘3
], and a stabilising controller 

(3) can be constructed (ref. Appendix). 

Evaluating (7) and replacing the disturbance with their estimates, the open-loop unstable 

equilibrium of (38) is 𝑞∗ = (𝑞1
∗, 𝑞2

∗) with 𝑞2
∗ = sin−1(𝛿2/𝑚3). In this case, Assumption 3 is only 

satisfied if |𝛿2| < 𝑚3. Since 𝐺,𝑀,𝑀𝑑 are constant, Λ(𝑞) is also constant and is defined as follows 

(see Remark 1), where 𝛾 = −(𝑚22𝑘2 − 𝑚12𝑘3) (𝑚11𝑘3 − 𝑚12𝑘2)⁄  and 𝑘𝑝 > 0. 

Λ(𝑞) = Λ(𝑞∗) = −∇𝑞𝑉𝑑(𝑞∗) = [

−𝑘𝑝𝛾𝑞2
∗

𝛿2(𝑚11𝑚22 − 𝑚12
2 )

(𝑚11𝑘3 − 𝑚12𝑘2)
− 𝑘𝑝𝛾2𝑞2

∗
] (39) 

Consequently, (16) is trivially satisfied, while computing (17) gives ∇𝑞
2𝑉𝑑(0, 𝑞2

∗) > 0, ∀𝑞1
∗, ∀𝑞2

∗ ∈

(−𝜋/2; 𝜋/2) if (𝑚12𝑘2 − 𝑚11𝑘3) > 0. In conclusion 𝑞∗ is a strict-minimum of 𝑉𝑑
′  and the control 

law (18) is defined as follows, where 𝑢𝑒𝑠, 𝑢𝑑𝑖 are defined as in [18] (ref. Appendix): 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = 𝛿1 −
(𝑚11𝑘2 − 𝑚12𝑘1)

(𝑚11𝑘3 − 𝑚12𝑘2) 
𝛿2 + 𝑘𝑝𝛾

(𝑘1𝑘3 − 𝑘2
2)

(𝑚11𝑘3 − 𝑚12𝑘2)
𝑞2

∗ (40) 

From (10), the disturbance estimates are 𝛿1 = 𝛿1 + 𝛽1 and 𝛿2 = 𝛿2 + 𝛽2 where: 
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�̂�̇ 1 = 𝛼 (𝑢 − �̃�1)

�̂�̇ 2 = 𝛼 (𝑚3sin(𝑞2) − �̃�2)

𝛽1 = −𝛼(𝑚11�̇�1 + 𝑚12�̇�2)

𝛽2 = −𝛼(𝑚12�̇�1 + 𝑚22�̇�2)

 

 

 

 

(41) 

For comparison purposes, the adaptive feedback-linearization (32) for system (38) becomes: 

𝑢 =
𝑚11

𝑚12
𝑚3sin(𝑞2) + 𝛿1 −

𝑚11

𝑚12
𝛿2 +

(𝑚11𝑚22 − 𝑚12
2 )

𝑚12
(𝑘𝑝𝑞2 + 𝑘𝑑𝑞2̇) (42) 

where 𝑘𝑝, 𝑘𝑑 > 0 are tuning parameters, while the adaptation law (41) remains unchanged. 

Differently from (40), the control law (42) only depends on the position 𝑞2 therefore no attempt is 

made to regulate 𝑞1. Additionally, only the elements of 𝑀 appear in (42), while more design 

freedom is provided by (40). Nevertheless, there is a clear analogy in how the disturbances are 

accounted for in (40) and (42): in both designs the matched component 𝛿1 is simply added to the 

control input, while 𝛿2 is multiplied by the same coefficient as the nonlinear term 𝑚3sin(𝑞2). 

Simulations were conducted for system (38) with initial position 𝑞1 = 0; 𝑞2 = 0.12 and 

𝑝 = 0 employing the parameters [18]: 𝑚11 = 5.77 ∙ 10−3;   𝑚12 = −7.28 ∙ 10−4;  𝑚22 = 2.18 ∙

10−3;𝑚3 =  47.6 ∙ 10−3 with 𝑘1 = 0.4; 𝑘2 = −0.03; 𝑘3 = 0.003. Control (40) was implemented 

with the following tuning parameters: 𝑘𝑝 = 0.00005;  𝑘𝑣 = 0.8; 𝛼 = 5. The PID IDA-PBC design 

[18] was employed for comparison purposes with the following parameters: 𝑘𝑝 = 0.00025;  𝑘𝑣 =

0.8; 𝐾1 = 0.012; 𝐾3 = 0.06; 𝐾𝑖 = 0.2; 𝐾𝑝 = 0.8, and 𝐾2 = (𝐺𝑇𝑀𝑑
−1𝐺)−1: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 − [𝐾𝑝𝐺𝑇𝑀𝑑
−1𝐺𝐾1𝐺

𝑇𝑀−1 + 𝐾2𝐾𝑖(𝐾2
𝑇 + 𝐾3

𝑇𝐺𝑇𝑀𝑑
−1𝐺𝐾1)𝐺

𝑇𝑀−1]∇𝑞𝑉𝑑

−[𝐾𝑖𝐺
𝑇𝑀−1∇𝑞

2𝑉𝑑𝑀−1 + 𝐾2𝐾𝑖𝐾3
𝑇𝐺𝑇𝑀𝑑

−1]𝑝 − (𝐾𝑝𝐺𝑇𝑀𝑑
−1𝐺𝐾2 + 𝐾3)𝐾𝑖휁

휁̇ = (𝐾2
𝑇𝐺𝑇𝑀−1 + 𝐾3

𝑇𝐺𝑇𝑀𝑑
−1𝐺𝐾1𝐺

𝑇𝑀−1)∇𝑞𝑉𝑑 + 𝐾3
𝑇𝐺𝑇𝑀𝑑

−1𝑝

 (43) 

Figure 4 represents 𝑞1, 𝑞2 in the presence of the matched disturbance 𝛿1 = −0.01; 𝛿2 = 0 in 

which case both control approaches correctly stabilise the assignable equilibrium 𝑞∗ = (0,0). 

Conversely, the baseline IDA-PBC (3) with the same parameters would produce a large steady-state 

error [18]. Figure 5 depicts the disks’ position in the presence of the disturbances  𝛿1 =

−0.01; 𝛿2 = −0.001, in which case the assignable equilibrium is 𝑞∗ = (0, 𝑞2
∗), with 𝑞2

∗ =

sin−1(𝛿2/𝑚3) = −0.021. In spite of the small value of 𝛿2, with the PID IDA-PBC (43) the 

position settles at 𝑞 = (−1.265,−0.021) corresponding to a large steady-state error on 𝑞1. 

Conversely, control (40) stabilises the equilibrium position 𝑞∗, while both components of the 

disturbance are estimated accurately by (41) resulting in a smooth control input (Figure 6). In 

conclusion, while both controllers (40) and (43) stabilise the equilibrium position 𝑞2
∗ = −0.021, 

only control (40) can regulate 𝑞1 to its desired value 𝑞1
∗ = 0 in the presence of unmatched 

disturbances. Figure 7 shows the time history of 𝑞2 and the disturbance estimates with the adaptive 

feedback-linearization control (42) in the presence of the disturbances 𝛿1 = −0.01; 𝛿2 = −0.05, 

where |𝛿2| > 𝑚3. Notably, the position of the unactuated disk is regulated at 𝑞2
∗ = 0 in spite of the 

fact that Assumption 3 is not satisfied (ref. Remark 3). Nevertheless, the position 𝑞1 keeps 

increasing in absolute value without settling around an equilibrium point, which represents the main 

difference from IDA-PBC. 
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Figure 4.  Disks position with 𝛿1 = −0.01; 𝛿2 = 0: (a) PID IDA-PBC (43); (b) control (40). 

 
Figure 5.  Disks position with 𝛿1 = −0.01; 𝛿2 = −0.001: (a) PID IDA-PBC (43); (b) control (40). 

 
Figure 6.  Control (40) for 𝛿1 = −0.01; 𝛿2 = −0.001: (a) disturbance estimates; (b) control input. 
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Figure 7.  Adaptive feedback-linearization (42) with 𝛿1 = −0.01; 𝛿2 = −0.05: (a) position of the 

unactuated disk; (b) disturbance estimates. 

5.3. Pendulum-on-cart 

The pendulum-on-cart system consists of an unactuated pendulum of length 𝑙 with a point 

mass at the tip mounted on an actuated cart. The equations of motion for this system after partial 

feedback-linearization are defined as follows, where 𝑎, 𝑏 are positive constants: 

[
1 0
0 1

] [
𝑞1̈

𝑞2̈
] + [

−𝑎 sin (𝑞1)
0

] = [
−𝑏 cos (𝑞1)

1
] 𝑢 − [

𝛿1

𝛿2
] (44) 

The angle 𝑞1 ∈ (−𝜋/2; 𝜋/2) of the unactuated pendulum is measured from the vertical, while the 

position 𝑞2 of the actuated cart is measured from an arbitrary origin. The open-loop potential energy 

is 𝑉 = 𝑎 cos(𝑞1), the open-loop inertia matrix is 𝑀 = 𝐼2, while the closed-loop inertia matrix 

𝑀𝑑 = [
𝑚11 𝑚12

𝑚12 𝑚22
] is computed according to Proposition 3 in [34]. Also in this case (4),(5) are 

solvable and control (3) can be constructed (ref. Appendix). 

Evaluating (7) for system (44), for which 𝐺⊥ = [1 𝑏 cos (𝑞1)], and replacing the 

disturbances with their estimates gives: 

𝑎sin (𝑞1
∗) = 𝛿1 + 𝛿2𝑏 cos (𝑞1

∗) (45) 

For sufficiently small angles 𝑞1
∗, (45) can be approximated with Taylor series and admits the 

solutions 𝑞1
∗ = (−𝑎 ± √𝑎2 + 2𝑏𝛿1𝛿2 + 2𝑏2(𝛿2)

2
) /(𝑏𝛿2). Since 𝐺,𝑀𝑑 depend on 𝑞1, the term 

Λ(𝑞) is not constant and is defined as follows, with 𝑘𝑝 > 0: 

Λ =

[
 
 
 
 
 
 
−6𝛿1 − 6𝛿2𝑏 cos (𝑞

1
)

𝑘𝑏2cos3(𝑞
1
) 

− 9𝑘𝑝

ln(
1 + sin(𝑞

1
∗)

cos(𝑞
1
∗)

) (2 + cos(𝑞
1
∗))

𝑏2cos2(𝑞
1
∗)

− 9𝑘𝑝

4 sin(𝑞
1
∗) + sin(2𝑞

1
∗)

𝑏2cos3(𝑞
1
∗)

 

−3
𝑘𝑝

𝑏
(ln(

1 + sin(𝑞
1
∗)

cos(𝑞
1
∗)

) + 2 tan(𝑞
1
∗))

]
 
 
 
 
 
 

 (46) 
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Proceeding to evaluate the strict-minimum conditions confirms that (16) follows from (46) within 

the limits of the approximation on 𝑞1
∗. Instead, (17) results in the following sufficient condition: 

(3𝛿1sin (𝑞
1
∗) + 𝛿2𝑏 sin (2𝑞

1
∗)) < 𝑎(1 + 2 sin2(𝑞

1
∗)) 

In particular, if the disturbances are only unmatched, (45) can be solved analytically for 𝑞1
∗ =

sin−1(𝛿1/𝑎), and ∇𝑞
2𝑉𝑑

′(𝑞1
∗, 0) > 0 ∀ 𝑞1

∗ ∈ (−𝜋/2; 𝜋/2) if |�̃�1| < 𝑎. 

In summary, the control law (18) is defined as follows, with 𝑢𝑒𝑠, 𝑢𝑑𝑖  from [34] (ref. Appendix): 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = 𝐺† ([
𝛿1

𝛿2

] − 𝑀𝑑𝑀−1Λ(𝑞))
 (47) 

From (10), the disturbance estimates 𝛿1 = �̂�1 + 𝛽1 and 𝛿2 = 𝛿2 + 𝛽2 are in this case: 

�̂�̇ 1 = 𝛼 (𝑎sin(𝑞1) − 𝑏cos(𝑞1)𝑢 − �̃�1)

�̂�̇ 2 = 𝛼 (𝑢 − �̃�2)

𝛽1 = −𝛼�̇�1

𝛽2 = −𝛼�̇�2

 

 

 

 

(48) 

Simulations were conducted for system (44) from the initial position 𝑞1 = 1.37; 𝑞2 = −0.1 

and 𝑝 = 0 employing the parameters 𝑎 = 1;  𝑏 = 1. Control (47) was implemented with the 

following tuning parameters: 𝑘 = 0.01, 𝑘𝑝 = 1; 𝑘𝑣 = 0.01;  𝛼 = 1. Figure 8 represents 𝑞1, 𝑞2 in the 

presence of the disturbances 𝛿1 = −0.1; 𝛿2 = −0.05. In this case the assignable equilibrium is 

𝑞∗ = (𝑞1
∗, 0), with 𝑞1

∗ = −0.15 and is correctly stabilised by (47). Additionally, both components of 

the disturbance are estimated correctly by (48). In comparison, with the baseline IDA-PBC [34] the 

position settles at 𝑞 = (−0.15,17.53) corresponding to a large steady-state error on 𝑞2. Finally, the 

integral IDA-PBC designs [17], [18] are not applicable in this case since 𝐺,𝑀,𝑀𝑑 are not constant. 

Although beyond the scope of the current work, similar results to Figure 8 are obtained 

introducing small parameter uncertainties (e.g. 𝑏 = 1.01 in (44); 𝑏 = 1 in (47)). In particular, these 

effects are treated by the control as additional disturbances and accounted for by the estimates (48). 

Large uncertainties result in large varying disturbances hence Assumption 2 is no longer satisfied. 

 
Figure 8.  Pendulum-on-cart system with disturbances 𝛿1 = −0.1; 𝛿2 = −0.05 and control (47): 

(a) position of pendulum and cart; (b) disturbance estimates. 
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6. Conclusions 

This paper presented a new IDA-PBC design for nonlinear underactuated mechanical systems 

subject to matched and unmatched constant disturbances. The proposed control was constructed 

from the baseline IDA-PBC introducing a disturbance-compensation term computed with a new 

algebraic matching condition and estimating the disturbances adaptively. For comparison purposes, 

an alternative solution based on adaptive feedback-linearization was also presented highlighting the 

differences from IDA-PBC. Simulations on three motivating examples demonstrated that the 

proposed control is comparably effective to integral IDA-PBC designs in the presence of matched 

disturbances, and results in better performance if the disturbances are unmatched. Additionally, the 

control can be used for systems with non-constant inertia matrix. Aims for future work include the 

investigation of variable and state-dependent disturbances in nonlinear underactuated systems, the 

study of uncertain model parameters in the open-loop Hamiltonian, and the experimental validation 

of the results. 

7. Acknowledgement 

This research was supported in part by the Engineering and Physical Sciences Research Council 

under Grant EP/R009708/1. In addition, the author thanks Professor Alessandro Astolfi for helpful 

discussions on some aspects of the paper. 

8. Appendix 

Baseline IDA-PBC for the Inertia-wheel pendulum  

The solutions of the matching conditions (4),(5) are defined as follows, with 𝑚1, 𝑚2, 𝑚3, 휀 constant 

parameters [17]: 

𝑀𝑑 = (𝑎1𝑎2 − 𝑎2
2) [

𝑚1 𝑚2

𝑚2 𝑚3
]

𝑚2 = 𝑚1𝑎2/𝑎1 + 휀

𝑉𝑑 = 𝑎3cos(𝑞1)
1

(𝑚1 − 𝑚2)𝑎2
+

𝑘𝑝

2
(𝑞2 + 𝛾𝑞1)

2

𝛾 = −(𝑚2𝑎1 − 𝑚1𝑎2)/((𝑚1 − 𝑚2)𝑎2)

 (A.1) 

The IDA-PBC (3) is defined as follows: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖

𝑢𝑒𝑠 = 𝛾2sin(𝑞1) − 𝑘𝑝𝛾3(𝑞2 + 𝛾𝑞1)

𝑢𝑑𝑖 = −
𝑘𝑣

(𝑎1𝑎2 − 𝑎2
2)(𝑚1𝑚3 − 𝑚2

2)
(𝑚1𝑝2 − 𝑚2𝑝1)

 (A.2) 

The terms  𝑘𝑝, 𝑘𝑣 > 0 are constant tuning parameters. The constant terms 𝛾2, 𝛾3 are: 

𝛾2 = 𝑎3(𝑚2 − 𝑚3)/(𝑚1 − 𝑚2) 
𝛾3 = (휀𝑎1(𝑚2 − 𝑚3)/(𝑚1 − 𝑚2) − (𝑚3𝑎1 − 𝑚2𝑎2))

 (A.3) 

Baseline IDA-PBC for the Disk-on-disk system  

The solutions of the matching conditions (4),(5) are defined as follows, with 𝑘1, 𝑘2, 𝑘3 constant 

parameters [18]: 
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𝑀𝑑 = [
𝑘1 𝑘2

𝑘2 𝑘3
]

𝑉𝑑 = 𝑚3cos(𝑞2)
𝑚11𝑚22 − 𝑚12

2

(𝑚11𝑘3 − 𝑚12𝑘2) 
+

𝑘𝑝

2
(𝑞1 + 𝛾𝑞2)

2

𝛾 = −(𝑚22𝑘2 − 𝑚12𝑘3) (𝑚11𝑘3 − 𝑚12𝑘2)⁄

 (A.4) 

The IDA-PBC (3) is defined as follows, with 𝑘𝑝, 𝑘𝑣 > 0 constant tuning parameters: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖

𝑢𝑒𝑠 = 𝑚3sin(𝑞2)
(𝑚11𝑘2 − 𝑚12𝑘1)

(𝑚11𝑘3 − 𝑚12𝑘2)
− 𝑘𝑝

(𝑘1𝑘3 − 𝑘2
2)

(𝑚11𝑘3 − 𝑚12𝑘2)
(𝑞1 + 𝛾𝑞2)

𝑢𝑑𝑖 = −
𝑘𝑣

(𝑘1𝑘3 − 𝑘2
2)

(𝑘3𝑝1 − 𝑘2𝑝2)

 (A.5) 

Baseline IDA-PBC for the Pendulum-on-cart system  

The solutions of the matching conditions (4),(5) are defined as follows, with 𝑘 constant [34]: 

𝑀𝑑 = [
𝑚11 𝑚12

𝑚12 𝑚22
] = [

𝑘𝑏2

3
cos3(𝑞1) −

𝑘𝑏

2
cos2(𝑞1)

−
𝑘𝑏

2
cos2(𝑞1) 𝑘 cos(𝑞1) + 𝑘

]

𝑉𝑑 =
3𝑎

𝑘𝑏2cos2(𝑞1)
+

𝑘𝑝

2
(𝑞2 +

3

𝑏
ln (

1 + sin(𝑞1)

cos(𝑞1)
) +

6

𝑏
tan (𝑞1))

2

 (A.6) 

The IDA-PBC (3) is defined as follows: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖

𝑢𝑒𝑠 = 𝐴1𝑘𝑝𝑞2 + 𝑝𝑇𝐴2𝑝 + 𝐴3

𝑢𝑑𝑖 = −𝑘𝑣𝐴4𝑝

 (A.7) 

The terms 𝑘𝑝, 𝑘𝑣 > 0 are constant tuning parameters, while 𝐴1, 𝐴2, 𝐴3, 𝐴4 are defined as follows:  

𝐴1 = −(𝑚12 (
3

𝑏 cos (𝑞1)
+

6

𝑏cos2(𝑞1)
) + 𝑚22)

𝐴2 = −
1

2
𝑚12𝑀𝑑

−1

[
 
 
 
 
𝑑𝑚11

𝑑𝑞1
+

𝑘2𝑏3

12
sin(𝑞1) cos4(𝑞1)

𝑑𝑚12

𝑑𝑞1

𝑑𝑚12

𝑑𝑞1
−

𝑘2𝑏2

12
sin(𝑞1) cos3(𝑞1)

𝑑𝑚22

𝑑𝑞1 ]
 
 
 
 

𝑀𝑑
−1

𝐴3 = −𝑚12 (
6𝑎 sin(𝑞1)

𝑘𝑏2cos3(𝑞1)
) + 𝑘𝑝 (

3

𝑏
ln (

1 + sin(𝑞1)

cos(𝑞1)
) +

6

𝑏
tan(𝑞1))𝐴1

𝐴4 = [−𝑏 cos (𝑞1) 1]𝑀𝑑
−1

 (A.8) 
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