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Abstract

Rocking post-tensioned steel frames capitalise on the use of rocking joints, and unbonded post-tensioning
strands to provide self-centring action. Investigations on the complex and unconventional nonlinear dy-
namics of tied rocking steel frames, exclusive of supplemental damping methods, are presently limited.
Increasing levels of energy-dissipation reduce the probability of observing nonlinear dynamic phenomena
such as co-existing (high/low) amplitude responses at and around the system’s nonlinear resonance. To
this end, a finite element (FE) modelling framework is presented, validated and extended to multi-storey
steel buildings. It is shown that the simulation strategies proposed enable an accurate representation of
the complex nonlinear dynamics of self-centring structures, over a wide range of excitation frequencies and
amplitudes. The methodology, applied to multi-storey steel frames, captures the presence of sub-harmonic
resonances and higher-modes. It is also demonstrated that the additional demands observed in the rocking
columns are the consequence of the asymmetry of the member boundary conditions.
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1. Introduction

The staggering social and economic impacts of earthquakes have recently inspired a growing interest
in smart structural systems [1]. Rocking structures, in particular, are earthquake resilient systems that
utilise elastic gap-opening mechanisms at their connections to soften the structural response and enable a
building to remain operational after a seismic event. Furthermore, rocking self-centring steel moment frames
employ rocking connections at the base of the columns and beam-to-column interfaces. This system utilises5

unbonded post-tensioned tendons to tie members together in order to develop the necessary moment resis-
tance, and provide the restoring force required to centre the structure back to its initial position (plumb),
in the aftermath of the earthquake event. Energy dissipation is typically provided by supplemental means
using replaceable components, rather than through the yielding (damage) of primary structural members.
This means that the inelastic structural deformations under lateral forces can be reduced or even prevented10

[2].

Research encompassing various aspects of the design and behaviour of di↵erent classes of rocking struc-
tures has spanned over the last two decades. While some of this research did not consider the self-centring
e↵ects of post-tensioning and focussed on free-standing rocking structures [3, 4, 5], other studies examined15

the response of a range of self-centring systems, including steel-braced, pre-cast concrete and timber frames,
as well as concrete and timber shear wall configurations with significant levels of energy-dissipation coming
from sacrificial components [6, 7, 8, 9, 10, 11]. The presence of energy-dissipation diminishes the inherent
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nonlinearity of a rocking structure, and limits the examination of its raw nonlinear dynamic response. Fur-
thermore, a considerable amount of research has studied the resilience of individual steel joint assemblies,20

following a concentrated plasticity and phenomenological approach, that does not lend itself to scalability of
responses [12, 13, 14]. Consequently, a majority of the studies were concerned with predicting the response of
rocking steel buildings to ground motion excitations through analytical approximations [15, 16, 17, 18]. By
contrast, this paper shows that frequency response functions (FRFs) generated using numerical modelling
techniques are a viable and convenient approach that allows an insight into the mechanics of tied rocking25

frames.

Alexander et.al. [19] carried out a series of numerical, analytical, and experimental studies to exam-
ine the nonlinear dynamics of a single-storey rocking post-tensioned steel moment frame exclusive of any
supplemental energy-dissipation [19, 20, 21]. A quarter-scale physical model comprising steel square hollow30

sections representing a single bay and storey from the PRESSS building [6, 22, 23] was adopted. Discrete
frequency sine-sweep analyses were performed in order to confirm the rocking model’s long-term high cycle
performance. A low-order analytical model was also presented to estimate the dynamic response of the rock-
ing frame as an equivalent single-degree-of-freedom (SDOF) tied rocking block [19]. Although this model
was highly e↵ective in the prediction of a SDOF system’s response, its implementation can be mathemat-35

ically and computationally complex, especially for multi-degree-of-freedom (MDOF) structures. Moreover,
the analytical study was limited to a single-storey system and the response of multi-storey steel structures
under pure rocking requires further examination.

Similarly, there have been few attempts at proposing modelling techniques to capture the highly nonlin-40

ear behaviour of rocking frames, utilising finite and discrete element frameworks [12, 15, 16, 21, 24, 25, 26].
However, many of these methodologies do not go into detail regarding the overall model assembly, the
calculation of associated variables, and the selection of parameters for the analysis. Moreover, numerical
procedures, in the context of nonlinear dynamic analysis of tied rocking steel structures, have not been
explicitly discussed in previous research. A successful simulation methodology should be able to capture45

the fundamental features of the nonlinearity in the system under strong ground motion. The multi-spring
contact element approach is the most commonly implemented strategy in finite element simulations for the
in-plane rocking motion of steel frames. The geometry of this element comprises of an evenly distributed
series of springs, confined between rigid links at the end surface of the adjoining structural members. The
springs are defined typically to o↵er no resistance in tension and have an elastic response in compression.50

This modelling approach results in the contact zone being infinitely sti↵, and the opening joints rotating
around the pivot point at the member edges. Therefore, the motion simulated by these models conforms to
the rocking principles introduced by Housner [27].

An alternative approach was presented in [24] for the numerical modelling of rocking connections, using55

the finite element programme, RUAUMOKO [28]. The numerical model was compared with static ex-
perimental results of beam-column connection sub-assemblies and a multi-storey reinforced concrete frame
structure with draped tendons. The method was demonstrated to successfully represent the nonlinear joint
behaviour of the connections, account for the neutral axis shift in the contact area, and capture the beam
elongation and post-tensioned tendon lengthening e↵ects during ground motion excitation. Alternatively,60

the experimental and analytical models of the steel frame described previously [19, 20, 21] were simulated us-
ing the Discrete Element (DE) software UDEC [29]. Mass-proportional Rayleigh damping of 5% was applied
to the model. It was concluded that the DE model adequately replicated the qualitative aspects of the phys-
ical and analytical response. However, the input sensitivities concerning material properties and damping
models, observed in the discrete-element analysis represent an important handicap of this framework in the65

context of modelling nonlinear rocking steel frames. This limits the reliability of the modelling method and
can lead to inaccurate response predictions. Therefore, it is critical to develop generalisable modelling con-
siderations which can ultimately facilitate the practical application of post-tensioned rocking steel buildings.

This paper investigates the potential use of Finite Element modelling to predict the complete fundamen-70

2



tal nonlinear response of pure rocking steel frames with particular attention to nonlinear resonance curves
(frequency response functions). It is noted that this method of analysis has not been formerly utilised in the
study of post-tensioned rocking steel systems and this paper will address this shortcoming. First, numerical
simulation strategies are compiled and validated against the experimental, analytical, and discrete-element
responses of a selected single-storey rocking steel frame. Next, the procedures are applied to multi-storey75

tied rocking moment frames. The resulting structural behaviour is compared with that of conventional rigid
moment-resisting steel frames (MRFs). Additional e↵ects in the rocking frame bending moments due to the
interaction between structural members with the di↵erent end conditions (rocking column, continuous col-
umn, and rocking beam) are observed and investigated. The results presented demonstrate that the column
bending moments are impacted by these beam-column interactions, whereas the storey displacements and80

shear forces are qualitatively similar to those observed in a conventional MRF. These e↵ects have not been
explored in preceding studies and are pertinent as they can inform the provision of practical steel design
guidelines for post-tensioned rocking frames.

2. Numerical Modelling Approach85

2.1. Selected Single-storey Frame

The numerical studies presented in this paper required a well-documented physical rocking steel moment-
resisting frame benchmark study. For this purpose, the model had to be extensively explored for both static
and dynamic analyses. Structural simplicity was an important selection criteria, evidenced by structural
regularity and the absence of complex supplementary energy-dissipation elements, devices or mechanisms.90

This would reduce modelling and analysis uncertainties, enabling a more fundamental understanding of the
nonlinear dynamic phenomena. In consideration of these attributes, the physical, numerical, and analytical
research conducted by Alexander et al. [19, 20, 21], was selected for this research. The aforementioned
series of investigations were among the first to study in detail, the pure rocking response of a complete
steel moment frame structural assembly. Therefore, this study provides feasible baseline results to validate95

numerical models.

Figure 1: One storey, single bay model schematic with members and connection details.

The structural model employed as a benchmark is a one-storey quarter-scale single-bay planar steel frame,
comprising of moment-resisting rocking connections at the beam-to-column and column-to-foundation in-
terfaces. The height of the frame is 0.9 m and its bay width is 2.1 m (Figure 1). These values correspond100

to an aspect ratio of 0.4. The detailed design of the original model building was carried out in accordance
with design guidelines presented as part of the PRESSS research programme [23], and it represented a single
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Table 1: Spring Position and Weighting for a 2- and 10-spring gap element [24]

No. of Springs Gauss Quadrature Lobatto Integration
Absciccas Weights Absciccas Weights

2 Springs ±0.577 1.000 ±1.000 1.000
10 Springs ±0.149 0.296 ±0.165 0.328

±0.433 0.269 ±0.478 0.292
±0.679 0.219 ±0.739 0.225
±0.865 0.150 ±0.920 0.133
±0.974 0.067 ±1.000 0.022

bay and storey from the PRESSS structure. The beam and column elements of the model frame were both
made from hollow steel square sections, with dimensions of 100 x 100 x 10 mm3. A tendon pre-tension and
cross section of 115 kN and 93 mm2 for beam tendons, and 64 kN and 52 mm2 for column tendons was105

employed. The applied mass on the frame was two tonnes. The specimen was tested at the University of
Bristol Laboratory for Advanced Dynamics Engineering (BLADE) [19].

2.2. Modelling Specifications

The finite element programme OpenSees [30], was employed for the development of all numerical models110

presented herein. Planar frames with three-degrees-of-freedom per node were defined. The schematic for
the numerical models of rocking connections are presented in Figures 2 and 3. The Lobatto and Gauss inte-
gration schemes introduced by Spieth et al. [24], were applied to distribute the members sti↵ness along the
rocking surfaces. Preliminary studies demonstrated that either of the integration schemes can be selected
for the simulation of rocking surfaces. Varying number of springs were modelled ranging from 2 to 10 springs115

in order to assess the e↵ects of di↵erent sti↵ness distributions (Table 1). The value for the number of gap
elements along a rocking surface was calculated by dividing the length of the rocking surface by a factor of
10. It was found that the number obtained generally resulted in the formation of realistic compression zones
at the rocking surfaces compared with experimental results and analytical approximations. All degrees of
freedom were constrained at the foundation level to simulate a fixed base beneath the rocking interface.120

The end node at the base column joints were horizontally restrained to simulate a roller support in the X-
direction in order to prevent slip between adjacent rigid links. Di↵erent types of end conditions were tested
in order to study their e↵ect on the global behaviour of the frames. It was determined that the resulting
static and dynamic responses were not sensitive to this detail. Vertical displacement restraints were added
for the zero-length elements between the beam and column to facilitate shear transfer. This was achieved by125

using the equal degree-of-freedom constraint (master-slave nodes) for adjacent nodes between the beam-end
rigid links representing the gap opening. Nodal masses were defined in the horizontal and vertical degrees of
freedom, and lumped at the top of each column element. Corotational geometric transformation was applied
for columns and beams to account for geometric nonlinearities, while linear transformation was used for the
rigid links [30].130

The columns and tendons were modelled as continuous elements along the frame heights. The post-
tensioning tendons were modelled using Corotational Truss Elements with an initial stress uniaxial material
(Steel02 material in OpenSees [30]), and were anchored at points rigidly o↵set half the column and beam
depths outside the frame centreline (Figures 1 and 2). An alternative model was developed for post-135

tensioning anchored at the frame centreline in order to study the e↵ects of the o↵sets (Figure 3). Structural
elements were modelled with their respective material elastic moduli and yield strengths. S275 steel with an
elastic modulus of 210 GPa was used for the beam and column members [21]. Elastic beam-column elements
were used for modelling the beams, columns, and rigid links. Elastic Perfectly Plastic material was defined
for the gap element, with no sti↵ness in tension. Alternative models of gap elements included the Elastic140

No-Tension material, and hysteretic material. It was observed that material selection for the gap elements
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Figure 2: Beam-column connection detail with Post-Tensioning (PT) rigidly o↵set from centreline.

did not have a major impact on the dynamic results. The sti↵ness properties of each spring element were
calculated using Equations 1 and 2 below.

Kspring,i =
EA

2LI
· wi (1)

Fsspring,i =
FyA

2
· wi (2)

Where, E, A and Fy are the Modulus of Elasticity, Cross-Sectional Area, and Yield Strength of the con-
necting member, respectively; wi is the weight of each spring assigned in accordance with Lobatto and Gauss145

integration schemes listed in Table 1; and LI is the influence length of the member which contributes to the
sti↵ness of the corresponding rocking zone. Approximately one-third of the storey height for the columns
and one-sixth of the bay widths for the beams, were applied. These values corresponded to approximately
four times the column and two times the beam section depths. All proposed factors were obtained through
sensitivity studies and comparisons of the numerical single and multi-storey models with experimental re-150

sults and analytical approximations.

2.3. Analysis Parameters

The Static and Dynamic analyses include the definition and application of gravity loads, static lateral
loads, and dynamic loads. Beam gravity loads were applied as nodal loads on the columns in order to155

simplify the model and reduce the processing time. Additionally, distributed beam loads were investigated
and observed to not have an impact on the static and nonlinear dynamic results. The static lateral loads
during pushover analysis were also applied at the nodes assuming linear first-mode distribution. Using the
Equivalent Lateral Force procedure, the Base Shear was defined to be one unit in magnitude, distributed
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(a) (b)

Figure 3: Beam-column connection without PT anchorage o↵set (a); Column-foundation connection detail (b).

(a) Complete displacement response-
history (transient and steady-state).

(b) Isolated steady-state responses (c) Conversion of time to the corre-
sponding frequency domain.

Figure 4: Generation of resonance response curves for a dynamic amplitude of 0.10g for a single-storey rocking frame.

linearly along the height of the frames based on the storey weights and heights above ground. A displace-160

ment control strategy was used to perform the nonlinear static analysis. A constant sti↵ness proportional
damping of 5% was specified for all elements in the models.

Frequency Response Functions (FRFs) for structural engineering applications are typically generated
using a sine-sweep or, more accurately, a sine-dwell input ground motion. Sine-dwell analysis is the discrete165

version of a sine-sweep analysis, where the frequency is not varied continuously but is incremented by discrete
amounts, giving the structure time to reach a steady-state response. MATLAB [31] was used to generate
input harmonic base motions. The automated algorithms developed allowed for the speedy definition of
parameters including frequency range, time increment, sampling rate, duration and scaling.

170

The process of converting the response-history to resonance curves is illustrated in Figure 4. The
response-history obtained from the discrete sine-sweep analyses comprised of a transient and a steady-
state dynamic response. The steady-state response was isolated to a user-defined time window, and the
median response value corresponding to each increment of the forcing frequency was calculated. Finally, the
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time was converted to the frequency domain, and the forcing-frequency versus response quantity plots were175

generated. In the case of multi-storey frames, the maximum steady-state values of all structural response
quantities (shears, moments, accelerations,and displacements) were plotted for each corresponding storey.

3. Model Validation

3.1. Static Analysis and Monotonic Response

The results of the static analysis for the single-storey model, described above, are illustrated in Figure 5.180

The roof displacements were plotted in terms of base shear against drift. The base shear (V) was normalised
using the total weight of the frame (W). Influence lengths of 250 mm and 350 mm were used for beams and
columns, respectively to calculate individual spring sti↵ness (Equations 1 and 2). The influence lengths were
selected and calibrated based on the results of the experimental study. Sensitivity analyses were carried out
for structural parameters such as the number of gap elements, influence length, post-tensioning anchorage185

o↵sets, and pretension force, discussed in further detail below. Through comparisons with the experimental
study, it was demonstrated that the applied numerical modelling approach enabled an accurate representa-
tion of the pushover curve for a rocking post-tensioned steel moment frame.

It was observed that altering the initial pretension force of the columns did not have a significant impact190

on the static nonlinear response, whereas increasing the initial pretension force of the beam by a factor of
1.4 resulted in a 25% increase in the ultimate load. It was also noted that the anchorage point o↵sets did
not have a significant influence on the pushover response of the structures as can be noted from Figure 5c.
The e↵ects of the variation of integration schemes and sti↵ness distributions (number of gap-elements) were
also analysed. It was observed that both the Lobatto and Gauss integration schemes resulted in similar195

responses when an appropriate number of spring elements were employed as demonstrated in Figure 5a.
In order to determine the optimum number of zero-length elements, a number of spring elements ranging
from 2 to 10 were defined for each model. Figure 5b illustrates that a higher discretisation of the member
sti↵ness distribution (more springs) leads to smoother pushover curves, and is accompanied by a decrease in
the strength of the frame. It should be noted that, when using 2 springs with a Lobatto integration scheme,200

the connection rocks around the pivot points at 1, and no compression zones form. Hence, the inner lever
arm at the rocking section is larger leading to higher forces at the opening for the same rotation at the joint
(higher shear force). This explains why a higher shear resistance is observed for lower number of springs.
The same phenomenon has been observed before by [24]. Importantly, a two-point contact configuration
should be avoided as it does not distribute the sti↵ness accurately along the surface taking into account205

the compression zones which are formed during rocking. However these e↵ects, approach an asymptote at
around 6 springs, where the pushover curves begin to coincide. Beyond this point, distributing the member
sti↵ness further along the surface does not yield any change in the structural response. Hence, the recom-
mendation in Section 2 was presented regarding the need to divide the rocking surface by a factor of 10
to obtain a suitable baseline value for the number of gap elements. The selected number can be further210

calibrated based on the smoothness of the initial static results obtained.

3.2. Dynamic Analysis and Frequency Response Functions (FRFs)

A series of dynamic analyses were performed for low, medium, and high forcing amplitudes. The FRFs
were developed using the methods described in Section 2, and are presented in Figure 6 in conjunction with215

the experimental results, discrete-element predictions, and analytical estimations of other studies [19, 20, 21].
The frequencies were normalised against the natural frequencies of the finite element models. The lower-
amplitude branch for the preceding experimental, analytical, and discrete-element models, was obtained
using an increasing frequency, and the upper branch using a decreasing frequency sine-sweep ground-motion.
It is important to note that the drop observed from the lower to higher branch in sine-sweep analysis is inde-220

terminate in reality. This is because the solution in this region is unstable and cannot be obtained through
numerical (finite element) simulations. Hence, the responses of nonlinear systems typically comprise of a
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(a) Using Lobatto and Gauss integra-
tion schemes.

(b) Using varying number of zero-length
gap-elements.

(c) Comparing responses with and with-
out Post-Tensioning O↵set Conditions.

Figure 5: Pushover curves for the single-storey steel rocking frames.

distinct upper and lower branch. These responses were obtained by introducing a high amplitude excitation
for a finite duration, prior to the application of the desired frequency sweep loading in the proposed Finite
Element models. Typically, an impulse load with an amplitude of 0.8 g to 1.2 g was applied for a duration225

of 5 to 7 seconds with a frequency around the resonant frequency of the particular response. An alternative
procedure is to follow a similar method, but record individual responses for each frequency rather than
applying a sweeping motion, following the impulse load. This would capture the secondary solution points
individually in the increasing sine-sweep response range. The purpose of incorporating the impulse loading
is to alter the initial conditions of the nonlinear frame (e.g. velocity) at the time the sine-sweep motion is230

applied, resulting in the overlapping areas in the dynamic structural response (upper resonance branch).

Figure 6 a, b, and c illustrate the FRFs for the single-storey experimental, analytical and numerical
(finite and discrete element) models for low, medium, and high forcing amplitudes. It can be observed
that the Finite Element model captures the features of the physical and analytical models very well, with235

good agreement between the responses. It can also be noted from the figures that the response of the
discrete-element model is divergent from the physical and analytical models, particularly for low amplitude
forcing, where it results in considerably higher response amplitudes. Moreover, the experimental resonance
curves do not match the analytical and numerical responses, at certain amplitudes. These discrepancies
should be understood in the context of the di�culties experienced during experimentation to control the240

test specimen around resonance. Sensitivity analyses of the numerical test models also revealed that the
initial pretension force does not have an e↵ect on the dynamic characteristics of the models. This was also
observed in previous studies [19].

By plotting the FRFs for a range of forcing amplitudes (Figure 6 d), a backbone curve was constructed.245

A feature of backbone curves for nonlinear systems is that the lower amplitude responses approach the
fundamental frequency of the system. It was noted that the fundamental frequencies of the finite element
model and the analytical representation were approximately 8.4 Hz. These were both close estimations for
the physical frame’s natural frequency of around 9 Hz. The discrete-element model, on the contrary, resulted
in a relatively higher natural frequency of around 11 Hz. The striking similarities between the analytical250

and FE predictions validate the described numerical strategies. Thereafter, a series of dynamic analyses
were performed with sinusoidal loading of low, medium and high amplitudes at the resonant frequency. The
results were compared with the experimental pushover curves (Figure 7). The hysteresis curves of the rocking
system demonstrate that the structure under consideration does not possess any inherent energy-dissipation
(damping) capability.255
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(a) Low-0.10 g forcing amplitude. (b) Medium-0.20 g forcing amplitude.

(c) High-0.26 g forcing amplitude. (d) Comparison of numerical and analytical back-
bone curves of the 1-storey rocking frame.

Figure 6: Frequency Response Functions (FRFs) for the 1-storey physical, numerical, and analytical models.

(a) Low-0.10 g forcing amplitude. (b) Medium-0.20 g forcing amplitude. (c) High-0.30 g forcing amplitude.

Figure 7: Hysteresis curves for 1-storey rocking frame in response to cyclic (sinusoidal) loading.
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4. Extension to Multi-storey Structures

4.1. Proposed Multi-storey Models

The second stage of the research considered three, six and nine-storey single-bay planar steel frames, with
moment-resisting rocking mechanisms at the beam-column and column-foundation connections. The aspect
ratios and elevations for each of the structural models are illustrated in (Figure 8). Hollow steel square260

sections were used for the frame members, with identical sections for beams and columns. The inertial mass
applied on the frames was two tons per bay. The higher storey models were designed based on the chosen
single-storey benchmark frame, with a bay width of 1.2 m and storey height of 0.9 m. Equivalent scale and
ratios were used for all structures to maintain consistency. The sections used were 140 x 140 x 12 mm3, 200
x 200 x 12 mm3, and 250 x 250 x 12 mm3 for the 3, 6 and 9 storey frames. All members were designed to265

remain elastic for the duration of the highest forcing amplitude.

Figure 8: Elevations and aspect ratios for the 1, 3, 6, and 9-storey numerical models.

4.2. Static Analysis and Monotonic Response

The normalised base shear versus roof drift relationships for the multi-storey models studied herein, are
illustrated in Figure 9. The base shear was normalised against the weight of the buildings. Sensitivity270

analyses for parameters such as the influence length, member sizes, pretension force, and area of post-
tensioning tendons, were carried out for all the models, and selected results are presented in Figure 9. It
was observed that altering the initial pretension force of the columns did not have a significant impact on
the static response, whereas increasing the initial pretension force of the beam by a factor of 1.4 resulted
in a 25% increase in the lateral strength of the frames. Additionally, doubling the cross-sectional area of275

the post-tensioning tendons in the columns, resulted in a response with negative sti↵ness at larger drifts.
This leads to the counter-intuitive conclusion that a larger size of the post-tensioning tendons does not
ensure a structure with greater strength and stability. Similarly, an increase in the initial force and/or area
of post-tensioning tendons can have a detrimental impact on the response of rocking frames. This e↵ect
has been previously observed for rocking frames [32]. The increase in prestressing leads to a higher strain280

energy stored in the system. This causes the frame to rock with higher angular velocity and accentuates
overturning after impact. This e↵ect has been observed to be more pronounced for negative sti↵ness frames.
It is worth noting that following the design assumptions, all of the steel structural elements remained elastic
during the static pushover analyses.

285
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(a) 3-, 6-, and 9-storey buildings. (b) 6-storey building with di↵erent pre-tension
forces.

Figure 9: Normalised pushover response multi-storey numerical models.

4.3. Dynamic Analysis and Frequency Response Functions (FRFs)

A series of dynamic analyses were performed for low, medium, and high excitation amplitudes. The
FRFs for the three, six, and nine-storey models are presented in Figures 10 and 11. The lower FRFs were
obtained using the discrete sine-sweep analysis, and the upper branches using the decreasing frequency
sine-sweep with initial impulse loading, as discussed previously. The FRFs were plotted in terms of roof290

and second-storey accelerations. It was observed that the displacement-based resonance curves were quali-
tatively similar to the single-storey frame responses. Moreover, the acceleration response plots for the three-
and six-storey steel structures (Figures 10 a,b and 11 a,b) demonstrate the presence of a single high-level
peak at the respective resonant frequencies. By contrast, coexisting peaks can be recognised in the acceler-
ation response amplitudes at the second storey level of the 9-storey frame (Peaks A, B, and C in Figure 11c).295

Points A, B, and C correspond to frequencies of 1.27, 2.02, and 2.49 Hz, with B representing the resonant
frequency of the excitation amplitude (0.30 g). Point A occurs at a lower frequency than the resonant fre-
quency and is a sub-harmonic resonance of the system. This sub-harmonic resonance can also be observed
in the six-storey frame, and it becomes more prominent in the nine-storey frequency response functions.300

This demonstrates the importance of sub-harmonic resonances in more slender frames at high amplitude

(a) 3-storey building. (b) 6-storey building. (c) 9-storey building.

Figure 10: Frequency response functions (FRFs) of multi-storey buildings illustrating roof accelerations for low-0.10g, medium-
0.20g, and high-0.30g amplitude excitations.
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excitation. It is important to note that selection of excitation frequency and time increments influences
the secondary solutions recognised in the frequency sweep analyses. Frequency increments ranging from
0.01-0.04 Hz and time increments (dt) of 0.001 seconds, were applied for the models presented in this paper.
Point C was further evaluated by decreasing the time increment in the analysis. However, the peak (Point305

C) was observed in these examinations as well. This phenomenon can be observed in nonlinear structures
subjected to high amplitude excitations, and there is a high probability that it may be a product of the
system’s nonlinearity. Nonetheless, this conclusion is subject to further investigation.

(a) 3-storey building. (b) 6-storey building. (c) 9-storey building.

Figure 11: Frequency response functions (FRFs) for multi-storey buildings illustrating maximum second-storey accelerations
for low-0.10g, medium-0.20g, and high-0.30g amplitude excitations.

Moreover, the resonance response graphs were utilised to identify the fundamental frequencies of the310

building models using the maximum inflection points of low-amplitude FRFs. It is noted that the rocking
joints do not open during the low-amplitude FRFs (0.01g), and the frame behaves linearly. The natural
frequencies of the three, six, and nine-storey frames were 5.8, 5.2, and 4.7 Hz, respectively. The fundamental
frequencies obtained from an eigenvalue analysis of the rocking frames were 6.1, 5.3, and 4.9 Hz. The exci-
tation frequency range of the rocking models was further expanded to study the influence of higher modes315

(Figure 12). Point D illustrates the second mode of the structures with frequencies of 20.6, 16.6, and 14.8
Hz for the three, six, and nine-storey buildings. Comparatively, second-mode frequencies of 22.8, 17.7, and
16.0 Hz were obtained from the eigenvalue analysis. Although the third mode cannot be clearly identified
from the frequency response functions, the frequencies calculated from the eigenvalue analysis have been
plotted (Point E) with values of 50.1, 37.0, and 31.5 Hz. It is evident that the eigenvalue analysis provides320

reasonable estimates for the modal periods/frequencies of the nonlinear frame systems. It can be noted
that the second mode occurs at around three times the first mode’s frequency for all structural models.
Furthermore, at higher modes, the frequency response functions are qualitatively similar to those of a linear
structure with identical modal frequencies across all excitation amplitudes.

325

A linear-elastic model of a nine-storey fixed-base steel moment-resisting frame (MRF) with fully rigid
joints was modelled with identical sections as those of the corresponding rocking frame. It is important to
note that in reality, both structural systems would be designed di↵erently to meet similar demands. The
purpose of using consistent members and geometry for both structures was to highlight the qualitative dif-
ferences in the fundamental behaviour of rocking frames and rigid MRFs. The FRFs of the rigid frame are330

illustrated in Figure 13. Contrary to the rocking structure, a fundamental frequency of 6.4 Hz for the linear-
elastic frame is constant across all forcing amplitudes. It is apparent that the rocking frame has greater
flexibility than its steel MRF counterpart, which is expected because of the increased storey displacements
due to the gap-opening mechanisms. The resonant frequencies identified for the rocking frames were further
used to generate sinusoidal loading and perform harmonic analysis for the multi-storey numerical models.335

The comparison of the cyclic hysteretic responses for all multi-storey models with the respective static
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(a) 3-storey building.

(b) 6-storey building.

(c) 9-storey building.

Figure 12: Frequency response functions (FRFs) for multi-storey buildings illustrating roof accelerations for low-0.10g, medium-
0.20g, and high-0.30g amplitude excitations.

(a) Roof drifts. (b) Accelerations.

Figure 13: Frequency response functions (FRFs) illustrating roof drifts and accelerations of a 9-storey fixed-base rigid frame
for low-0.10g, medium-0.20g, and high-0.30g amplitude forcing.
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pushover were qualitatively similar to the single-storey behaviour. However, minor deviations in the cyclic
response were observed at intersections of the linear and nonlinear branches of the pushover curve for the
nine-storey model. These deviations were not as prominent in the three-storey steel structure and therefore
can be attributed to sub-harmonic e↵ects. Moreover, similar to the single-storey cyclic response (Figure 7),340

the graphs demonstrate that the structural systems do not possess significant energy-dissipation (damping)
capability.

Maximum structural response quantities (e.g. Point B in Figure 11c) including displacements, drifts,
accelerations, storey shears, and column bending moments for the three, six, and nine-storey steel frames345

are illustrated in Figures 14 to 16. Figure 17 presents the height-based responses of the nine-storey rigid
frame, while response values for the nine-storey frame associated with Point C in Figure 11, are presented
in Figure 18 for a high amplitude forcing. These graphs represent envelopes of the maximum steady-state
magnitudes for each individual response quantity. It can be noticed that the displacements and shear forces
for all frames are qualitatively similar to the responses observed in a conventional MRF (Figure 17). Also350

of note are the drift responses for the MRF which indicate more pronounced di↵erences in the relative
displacements between adjacent storeys (follow a more curved path). In comparison, the drift ratios for
the rocking frames are relatively constant along the building heights. This is because the rigid connections
lead to a sti↵er structure where the behaviour of the beam and column members is dependent upon one
another. In rocking moment frames, with openings between all member interfaces, the deformation of the355

structure follows a shape similar to that of a rigid rocking block, with the displacements increasing linearly
with constant inter-storey drifts.

Figure 14: 3-storey structural response quantities for low-0.10g, medium-0.20g, and high-0.30g harmonic amplitude base-
excitation.

Figure 15: 6-storey structural response quantities for low-0.10g, medium-0.20g, and high-0.30g harmonic amplitude base-
excitation.

At low amplitude forcing, the acceleration plots for the three, six, and nine-storey steel buildings are
similar to the first-mode response for the MRF. Similarly, for a high amplitude base-excitation, the highest360

acceleration in the MRF occurs at the maximum height (top of the buildings). Contrarily, in the rocking
frames, the acceleration decreases along the building heights, with the maximum magnitudes occurring in
the lower half of the buildings. This e↵ect is less defined in the three-storey building and becomes more
pronounced for the nine-storey frame. Following this observation, structural response quantities including
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Figure 16: 9-storey structural response quantities for low-0.10g, medium-0.20g, and high-0.30g harmonic amplitude base-
excitation.

Figure 17: 9-storey fixed-base moment-resisting frame with fully rigid connections for low-0.10g, medium-0.20g-, and high-0.30g
amplitude base-excitation.
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Figure 18: 9-storey structural response quantities corresponding to Point C for high-0.30g harmonic amplitude base-excitation.

Figure 19: 9-storey response quantities at specific times for high-0.30g amplitude forcing.

the beam rotations, beam-end moments, and beam post-tensioning forces were plotted for specific times in365

the response history (Figure 19). These quantities are representative of the gap-openings between the beam
and column members and could highlight the interactions at these joints. It can be noted from Figure 19
(at t=84.65s) that the maximum acceleration at the first storey level occurs when the storey displacements
experience a change from a negative to positive slope. At this time, the highest magnitudes for the beam
rotations, beam-end moments, column moments, and beam post-tensioning forces are observed at the first370

storey level, following the maximum acceleration.

The shear forces of the rocking frames are very similar to the conventional MRF response, However, the
column bending moments are clearly influenced by e↵ects specific to post-tensioned rocking steel frames.
The moment response plots for the rocking frames, presented in Figures 14 to 18 qualitatively indicate375

interaction e↵ects, particularly around the first and second storeys. A peak in the bending moment en-
velopes at the resonant frequency and high amplitude forcing, is observed at the first storey for all models
with the bending moments stabilising at the second storey. At the first-storey level, the column bending
moment magnitude is greater than the value at the base. In comparison, the MRF experiences maximum
moments at its base. This peak can be attributed to the interactions between members with di↵erent end380
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conditions at resonance, when the structure is subjected to high amplitude base-excitation. In the case of
the three-storey frame, the bending moment magnitudes at the first-storey govern. It can also be noted
that for the nine-storey model, the peak is not observed for Points A and C (Figure 18), which suggests
that this characteristic is exclusive to the resonant response of the frame. These beam-column interaction
a↵ects can be explained by first examining the response quantities illustrated in Figure 19 (at t=79.62s).385

At this time, the highest beam rotation occurs at the first storey level and decreases along the height of the
frame, with a drop in magnitude at the second storey level. The greater beam rotation at the first storey
imposes an additional moment on the column thereby leading to higher values. To further explain these
beam rotational e↵ects, the frame’s member symmetry was examined. Figure 20 illustrates that the first
storey column rocks at the base, and is continuous along the remaining structure. The first-storey rocking390

beam interacts with a rocking column and a continuous column connection, whereas the second storey beam
connects into a continuous column at both ends. The discontinuity in the structural connections results in a
disturbance in the beam rotations at the first storey. This helps explain the column bending moment peaks
at this point in the rocking frames. The multi-storey structures also experience an imbalance of negative
and positive moments at the first storey level. Figure 21 illustrates the bending moments at the first-storey395

column of the nine-storey MRF and rocking frames, subjected to sinusoidal base-motion (Figure 21a). It
can be noted that unlike the MRF (Figure 21b), the rocking frame response is not a sinusoidal function.
This demonstrates the moment imbalance at these points, and the corresponding structural interactions.

Figure 20: Rocking frame schematic illustrating lateral deformations of the first mode of response

A series of analyses were further conducted altering various design variables in order to understand the400

bending moment response peaks. It was discovered that when the diameter of the post-tensioning cable
was increased by a factor of 1.4, the peak was not observed for any of the buildings. The curves in the
acceleration and upper-half of the bending moment plots were still observed but were less pronounced. This
indicates that when the lateral sti↵ness of the structure is increased, the rotation at the base-rocking joint
decreases, resulting in lower rotations for the beam-column rocking joints, hence eliminating the peak and405

verifying the initial hypothesis.
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(a) Sinusoidal base-excitation with an
amplitude of 0.30g.

(b) MRF column bending-moments. (c) Rocking steel frame column bending-
moments.

Figure 21: Temporal evolution of column moments at the first storey of 9-storey structures.

5. Conclusions

Although preceding research has o↵ered extensive insight into the behaviour of di↵erent types of rocking
steel structures, they have either considered pure rocking behaviour without post-tension self-centring, or410

have dealt with structures that incorporate considerable levels of supplemental energy-dissipation, which
dampens the fundamental dynamic nonlinearity within the rocking response. Consequently, the complex
nonlinear dynamic behaviour of single and multi-storey tied rocking steel frames without supplemental
damping by means of numerical tools have not been explored previously.

415

To address these shortcomings, the Finite Element programme, OpenSees, is used in this study to com-
pile and establish a complete numerical modelling strategy (Section 2) for analysing the nonlinear dynamic
response of post-tensioned rocking steel moment frames. For this purpose, recommendations are presented
for variables a↵ecting the sti↵ness distribution at rocking interfaces. It is proposed that dividing the length
of the rocking surface by a factor of 10 provides a suitable baseline for the number of gap elements along420

a rocking surface. Moreover, initial estimates for the influence lengths used to calculate individual spring
sti↵nesses are suggested to be four times the column and twice the beam section depths.

The results of a selected experimental study were numerically simulated in order to validate the Finite
Element modelling methodology, and compared with discrete-element and analytical estimations. A com-425

parison of the static and dynamic behaviour obtained confirms that the finite element approximation o↵ers
a good representation of the nonlinear dynamics of the rocking steel frame. At both high and low level
base excitations, the shape and response amplitudes from the finite-element model are highly similar to the
experimental results and analytical approximations. Likewise, the finite element solutions overlap the ana-
lytical frequency response functions over a wide frequency range, particularly for the increasing frequency430

branch. The fundamental frequency of the finite-element model is close to that of the analytical estimation
and physical experiments. Altogether, the finite-element model is able to predict the full nonlinear response
of the rocking frames more accurately than its discrete-element counterpart.

The modelling procedures were extended to multi-storey rocking steel frames and the resulting be-435

haviour was investigated. Numerical models comprising three, six, and nine-storeys were developed. The
static response of the buildings demonstrates that an increase in the initial force and/or area of the column
post-tensioning tendons may have a detrimental impact on the structural response of rocking frames. The
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nonlinear dynamic behaviour of the steel frames suggests that the accelerations and bending moment magni-
tudes are influenced by beam-column interactions e↵ects. These e↵ects are defined to be the consequence of440

the discontinuity of the member connections and the asymmetry in member restraints due to the presence of
base-rocking. The bending moment values due to these e↵ects are pertinent and in many cases, will govern
the design of this joint.

Lastly, by comparing the results of the nine-storey rocking steel frame against its moment-resisting frame445

counterpart with fully-rigid connections, it is demonstrated that the rocking motion leads to relatively larger
storey displacements in comparison with the linear-elastic and nonlinear-elastic models of moment-resisting
frames. However, rocking also significantly limits the bending moments and shear forces experienced by the
primary structural members. These e↵ects, which have not been explored in preceding studies and are not
accounted for in current steel design codes, are important as they can further lead to contributions towards450

the provision of practical design guidelines for post-tensioned rocking steel frames.
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