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On Path-Complete Lyapunov Functions:
Geometry and Comparison

Matthew Philippe, Nikolaos Athanasopoulos, David Angeli and Raphaël M. Jungers

Abstract—We study optimization-based criteria for the
stability of switching systems, known as Path-Complete
Lyapunov Functions, and ask the question “can we decide
algorithmically when a criterion is less conservative than
another?”. Our contribution is twofold. First, we show
that a Path-Complete Lyapunov Function, which is a
multiple Lyapunov function by nature, can always be
expressed as a common Lyapunov function taking the
form of a combination of minima and maxima of the
elementary functions that compose it. Geometrically, our
results provide for each Path-Complete criterion an implied
invariant set. Second, we provide a linear programming
criterion allowing to compare the conservativeness of two
arbitrary given Path-Complete Lyapunov functions.

Index Terms—Path-Complete Methods, Lyapunov
stability theory, Conservativeness, Automata, Switching
Systems.

I. INTRODUCTION

SWITCHING systems [23], [26], [28], [38] present
major theoretical challenges [8]. They provide an

accurate modeling framework for many processes [13],
[20], [21], [29], [37] and can be used as abstractions
for more complex hybrid dynamical systems [17]. We
focus on discrete-time linear switching systems, with the
following dynamics:

x(t+ 1) = Aσ(t)x(t). (1)

There, at any time t, σ(t) ∈ {1, . . . ,M} is the mode
of the system and each mode corresponds to a matrix
from a set of M matrices A = {A1, . . . , AM}. We call
a sequence of modes σ(0)σ(1) . . . a switching sequence.

The question of the stability of a switching system
has been a major challenge in the Control Engineering
literature in the past decades [27], [28], [38]. We are
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interested in the study of certificates for stability under
arbitrary switching.

Definition I.1. The System (1) is stable under arbitrary
switching if there is K ∈ R such that for any switching
sequence σ(0)σ(1) . . ., where σ(t) ∈ {1, . . . ,M}, the
trajectories satisfy

∀x(0) ∈ Rn, ∀t ∈ N : ‖x(t)‖ ≤ K‖x(0)‖.

The System is asymptotically stable if it is stable and
furthermore, for any switching sequence and initial
condition, limt→∞ ‖x(t)‖ = 0.

The problem of deciding whether or not a switching
system is stable under arbitrary switching is in
general undecidable (see e.g. [8], [23]). Nevertheless,
several tools have been developed, which provide semi-
algorithms to decide asymptotic stability [5]–[7], [14],
[25], [30], [31], [33].

A popular approach to assess stability for switching
systems is to search for a common Lyapunov function
(CLF). The method is attractive because stable arbitrary
switching systems always have a CLF (see e.g.
[23, Theorem 2.2]). However, in general, whatever
the technique used to search for such a function,
if it is tractable, it can only provide conservative
stability certificates. The search for a common quadratic
Lyapunov function (see e.g. [28, Section II-A]) illustrates
this fact well. There, the goal is to find a positive definite
quadratic function V : Rn → R≥0 : x 7→ x>Qx, for a
positive definite matrix Q � 0, such that

∀σ ∈ {1, . . . ,M},∀x ∈ Rn : V (Aσx) ≤ V (x). (2)

Checking for the existence of such a function can be
done efficiently using convex optimization tools because
the Lyapunov inequalities (2) are equivalent to a set of
linear matrix inequalities. Nevertheless, such a Lyapunov
function may not exist, even for asymptotically stable
systems, see e.g. [27], [28], and Example III.4 below.
In order to alleviate this conservativeness, one may rely
on more complex parameterizations for the Lyapunov
function V at the cost of greater computational efforts
(e.g. [31] uses sum-of-squares polynomials, [18] uses
max-of-quadratics Lyapunov functions, and [5], [6] uses
reachability analysis).
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Multiple Lyapunov functions (see [9], [22], [38]) arise
as an alternative to the search of common Lyapunov
functions. Here again, multiple quadratic Lyapunov
functions such as those introduced in [7], [12], [14], [25]
hold special interest because checking for their existence
also amounts to solving a set of linear matrix inequalities.
For example, let us consider a switching System (1)
on M = 2 modes. The multiple Lyapunov function
proposed in [11] is composed of two positive definite
quadratic functions Va, Vb : Rn → R≥0 that satisfy the
following sets of inequalities ∀x ∈ Rn:

Va(A1x) ≤ Va(x),

Vb(A1x) ≤ Va(x),

Va(A2x) ≤ Vb(x),

Vb(A2x) ≤ Vb(x).

(3)

These tools make use of convex optimization and
linear matrix inequalities in order to provide powerful
algorithms for the stability analysis of switching systems.
In order to further analyze such tools, Ahmadi et
al. recently introduced the concept of Path-Complete
Lyapunov functions [1]. There, multiple Lyapunov
functions such as the one of [11] mentioned above are
represented by directed and labeled graphs, see Figure
1.
More precisely, let G = (S,E) be a graph where S
is the set of nodes, and E ⊂ S × S × {1, . . . ,M}
is the set of directed edges labeled by one of the M
modes1 of the System (1). To each node s ∈ S of the
graph, we assign one positive definite quadratic function
Vs : Rn → R≥0. An edge (s, d, σ) ∈ E then encodes
the following inequality:

∀x ∈ Rn : Vd(Aσx) ≤ Vs(x). (4)

This formalism provides a framework under which to
unify, generalize and study multiple Lyapunov functions
such as cited above. Fundamental properties of a multiple
Lyapunov function represented by a graph G can be
deduced from the properties of that graph. In particular,
in [1], [24] the authors provide a characterization of
the set of graphs that represent stability certificates for
switching systems on M modes. This property, known
as Path-Completeness, leads to the concept of Path-
Complete Lyapunov functions (see Definition II.3 below).

Several challenges exist in the study of Path-Complete
Lyapunov functions, in particular for matters related to
how these certificates compare with each other with
respect to their conservativeness 2. In this paper we
first ask a natural question which aims at revealing the

1In a more general setting, the labels on the edges can be taken as
finite sequences of modes. Our results extend there through the so-
called expanded graph [1, Definition 2.1].

2Preliminary versions of our results have been presented in [2], [3].
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(a) Graph G0, corresponding to the inequalities (2),
for a common Lyapunov function.

a1 b11
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(b) Graph G1, corresponding to the inequalities (3),
leading to the multiple Lyapunov function of [11]
for a system on two modes.

Figure 1: Examples of labeled and directed graphs.

connection to classic Lyapunov theory:
Q1: Can any Path-Complete Lyapunov function be
represented as a common Lyapunov function?
We answer this question affirmatively in Theorem III.8.
We show that if a System (1) has a PCLF for a graph
G = (S,E) and with functions Vs, s ∈ S, the system has
a common Lyapunov function of the form

V (x) = min
S1,...,Sk⊆S

(
max
s∈Si

Vs(x)

)
, (5)

for some finite integer k, where the sets Si are subsets
of the nodes of G. Our proof is constructive and makes
use of a classical tool from automata theory, namely the
observer automaton [10]. We then discuss in Subsection
III-B the conservativeness of these common Lyapunov
functions when using quadratic Path-Complete Lyapunov
functions and argue that it is ultimately linked with the
combinatorial nature of the graph itself.
Motivated by this, we provide in Section IV answers to
the following question:
Q2: When does one graph lead to systematically less
conservative stability certificates than another?
We say that a graph G is more conservative than a graph
G′ if for any set of matrices A, the solvability of the
LMIs corresponding to G implies that of the LMIs for
G′. We provide an algorithmic sufficient condition in
Theorem IV.4, inspired by existing ad-hoc proofs for
particular cases such as the ones presented in [1, Section
4 and 5], [33, Theorem 3.5], [16, Theorem 20].
Finally, in Section V, we comment on our results and
conclude our work.

Remark I.2. For the clarity of exposition, and
because this is by far the most popular case, we
restrict the presentation to linear switching systems
under arbitrary switching and consider Path-Complete
Lyapunov functions with quadratic functions as pieces.
Our results can be generalized in several directions,
e.g. to pieces that are continuous, positive definite and
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radially increasing functions, or to constrained switching
systems [33].

II. PRELIMINARIES

Given an integer M , we let 〈M〉 denote the set
{1, . . . ,M}. Given a discrete set X , we let |X| denote
the cardinality of the set.
We now define the central concept of this paper (see
Figure 2 for illustrations).

Definition II.1 (Path-Completeness). A graph G =
(S,E) is Path-Complete if for any k ≥ 1 and any
sequence σ = σ1 . . . , σk, σi ∈ 〈M〉, there is a path in
the graph (si, si+1, σi)i=1,2,...,k with (si, si+1, σi) ∈ E.

a2b2 c2
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1

2

1 2

(a) Path-Complete graph G2. It corresponds to
a multiple Lyapunov function with 3 functions
Va2 , Vb2 , Vc2 satisfying 6 Lyapunov inequalities.

a3b3 c3
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1 2

(b) Graph G3. It is not Path-Complete as it cannot
generate the sequence 222.

Figure 2: Illustration for Definition II.1.

As said above, a Path-Complete Lyapunov function
is a multiple Lyapunov function where Lyapunov
inequalities between a set of quadratic positive definite
functions are encoded in a labeled and directed graph
G = (S,E), with one function per node in S. We
represent a set of such functions in a vector form.

Definition II.2 (VLFC). A Vector Lyapunov Function
Candidate (VLFC) is a vector function V : Rn → RN≥0,
where each element Vi : Rn 7→ R≥0, i ∈ 〈N〉 is a
positive definite quadratic function.

Given a graph G = (S,E) and a VLFC V : Rn →
R|S|≥0 we let Vs be the function for the node s ∈ S.

Definition II.3 (Path-Complete Lyapunov function
(PCLF)). Given a switching System (1) on a set of M
matrices A of dimension n and a Path-Complete graph
G = (S,E) on M labels, a Path-Complete Lyapunov
function for G and A is a VLFC V : Rn → R|S|≥0 such
that

∀x ∈ Rn,∀(s, d, σ) ∈ E : Vd(Aσx) ≤ Vs(x). (6)

We write V ∼ pclf(G,A) to denote the fact that V is a
Path-Complete Lyapunov function for G and A.

III. EXTRACTING COMMON LYAPUNOV FUNCTIONS

In this section we are given a Path-Complete graph
G, a set of matrices A, and a Path-Complete Lyapunov
function V ∼ pclf(G,A), and we want to construct a
common Lyapunov function for the switching system on
the set A. In order to do so, we provide an algorithm
relying on concepts from Automata theory (see e.g. [10,
Chapter 2]). Preliminary versions of our results in this
section have been presented in the conference paper [2].

A. Main Result

Our main result exploits the structure of Path-
Complete graphs to combine the functions of a PCLF
into a common Lyapunov function for the System (1).
The following proposition is the first step to achieve this.

Proposition III.1. Consider a Path-Complete graph G =
(S,E) on M labels, a set of M matrices A, and a PCLF
V ∼ pclf(G,A). Take two subsets P and Q of S.
• If there is a label σ such that

∀p ∈ P, ∃q ∈ Q : (p, q, σ) ∈ E, (7)

then

∀x ∈ Rn : min
q∈Q

Vq(Aσx) ≤ min
p∈P

Vp(x). (8)

• If there is a label σ such that

∀q ∈ Q, ∃p ∈ P : (p, q, σ) ∈ E, (9)

then

∀x ∈ Rn : max
q∈Q

Vq(Aσx) ≤ max
p∈P

Vp(x). (10)

The geometric proof below provides the intuition for
the mechanisms underlying Theorem III.8.

Proof. Take a graph G = (S,E) with M labels, a set
of M matrices A, and a PCLF V ∼ pclf(G,A). For any
node s ∈ S, define the one-level set

Xs = {x ∈ Rn | Vs(x) ≤ 1}.

For any edge (s, d, σ) ∈ E, (2) is equivalent to AσXs ⊆
Xd, where AσXs = {Aσx | x ∈ Xs}. In light of this,
(7) is equivalent to

∀p ∈ P,∃q ∈ Q : AσXp ⊆ Xq,

and from there it is easy to conclude that

Aσ
⋃
p∈P

Xp =
⋃
p∈P

AσXp ⊆
⋃
q∈Q

Xq.

This is then equivalent to (8) since the union of the level
sets of the functions Vq, q ∈ Q is the level set of the
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function minq∈Q Vq .
Similarly, (9) is

∀q ∈ Q,∃p ∈ P : AσXp ⊆ Xq

which in turn implies

Aσ
⋂
p∈P

Xp =
⋂
p∈P

AσXp ⊆
⋂
q∈Q

Xq,

which is equivalent to (10) since the the intersection level
sets of the functions Vq, q ∈ Q is the level set of the
function maxq∈Q Vq .

The above proposition can already be put to good
use to extract common Lyapunov functions from Path-
Complete Lyapunov functions where the graph is either
complete or co-complete (see [36] Definition 1.12).

Definition III.2 ((Co)-Complete Graph). A graph G =
(S,E) is complete if for all s ∈ S, for all σ ∈ 〈M〉 there
exists at least one edge (s, q, σ) ∈ E.
The graph is co-complete if for all q ∈ S, for all σ ∈
〈M〉, there exists at least one edge (s, q, σ) ∈ E.

Note that the graph G1 in Figure 1b is co-complete.
One can check that if a graph is (co-)complete, it is Path-
Complete.

Corollary III.3. Consider a graph G on M modes, a
set of M matrices A, and a PCLF V ∼ pclf(G,A).
• If G is complete, then V̄ (x) = mins∈S Vs(x) is a

common Lyapunov function for System (1).
• If G is co-complete, then V̄ (x) = maxs∈S Vs(x) is

a common Lyapunov function for System (1).

Example III.4. We consider the following switching
system consisting of M = 2 modes: x(t+ 1) =
Aσ(t)x(t), σ(t) ∈ {1, 2}, with

A1 = α

(
1.3 0
1 0.3

)
, A2 = α

(
−0.3 1

0 −1.3

)
, (11)

with α = (1.4)−1. This system does not have a common
quadratic Lyapunov function. However, for the graph G1

represented in Figure 1b, we have the following Path-
Complete Lyapunov function:

V =

{
Va1(x) = 5x2

1 + x2
2,

Vb1(x) = x2
1 + 5x2

2

}
. (12)

Since G1 is co-complete, the function V̄ (x) =
max(Va1(x), Vb1(x)) is a common Lyapunov function for
the system. This is represented in Figure 3, where we
see that the intersection of the level sets of Va1 and Vb1 ,
which is that of V̄ , is itself invariant.

In order to tackle Path-Complete graphs that are
neither complete nor co-complete (as in Figure 4), we
introduce the following concept.

X1

X2

A2X1 A2X2

X∗

A2X∗

Figure 3: Example III.4: Geometric representation of the
Path-Complete stability criterion corresponding to the
graph G1 in Figure 1b. The ellipsoids X1 and X2 are
the level sets of the quadratic functions Va1 and Vb1
from Example III.4 respectively, and X∗ is the level
set of max(Va1(x), Vb1(x)). The set X∗ is invariant, as
illustrated by the fact that the set A2X∗ is in X∗.

Definition III.5 (Observer Graph, [10, Section 2.3.4]).
Consider a graph G = (S,E). The observer graph
Gobs = (Sobs, Eobs) is a graph where each node
corresponds to a subset of S, i.e. Sobs ⊆ 2S , and is
constructed as follows:

1. Initialize Sobs := {S} and Eobs := ∅.
2. Let X := ∅. For each pair (P, σ) ∈ Sobs × 〈M〉:

(i) Compute Q := ∪
p∈P
{q| (p, q, σ) ∈ E}.

(ii) If Q 6= ∅, set Eobs := Eobs ∪ {(P,Q, σ)} then
X := X ∪Q.

3. If X ⊆ Sobs, then the observer is given by Gobs =
(Sobs, Eobs). Else, let Sobs := Sobs ∪X and go to
step 2.

Example III.6. Consider the graph G4 in Figure 4. The

a4 b4 c4 d4
1 1

1
1

1

2

2

2

Figure 4: Path-Complete graph G4 for Example III.6.

observer graph Gobs4 is given in Figure 5. The first run
through step 2 in Definition III.5 is as follows. We have
P = S. For σ = 1 the set Q is again S itself: indeed,
each node s ∈ S has at least one inbound edge with
the label 1. For σ = 2, since node b4 has no inbound
edge labeled 2, we get Q = {a4, c4, d4}. This set is then
added to Sobs in step 3, and the algorithm repeats step
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a4, b4, c4, d4 a4, c4, d4 b4, d4

1

2

2

1

1

2

Figure 5: Observer graph Gobs4 of the graph G4 in Figure
4. The nodes of Gobs4 are associated to sets of nodes of
G4.

2 with the updated Sobs.

Remark III.7. The observer automaton is presented
in [10, Section 2.3.4]. Our definition of the observer
graph is an adaption in the particular case where the
automaton considered has all states marked both as
starting and accepting states.

We now introduce the main result of this section.

Theorem III.8 (CLF Representation of a PCLF).
Consider a set of M matrices A and a Path-Complete
graph G. If there is a PCLF V ∼ pclf(G,A), then a
common Lyapunov function for System (1) is given by

V ∗(x) = min
Q∈Sobs

(
max
s∈Q

Vs(x)

)
, (13)

where Sobs is the set of nodes of the observer graph
Gobs = (Sobs, Eobs) of the graph G.

Proof. Consider a Path-Complete graph G = (S,E),
a set of matrices A, and a PCLF V ∼ pclf(G,A).
Construct the observer graph Gobs = (Sobs, Eobs). By
construction, there is an edge (P,Q, σ) ∈ Eobs if and
only if Q = ∪p∈P {q| (p, q, σ) ∈ E}. This means that
∀q ∈ Q, ∃p ∈ P such that (p, q, σ) ∈ E, which is (9).
Consequently, from Proposition III.1, we have that

(P,Q, σ) ∈ Eobs ⇒
∀x ∈ Rn : max

q∈Q
Vq(Aσx) ≤ max

p∈P
Vp(x).

We now consider a set of functions Ṽ = {ṼQ, Q ∈ Sobs}
where ṼQ = maxq∈Q Vq , and observe that

∀(P,Q, σ) ∈ Eobs,∀x ∈ Rn : ṼQ(Aσx) ≤ ṼP (x),

which means that these functions satisfy all Lyapunov
inequalities encoded in Gobs.

Our next step is now to make use of Proposition III.1
and Corollary III.3 to show that the pointwise-minimum
of these functions is a CLF for the system.
To achieve this, first observe that the proof of Proposition
III.1 holds verbatim when instead of having a PCLF

where each entry Vs is quadratic, we take each entry to
be a pointwise-maximum of quadratics as in the above.
Second, we claim that the observer graph of a
Path-Complete graph is complete. We prove this by
contraposition: if Gobs = (Sobs, Eobs) is not complete,
then it must be so that G is not Path-Complete.
We emphasize that the nodes of an observer graph
correspond to sets of nodes in the original graph, and
refer to them as thus.
Assume that there is one set of nodes P ∈ Sobs, P ( S,
and a label σ∗ ∈ 〈M〉 such that there are no edges
(P,Q, σ) ∈ Eobs. By construction of Gobs, there are
directed paths from the node S ∈ Sobs (corresponding
to the full set of nodes in G) to the node P above. Take
any of such paths, and let σ1, . . . , σk be the sequence
of labels on that path. By the definition of the observer
graph, we know that P contains all the nodes of G that
are the destination of some path carrying that sequence
of labels. By our choice of P , we know that none of
these nodes have an outgoing edge with the label σ∗.
Otherwise, there would be an edge (P,Q, σ∗) ∈ Eobs

for some Q. We conclude that the sequence σ1 . . . σkσ
∗

can not be found on a path in G, and G is therefore not
Path-Complete.
Since Gobs is complete, we can use Corollary III.3 to
deduce that the function

V ∗ = min
Q∈Sobs

ṼQ

is a common Lyapunov function for the system (II.1) on
the set A, which concludes the proof.

Example III.9. Consider the following set of matrices
taken from [18, Example 11]:

A =

α
0.3 1 0

0 0.6 1
0 0 0.7

 , α

 0.3 0 0
−0.5 0.7 0
−0.2 −0.5 0.7


(14)

with the choice of α = 1.03. That switching system
has a Path-Complete Lyapunov function V for the graph
G4 = (S,E) in Figure 4. After inspecting the observer
graph Gobs, we compute a common Lyapunov function
for the system as the minimum of the two functions
max (Va4 , Vc4 , Vd4) and max (Vb4 , Vd4). The last term
maxs∈S (Vs)) can be omitted here. Figure 6 shows the
evolution in time of the four functions, and that of the
common Lyapunov function, from the initial condition
x(0) =

(
0 0 −1

)>
, and for the periodic switching

sequence repeating the pattern 21111.

B. Comparison with classical piecewise quadratic
Lyapunov Functions.

Our results highlight a link between Path-Complete
Lyapunov functions and common Lyapunov functions
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Va4

Vb4

Vc4

Vd4

CLF

Time

Figure 6: Evolution of a PCLF for the system in Example
III.9 for the graph G4 in Figure 4. Observe that none
of the pieces of the PCLF decreases monotonically.
However, the common Lyapunov function (in black) does
decrease monotonically.

that are mins or max of functions. It is thus natural to
ask whether or not any Lyapunov function of the form
(5) can be induced from a Path-Complete graph with
as many nodes as the number of pieces of the function
itself. We give a negative answer to this question, under
the form of a counter example. To do so, we use the
system in [18, Example 11], where min-of-quadratic and
max-of-quadratic Lyapunov functions have been studied.

Example III.10. Consider the switching systems on the
two modes with the matrices presented in (14) for α = 1.
The system has a max-of-quadratics Lyapunov function
x 7→ max{V1(x), V2(x)}, with Vi(x) =

(
x>Qix

)
, where

Q1 =

 36.95 −36.91 −5.58
−36.91 84.11 −38.47
−5.58 −38.47 49.32

 ,

Q2 =

13.80 −6.69 4.80
−6.69 21.87 10.11
4.80 10.11 82.74

 .

These functions are obtained by solving a set of
Bilinear Matrix Inequalities (BMIs) (see [18, Section
5]). However, for the same system, we cannot obtain
a Path-Complete Lyapunov function that can then be
represented as a max-of-quadratics with two pieces.
More precisely, we considered all the graphs G = (S,E)
that are co-complete on two nodes. There are 16 of
them in total. For each of them, the convex optimization
program corresponding to the search of a Path-Complete
Lyapunov function has no solutions.

The example above involves two approaches for trying
to compute a max-of-quadratics Lyapunov function. The
first approach relies on solving a set of BMIs. As pointed

out in [18], these BMIs can be hard to solve in general
(there is no polynomial-time algorithm to solve them).
In contrast, searching for a quadratic Path-Complete
Lyapunov function can be done efficiently by solving
linear matrix inequalities using convex optimization
tools. We can therefore efficiently check if a max-of-
quadratics common Lyapunov function corresponding to
a PCLF exists. Nevertheless, as one can see in Example
III.10, the BMI approach can be less conservative than
the approach using PCLFs. We leave for further work
the question of understanding whether or not the BMI
approach is less conservative than the PCLF approach in
general.

Additionally, among the 16 Path-Complete graphs
tested in Example III.10, some lead to more conservative
stability certificates than others. For example, some of
these graphs have, at one of their two nodes, two self
loops with different labels, as it is the case for the graph
G0 in Figure 1a. If a Path-Complete Lyapunov Function
is found for such a graph, then the function for that node
is itself a common quadratic Lyapunov function for the
system, and thus that graph is at least as conservative
as the common quadratic Lyapunov function technique.
However, there are pairs of graphs for which none of
them is more conservative than the other. This fact is
illustrated in the following example.

Example III.11. Consider the three graphs G1 in Figure
1b, G5 and G6 in Figure 7. These graphs are co-complete.

a5 b5

1

1
2

2

(a) Graph G5.

a6 b6

2

1
2

1

(b) Graph G6.

Figure 7: Two co-complete Path-Complete graphs.

The system on two modes with matrices

A =

{
α

(
−0.5 −1.1
0.9 1.5

)
, α

(
0.2 1.0
0.5 0.5

)}
, (15)

with α = (1.05)−1, has a quadratic PCLF for G1 in
Figure 1b but neither for G5 nor G6 in Figures 7a and
7b. The system on two modes with matrices

A =

{
α

(
0 −0.2

0.8 0

)
, α

(
0.25 0.4
0.1 0.3

)}
, (16)

with α = (0.55)−1 has a quadratic PCLF for the graph
G6, but neither for G3 or G5. The same set of matrices,
when swapping the two modes, will have a PCLF for G5,
but not for the two other graphs.
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The fact that PCLFs can be represented as common
Lyapunov functions closes a gap between multiple and
common Lyapunov functions techniques. However, the
discussion above illustrates that this does not directly
help us to compare the conservativeness of PCLFs.
Indeed, we see that several PCLFs lead to CLFs with
similar structures, but even among these PCLFs it
remains non-trivial to decide which ones are more
conservative than others. For this reason, in the next
section, we provide novel tools for comparing the
conservativeness of Path-Complete Lyapunov functions
based on their graphs.

IV. COMPARING GRAPHS

Quadratic Path-Complete Lyapunov functions are
particularly attractive in practice since given a graph
G = (S,E) and a set of matrices A, one can verify their
existence by solving a set of LMIs. More precisely, we
search for quadratic forms {Qs � 0, s ∈ S} satisfying
the matrix inequalities

∀(s, d, σ) ∈ E : A>σQdAσ � Qs. (17)

Our goal in this section is to provide systematic tools to
decide when, given two graphs G and G′, it is true that
for any set of matrices A, the existence of a quadratic
Path-Complete Lyapunov function for G implies that of
a quadratic PCLF for G′.

This relates to the setting of [1], where Path-Complete
Lyapunov functions with quadratic pieces are used for the
approximation of the exponential growth rate, a.k.a. the
joint spectral radius [23], [35], of switching systems.
More precisely, for each graph G = (S,E) with labels
in 〈M〉, and for any set of M matrices A we let

γ(G,A) = inf
{Qs,s∈S},γ

γ :

∀(s, d, σ) ∈ E : A>σQdAσ � γ2Qs,

∀s ∈ S : Qs � 0.

(18)

We can then capture the fact that a graph leads to
more conservative stability certificate than another by
the following ordering relation: given two Path-Complete
graphs G and G′ with labels in 〈M〉:

G ≤ G′ if ∀n ∈ N,∀A ⊂ Rn×n :

γ(G,A) ≥ γ(G′,A).
(19)

The above relation does not form a total order (see
Example III.11, where G1, G5 and G6 are incomparable).

The techniques we develop herein are inspired by
existing ad-hoc proofs in the literature applying to
particular cases/sets of graphs. Examples of these ad-hoc
proofs can be found in [1, Proposition 4.2 and Theorem
5.4], [33, Theorem 3.5]. Typically, given two graphs G
and G′, these proofs proceed in two steps to show that
G ≤ G′. The first step is to propose a construction

to transform any possible quadratic PCLF for G into a
candidate quadratic PCLF for G′. The second step is to
check that the construction does indeed provide a PCLF
for G′.

Example IV.1. Take any set A of two matrices , and let
V ∼ pclf(G2,A) be a Path-Complete Lyapunov function
for the graph G2 = (S2, E2) in Figure 2a. Then, one
can show that a Path-Complete Lyapunov function for
the graph G1 = (S1, E1) in Figure 1b is given by U =
(Ua1 , Ub1)

>, with

Ua1 = Va2 + Vb2 , Ub1 = Va2 + Vc2 . (20)

To prove this we need to show that each edge
(s, d, σ) ∈ E2 represents a valid Lyapunov inequality
for the functions in U . For example, consider the edge
(a1, b1, 2) ∈ E1. We need to show that

∀x ∈ Rn : Va2(A2x) + Vc2(A2x) ≤ Va2(x) + Vb2(x)

holds true. To do so, it suffices to write down and sum
up the inequalities corresponding to the edges (a2, b2, 2)
and (c2, b2, 2) in E2, which are assumed to hold true
for the choice of functions V . The reader can verify
that a similar reasoning can be applied to all edges
in E1. Therefore, for any set of matrices A, as long
as V ∼ pclf(G1,A), the set U defined above satisfies
U ∼ pclf(G1,A).

In this section, we focus on providing algorithmic tools
to decide whenever a construction as in Example IV.1
exists. We formalize this as follows.

Definition IV.2. Consider two Path-Complete graphs
G = (S,E) and G′ = (S′, E′) on the same labels 〈M〉.
We write

G ≤Σ G′

if there is a matrix3 C ∈ R|S
′|×|S|
≥0 , satisfying

∀s′ ∈ S′ :
∑
s∈S

Cs′,s ≥ 1, (21)

such that for any set of M matrices A of dimension n
and Path-Complete Lyapunov function V ∼ pclf(G,A),
the VLFC U : Rn → R|S

′|
≥0 where

∀s′ ∈ S′,∀x ∈ Rn : Us′(x) =
∑
s∈S

Cs′,sVs(x)

satisfies U ∼ pclf(G′,A).

Given two graphs, the property G ≤Σ G′ is a sufficient
condition for the ordering G ≤ G′ (19). This is due to
the fact that the set of quadratic functions is closed under
positive combinations.

3The element Cs′,s appearing in (21) is the element for the row of

s′ ∈ S′ and the column of s ∈ S of C ∈ R|S
′|×|S|
≥0 .
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The following allows us to express (6) with vector
inequalities.

Definition IV.3. Given a graph G = (S,E) with a set
of labels 〈M〉, and σ ∈ 〈M〉, we define the two matrices
Sσ(G) ∈ {0, 1}|Eσ|×|S| and Dσ(G) ∈ {0, 1}|Eσ|×|S| as
follows:

Sσe,s = 1⇔ ∃d ∈ S : e = (s, d, σ) ∈ E,
Dσ
e,d = 1⇔ ∃s ∈ S : e = (s, d, σ) ∈ E,

(22)

where Eσ ⊂ E is the set of edges with label σ.

The construction of these matrices is illustrated in
Example IV.5. For a graph G and label σ, the matrix
Sσ(G) − Dσ(G) is the incidence matrix [10] of the
subgraph of G having only the edges with label σ.
Given a set of M matrices A of dimension n and a
Path-Complete graph G = (S,E) on M labels, a VLFC
V : Rn → R|S|≥0 satisfies V ∼ pclf(G,A) if and only if

∀σ ∈ 〈M〉,∀x ∈ Rn : Dσ(G)V (Aσx) ≤ Sσ(G)V (x),
(23)

where the vector inequality is taken entrywise.
Our main result in this section is the following theorem,
whose proof is detailed in Subsection IV-A.

Theorem IV.4. Consider two graphs G = (S,E) and
G′ = (S′, E′) on M labels. The following statements
are equivalent.

a) The graphs satisfy G ≤Σ G′.
b) There exists a matrix C ∈ R|S

′|×|S|
≥0 satisfying (21)

and one matrix Kσ ∈ R|E
′
σ|×|Eσ|

≥0 per label σ ∈
〈M〉 such that

Sσ(G′)C ≥ KσS
σ(G), (24)

Dσ(G′)C ≤ KσD
σ(G). (25)

Example IV.5. In this example, we apply Theorem IV.4
to show that G1 ≤Σ G2, where G1 is represented in
Figure 1b and G2 is represented in Figure 2a.
We first construct the matrices Sσ and Dσ for the graphs
G1 and G2 and σ ∈ 〈2〉. In order to do so, we need to set
a convention for ordering nodes and edges in a graph (to
convene to which edge and node corresponds the entry
Sσ1,1(G2) for example). In any graph represented in this
paper, we let the first node be the node marked with
“ag”, the second node be that marked with “bg”, etc...,
where the subscript g designates the graph itself. We use
a lexicographical ordering for the edges, and sort them
according to their source node first, then their destination
node, and finally their labels. For example, the first edge
in G4 in Figure 4 is the edge (a4, b4, 1), and its third
edge would be the edge (b4, c4, 1).
With these conventions, we obtain the following matrices:

S1(G1) =

(
1 0
1 0

)
, D1(G1) =

(
1 0
0 1

)
,

S2(G1) =

(
0 1
0 1

)
, D2(G1) =

(
1 0
0 1

)
,

S1(G2) =

1 0 0
1 0 0
0 1 0

 , D1(G2) =

0 1 0
0 0 1
1 0 0

 ,

S2(G2) =

1 0 0
1 0 0
0 0 1

 , D2(G2) =

0 1 0
0 0 1
1 0 0

 .

For these choices, a solution to the inequalities (24),
(25) is given by

C =

(
1 1 0
1 0 1

)
,K1 = K2 =

(
1 0 1
0 1 1

)
.

A. From algebraic to linear inequalities

The main challenge for the proof of Theorem IV.4 is
to show that a)⇒ b). With our matrix/vector notations,
Definition IV.2 can be written as follows: given two
graphs G = (S,E) and G′ = (S′, E′), G ≤Σ G′ if
there is a matrix C ∈ R|S

′|×|S|
≥0 satisfying (21) such that

∀A,∀V ∼ pclf(G,A) : U = CV ∼ pclf(G′,A).

In this subsection, we show that these algebraic
conditions are equivalent to the inclusion of one
polyhedral cone into another. We begin by investigating
the range of values that may be taken by a VLFC
V : Rn → R|S|≥0, independently of the dimension n.

Lemma IV.6. Take any pair of integers M,N ≥ 1 and
any positive vector λ ∈ R(M+1)N

>0 . There exists a point
u ∈ RM+1, a set of matrices T = {T1, . . . , TM} in
R(M+1)×(M+1), and a VLFC U : RM+1 → RN≥0 such
that

λ =


λ0

λ1

...
λM

 =


U(u)

U(T1u)
...

U(TMu)

 , (26)

where for 0 ≤ i ≤ M , the block λi is a positive vector
of dimension N .
If furthermore for a graph G = (S,E) with |S| = N ,
the vector λ satisfies

∀σ ∈ 〈M〉 : Sσ(G)λ0 ≥ Dσ(G)λσ, (27)

then we can pick the VLFC U and the matrices T such
that U ∼ pclf(G, T ).

Proof. We begin with the first part of the Lemma. For
all k ∈ {1, . . . , N} we define the quadratic function Uk :
RM+1 → R≥0 as follows:

Uk(x) =

M∑
i=0

λikx
2
i+1. (28)
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We now take the vector u ∈ RM+1 such that u1 = 1
and ui = 0 for i ≥ 2. Clearly, Uk(u) = λ0

k, so we have
U(u) = λ0 by definition.
For the matrices T , we take for each σ ∈ 〈M〉 the matrix
Tσ defined as follows:

∀1 ≤ i, j ≤M + 1, Tσ,i,j = δi,σ+1δj,1, (29)

where for 1 ≤ k, ` ≤ M + 1, δk,` = 1 if k = ` and
δk,` = 0 else. We can then verify that for all σ ∈ 〈M〉,
U(Tσu) = λσ. This concludes the proof of the first part.

Let us now take a graph G = (S,E) with N nodes
and M labels, and assume (27) holds for a given label
σ. This means that ∀(s, d, σ) ∈ E, (λ0)s ≥ (λσ)d. Take
any edge (s, d, σ) ∈ E, and any x ∈ R(M+1). Taking
again U as in (28), we have

Us(x) =

M∑
i=0

λis x
2
i+1

≥ λ0
s x

2
1 ≥ λσd x2

1 = Ud(Tσx).

Since this holds at all edges of the graph with label σ,
and all x ∈ R(M+1), we can conclude the proof.

Proposition IV.7. Consider two graphs G = (S,E) and
G′ = (S′, E′) on M labels and a matrix C ∈ R|S

′|×|S|
≥0

satisfying (21). The following statements are equivalent.
a) The graphs satisfy G ≤Σ G′ with the matrix C.
b) For any set of M matrices A = {A1, . . . , AM} in

any dimension n, for any VLFC V : Rn → R|S|≥0,
for any σ ∈ 〈M〉 and any x ∈ Rn:

Dσ(G)V (Aσx) ≤ Sσ(G)V (x)⇒ (30)
Dσ(G′)CV (Aσx) ≤ Sσ(G′)CV (x). (31)

Proof. The difference between the two statements is
subtle yet important. Statement a) is equivalent to “if
(30) holds for all σ ∈ 〈M〉 and all x ∈ Rn, then so does
(31)”. In contrast, statement b) merely states that (31)
holds at any point and label where (30) holds.
With this in mind, proving b) ⇒ a) is immediate as,
under b), if (30) holds for all points x ∈ Rn and all
σ ∈ 〈M〉, so does (31).
We prove that a) ⇒ b) by using the construction in the
proof of Lemma IV.6. Assume that a) holds and consider
a set of matrices A, a VLFC V , and one particular point
x∗ such that (30) holds at x∗. We show that (31) holds
at x∗ as well. Let

λ =


λ0

λ1

...
λM

 =


V (x∗)
V (A1x

∗)
...

V (AMx
∗)

 .

Without loss of generality, we can assume λ to be strictly
positive. For this vector, we know that Sσ(G)λ0 ≥
Dσ(G)λσ , or more explicitly,

∀(s, d, σ) ∈ E, (λ0)s ≥ (λσ)d.

Using this information, we seek to show that

Sσ(G′)Cλ0 ≥ Dσ(G′)Cλσ (32)

holds as well.
We now construct a vector λ̃ ∈ RN(M+1) defined in

blocks such that λ̃0 = λ0, λ̃σ = λσ , and for all σ′ 6= σ,
λ̃σ

′
= (mini λ

0
i )1, where 1 ∈ R|S| is the vector of all

ones. By construction, (27) holds for the vector λ̃. Using
Lemma IV.6, we take a set of matrices T = {Tσ′ , σ′ ∈
〈M〉} of dimension M + 1 and a VLFC U : RM+1 →
R|S|≥0 such that there is a point u∗ ∈ RM+1 where

U(u∗) = λ̃0, ∀σ′ ∈ 〈M〉 : U(Tσ′u∗) = λ̃σ
′
.

Moreover it must be that U ∼ pclf(G, T ) since (27)
holds at all σ′ ∈ 〈M〉.

We can now conclude the proof using statement a):
since U ∼ pclf(G,T), (30) holds for U , T , and all u ∈
RM+1. Hence, so does (31). In particular, it holds for the
mode σ at the point u∗, and we can conclude the proof
since Sσ(G′)Cλ0 ≥ Dσ(G′)Cλσ holds true.

The next result allows us to characterize the G ≤Σ G′
property without having to rely on concepts explicitly
related to dynamics (e.g. matrix sets and VLFCs).

Proposition IV.8. Consider two graphs G = (S,E) and
G′ = (S′, E′) on M labels and a matrix C ∈ R|S

′|×|S|
≥0

satisfying (21). The following statements are equivalent.
a) The graphs satisfy G ≤Σ G′ with the matrix C.
b) For any vector

λ =
(
(λ0)> (λ1)> . . . (λM )>

)> ∈ R(M+1)|S|
≥0

with λi ∈ R|S|≥0, for any σ ∈ 〈M〉:

Dσ(G)λσ ≤ Sσ(G)λ0 ⇒ (33)

Dσ(G′)Cλσ ≤ Sσ(G′)Cλ0. (34)

Proof. By Proposition IV.7, we can as well prove the
equivalence between the statement b) above and the
statement of Proposition IV.7-b).
With this in mind, b)⇒ a) is direct.
For the other direction, i.e. a) ⇒ b), we therefore need
to show that Proposition IV.7 - b) implies the current
statement b). By Lemma IV.6, we have that any positive
vector λ > 0 satisfying (33) also satisfies (34). Indeed,
given any such vector λ, we can construct a point u, a
set of matrices T and a VLFC U such that these satisfy
(30). They must therefore satisfy (31), and therefore λ
satisfies (34).
Finally, observe that this implies that the open polyhedral
cone defined as the set Pσ = {λ > 0 : (33) holds}
is included into the cone P ′σ = {λ ≥ 0 : (34) holds}.
Hence the closure of Pσ is also in P ′σ , which is equivalent
to b) and concludes the proof.
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We now prove Theorem IV.4. The final stage of the
proof uses the following formulation of Farkas’ Lemma:

Lemma IV.9 (Farkas’ Lemma, [19, Lemma II.2]).
Consider two matrices A ∈ Rp×n and B ∈ Rq×n. The
following are equivalent:

({y ∈ Rn : Ay ≥ 0, y ≥ 0} ⊆ {y ∈ Rn : By ≥ 0})
⇔ ∃K ∈ Rm×p : KA ≤ B, K ≥ 0.

Proof of Theorem IV.4. b) ⇒ a): Given a set of M
matrices A of dimension n, assume there is a VLFC
V ∼ pclf(G,A). By definition, we have ∀σ ∈
〈M〉,∀x ∈ Rn: Dσ(G)V (Aσx) ≤ Sσ(G)V (x). This
implies, from (24) and (25), that ∀σ ∈ 〈M〉, ∀x ∈ Rn:
Dσ(G′)CV (Aσx) ≤ Sσ(G′)CV (x). We conclude that
for any set A such that there is V ∼ pclf(G,A), it is
true that U = CV ∼ pclf(G′,A). Therefore, G ≤Σ G′.
a)⇒ b): Take two graphs G = (S,E) and G′ = (S′, E′)
and assume that G ≤Σ G′ through some matrix C ∈
R|S

′|×|S|
≥0 that satisfies (21). Then, Proposition IV.8 - b)

states the following. For all σ ∈ 〈M〉, the polyhedral sets

Pσ = {x, y ∈ R|S|≥0 | S
σ(G)x−Dσ(G)y ≥ 0}, (35)

P ′σ = {x, y ∈ R|S|≥0 | S
σ(G′)Cx−Dσ(G′)Cy ≥ 0}

(36)

satisfy Pσ ⊆ P ′σ .
For the final step of the proof, we apply Farkas’

Lemma (Lemma IV.9 above) to the inclusion Pσ ⊆ P ′σ ,
there must be a matrix Kσ ∈ R|E

′
σ|×|Eσ|, where E

′

σ

and Eσ are the sets of edges with label σ in G′ and G
respectively, satisfying

Kσ

(
Sσ(G) −Dσ(G)

)
≤
(
Sσ(G′) −Dσ(G′)

)
C,
(37)

which concludes the proof.

Remark IV.10. The characterization of the ordering
G ≤Σ G′ is remarkable in its simplicity. In its essence,
the linear program of Theorem IV.4 mimics the proof
scheme used in Example IV.1. This is easier to see by
inspecting (37). Given a graph G on an alphabet 〈M〉,
each row of the matrix

(
Sσ(G) −Dσ(G)

)
corresponds

to one edge of the graph (with label σ). The inequality
(37) is therefore equivalent to checking that, given a
matrix C mapping a PCLF for the graph G into a PCLF
for the graph G′, we can prove that all inequalities of
the graph G′ hold true simply by composing those of G.
The matrices Kσ give us the information regarding how
to compose these inequalities.
Note that the tool recovers those from [2, Section
4], which are based on combinatorial criteria, that
ultimately rely on constructing a PCLF for one graph
from a PCLF for another graph by positive combination
of the pieces of the first one.

B. Discussion and extensions

The approach can be naturally extended to encompass
more general proofs of ordering.

Example IV.11. Consider the graph G7 in Figure 8.

a7

b7 c7

d7e7

1
1

2
2

1
2

1
2

Figure 8: The Path-Complete graph G7.

Given a set of two invertible4 matrices A = {A1, A2}
of dimension n, consider a PCLF V ∼ pclf(G,A). For
any pair of labels σ, σ′ ∈ 〈2〉, we have

∀x ∈ Rn : Va7(AσA
′
σx) ≤ Va7(x). (38)

We can show that the existence of a PCLF for this graph
implies that of a PCLF for the graph G8 in Figure 9
(see e.g. [1, Theorem 5.1], [33, Theorem 3.5]). Indeed,

a8 b81

2

1

2

Figure 9: The Path-Complete graph G8.

given the PCLF V above, we can construct a PCLF U =
(Ua8 , Ub8)> for G8 by taking

Ua8(x) = Va7(x) + Va7(A−1
1 x),

Ub8(x) = Va7(x) + Va7(A−1
2 x).

This can be proven in a manner similar to that of
Example IV.1. For example, take the edge (a8, b8, 2) in
G8, which corresponds to

∀x ∈ Rn : Va7(A2x) + Va7(x) ≤ Va7(x) + Va7(A−1
1 x).

The inequality is satisfied by evaluating the inequality
(38) at the point x′ = A−1

1 x, for σ′ = 1 and σ = 2,
which gives ∀x ∈ Rn : Va7(A2x) ≤ Va7(A−1

1 x).

The main difference here compared to the technique
of Example IV.1 is that we need to generate valid
inequalities involving a term A−1

1 x. Such inequalities are
easily obtained through a change of variables, as done in

4As mentionned in [1, Remark 2.1], we can assume to be dealing
with invertible matrices without loss of generality in the current context.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2017 11

Example IV.11. This leads to a set of linear inequalities
on a vector of the form

V (A−1
2 x)

V (A−1
1 x)

V (x)
V (A1x)
V (A2x)

 .

By enumerating such inequalities and embedding them
in a matrix representation, we can establish sufficient
conditions under the form of linear programs similar to
that of Theorem IV.4 for when, given a set of matrices
A and two graphs G and G′, the existence of a PCLF V
on G for A implies that of a PCLF U on G′ where each
function in U is a combination of functions in V and their
compositions with the dynamics and their inverses up to
a fixed number of compositions. Further work remains
to devise conditions for when this is possible.

V. CONCLUSIONS

Path-Complete criteria are promising tools for the
analysis of hybrid and cyber-physical systems. They
encapsulate several powerful and popular techniques for
the stability analysis of switching systems. Moreover,
their range of application seems much wider. First, they
can handle switching nonlinear systems as well and are
not limited to LMIs and quadratic pieces (see [3], [5]).
Second, they have been used to analyze systems where
the switching signal is constrained [33]. Third, they can
be used beyond stability analysis [15], [32], [34].
However, many questions about these techniques
still need to be clarified. In this paper we tackle
two fundamental questions. First, we gave a clear
interpretation of these criteria in terms of common
Lyapunov function: each criterion implies the existence
of a common Lyapunov function which can be expressed
as the minimum of maxima of sets of functions (Theorem
III.8). The combinatorial structure of the graph is used
to combine these sets into a CLF. Second, we tackled
the problem of deciding when one criterion is more
conservative than another, and provide a first systematic
approach to the problem (Theorem IV.4). Note that while
we focused here on Path-Complete graphs, it is clear that
our approach applies to the comparison of any graphs,
such as those used in the building of stability certificates
for constrained switching systems [33].
For further work, the application of the tools used in
Section III, such as the observer graph, to refine the
analysis of Section IV remains to be investigated. On
a more practical side, the common Lyapunov function
representation presented in Section III could allow us to
better leverage Path-Complete techniques for reachability
and invariance analysis [4].
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