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ABSTRACT

Atom Probe Tomography (APT) has been utilised for an in-depth examination of the commercial poly-
crystalline Ni-based superalloy RR1000, assessing compositions of the primary, secondary and tertiary y’
phases. Clear differences in the phase chemistries are noted, particularly for the tertiary y’ to which much
of the alloy strength is attributed. Trace amounts of Hf are found to segregate strongly to the primary and
secondary y’ phases, but also exhibit an extended diffusion profile across the y-y’ interface up to 80 nm
wide. Ti, Al and Mo demonstrate similar, yet not as pronounced diffusion profiles, indicating assumed
phase chemistries may not be representative of those regions adjacent to the y-y’ interface. Within vy,
unique element site-occupancy preferences for this alloy were identified. Finally, the grain boundary
chemistry across a y-v interface and that of an intragranular boride were analysed, identifying the latter
as a mixed MsB3 boride rich in Mo and Cr. These demonstrate further the depth of information on Ni-
alloys accessible by APT, while the overall implications of results in comparison with other in-service/
model alloys are also discussed.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Where do the atoms in an alloy reside? This question is of
fundamental importance to the field of materials science and the
discipline of physical metallurgy from which it emerged. Unfortu-
nately, for structural alloys — which are usually based upon one of
Al, Fe, Ni or Ti — truly unequivocal answers are not yet available.
One explanation for this is complexity. These alloys are usually
multicomponent in nature with many alloying elements added.
Strengthening phases are nearly always present, and these can be
ordered, so that a site preference arises. Moreover, precipitate
distributions are often multimodal. Alloys are mainly poly-
crystalline, so that segregation and/or grain boundary precipitation
can arise. To what extent can a modern high-resolution character-
isation techniques answer this critical question?

The nickel-based superalloys are a class of structural alloy for
which the above description of complexity is particularly appro-
priate. First, these are multicomponent alloys with ten or more
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alloying elements present; arguably they represent some of the
most complex alloys designed by man. An ordered strengthening
phase, based upon the L1, crystal structure, plays an important role
in the alloy microstructure; thus preferential partitioning of ele-
ments is expected not only to this phase but also to the sub-lattice
atomic sites within it. Elements such as B and C are added which are
known to segregate to grain boundaries [1,2], however the extent of
this segregation and whether secondary phases such as carbides
and borides form as a result remains unclear. Finally, elements such
as Hf and Zr are sometimes added in trace quantities for a variety of
intended benefits including gettering sulphur at grain boundaries
[3] and to prevent oxide scale spallation [4]; however the mecha-
nisms for these are still not well understood. Characterising
chemical distribution at the atomic-scale is therefore a key step in
developing an understanding of the role of individual elements,
their interactions in the microstructure and ultimately the perfor-
mance of the material. Increasingly demanding applications for
components made from such materials, most notably for jet pro-
pulsion [5] and power generation [6], drives continued develop-
ment of these alloys to perform in extreme conditions. Detailed
characterisation of these materials is essential to enable such
progress.

1359-6454/© 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/
mailto:paul.bagot@materials.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2016.11.053&domain=pdf
www.sciencedirect.com/science/journal/13596454
www.elsevier.com/locate/actamat
http://dx.doi.org/10.1016/j.actamat.2016.11.053
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.actamat.2016.11.053
http://dx.doi.org/10.1016/j.actamat.2016.11.053

PA,. Bagot et al. / Acta Materialia 125 (2017) 156—165 157

In this study, the modern high-strength polycrystalline nickel-
based superalloy RR1000, an alloy developed by Rolls-Royce plc,
is subjected to detailed high resolution analysis using atom probe
tomography (APT). Due to the complex chemistry of this alloy, a
technique is needed which is capable of resolving the numerous
components with equal sensitivity, whilst providing the spatial
resolution needed to map microstructures of the differently sized
phases. APT complements more conventional analyses such as
electron microscopy [7—9] and X-ray/neutron scattering [10,11].
Examples of insights provided by APT into these types of alloys
have been previously reviewed [12,13], while focussed studies
include composition-dependent interactions between solutes [14],
evolution of lattice spacings and precipitates during ageing [15,16],
informing dislocation-precipitation interaction simulations [17],
behaviours of individual solute elements including Re [18—20], Pt-
group metals [21—24], Nb [25], segregation at grain boundaries
[1,26,27] and oxidation around crack tips [28,29]. For the newly
discovered class of Co-based alloys, APT has also been used effec-
tively to investigate chemical partitioning and the nature of certain
microstructural features [30—32].

RR1000 is in use in current generation aero engine components
such as high-pressure turbine discs. Despite the extensive use of
APT to look at various model and commercially-used superalloys,
few detailed studies have been published on RR1000 or similar
alloys using this technique. Therefore, we examine in detail
element partioning behaviour and inter-relationships in the 7y’
phases of this alloy, and assess how specific elements segregate to
grain boundaries. The latter is becoming increasingly important in
disc alloys required to operate for longer periods at elevated tem-
peratures in modern flight paths, leading to rising concerns over
creep and low cycle fatigue characteristics [33].

2. Experimental

Samples of RR1000 were provided by Rolls-Royce plc. This alloy
was manufactured using powder metallurgy, and following hot
isostatic pressing and recrystallization during extrusion it was
isothermally forged to shape. After a solution heat treatment at
1120 °C (sub-solvus) for 4 h, it was air-cooled then precipitation
aged at 760 °C for 16 h to yield a fine-grained (~5 um average dia.)
microstructure.

For optical and electron microscopy, samples were cut from the
as-received material using an ISOMET™ 5000 precision saw. These
were successively ground using a series of SiC grit papers before
being diamond polished to a final 1 pm surface roughness finish,
then colloidal silica polished up to 0.04 um finish. Samples pre-
pared in this manner were analysed using a combination of Zeiss
NVision 40, Zeiss Merlin and JEOL 6500 Scanning Electron Micro-
scopes (SEM), varying the voltage between 5 and 15 kV to suit the
signal-to-noise requirements of different high resolution secondary
and backscattered electron micrographs. Energy Dispersive X-ray
Spectroscopy (EDX) was performed on selected areas of the sam-
ples in a Zeiss Merlin SEM equipped with two Oxford Instruments
detectors and Aztec software. Separate samples for optical/SEM
studies were etched in 10 vol% orthophosphoric acid in H,O at 10 V
for 5-10 s to preferentially dissolve the y matrix.

For APT analysis, matchsticks (0.5 x 0.5 x 15 mm) cut from the
alloy were initially electropolished in a 10 vol% perchloric acid/
acetic acid solution, then finished in a solution of 2 vol% perchloric
acid in butoxyethanol to suitably sharp needle-shaped samples. To
examine grain boundaries and site-specific regions, bulk samples
mechanically polished as described above were utilised to prepare
needles by the lift-out procedure [34] using a Zeiss NVision dual-
beam FIB, taking care to minimize Ga* beam-damage with a final
2 kV/30 pA polish. APT data was collected using a Cameca LEAP™

3000X HR instrument in the Department of Materials, University of
Oxford. The majority of samples were run in voltage mode at a
specimen temperature of 50 K, with 200 kHz pulses at a pulse
fraction of 20%. The small subset of potentially more fragile samples
containing grain boundaries were run in laser mode, with pulse
energies of 0.2—0.6 n]J.

3. Results
3.1. SEM/EDX

Fig. 1a—b shows SEM secondary electron micrographs of the
etched RR1000 microstructure at two different magnifications.
Together these figures reveal a trimodal size distribution of y’
precipitates and their relative location in the microstructure. The
largest (>500 nm) primary Yy’ precipitates are the least prevalent,
located along grain boundaries, as indicated in Fig. 1a). The sec-
ondary Yy’ (~250 nm in size) are the most abundant by volume
fraction, while the smallest tertiary y’ (<50 nm) precipitates appear
uniformly distributed but are most easily visible at grain
boundaries.

Also highlighted in Fig. 1a is the presence of two intragranular
precipitates. Fig. 1c) isolates these at high magnification, along with
a series of EDX maps identifying them as a Mo-Cr rich boride and a
smaller Ta-Hf rich carbide. These were not observed within every
grain. Some borides also appeared enveloped within a ¥’ shell. Site-
specific APT analysis, enabled by FIB lift-out specimen preparation,
was undertaken to more precisely examine the composition of the
larger intragranular borides, as discussed below.

Smaller elongated borides (approximately 1/10th the size of
intragranular borides) were also noted infrequently along grain
boundaries; most boundaries examined however were boride free.
Furthermore etching of samples to expose phases reduces EDX
resolution through creation of surface topographical features.
These can partly shield the signal making smaller particles chal-
lenging to identify. However the composition of the smaller borides
appeared very similar to that of the intragranular one shown in
Fig. 1, enriched in Mo and Cr.

3.2. Atom Probe Tomography

APT analysis across numerous samples, comprising 35 million
ions in total, provided a measurement of the overall alloy compo-
sition, in Table 1, with sufficient sensitivity to detect all minor
alloying elements. The measured concentrations are in close
agreement with specified values for the major elemental additions,
with the exception of Zr (0.1 at.% nominal). Trace levels of Fe
(0.4 at.%) and Si (0.06 at.%) were also identified. The primary y’
phases are retained from sub-solvus processing, whilst the sec-
ondary and tertiary Y’ phases nucleate during different stages in the
cooling [35]. The primary y’ particles, which are the largest, inco-
herent, and located at the grain boundaries form during alloy so-
lidification, prior to any thermal-mechanical processing. The alloy
is then aged below the solvus temperature in order to preserve
these, where they act to pin the grain boundaries, inhibiting grain
coarsening to create a finer grain size distribution. The secondary
and tertiary vy’ particles however form during subsequent thermal
ageing treatments. An in-depth modelling study on RR1000 [36]
has correlated thermal treatments to different size distributions
of secondary and tertiary y’, and their relative contributions to the
overall strength of the alloy.

Hence, the matrix composition differs relatively for each stage at
which these phases respectively form, leading to slightly different
v' chemistries. The chemistries of tertiary vy’ precipitates are the
most distinct of the three, containing significantly more Mo and Al
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Fig. 1. a) SEM Secondary Electron micrograph of etched RR1000 microstructure with labelled grain boundary primary y’ phase, an intragranular (Ta-Hf rich) carbide and (Mo-Cr
rich) boride. b) High magnification view of secondary and tertiary y’. c) Close-up of isolated carbide/boride and corresponding EDX maps showing elemental compositions.

Table 1
Compositions of overall alloy (combined datasets), primary, secondary, tertiary vy’
and matrix, along with nominal specification.

at.% Ni Cr Co Mo Al Fe Ti B Ta Hf
Nominal 509 165 179 3 635 — 43 0.08 0.63 0.16
Overall 496 176 18.0 324 6.19 039 400 0.06 054 0.13

Primary v’ 672 128 6.55 075 123 009 932 004 141 0.25
Secondary Y 67.7 141 6.68 0.74 116 0.03 9.51 0.04 143 0.37
Tertiary vy’ 674 148 6.07 166 142 007 771 0.06 088 0.03
Matrix 36.0 30.1 263 484 146 066 026 0.08 003 -

at the expense of Ti, Ta and Hf.
The chemical partitioning into the various y’ phases for selected
major elements is visualised in the atom maps in Fig. 2. These

Cr Ni

Co Al

Mo Ti

20nm

Fig. 2. Atom maps showing distribution of selected major species, along with sec-
ondary/tertiary y’ precipitates demarcated using Cr 7 at.% isosurfaces.

highlight the curved secondary y’-y interfaces also apparent in the
SEM images. It is evident that the tertiary 7y’ precipitates are
approximately spherical, but with a range in sizes. In APT, regions
containing a higher or lower concentration of a particular element
can be highlighted by the application of iso-concentration surfaces
onto the atom map. In Fig. 2 an iso-concentration defining regions
containing more than 7 at.% Cr is applied to demarcate all y-y’ in-
terfaces and in particular highlight the presence, size and shape of
the tertiary Yy’ precipitates. Iso-concentration regions were also
used to isolate the different regions of the microstructure that they
define and enable accurate measurement of the composition of
each feature, as presented in Table 1. The 7 at.% Cr surface used for
these analyses is a relatively conservative value, defining a position
of the tertiary y’-y interface closer to the centre of y’ precipitate.
Although this definition will slightly underestimate average ter-
tiary v’ sizes, it ensures the accuracy of the measured precipitate
chemistries, particularly for the smallest ones. Using this approach
an average radius of 5.4 + 2.1 nm was determined for all tertiary 7y’
precipitates fully encapsulated in the APT reconstruction.

The NisAl basic structure of ¥’ phase in a binary Ni-Al system
contains Ni atoms in the fcc sublattice sites (o) and Al atoms in the
corner sublattice ones (B). In the more complex RR1000 alloy, y’
chemistry at equilibrium is assumed to take the form of (Ni,Cr,-
Co,Mo)3(AlTi,Ta,Hf). From the APT data, the mean value of the a:f
ratio is 3.3 + 0.2:1 in the tertiary v/, somewhat higher than that the
nominal value of 3:1 predicted by assumed stoichiometry. The
secondary Yy’ phase has an identical ratio of 3.3:1, while in the
primary vy’ it is 3.2:1. All these suggest that the predicted model
stoichiometry is therefore somewhat oversimplified in this alloy.

Determining phase chemistries also allows calculation of the v’
volume fraction ¢,/, a major design parameter in disc-alloys but one
which can be difficult to verify experimentally by conventional
techniques. It can be calculated using the Lever rule:
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Cn = dyCy + (1 - ¢y,)q,

where Cp, Gy and C, are the concentrations of each alloy species in
the overall material, Y’ and y phases respectively. A plot of C;-Cy vs.
Cy-Cy should yield a straight line with gradient equal to ¢y, as
shown in Fig. 3. From this the vy’ volume fraction is 43 at.% (42 wt%),
determined using the secondary y’ chemistries which dominate the
microstructure. This is in reasonable agreement with a design
expectation of 45—48 wt%.

The elemental partitioning behaviour across the primary, sec-
ondary and tertiary y’-y interfaces, respectively, are investigated by
means of proximity histogram analyses presented in Fig. 4a—f.
Proximity histograms are a measure of phase chemistry as a func-
tion of distance from an interface as defined by an iso-
concentration surface. In the case of the tertiary y’, because of the
small surface areas of each single precipitate interface, the histo-
gram is generated using data averaged over many precipitates to
improve statistical analysis. For the main alloying elements, the
proximity histogram profiles are very similar across all three
precipitate-matrix interfaces, typically less than 2 nm in width.
However, some species do show significantly different behaviour;
approaching the interface from within the vy’ phases, the Ti and Ta
levels fall, while both Mo and Al contents rise slightly in all pre-
cipitate types.

The distribution of Hf across the primary and secondary y’-y
interfaces has a much more extended profile shape. In Fig. 5a a
cylindrical region of interest (diameter 15 nm and length 135 nm) is
defined, oriented perpendicular to the interface to examine the Hf
atomic distribution profile at the maximum possible distances from
it. The size of displayed Hf atoms in Fig. 5a has been increased for
visual clarity. The resulting concentration profile as measured over
this length is shown in Fig. 5b. This highlights a continued increase
in Hf concentration on moving into the y’ phase up to ~80 nm away
from the interface, ultimately reaching a maximum of approxi-
mately 0.6 at.%. While Fig. 5 represents measurement of a specific
secondary y’-y interface, the Hf proximity histograms in Fig. 4b)
and d) suggest very similar behaviour in both primary and sec-
ondary y'. Hf partitions very strongly to both these phases, present
at nearly 3.8 times the nominal alloy content.

In certain volumes within the APT reconstruction the spatial

C-C
185" 7 Ni
4 e

10 4 /

Cr.~

-15 4

Fig. 3. Plot of C,-C, vs. Cy-C, generated from compositions of selected species in
Table 1.

resolution is sufficient to observe crystallographic planes perpen-
dicular to the analysis direction throughout the specimen depth.
For vy’ phases, where the analysis direction and (100) crystal di-
rection closely aligned, it was possible to produce spatial distribu-
tion maps (SDMs) [37,38], effectively 1D distribution profiles along
a specific crystallographic direction, revealing site-occupancies of
different elements within the ordered phase. SDM analyses for a
secondary Yy’ phase are presented in Fig. 6, plotting the distribution
of solutes relative to the position of the Ni atoms. Each graph in this
figure is generated by examining the local neighbourhood around
each individual Ni atom, building a frequency distribution of the
relative separation in the <100> direction of the surrounding
atoms. The dotted vertical lines mark positions of the B-lattice sites
in the intermetallic y’. It is apparent from the peak heights that Al,
Ti, Ta, Mo (to a lesser extent) and Hf prefer to reside on the B-lattice
sites. The Hf data is also visualised in the close-up slice through an
atom map of Fig. 6¢. In contrast, Co and Cr favour the a-lattice sites.
Similar results were obtained in the site-occupancy analysis of the
tertiary v’ phase, although the diminished statistics due to smaller
numbers of atoms in these inevitably leads to much less distinct
peaks in SDMs. The primary v’ phase was only examined through a
separate targeted lift-out which did not reveal a suitable lattice
structure for site occupancy analysis.

3.3. Grain boundary/boride analysis

The alloy chemistry at a grain boundary was examined, Fig. 7,
highlighting a randomly selected y-y grain boundary. Also indi-
cated on the atom map is a cylindrical region of interest perpen-
dicular to and intersecting this grain boundary. A 1D elemental
concentration profile measurement through the length of this
cylinder and crossing the boundary is displayed in Fig. 7b. The
profile shows a marked change in chemistry at the grain boundary,
with strong segregation of Mo and B, and slight enrichment of Cr
and C. Quantification of the enrichment of these elements was
estimated using the Gibbsian interfacial excess (I') [39]. Values of T’
(in atoms/nm?) determined were 11.0 + 0.2 (Mo), 2.7 + 0.8 (Cr),
5.6 + 0.6 (B), 0.6 + 0.3 (C). It is important to note that the exact
levels of segregation will depend on the character of the grain
boundary, for which dedicated EBSD-based methods are addition-
ally required for APT specimen preparation (e.g. Ref. [40]), beyond
the scope of the current work.

Analysis of the large intragranular precipitate shown by EDX to
be a Mo-Cr rich boride yielded a completely homogeneous micro-
structure (over 2M ions). The composition of this is given in Table 2,
confirming the boride has a stoichiometry corresponding closely to
M5B3. Although this mostly consists of Mo and Cr metals, there are
also traces of Ti, Ta, Ni and Co present.

4. Discussion
4.1. Experimental vs. predicted y' chemistries

To investigate the thermodynamics of different y’ phase for-
mation, ThermoCalc software and the Thermotech Ni-based Su-
peralloys Database (TTNI8) were used to predict v’ composition as a
function of temperature. From this data, shown in Fig. 8, results
from the two temperatures used in the as-defined heat treatments
(1120 °C and 760 °C), can be directly compared with the APT-
derived Yy’ compositions, as displayed in Table 3.

The modelling data shown in Fig. 8 highlights the dependence of
v’ phase compositions on temperature, in particular for Ni, Co and
Cr. At 1120 °C, predicted concentrations of Al, Ta, Ti, Hf are in good
agreement with APT data for the primary and secondary vy’ phases
(Table 3). In contrast, data for Ni, Co, Cr, Mo match less well,
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Fig. 4. Proximity histograms across y—v’ interfaces for major and minor elements in primary (a—b), secondary (c—d) and tertiary (e—f) y’ phases. Note separate Hf scaling axis.

estimating around double the levels of Co and Cr (and half that of
Mo) as seen experimentally. At an aging temperature of 760 °C, the
ThermoCalc prediction is again not in good agreement with the
tertiary y’ data, particularly for Mo, Ti, Ta and Hf. The APT measured
level of Mo is over 6 times higher than predicted, while conversely
the Hf concentration is 6 times less than the expected value.

The tertiary vy’ precipitates are the most different in chemistry
compared to the primary and secondary. These smallest phases
strongly influence the alloy strength [41], hence a more detailed
understanding of how processing and operational conditions in-
fluence their nature is highly desirable. Within the broad range of
tertiary y’ sizes (5.4 + 2.1 nm) observed by APT, it was of interest to
examine possible size-chemistry relationships. The concentration
of a single element within one tertiary y’ precipitate was subject to
a considerable degree of scatter, therefore the ratio of combined a-

site species (Ni, Co, Cr, Mo) to B-site ones (Al, Ta, Ti, Hf) was
examined. Across individual precipitates ranging in size between 4
and 20 nm, there appeared to be little difference in this ratio. A
recent STEM-EDX study on the same alloy [42] also found little
variation in composition within each type of ¥’ phase, although the
ratio shifted in favour of B-site species on moving from tertiary to
secondary to primary. However in the STEM-EDX study the
chemical resolution was restricted to precipitates >20 nm in
diameter, while the APT here is able to confirm consistent 7y’
chemistries down to nearly 4 nm.

The greatest difference between these two studies is the value of
the a.:f site species ratio for tertiary y/, determined to be 3.3 + 0.2:1
via APT compared to 2.62 + 0.05:1 using STEM-EDX [42]. Aside from
possible quantification limitations by the STEM-EDX method, this
may be due to differences in ageing conditions which have been
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shown to significantly impact phase chemistries. For example in a
prior APT study of Rene 88DT [15] excess levels of B-site elements
were retained in secondary vy’ phases following insufficient ageing
to achieve equilibrium; after even 50 h ageing at 760 °C the Co, Mo
and in particular Cr levels in the secondary y’ were higher than in
the primary.

The sublattice preference of Cr (and indeed Co) do not show
distinct trends in the existing APT data, an issue underlined by Liu
et al. [43]- “It is unclear whether Cr occupies the Ni or Al sublattice
sites”, while Booth-Morrison et al. [44] state “The site preference of
Cr has generally been found to depend on the alloy composition
and aging treatment”. For RR1000, the one directly comparable
prior study on the same alloy by Collins et al. [45] use a combina-
tion of XRD and simulated XRD patterns to determine that “Co and

Cr will predominantly occupy the Ni sublattice”. This is entirely
consistent with our own finding — we indeed see Cr mainly occu-
pying the Ni sublattice in Fig. 6, but there is evidence of Cr also on
the Al sublattice sites. The overall consensus is that even slight
changes in composition can affect this preference and that Cr can be
particularly influenced as it “only weakly” prefers the Al sublattice
sites in a model Ni-Al-Cr-Ta alloy, as determined using first-
principles calculations [44].

4.2. Interfacial effects and role of hafnium
The STEM-EDX study identified Hf only in the primary y’ pre-

cipitates, enriched to 0.66 at.% [42]. In comparison APT confirms
that Hf is present in both the primary and secondary 7y’ precipitates,
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Table 2
Composition (in at.%) of species located at intragranular boride in RR1000.

B Mo Cr Ti Co Ni Ta

359 338 22.0 2.6 22 1.9 1.2
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Fig. 8. ThermoCalc prediction of RR1000 equilibrium composition as function of
temperature.

Table 3
Thermocalc-predicted/APT-determined y’ compositions for selected elements.

at.% Ni Cr Co Mo Al Ti Ta Hf

Thermocalc @ 1120°C 619 2.86 116 031 112 108 1.05 0.25
Thermocalc @ 760 °C 664 1.70 851 026 123 929 134 0.18

Primary v’ 672 128 655 075 123 932 141 025
Secondary Y’ 677 141 668 074 116 951 143 037
Tertiary v’ 674 148 6.07 166 142 7.71 088 0.03

at a very similar level of 0.6 at.%. An extended Hf concentration
profile was observed in both primary and secondary vy’ phases, with
negligible Hf present within the tertiary y’ precipitates. A constant
level of Hf concentration was only seen some 80 nm from the y’-y
interface. The proxigrams in Fig. 4 reveal compositional variations
leading up to the y’ interface for Ti, Ta, Al and Mo. These trends in
the profiles are consistent across all primary, secondary and tertiary
Y/, but are most apparent across the primary y’-y interface. With
the exception of Mo, all of these elements are classified as y’-sta-
bilisers, residing on the B-lattice sites. However the spatial distri-
bution maps of Fig. 6 show that for RR1000, Mo is also
preferentially located in these [-lattice sites. This suggests that
there may be competition for the finite number B-lattice sites
leading up to the y’-y interface.

Kinetic effects likely contribute to the observed phase compo-
sitions. However, the lack of temperature dependence on the
observed extended concentration profiles across the precipitate-
matrix interfaces in Fig. 4b, together with the confinement of this
behaviour to y’-stabilising elements, suggests that some other
factor is at work. Lattice misfit effects may play a significant role
here. The lattice misfit (¢) between the y/y’ regions is defined by:

ayr —ay

ay + 0y

0=2

where ay and ay terms correspond to the lattice spacings in the
different phases. These in turn can be estimated from Vegard's Law,
defined for the vy’ phase as:

0 Y T
a, _a7/+ZFi P
1

This term (along with an equivalent expression for the y phase),
demonstrates lattice parameters are related to the mole fractions of
each solute species present (x), and to their Vegard coefficients (I"),
which is effectively a measure of the size discrepancy between each
solute species and the solvent Ni atoms. For the elements demon-
strating extended concentration profiles across the y’-y interface,
the Vegard coefficients in a NizAl phase decrease in the order:
Hf > Ta > Ti > Mo [41]. This order is also consistent with the relative
depletions in each respective element leading up to the y’-y in-
terfaces in Fig. 4. Near the interface, the presence of the slightly
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more compact y phase prevents the lattice from deforming suffi-
ciently in the y’ phase to allow large species such as Hf to fit. This
may also explain why so little Hf is observed in the tertiary pre-
cipitates; these are simply too small to allow for the lattice spacings
to sufficiently relax to accommodate Hf, while some (but still less)
Ti and Ta can be retained. Regardless of the mechanism, the devi-
ation from expected chemistry at the y’-y boundaries may have
important implications for predicting dislocation motion through
the alloy.

4.3. Site occupancy behaviour

The preferences of elements to occupy specific y’ lattice sites are
summarised in Table 4. A number of studies have attempted to
resolve the site preference of elements using combinations of first
principles modelling, APT and XRD methods in a range of alloys.
These often demonstrate strongly composition-dependent behav-
iour. For example in a model alloy it has been shown that Ta
competes with W for B-lattice sites, to such an extent leading to
complete reversal of W atom partitioning into the y matrix [ 14]. For
the elements in RR1000, relevant further examples of their
behaviour in y’ as measured/predicted within other known alloys
are also included in Table 4. It is apparent that despite significant
research there is still no consensus on lattice site preferences for
certain species in y’. For example, Mo prefers a-lattice sites in
Rene88 [46], but strongly favours B-lattice sites in a model Ni-Al-
Mo alloy [47] and in NisAl [48]. In RR1000, while there is some
Mo within the a-lattice sites, the majority clearly prefers the B-
lattice site, Fig. 6b.

There are also discrepancies in the reported site preferences of
Co and Cr, the most prevalent solutes in many Ni-based alloys. In
RR1000, Co partitions strongly to a-lattice sites. The site preference
is however predicted to be particularly composition dependent
[48], switching to B-lattice sites at Ni mole fractions above 0.75.
Below 0.72 it prefers the a-lattice sites, in agreement with the
experimental data here (Ni mole fraction of 0.68). Cr also strongly
prefers the a-lattice sites in RR1000. However a slight B-lattice
preference is predicted in the Ni3zAl system [48], while in Rene88
there is no clear consensus - APT suggests the B-lattice, but syn-
chrotron XRD indicates the a-lattice [46]. This discrepancy was
attributed to the XRD fitting model relying on the limited amount
of APT data, highlighting the difficulties in extracting site occu-
pancies in small precipitates.

For Hf, which partitions strongly to y’, all data in Table 4 in-
dicates a preference for B-lattice sites. However, even for this
element a recent APT study of two model alloys observed Hf par-
titioning to the y matrix [49]. The authors attributed this to a low
Co:Cr ratio; Cr increases the solubility of Hf in the y matrix, while
Co stabilises y’ for Hf. Comparing the model ME-9 alloy with
RR1000, the main difference is the Co vy’ content; for every Cr atom
there are four Co atoms in RR1000, compared to just over two Co
atoms in ME-9. Our results are therefore consistent with their
explanation.

Table 4

This discussion of site occupancies highlights the complex,
strongly composition-dependent interaction between elements,
and emphasises that verifying predictions made using model alloys
against actual engineering materials is vital. New generation Ni-
disc alloys currently being developed by gas-turbine manufac-
turers have a range of variations in Cr, Co and Mo; these will need to
be examined directly to understand element partitioning and its
consequences.

4.4. Grain boundary/boride chemistry

A single grain boundary along with an intragranular boride were
also inspected by APT. Segregation of Cr, Mo, B and slight C
enrichment was seen at a y-y grain boundary. B and C are intro-
duced during processing as they strengthen grain boundaries,
improving creep resistance, which is an active area of research [41].
However in excessive quantities they have potentially negative
effects, forming continuous boride/carbide layers between
boundaries which reduces strength. Only isolated boride/carbides
were identified by SEM in RR1000; most were found as spherical
particles within grains.

A prior APT study focussing solely on grain boundaries in an N18
superalloy showed similar enhancement of Mo and B at y-y grain
boundaries [26]. Over the four such interfaces examined the
average T values were 9.2 (Mo) and 8.3 (B) atoms/nm? for N18
containing 3.8 at.% Mo doped with 0.08 at.% B. We therefore see
slightly more Mo segregation (11 atoms/nm?) and less B (5.6 atoms/
nm?) in the current study, but the numbers are comparable. Carbon
is also present in the N18 alloy (0.08 at.%), and while APT demon-
strated very slight grain boundary segregation it was at a level
insufficient to quantify. In the current work we detect traces
(0.01 at.%) of C in the bulk, with no obvious y/y’ partioning. At the
grain boundary segregation of C is weak but detectable, indicating
that B has a much stronger driving force to accumulate here. The
same trend has also been noted on Inconel 718 [1], in which C
competes with B at grain boundaries, illustrating a further inter-
action between trace species.

While Mo and Cr dominate the boride phase identified, there are
also traces of Ti, Co, Ni and Ta. A recent study of boron doping in a
new STAL15-CC polycrystalline superalloy also revealed MsB3 bo-
rides by APT, confirming the crystal structure by TEM [2]. In this
alloy the Cr content is very similar to RR1000, but with only 0.6 at.%
Mo compared with 3.2 at.% here. The Mo level we detect in the
boride here is also much higher, 33.8 at.% compared to only 2.3 at.%
in STAL15-CC. The composition of these phases is non-trivial, and
worthy of further detailed separate studies, particularly if boride
levels are raised in future alloys to enhance creep properties. The
same is also true for dedicated examination of the relationship
between grain boundary character and segregation levels. In the
current work there is however no indication of Hf present at any
point within the grain boundaries as intended; it is all caught up
within the primary/secondary y’ phases and carbides.

Summary of site dependencies for selected elements in y’ phases for current work and examples from literature on APT studies of engineering alloys (also including XRD) [46],
a model ternary [47], a doped NisAl [50] sample and from first principles calculations within NisAl [48].

Ni Cr Co Mo Al Ti Ta Hf
RR1000 o o o Mixed, mainly B B B B B
Rene88 [46] o o, B No pref. a? B B - -
Ni-Al-Mo [47] o - — B B — — —
NisAl [50] o - o — B — — B
Ni3Al (model) [48] a B Comp. dependent B B B B B

2 XRD data-based measurement.
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5. Conclusions

A detailed characterisation of individual elemental distributions
within the commercially important superalloy RR1000 has been
undertaken utilising Atom Probe Tomography, Scanning Electron
Microscopy and thermodynamic modelling. Overall, the unique
features identified in this alloy demonstrate it is vital that advanced
techniques are used to understand fundamental behaviour for in-
service materials. From this study we have made the following
main observations:

e The composition of the Yy’ phases differs between the primary,
secondary and in particular tertiary phases, a result which is not
in complete agreement with ThermoCalc modelling.

At the y'-y phase boundaries, the chemistry within the v’ re-

gions deviates further from expectations, particularly for Hf, Ti

and Ta. This may have important implications for dislocation
motion at such boundaries.

Tertiary v’ precipitate composition is uniform across 4—20 nm in

size.

e RR1000 demonstrates unique site occupancies for Mo, Co and Cr
in the v’ phase, not in accordance with observations on simpler
model alloys.

e The y—vy grain boundary chemistry is markedly different than

the matrix, with a large Gibbsian interfacial excess of Mo

(11.0 = 0.2 atoms/nm?) and B (5.6 + 0.6 atoms/nm?).

Grain boundary and intragranular borides are present, with an

M5B3 structure mainly containing Mo and Cr, along with trace

levels of Ti, Ni, Co and Ta. No Hf is present at all at the grain

boundary, at variance with expectations. Smaller intragranular

Ta-Hf rich carbides are also detected.
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