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Abstract

We develop a novel model for studying agent-environment
systems, where the agents are implemented via feed-forward
ReLU neural networks. We provide a semantics and develop
a method to verify automatically that no unwanted states are
reached by the system during its evolution. We study several
reachability problems for the system, ranging from one-step
reachability, to fixed multi-step and arbitrary-step to study
the system evolution. We also study the decision problem of
whether an agent, realised via feed-forward ReLU networks
will perform an action in a system run. Whenever possible,
we give tight complexity bounds to decision problems intro-
duced. We automate the various reachability problems stud-
ied by recasting them as mixed-integer linear programming
problems. We present an implementation and discuss the ex-
perimental results obtained on a range of test cases.

1 Introduction
Over the past ten years, there has been growing interest
in trying to verify formally the correctness of AI systems.
This has been compounded by recent public calls for the
development of “responsible” and “verifiable” AI (Russell,
Dewey, and Tegmark 2015). Indeed, since the development
of ever more complex and pervasive AI systems including
autonomous vehicles, the need for higher guarantees of cor-
rectness for the systems has intensified.

Differently from many areas within AI, in multi-agent
systems (MAS) there already has been considerable activ-
ity aimed at verifying MAS formally. In one line, efficient
model checkers for finite state MAS against expressive AI-
based specifications, such as those based on epistemic logic,
have been developed (Lomuscio, Qu, and Raimondi 2017;
Gammie and van der Meyden 2004). Abstraction techniques
have also been put forward to verify infinite state MAS (Lo-
muscio and Michaliszyn 2016) and approaches for param-
eterised verification for MAS and swarms have been intro-
duced (Kouvaros and Lomuscio 2015). In a different strand
of work, theorem proving approaches have also been tai-
lored to MAS (Alechina et al. 2010; Shapiro, Lespérance,
and Levesque 2002).

While significant results have been achieved in these
lines, their object of study is a system that is given either
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via a traditional programming language or a MAS-oriented
programming language. None of the present approaches
can provide any guarantees on systems synthesised by ma-
chine learning methods. However, systems based on ma-
chine learning are increasingly deployed in a variety of ap-
plications. These systems are not programmed directly; in-
stead, neural networks are first appropriately trained against
data and then employed to conduct a particular task. Present
applications of deep neural networks include state-of-the-
art systems for automatic vision (Krizhevsky, Sutskever,
and Hinton 2012), natural language processing (Sutskever,
Vinyals, and Le 2014), and recommender systems (van den
Oord, Dieleman, and Schrauwen 2013). If the present pace
of development in machine-learning continues, it is expected
that machine learning technology will provide key parts
in a wide range of AI applications, including robotics, au-
tonomous systems, and AI decision making systems.

These will be closed-loop systems where the actions of
a neural agent, e.g., a controller implementing a neural net-
work, affect the environment, which is in turn observed by
the agent. We are not aware of any method that can give
guarantees on the behaviour of this important class of forth-
coming AI systems. This paper aims to make a first contri-
bution on this topic by devising a method to study reacha-
bility for systems composed of a neural agent interacting in
a closed loop with an environment.

We begin this investigation by addressing reachability as
this is a key property to analyse on any system. In a nutshell,
the reachability decision problem consists in determining
whether a given state is reachable in one or more steps from
some initial state of the system. By performing reachabil-
ity analysis, we can establish whether an unwanted state of
the system, e.g., an erroneous state or a bug, is ever reached
during the system evolution. Analysing reachability is of-
ten of lower complexity than exploring temporal properties,
such as those expressible in Linear Temporal Logic (Pnueli
1977). Given the high computational cost of verifying spec-
ifications in temporal logic, reachability analysis is often
the only realistic property that can be verified on real sys-
tems; for example, in multi-threaded systems a key part of
the analysis concerns race conditions, which are expressible
as reachability properties (Bouajjani et al. 2005).

In this paper, while we give a general agent-environment
model, we focus on systems comprising of agents imple-



mented via deep feed-forward neural networks, where the
activation function is governed by ReLU functions (Haykin
2011; Nair and Hinton 2010). The rest of the paper is organ-
ised as follows. In Section 2, we fix the notation of ReLU-
based neural networks and mixed integer linear programs. In
Section 3, we present a model of a neural system as a com-
bination of a neural agent and an environment and define its
evolution from a set of initial states. In Section 4 we intro-
duce a number of reachability decision problems for these
systems and give methods, based on mixed-integer linear
programming, to solve them. NSVERIFY, a toolkit imple-
menting these methods is presented in Section 5, where ex-
perimental results are also given. While we are not aware of
other methods addressing closed-loop systems, very recently
some methods have been put forward to study the possible
output of ReLU-based networks. We present further exper-
imental results in Section 6, by comparing the performance
of NSVERIFY against existing approaches in the literature
for the limited case of studying the network output. We ex-
emplify all concepts and the implementation on the OpenAI
Gym (Brockman et al. 2016) task PENDULUM-V0.

Related Work. The literature on verification of MAS ad-
dresses systems where the model is given either declara-
tively or procedurally. While we are inspired by this work,
instead we here study a class of agent-environment systems
where agents are based on neural computation.

Much of the literature on feed-forward neural networks is
concerned with training and does not address the formal ver-
ification question. Currently, techniques used for evaluating
the correctness of networks rely on test datasets which can
provide statistical guarantees at most and are thus incom-
plete. The few exceptions that we are aware of are discussed
below. We note that all of these only address the issue of
whether a network can output a value, i.e. in an open-loop
system. The method we put forward also allows this but is
more general since it also addresses closed-loop systems.

(Kurd and Kelly 2003) advocates the use of safety spec-
ifications to validate neural networks. The work here pre-
sented on reachability partially falls within the types 3 and
4 of safety which they discuss. While the broad direction
of their work is in line with what is pursued here, no actual
verification method is discussed.

The research line on adversarial examples, e.g. (Bastani et
al. 2016), can be seen as special case of reachability where
the input set is constrained with respect to a specific input;
thus the formulation here proposed is more general even for
the case of open-loop system. Related to this, a method for
finding adversarial inputs using a layer-by-layer approach
and employing satisfiability modulo theories (SMT) solvers
was recently proposed (Huang et al. 2017). This technique
supports any activation function, not just ReLU as we do
here. However, because the focus is on adversarial inputs, as
before, the method seems to not immediately generalise to
solving reachability on feed-forward networks.

A methodology for the analysis of ReLU feed-forward
networks, conducted independently from this research and
originally around the same time has recently appeared (Katz
et al. 2017). While their method is based on SMT-solving,

we only use linear programming here. Moreover, while we
here address the composition of a neural agent with an en-
vironment, (Katz et al. 2017) is concerned with stand-alone
neural networks only as discussed above. A comparison lim-
ited to neural networks only is presented in Section 6.

A further approach to combining SMT and linear pro-
gramming (LP) techniques to assess feed-forward networks
has also recently appeared (Ehlers 2017). As above, no for-
mal correspondence is made between reachability and their
encoding, and closed-loop systems are not analysed. The
work presented in (Cheng, Nührenberg, and Ruess 2017)
uses a mixed-integer linear programming approach to solve
the verification problem for a single network, but like other
tools, does not consider reachability properties of closed-
loop systems. Finally, in (Bunel et al. 2017), a comparative
study of the methods currently used for the verification of
neural networks with piecewise-linear activation functions.
Along with this, the authors propose a method based on the
Branch-and-Bound (Lawler and Wood 1966) framework. As
with other approaches above, closed-loop systems of agents
and environments are not considered. All these methods are
compared to the one we here present, to the extent that this
comparison can be made, in Section 6.

2 Preliminaries
In this section we present concepts essential to the rest of
the paper. In particular, we introduce the class of neural net-
works that we will study and the linear programming tech-
niques that we will use. For more details on neural net-
works and linear programming we refer to (Haykin 1999;
Dantzig 1998).

Feed-forward neural networks. Recall that feed-forward
neural networks (FFNN) are one of the simplest classes of
neural networks consisting of multiple hidden layers and ad-
mitting no cycles (Zell et al. 1994).

We now fix some notation that will be used throughout
the paper A feed-forward (multilayer) neural network N is
made up of a number of layers; we denote the ith layer of N
as L(i); each layer L(i) has a weight matrixW (i), a bias vec-
tor b(i), and an activation function as σ(i). Each layer of the
network consists of multiple nodes, which are single com-
putation units that combine input from the values of nodes
in the previous layer, and produce an output. This output is
to be used in the computations of nodes in successive layers.

For a network with n layers, we refer to L(1) as the in-
put layer of the network, and L(n) as the output layer. Any
additional layers which lie between these two layers are re-
ferred to as hidden layers. Note that we only consider fully-
connected neural networks here, meaning that all nodes in
each layer have a connection to every node in the adjacent
layers (with the exception of the input and output layers L(1)

and L(n), which intuitively are only connected to layers L(2)

and L(n−1) respectively).
Each node in each hidden layer has an associated acti-

vation function, which applies a transformation to a linear
combination of the values of the input (incoming) nodes.
This quantity will define the value of the node, which can



then be passed into a subsequent node.
We consider only networks with hidden layers utilising

Rectified Linear Unit (ReLU) activation functions, defined
ReLU(x) = max(0, x), where x represents the linear com-
bination of values from incoming nodes in the previous
layer. The value of the node will be the output of the ReLU
function. ReLU activation functions are widely used and
are known to allow FFNNs to generalise well to unseen in-
puts (Nair and Hinton 2010).

Neural networks are generally used to learn highly non-
linear, non-programmatic functions; upon training, the net-
work computes an approximation of such a function by
means of the weights and biases learned.
Definition 1 (Function computed by FFNN). Let N be an
FFNN. For each layer L(i) of N , let c and d denote respec-
tively the number of inputs and output nodes of layer i. We
define the computed function for L(i), denoted f (i) : Rc →
Rd, by f (i)(x) = σ(i)(W (i)x+b(i)). Further, for anm-layer
FFNN N with p input nodes and q output nodes, the com-
puted function for N as a whole, f : Rp → Rq , is defined as
f(x) = f (m)(f (m−1)(. . . (f (2)(x)))).

Linear Programming. Linear programming (LP) is an
optimisation technique where we seek to maximise a lin-
ear objective function subject to a set of linear constraints
on the input values. Efficient algorithms exist to solve linear
programming problems (Winston 1987). For the purposes
of this paper, we consider mixed integer linear programs,
which contain both real and integer variables.
Definition 2 (Mixed Integer Linear Programs). A func-
tion f(x1, . . . , xn) is said to be linear if for some c ∈
RN , we have f(x1, . . . , xn) =

∑N
i=1 cixi. For any lin-

ear function f(x1, . . . , xn), and any b ∈ R, the ex-
pressions f(x1, . . . , xn) = b, f(x1, . . . , xn) ≤ b and
f(x1, . . . , xn) ≥ b are said to be linear constraints. A mixed
integer linear program (MILP) is an optimisation problem
where the objective function is linear and the constraints on
the variables of the objective function are linear. MILP prob-
lems allow for real, binary and integer decision variables.
Definition 3 (Linearly Definable Set). Let S ⊆ Rn. We
say that S is linearly definable if there exists a finite set
of linear constraints CS such that S = {x ∈ Rn |
x satisfies every constraint in CS}. We define one such CS

to be the constraint set of S.
Notation. For a linearly definable set S with constraint

set CS , we take vS to be the LP variables used in defining
CS . We use the term linearly definable function to refer to
any function which can be encoded as a set of mixed integer
linear constraints. This includes piecewise linear functions,
logical Boolean functions (∧, ∨, ¬), max, min, the absolute
value function |·|, as well as indicator and conditional con-
structs. In the following we will refer to feed-forward neural
networks which exclusively use ReLU activation functions
throughout all hidden layers as ReLU-FFNNs.

3 Neural Agent-Environment Systems
In this section we introduce the notion of a neural agent-
environment system. We will then present a restriction of

these general systems called linearly-definable neural agent-
environment systems and show how to obtain such a linearly-
definable system from a general one.

At the core of our model is the concept of an autonomous
agent situated in an environment performing actions onto
this environment and observing and reacting to their ef-
fects (Wooldridge 2009). We here limit ourselves to mem-
oryless agents that react purely to the current state of the
environment. In traditional agent-based systems, the agent’s
decision-making mechanism, which determines which ac-
tion to perform given the observations and the present state,
is a program, often in an agent-based programming lan-
guage. Instead, we here consider decision-making mecha-
nisms synthesised from data and implemented via ReLU-
FFNNs. For ease of presentation, we assume that the agent
has full observability of the environment, i.e. that the input
to the agent’s ReLU-FFNN is the full state of the environ-
ment. This restriction can easily be removed by introducing
an additional function from the environment to the agent’s
input, but this is not pursued here for ease of presentation.

General Neural Agent-Environment Systems
A neural agent-environment system consists of a closed-
loop system comprising an agent and an environment. The
environment is stateful and updates its state in response to
the action of the agent. The agent is stateless and chooses an
action on the basis of the state of the environment, which is
fully observable. We begin by defining the environment.

Definition 4 (Environment). We define an environment as a
tuple E = (S, tE), where:

• S is a set of states of the environment,
• tE : S×Act→ S is a transition function which given the

current state of the environment and an action performed
by the agent returns the next state of the environment.

Throughout the paper we will consider and build upon the
example below.

Example 1. Consider the OpenAI Gym (Brockman et al.
2016) task PENDULUM-V0. The system is composed of a
pendulum and an agent which can apply a force to the pen-
dulum. The agent can observe the current angle of the pen-
dulum (where an angle of zero indicates that it is perfectly
vertical) along with the pendulum’s angular velocity. Based
on this, the agent chooses an action, which consists of a
torque (rotational force) to be applied to the pendulum. The
aim of the agent is to get the pendulum to an upright posi-
tion and maintain it there. We would traditionally consider
the pendulum as controlled by a program with pre-defined
states and transitions. Instead we consider an agent running
a ReLU-FFNN trained to perform this task (see Example 2).

We formalise the environment for this problem as E =
(S, tE) where:

• S is the set of tuples (θ, θ̇) ∈ [−π, π]× [−8, 8] where:
– θ represents the pendulum’s angle, and

– θ̇ represents pendulum’s angular velocity.



• tE : S × Act → S is the transition function mapping
the state-action pair ((θ, θ̇), a) to a new state (θ′, θ̇′) (see
below for a description of the agent component), where:

– θ′ = θ + θ̇′ · dt, and
– θ̇′ = θ̇ + (−(3g/2l) sin(θ + π) +

3(max(min(a, 2),−2))/(ml2)) · dt,
where g = 10,m = l = 1 and dt = 1/20. This function is
obtained by restricting a to the range [−2, 2] (which is the
maximum rotational force that may be applied), and then
using the equations of motion for the physical dynamics
governing the pendulum.

We now proceed to define the notion of a neural agent. To
achieve this, we will henceforth assume that the states and
actions can be defined by real vectors.

Definition 5 (Neural Agent). An agent, denotedAgt, acting
on an environment E is defined by an action function act :
S → Act, which given an environment state from S ⊆ Rm

returns an action from a set Act = Rn of admissible actions
for the agent. We henceforth assume that the function act is
computed by a ReLU-FFNNN withm inputs and n outputs
computing a function f : Rm → Rn, i.e. act(e) = f(e). We
refer to the agent as a neural agent AgtN .

Example 2. Recall Example 1. AgtN is the neural agent
responsible for keeping the pendulum upright. The agent’s
action function act can be given by a neural network, which
has been trained to apply a suitable force a ∈ R given some
environment state (θ, θ̇) ∈ S. We do not present such a neu-
ral network here, but refer to Section 5 for more details. No-
tice we assume that the neural network has been previously
trained and all the weights and biases are fixed.

We now proceed to define an agent-environment system,
which is a closed-loop system of an environment composed
with an agent acting on it.

Definition 6 (Agent-environment system). An agent-
environment system (AES) is a tuple AES = (E,Agt, I)
where:

• E = (S, tE) is an environment with corresponding state
space S and transition function tE ,

• Agt is an agent with corresponding action function act :
S → Act,

• I ⊆ S is a set of initial states for the environment.

Observe that the environment is stateful and the agent
is stateless. Given a state s ∈ S and action determined
by the output of act, the next state of the environment is
s′ = tE(s, act(s)).

If the agent is a neural agent (see Definition 5), we call the
resulting system a Neural agent-environment System (NS).

Example 3. Extending the previously defined pendulum ex-
ample, consider a neural agent-environment system NS =
(E,AgtN , I), with:

• E denoting the environment with corresponding transi-
tion function defined in Example 1,

• AgtN denoting the neural agent defined in Example 2,

• I = {(0, 0.1)} giving a single initial state with the pendu-
lum at zero angle (vertical) and beginning to rotate clock-
wise with a small initial angular velocity of 0.1.

Given an agent-environment system, we wish to define its
evolution. We formalise this notion below.

Definition 7 (System evolution). Given a neural agent-
environment system NS = (E,AgtN , I), we say that
NS evolves to state y ∈ S from initial state x ∈ S

after n ∈ N steps if t(n)E (x) = y where t
(n+1)
E (x) =

tE(t
(n)
E (x), f(t

(n)
E (x))) for n ≥ 1 and t

(0)
E (x) = x de-

notes the repeated application of the transition function tE ,
and where f denotes the neural action function of the agent
AgtN .

Example 4. Recall the pendulum problem from Exam-
ple 3 with corresponding neural agent-environment system
NS = (E,AgtN , I). Assume the system is in the initial
state x = (θ, θ̇) = (0, 0.1) with tE defined as in Example 1
and consider the trivial agent action function act(s) = 0.5
for all s ∈ S, which applies a constant force of 0.5. It
can be computed that NS evolves to state y = (θ′, θ̇′) =
(0.0264, 0.3391) in n = 3 steps since t(3)(x) = y.

Linearly-definable Neural Agent-Environment
Systems
Note that thus far our environmentE is very general and can
use any real-valued transition function. We will now define
the notion of a linearly-definable environment and linearly-
definable neural agent-environment system to allow us to
solve reachability problems on agent-environment systems.
We will later discuss how we can approximate a more gen-
eral environment to such a linearly-definable one.

Recall the notion of an environment E = (S, tE) (Def-
inition 4). If the transition function tE is linearly-definable
(Definition 3), we say that E is a Linearly-definable Envi-
ronment (LE).

We now consider systems resulting from the composition
of one agent with an environment.

Definition 8 (Linearly-definable Neural Agent-Environ-
ment System (LNS)). A Linearly-definable Neural Agent-
Environment System LNS = (LE,AgtN , I) is a tuple
where:

• LE = (S, tLE) is a linearly-definable environment on
states S with a linearly-definable transition function tLE .

• AgtN is a neural agent with its action function act char-
acterised by a neural network N with m inputs ranging
on the states S of the LE environment LE and n outputs.

• I ⊆ S is a linearly-definable set of initial states.

As before (see Definition 6), the transition function is deter-
mined by tLE(s, (act(s))) for s ∈ S.

Example 5. Recall the neural agent-environment system
NS = (E,AgtN , I) from Example 3. We can assume the
existence of a piecewise-linear approximation tLE for the
non-linear transition function tE (Eriksson, Estep, and John-
son 2004). The resulting environment LE = (S, tLE) is



linearly-definable. So, the system NS = (LE,AgtN , I) is
an LNS, since I = {(0, 0.1)} is also linearly-definable.

As a further example, where the environment is inherently
linear, consider a 1kg cart on a frictionless track of length
10. The state S of the system is given by the set of tuples
(p, u) ∈ [0, 10] × R, which denotes the position of the cart
and its current velocity. The agent AgtN chooses a force a
(in Newtons) in the range [−1, 1] to apply to the cart for 1
second. We define the transition function as follows:

tLE ((p, u), a) =


(p+ u+ a/2, u+ a) if 0 ≤ p′ ≤ 10

(10, 0) if p′ > 10

(0, 0) if p′ < 0,

where p′ = p + u + a/2. Observe that tLE is linearly-
definable, and so we can construct the linearly-definable
environment LE = (S, tLE). Assume the initial state set
I = {(0, 0)}. The resulting system LNS = (LE,AgtN , I)
is a linearly-definable neural agent-environment system.

Neurally-Approximated Environments
The restriction imposed by a linearly-definable neural agent-
environment system lies in the requirement that environ-
ments need to be linearly-definable. In realistic settings,
however, agents interact with non-linear environments.

To accommodate this we approximate the environment
by training a ReLU-FFNN to mimic the environment. This
FFNN can be trained to approximate the environment that
it models to arbitrary fidelity. We now formally define this
environment approximation.
Definition 9 (Environment Approximators). Let S ⊆ Rm

and A ⊆ Rn be a set of states and actions respectively. Let
e : S ×A→ S be an arbitrary function. Let N be a RELU-
FFNN with computed function f : Rm+n → Rm. We define
f as an environment approximator for e with error ε if for
some error metric m, m(f, e) ≤ ε.

Several choices can be made in choosing the error met-
ric m. For example, we can take the average difference be-
tween expected and actual value on a representative sample
domain. Note that by the universal approximation theorem
for FFNNs (Hornik, Stinchcombe, and White 1989), we can
approximate any continuous function to arbitrary precision
using a multilayer FFNN. Thus, the environment approxi-
mations can be as close as desired to the original non-linear
environment.
Observation 1. Since we can linearly encode ReLU-FFNNs
(we formalise this later in Definition 10), our neural approx-
imation of the environment is linearly definable.

As a consequence of Observation 1, we will henceforth
only consider linearly-definable environments where we as-
sume that, if necessary, they have been obtained by training
a ReLU-FFNN to suitably approximate a non-linear one.

4 Reachability Analysis via MILP Solving
In this section we introduce a variety of decision problems
related to reachability in neural agent-environment systems.
Reachability analysis is of fundamental importance in de-
termining whether or not a system may encounter an error

state. It can be used to determine whether a system satisfies
safety properties by checking a fault is never encountered
during any system run. We refer to (Hudak, Simonak, and
Korecko 2010) for more details.

We solve these decision problems via compilation into
mixed-integer linear programming (MILP) problem in-
stances. For ease of presentation, throughout this section we
fix a LNS = (LE,AgtN , I) and assume that the action
function of AgtN is given by an m-layer ReLU-FFNN de-
noted N . Before proceeding, we give a linear encoding of
N .

Definition 10 (Linear Encoding for a ReLU-FFNN). Let N
be an m-layer FFNN with computed function f . Suppose
x̄(i−1) and x̄(i) are vectors of real (LP) variables represent-
ing the input and output of layer i respectively and δ̄(i) is a
vector of binary (LP) variables. We use the value of δ̄(i) to
indicate whether the ReLU unit is in the “active” (equal to
its input) or “inactive” (equal to zero) phase. Specifically, for
some k ∈ N, The unit is active if δ̄(i)k = 0, and is inactive if
δ̄
(i)
k = 1. Then, the set of linear constraints encoding layer
i is defined as:

Ci = {x̄(i)j ≥W
(i)
j x̄(i−1) + b

(i)
j ,

x̄
(i)
j ≤W

(i)
j x̄(i−1) + b

(i)
j +Mδ̄

(i)
j ,

x̄
(i)
j ≥ 0, x̄

(i)
j ≤M(1− δ̄(i)j ) | j = 1 . . . |L(i)|},

where M is larger than the largest possible magnitude of
W

(i)
j x̄(i−1) + b

(i)
j . For more details on the choice of a M

in this context, we refer to (Cheng, Nührenberg, and Ruess
2017). For our purposes, we simply fix a large enough con-
stant in line with the constraint above.

Let CN = ∪mi=2Ci, which we will refer to as the set of
linear constraints encoding the network.

We now proceed to show that the set of linear constraints
above precisely captures the computation of the network.

Lemma 1. The constraint problem CN is satisfiable when
substituting x̄ for x̄(1) and ȳ for x̄(m) iff f(x̄) = ȳ.

Proof. (⇐) Suppose f(x̄) = ȳ. Then, set each x̄(i) to
f (i)(x̄), and set:

δ̄
(i)
j ,

{
0 if x̄(m)

j > 0

1 otherwise

Then, we observe that the constraints in CN are satisfied by
our definition of the neural network. The converse is similar.

Notice that if we have a non-linear environment, we can
also apply this linear encoding to a neural approximation of
the environment in order to obtain a set of linear constraints
capturing the evolution of the environment’s state. We use
CLE to denote this set of linear constraints on input vector
x̄ and output vector ȳ.

Finally, we use CI to denote the set of linear constraints
encoding the initial states on a vector v̄I .



Single-Step State Reachability
To begin with, we define a simple notion of single-step
reachability through which we will determine whether it is
the case that a set of target states can be reached by the
agent-environment system in a single step. We formalise this
decision problem below.

Definition 11 (SSR Decision Problem). Let O ⊆ S be a
linearly definable set of target states. The single-step state
reachability (SSR) decision problem involves determining
whether it is the case that ∃ī ∈ I such that t(1)LE (̄i) ∈ O.

We now proceed to give an encoding of this decision prob-
lem into the feasibility of a linear program.

Definition 12 (SSR Linear Encoding). Let n ∈ N and O ⊆
S be a linearly definable set of target stages defined by the
set of constraints CO on the vector v̄O. The linear program
RO is defined by the set of constraints:

CI ∪ {v̄I = x̄(1)} ∪ CN ∪ {x̄(m) = x̄} ∪ CLE

∪{ȳ = v̄O} ∪ CO.

Intuitively this linear encoding captures all the compu-
tation of the system by taking the union of the constraints
defining the initial states, evaluation of the network, evolu-
tion of the environment and output states. It also includes ad-
ditional constraints to match up the corresponding variables.
We now proceed to prove that this linear encoding precisely
characterises the first step of the system’s evolution.

Theorem 2. The linear program RO is feasible if and only
if ∃ī ∈ I such that t(1)LE (̄i) ∈ O.

Proof sketch. (⇐) Suppose that ∃ī ∈ I such that t(1)LE (̄i) ∈
O. Then, consider the assignment that maps each x̄(k) to
f (k)(̄i) and ȳ to t(1)LE (̄i). This gives a satisfying assignment,
showing that the linear program is feasible. The converse is
similar.

From this result we can derive a sound and complete de-
cision procedure for SSR by constructing the corresponding
linear encoding and checking its feasibility using existing
procedures for solving linear programs.

Multi-Step State Reachability
We now extend the method above to solve the more general
decision problem of establishing whether a set of states is
reachable in n steps. We formalise this below.

Definition 13 (MSR Decision Problem). Let n ∈ N and
O ⊆ S be a linearly definable set of target states. The
multi-step state reachability (MSR) decision problem in-
volves determining whether it is the case that ∃ī ∈ I such
that t(n)LE (̄i) ∈ O.

To solve MSR we create n copies of the linear constraints
encoding the computation of the network controlling the
agent and the environment and compose these into one lin-
ear program, thereby encoding the computation of the first
n steps. This encoding is formalised below.

Definition 14 (MSR Linear Encoding). Let n ∈ N and O ⊆
S be a linearly definable set of target stages defined by the
set of constraintsCO on the vector v̄O. Now, denote byCN,k

the relabelling of the constraints in CN so that each x̄(i) is
renamed to x̄(i,k). Similarly, denote byCLE,k the relabelling
of the constraints in CLE so that x̄ is renamed to x̄(m,k) and
ȳ is renamed to x̄(1,k+1). The linear program RO

n is defined
by the set of constraints:

CI ∪ {v̄I = x̄(1,1)} ∪ (∪nk=1(CN,k ∪ CLE,k))

∪{x̄(1,n+1) = v̄O} ∪ CO.

We now prove that the linear program RO
n fully charac-

terises the states reachable in precisely n steps.
Theorem 3. The linear program RO

n is feasible if and only
if ∃ī ∈ I such that t(n)LE (̄i) ∈ O.

Proof sketch. (⇐) Suppose that ∃ī ∈ I such that t(n)LE (̄i) ∈
O. Then, consider the assignment that maps each x̄(m,k) to
f (m)(t

(k)
LE (̄i)). This gives a satisfying assignment, showing

the linear program is feasible. The converse is similar.

As in the single-step, we can derive a sound and complete
decision procedure for the MSR decision problem by encod-
ing it into the linear program RO

n , and then using existing
techniques to verify the feasibility of this linear program.

Arbitrary-Step State Reachability
In view of generalising the results above, we now aim to
characterise all states that are reachable in an arbitrary but
finite number of time steps from a set of initial states.
Definition 15 (ASR Decision Problem). LetO ⊆ S be a lin-
early definable set of target states. The arbitrary-step state
reachability (ASR) decision problem involves determining
whether it is the case that ∃n ∈ N and ∃ī ∈ I such that
t
(n)
LE (̄i) ∈ O.

As a stepping stone to solving this decision problem, first
note that by dropping the constraints CO in Definition 14
corresponding to the target states, we could instead use the
linear program to compute all states reachable in n steps
(this will be the set of all values for v̄O in the feasible set
of the linear program) from the linearly-definable set of ini-
tial states I . We denote this set by Rn. We also define:

Rn , ∪nm=1Rm

Notice that Rn characterises precisely those states that are
reachable in n or fewer steps. We now define a notion of a
fixed-point which gives a sufficient number of steps to con-
sider in order to explore every possible state of our system.
Definition 16 (Fixed-point). We say that n is a fixed-point
for an LNS if it is the case thatRn = Rn+1.

So, if n is a fixed-point, then Rn already contains all
states reachable from I . This leads us to the following theo-
rem.
Theorem 4. Suppose k is a fixed-point for an LNS andO ⊆
S is a set of target states. Then ∃n ∈ N and ∃ī ∈ I such that
t
(n)
LE (̄i) ∈ O iff ∃n ≤ k and ∃ī ∈ I such that t(n)LE (̄i) ∈ O.



Proof. (⇒) Suppose t(n)LE (̄i) ∈ O for some n ∈ N and ī ∈ I .
Then, t(n)LE (̄i) ∈ Rn so, by k being a cut-off, t(n)LE (̄i) ∈ Rk.
The result follows.

(⇐) This is immediate.

This theorem gives us a partial decision procedure for
solving the ASR decision problem by calculatingRn from I
for increasing values of n until we find a fixed-point k. Then,
by Theorem 4, considering the first k steps of the system’s
evolution is sufficient to determine all reachable states. In
this case we can use the MSR procedure from the previous
section. This procedure for ASR is sound but incomplete, as
a fixed-point may not exist.

Multi-Step Action Executability
The final decision problem we define concerns determining
whether the agent will ever perform a certain action (i.e.
whether the neural network controlling the agent may ever
produce a certain output). We formalise and solve this prob-
lem in the multi-step case, with the restriction to single-step
and extension to arbitrary-step reachability being similar to
those already presented for state reachability.

Definition 17 (MAE Decision Problem). Let n ∈ N and
O ⊆ A be a linearly definable set of target actions. The
multi-step action executability (MAE) decision problem in-
volves determining whether it is the case that ∃ī ∈ I such
that f(t

(n)
LE (̄i)) ∈ O, i.e. whether n time steps after starting

from ī the action of the agent is in O.

As for the problems above we first present the relevant
MILP encoding.

Definition 18 (MAE Linear Encoding). Let n ∈ N andO ⊆
A be a linearly definable set of target actions defined by the
set of constraints CO on vector v̄O. The linear program EO

n
is defined by the set of linear constraints:

CI ∪ {v̄I = x̄(1,1)} ∪ (∪nk=1(CN,k ∪ CLE,k))

∪CN,n+1 ∪ {x̄(m,n+1) = v̄O} ∪ CO.

Now, we prove that this is a precise characterisation of the
actions that are feasible after n time steps.

Theorem 5. The linear program EO
n is feasible if and only

if ∃ī ∈ I such that f(t
(n)
LE (̄i)) ∈ O.

Proof sketch. The proof is very similar to that of Theorem 3.

This theorem gives us a sound and complete decision pro-
cedure for the MAE decision problem by computing the cor-
responding set of linear constraints and then using existing
linear programming techniques to verify the feasibility of
this linear program.

Complexity We briefly characterise the complexity of the
decision problems we have introduced.

Theorem 6. The SSR, MSR and MAE decision problems
are NP-complete.

Proof sketch. To see the SSR decision problem is in NP, no-
tice that an input i ∈ I is a witness that can be checked
in polynomial time by feeding the value through the net-
work and checking the linear constraints. To see that it is
NP-hard, notice that in the supplementary material of (Katz
et al. 2017), an instance of the 3-SAT problem is encoded
in a ReLU network along with some constraints on the in-
put and output. We can use the same encoding in the ReLU
network of a neural agent and a trivial environment that sim-
ply copies the action of the agent into its state. Then, using
the same input constraints along with the output constraints
relabelled to describe the environment gives an encoding of
an instance of the 3-SAT problem into SSR. Thus, SSR is
NP-complete.

The proofs for MSR and MAE are similar.

This lays the foundations for the construction of a toolkit
for verifying general neural agent-environment systems. For
a given agent implemented as a ReLU-FFNN, we derive a
further FFNN approximating the environment to an arbitrary
level of precision, and then study the resulting system via
linear programming. In the next section we give details of a
toolkit constructed in this manner.

5 Implementation and Evaluation
We implemented the methods described in the previous sec-
tion in a toolkit, called NSVERIFY, that solves the single
and multi-step state reachability decision problems and the
multi-step action executability problems described in Sec-
tion 4. The code is released as open-source (NSVerify 2018).

NSVERIFY takes as input a neural agent and a neurally-
approximated environment. We experimented with agents’
FFNNs trained using Keras, an open-source deep learning
toolkit, but other choices are possible.

To answer reachability and executability queries, the
toolkit also takes as input a description (in terms of linear
constraints) of the input and output sets, and the desired
number of steps n to be considered. Upon invocation, it
builds the set of linear constraints necessary based on Defini-
tion 12, Definition 14 or Definition 18 (depending on which
problem we are solving). The constraints are then passed to
our MILP back-end, Gurobi ver 7.5.1 (Gu, Rothberg, and
Bixby 2016), which is used to determine whether the gen-
erated linear program admits a solution. Following the out-
put from Gurobi, a result is then presented to the user as
either a SAT result, indicating that an output state is reach-
able (or, an output action executable) from the input sates
or an UNSAT result representing unreachability of the out-
put states (or, impossibility of the actions). In case of SAT
a trace showing the states and actions corresponding to the
solution are also given.

To evaluate the correctness and the performance of
NSVERIFY, we analysed the PENDULUM-V0 task described
in Example 4. Since the environment is non-linear we ap-
proximated it by producing a neural network (as described in
Definition 9). We could do this by training a single network
that tries to recreate all the behaviour of the environment. To
facilitate the training process, however, we trained several



networks implementing only the non-linear parts of the en-
vironment and used a linear combination of them to produce
the final result. Specifically, we neurally approximated the
sin θ and cos θ functions.

The results reported in the rest of this section and the next
were obtained on a machine running Linux kernel 4.4 on an
Intel Core i7-6700 CPU with 16GB of RAM.

Single-Step Experiments
We begin by illustrating the toolkit on single-step reachabil-
ity properties. We denote by (θi, θ̇i) the initial state of the
environment and by (θf , θ̇f ) the final state of the environ-
ment after one transition, i.e. t(1)((θi, θ̇i)).

In the first experiment we restrict the initial states to
−π/8 ≤ θi ≤ −π/16 and −0.18 ≤ θ̇i ≤ −0.10. This
corresponds to states where the pendulum is leaning to the
left and the angular velocity is such that it will be taken even
further left at the next time step if the agent does not act ap-
propriately. We wish to check if it is possible to reach a state
with θ̇f ≤ −0.20. This corresponds to the angular veloc-
ity further increasing in absolute terms following the agent’s
action, thus leading to the pendulum being even more likely
to fall to the left.

By using NSVERIFY we found that the property is sat-
isfiable: from the initial state (−0.049,−0.165), the agent
applies a torque of −0.018 resulting in a final state of
(−0.059,−0.200). This highlights a possible bug in the syn-
thesised controller, or at least a situation where the agent
does not behave optimally; intuitively a positive torque
should be applied instead. This information could be used
to produce more training examples for the neural network
controlling the agent to improve its response.

As a further experiment we considered the analogous sce-
nario with positive values, i.e. the initial states are such that
π/16 ≤ θi ≤ π/8 and 0.10 ≤ θ̇i ≤ 0.18. We checked
whether a target state with θ̇n ≥ 0.20 could be reached.
NSVERIFY reported that the property is unsatisfiable, show-
ing that the network behaves as desired on the right side.

In each case, the linear program constructed by NSVER-
IFY contains 1214 constraints on 975 variables (729 con-
tinuous and 246 binary). This linear program takes Gurobi
around 50ms to solve.

It follows that by performing two simple experiments we
were able to deduce that the agent controller does not be-
have symmetrically, nor optimally. This may be evidence of
bias in the training data or unwanted features in the training
algorithm.

Multi-Step Experiments
We now report on experiments involving multi-step reach-
ability. In addition to its intrinsic interest this also enables
us to evaluate the scalability of the approach. As before, let
(θi, θ̇i) denote the initial state of the environment and let (θf ,
θ̇f ) denote the final state of the environment after n time
steps. We fix a set of initial states with 0 ≤ θi ≤ π/64 and
0 ≤ θ̇i ≤ 0.3, i.e. the pendulum begins possibly off-centre

ε
π/70 π/100 π/200 π/500

1 0.06s 0.06s 0.06s 0.06s
2 0.26s 0.16s 0.16s 0.16s
3 0.68s 1.20s 0.35s 0.34s
4 1.54s 2.17s 1.69s 1.46s
5 8.19s 8.26s 7.42s 3.01s
6 20.29s 16.91s 17.06s 18.44s
7 38.49s 32.51s 69.95s 29.11s

n

8 77.42s 83.29s 149.81s 99.77s

Table 1: The result of checking the property θf ≥ ε after
n steps for different values of ε and n. Greyed out cells in-
dicate an UNSAT result and white ones a SAT result. The
time in the cell indicates the time Gurobi took to solve the
corresponding LP program constructed by NSVERIFY.

to the right and with an angular velocity taking it possibly
further to the right.

We checked the property θf ≥ ε for different small pos-
itive values of ε and a variable number of steps n. Intu-
itively, this property is unsatisfiable after a sufficient num-
ber of steps if the agent is capable of bringing the pendulum
close to the vertical (i.e. θf = 0) when given sufficient time.
Our results are recorded in Table 1.

When the result is SAT, it follows that there is a trace
of length n after which the pendulum angle remains larger
than ε (i.e. the agent has failed to bring the pendulum close
to the centre). The toolkit returns this trace; for example,
when ε = π/100 and n = 2 we get an initial state of
(0.049, 0.115) at which the agent applies a torque of −1.54
to get a state of (0.045,−0.075). Then, it applies a torque
of −0.93 to reach a final state of (0.037,−0.176). So, the
agent is correctly applying negative torque to try and get the
pendulum vertical, but it does not have enough time to get it
within our target.

When the result is UNSAT, it follows that after n steps
the angle of the pendulum has been brought below ε by the
agent. The toolkit reported UNSAT after a sufficiently large
number of steps, with this number increasing when ε gets
closer to 0. This is in line with our intuition as the closer
to vertical we require the pendulum to be, the longer it will
take the agent to achieve this.

When conducting the experiments the number of con-
straints and variables in the LP generated by NSVERIFY
increased linearly with the number of steps considered. In
particular, when considering n steps the resulting problem
contained approximately 1214n constraints on 973n vari-
ables (727n continuous and 246n binary).

In terms of limitations of the approach, we note that in
the experiments the environment is, as explained earlier, a
neural approximation; as noted, this can be made arbitrarily
precise. Note that the impact of this approximation increases
when considering a larger number of steps, thereby requiring
increasingly finer environment approximations.

A further source of error arises from rounding errors in
how MILP solvers handle real numbers. While this theoreti-
cally can lead to invalid results, it is difficult to avoid in any



MILP problem. Indeed we have not encountered issues in
the experiments conducted.

Lastly, note that our choice in using Gurobi stems from its
attractive performance (Mittelmann 2018) and not from any
structural limitation of the approach. We expect the results
reported to improve as even more efficient solvers emerge.

All results and experiments here described can be inde-
pendently verified by running the tool provided in the pack-
age (NSVerify 2018).

6 Comparison with Other Toolkits
As discussed in the previous section, NSVERIFY enables the
verification of multi-step reachability properties for closed-
loop neural agent-environment systems. We are not aware of
another tool that enables the verification of such systems.

However, other tools have been released addressing the
verification of properties for a single ReLU-FFNN. This
problem can be seen as a special instance of the multi-step
action feasibility problem for an LNS that we considered
in Section 4, where the environment is not considered, i.e. n
is fixed to 0. While the alternative toolkits are not compara-
ble on the verification of neural agent-environment systems,
in order to evaluate the efficiency of our proposed linear pro-
gram encoding, we report the results obtained by comparing
the performance of NSVERIFY to other ReLU-FFNN veri-
fication toolkits on the special case of n = 0.

Specifically we compare NSVERIFY against BAB ver
1.0, based on the Branch-and-Bound algorithm (Bunel et al.
2017), and MIP ver 1.0, a re-implementation made by the
authors of (Bunel et al. 2017) of the technique originally pre-
sented in (Lomuscio and Maganti 2017; Cheng, Nührenberg,
and Ruess 2017) based on MILP solving. We also report
results obtained by using the SMT-based toolkit RELU-
PLEX ver 1.0 (Katz et al. 2017), which extends the sim-
plex algorithm to handle ReLU non-linearities, and PLANET
ver 1.0 (Ehlers 2017), which uses a combination of SMT
and MILP techniques. All these tools, including the one
here produced, which derives from (Lomuscio and Maganti
2017), appear to have been developed in parallel and with
no interaction between the various research groups.

To conduct the benchmarks we used the TWINSTREAM
dataset, released in (Bunel et al. 2017). The networks of the
dataset are comprised of two identical streams with the same
architecture, weights, and inputs. The benchmark itself con-
sists of 81 properties, with unique network configurations
for each property. The final layer of the network computes
the difference between the outputs of the two streams, and a
positive bias term is finally added. The output of the network
is equal to the value of the bias. In the tests we attempted to
prove the property that the output of the network is positive,
i.e. all cases involve looking for an UNSAT result, since all
properties are True by construction. We restrict our attention
to ReLU networks only in common with the other toolkits.

The results of the comparison are recorded in Table 2.
We discuss the relative performance by using three different
metrics: the success rate, which represents the percentage of
correct results produced by each tool without timing out or
running out of memory, the average runtime, and the number

Tool Success
rate

Average
runtime

Number
of wins

NSVERIFY 62.96% 2106.8s 16
RELUPLEX 53.08% 2135.5s 4
MIP 69.14% 2430.2s 7
BAB 29.63% 5212.5s 5
PLANET 64.20% 2807.9s 29

Table 2: Results on the TWINSTREAM dataset.

of wins, representing the number of times a tool managed to
solve a property in the quickest time. Each run of TWIN-
STREAM was conducted with a time-out of two hours on the
same machine described above.

From Table 2, we see that NSVERIFY has the quickest
runtime on average, PLANET most frequently produces a
result in the quickest time (it has the highest number of
wins) and MIP appears to be the most accurate, producing
the highest percentage of correct results. The results suggest
that the encodings used in NSVERIFY are, in terms of effi-
ciency, in line with the other tools. It should be noted that
further optimisations are possible in all tools considered.

All experimental results from this section can be indepen-
dently reproduced by using the scripts provided in the pack-
age (NSVerify 2018).

7 Conclusions
As argued in the introduction, while methods have been put
forward to verify MAS given either declaratively or proce-
durally, no technique presently exists for the verification of
MAS, or any AI system, based on neural networks and inter-
acting with their environment. These systems are being in-
troduced in a variety of applications, including autonomous
vehicles; it is therefore essential that novel verification tech-
niques are developed to address these neural architectures.

To move towards this aim, in this paper we have intro-
duced a formal model of a stateless agent, implementing
a ReLU-FFNN, interacting with a generic stateful environ-
ment. We have shown how several reachability problems can
be successfully encoded into mixed integer linear program-
ming problems following a linear encoding of the neurally-
approximated environment. We have studied the resulting
decision problems and found them to be NP-complete.

In addition to the theoretical evaluation, we have also re-
ported on an experimental evaluation. Specifically, we have
introduced NSVERIFY, a novel toolkit for the verification
of neural agent-environment systems. We used the toolkit to
verify key properties of a simple neural agent-environment
system and identify bugs in an agent that was trained with
state-of-the-art techniques in machine learning. We are not
aware of other methods capable of investigating bugs in neu-
ral closed-loop systems.

To evaluate the underlying efficiency of the MILP encod-
ing, we ran benchmarks against all available tools on the
single-step action executability problem. While the results
are necessarily limited to this specific decision problem, they
show that NSVERIFY offers competitive performance com-



pared to other state-of-the-art FFNN verification tools. It
should be noted that further optimisations are certainly pos-
sible on all toolkits and that some methods may be more
efficient than others depending on the specific scenario.

In future work we intend to address systems resulting
from different neural architectures, e.g., recurrent neural net-
works, as well as different techniques to solve the resulting
problem.
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