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A B S T R A C T

First-order reversal curve (FORC) diagrams are increasingly used as a material’s magnetic domain state fin-
gerprint. FORC diagrams of noninteracting dispersions of single-domain (SD) particles with uniaxial magneto-
crystalline anisotropy (MCA) are well studied. However, a large class of materials possess a cubic MCA, for which
the FORC diagram properties of noninteracting SD particle dispersions are less understood. A coherent rotation
model was implemented to study the FORC diagram properties of noninteracting ensembles of SD particles with
positive and negative MCA constants. The pattern formation mechanism is identified and related to the irre-
versible events the individual particles undergo. Our results support the utility of FORC diagrams for the
identification of noninteracting to weakly-interacting SD particles with cubic MCA.

1. Introduction

Ferromagnetic materials exhibit magnetic hysteresis: the depen-
dence of the material’s magnetisation M on its magnetic history [7].
The hysteretic response of a material is obtained by a series of mea-
surements of its scalar magnetisation ̂= M nM · as a function of the
applied magnetic field ̂=H nH . To trace a hysteresis loop the magnetic
field strength H is slowly decreased from its saturation value =H Hsat
down to = −H Hsat, followed by the slow increase up to =H Hsat.

First-order reversal curves (FORCs) are a set of partial hysteresis
curves, each starting at a saturation field =H Hsat, followed by the
quasi-static decrease of the applied field strength down to =H Ha.
From Ha, the field strength is increased back to =H Hsat to trace a given
curve labelled by its Ha value. On each FORC, the scalar magnetisation
is then a function =M M H H( , )b a of the applied field =H Hb and the
Ha value of the given curve ( ⩽H Ha b). > The FORC distribution, an
empirical analog of the Preisach weight function based on the experi-
mental protocol described above, is defined as the second order mixed
partial derivative [15]
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which must be understood in some weak sense to allow the dis-
continuous M. Contour plots of the FORC distribution (Eq. (1)) are
known as FORC diagrams and have been increasingly used by the wide

magnetics community as a proxy for the magnetic domain state and
switching behaviour of a variety of magnetic systems [11,12,15,2,13].

Based on Stoner-Wohlfarth theory [16] significant progress has been
made towards understanding the contribution of fine magnetic single-
domain (SD) particles with uniaxial magnetocrystalline anisotropy
(MCA) to the FORC diagram properties of interacting and non-
interacting dispersions [10,4,2]. However, many materials including
the most abundant ferromagnetic minerals on Earth possess a cubic
MCA.

The general hysteretic properties of noninteracting dispersions of
particles with cubic MCA has been previously studied [17,18]. The
cubic MCA system is more complicated than the uniaxial due to the
existence of more local energy minima (LEM) and the mechanism be-
hind the FORC diagram pattern formation is not yet as well understood
as the uniaxial case.

Previous studies of FORC diagram pattern formation by minerals
with cubic MCA used micromagnetics [8] and dipole-dipole modelling
[6] to study the influence of magnetostatic interactions on the FORC
diagram. However, the fully non-interacting case remains less under-
stood as these studies rely on specific arrangements of particle positions
and orientations and focus only on magnetite-like materials.

In this study we present an approach for numerically calculating the
FORC diagram of a uniform non-interacting dispersion of SD particles
with cubic MCA. Since the properties depend linearly on the saturation
magnetisation (MS) and first anisotropy constant (K1) (Section 2.1),
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results obtained for a given set of parameters can be scaled to obtain the
response for a different set of parameters. Thus, magnetic parameters of
hypothetical iron-like ( >K 01 ) and magnetite-like ( <K 01 ) materials
have been used due to their opposing signs for K1. These are: iron-like,

= ×M 1 10 A/ms
5 and = ×K 1 10 J/m1

4 3; magnetite-like,
= ×M 1 10 A/ms

5 and = − ×K 1 10 J/m1
4 3. This allows to obtain the

FORC diagram for any set of parameters, whether with >K 01 or <K 01 ,
by scaling operations.

2. Method

2.1. The FORC model

In an ensemble of identical, randomly aligned particles the prob-
ability of a given particle orientation is uniform over the sphere. If the
ensemble is noninteracting (dilute) then the ensemble has a magnetic
response

∫ ∫
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where ′m H H θ ϕ( , , , )b a is the magnetisation of a particle at H H( , )b a

when the applied field is directed along the unit vector
̂ ̂ ̂ ̂= + +n e e eθ ϕr θ ϕ. Given the symmetry of the cubic anisotropy

system, the integration can instead be carried out over the subdomain
≡ ×π πI [0, /2] [0, /2], so:
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We calculate Eq. (3) using the backtracking line-search gradient
method outlined in Section 2.2 to obtain each ′m H H θ ϕ( , , , )b a over a
uniform grid ≡ = … × = …G iπ i jπ j{ /200: 0, ,100} { /200: 0, ,100} with
the evaluation performed in the center of the cells:

∑ ∑
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i j
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(4)

thus, 104 different particle/field configurations are simulated for.
The hysteresis loop of a single particle in the simplest case is a

hysteron with switching fields −H and +H . In such a case, all the FORCs
are contained in the main branches of the hysteresis loop (i.e., the field-
descending and -ascending curves). The FORC distribution (Eq. (1)) is,
accordingly:
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where ′m[ ] is, up to its sign, the size of the magnetisation discontinuity
at the switching field +H and ′m H[d /d ]b the difference in the slopes
between the main branches. The distribution has two parts: tail and
front. The front contains the information about the magnetisation be-
haviour at the switching fields and has a delta-like support. The tail has

Fig. 1. Basic concepts: the single particle. a) Energy landscape projection in polar coordinates for < =K K0, 01 2 ; b) a complete set of FORCs for θ ϕ, as marked by the
× in a); c) the reduced magnetisation = =m B μ H B μ H( , )b b a a0 0 ; d) the corresponding FORC distribution (normalised) with SF= 1. The FORC distribution fronts and
tails coincide with the sharp edges of m B B( , )b a .
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support along a line = <− +H H H H( , )a b and contains information
about the slopes traced by the reversible motions. This contribution is
usually an order of magnitude lower than the front so the reversible
information is mostly obscured in a FORC diagram; however, using
non-linear scales for the visualisation this contribution is highlighted.

For a single particle, the computation of the complete set of FORCs
can be simplified if we note that each curve consists mostly of reversible
motion with only a few irreversible jumps at the switching fields. This
means that all the FORCs with Ha larger than the first switching field
are implicitly calculated in the main branch of the hysteresis loop.
Similarly for all the ′m H H( , )b a between the first (second) and second
(third) switching fields, if there are more than one (two) irreversible
jumps, and the ′m B B( , )b a between the last switching field and−Hsat. All
that is left then, after calculating the hysteresis main branch, is to
calculate the FORCs starting at Ha values corresponding to the
switching fields (Fig. 1b). Once obtained, all ′m H H( , )b a form a grid mi

j

on which the FORC distribution can now be calculated (Fig. 1c). The
calculation is done at each grid point by least-square fitting a second
degree polynomial surface on a subgrid = − ⋯+

+m k l{ : , SF, ,SF}i k
j l ,

where SF is the so-called smoothing factor, taking care to exclude points
with <H Hb a; from the general equation of the fitted polynomial sur-
face = + + + + +m H H a a H a H a H H a H a H( , )b a a b a b a b0 1 2 3 4

2
5

2 the FORC
distribution is simply −a /23 [11].

In this study, the response of the randomly dispersed ensemble is
obtained by simulating 104 different particle/field configurations and
5001 reversal curves calculated for each particle/field orientation.

2.2. Backtracking line-search gradient-descent method

A small spherical ferromagnetic particle in the single-domain (SD)
state is modelled as a magnetic dipole with constant magnitude

=M M| | s, the saturation magnetisation of the material. The magnetic
Gibbs free-energy density of the particle is then the sum of the mag-
netocrystalline anisotropy (MCA) and the external field energy den-
sities:

= +E E Ea z (6)

with
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= − = − + +m BE M M B αχ βψ γω( · ) ( );z s s (8)

where =α α β γ( , , )i are the direction cosines of the reduced magneti-
sation =m M M/| | and χ ψ ω( , , ) those of the external field =B Hμ K;0 1
and K2 the first and second MCA constants. From thermodynamics it is

known that a system is spontaneously driven towards states with locally
minimal Gibbs free-energy. Therefore, we are concerned with finding
the LEM of the function = m BE E ( , ).

Since the reduced magnetisation vector is unitary, it is natural to
express the energy in the spherical coordinate system
= =m m BE E θ ϕ( ( , ), ) (θ ϕ, the polar and azimuthal angles, respec-

tively):

= + +E K θ θ θ ϕ ϕ K θ θ θ ϕ ϕsin [cos (sin cos sin ) ] sin (sin cos sin cos ) ,a 1
2 2 2

2
2 2

(9)

= − + +E M B χ θ ϕ ψ θ ϕ ω θ( sin cos sin sin cos ).z s (10)

Ea minima and maxima lie along crystallographic orientations de-
pending on the sign of K K,1 2 and the ratio K K| |/| |2 1 . For <K 01 ( =K 02 )
the easy axes (minima) are the 〈111〉 and the hard (maxima) the
〈100〉; the 〈110〉 are saddle points (Fig. 1(a)). When >K 01 ( =K 02 )
instead, the easy axes become the 〈100〉 and the hard the 〈111〉 while
the 〈110〉 remain as saddle points.

From Eq. (6), (9, 10), the gradient is then
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= − − +E M B θ χ ϕ ψ ϕ( ) sin ( sin cos ).z ϕ s (15)

A backtracking line-search gradient-descent method [1] was im-
plemented to simulate hysteresis loops and first-order reversal curves of
nanomagnets with cubic MCA. The Armijo-Goldstein control para-
meters = × =−c τ1 10 4, 1/2 were used in this study. These ensure that
the minimiser follows the gradient-descent direction very closely
(Fig. 2).

3. Results and discussion

The calculated FORCs for a single particle/field orientation are
shown in Fig. 1(b). Fig. 1(c and d) show the magnetisation as a function
of B B( , )b a and the corresponding FORC diagram (normalised, SF=1),

Fig. 2. The behaviour of the minimiser during irreversible motion along the main branch of the FORCs shown in Fig. 1b. a) The magnetisation irreversibly rotates
from its position in the positive octant ( >x y z, , 0) (grey dot) to the one with <z 0, where a local energy minimum is found (black dot). As the field strength is
further increased the local energy minimum becomes more shallow until b) an energy gradient causes the irreversible motion to the negative octant ( <x y z, , 0)
where saturation occurs.
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respectively. It is seen that the distribution is a collection of tail/front
pairs like Eq. (5) along the discontinuities in m B B( , )b a . A negative
delta-like source at = = −B B( 0.23, 0.52)b a (non-dimensional units) is
caused by the curve with = −B 0.51a going back to positive saturation at

=B 0.23b while the one with = −B 0.52a remains in its negative sa-
turation state up to =B 0.4b . These type of strong, highly-localised
FORC distribution negative sources are then due to irreversible events
on different FORCs. These strong, negative delta-like sources cannot
occur in uniaxial particles which have only one irreversible event along
the hysteresis main branch; low-valued negative delta-like sources are
possible in uniaxial systems for the particles with easy axis almost
normal to the applied field which experience very small irreversible
upward jumps [16,10].

The particles that have an easy axis alignment closer to the external
field produce highly-symmetric, hysteron-like hysteresis curves which
are responsible for the accumulation of positive delta-like sources along
the central ridge (the line = −H Ha b). Materials with >K 01 have higher
intrinsic (i.e. non-dimensional) coercivities. The highest coercivity BC
was found to be as high as ∼ 1.5 for particles with an easy axis closely
aligned with the applied field. For <K 01 the coercivities are as high as
∼ 1. The lowest coercivities are ∼ 0.75 and ∼ 0.35 for positive and ne-
gative K1, respectively.

FORC diagrams are usually presented as contour plots of the FORC
distribution with higher values of the smoothing factor. The usual
plotting axes are the transformed = − = +B B B B B B( )/2, ( )/2c b a u b a ; in
this manner, FORC diagrams were calculated (Figs. 3, 4). The FORC
distributions show similar, yet different, patterns for both signs of K1

(Figs. 3, 4). In the <K 01 case, positive delta-like sources accumulate
along the central ridge from ∼ 0.35 up to ∼ 1 (Fig. 4). A local peak
(Fig. 4, region ii) is caused by a cascade of particles with easy axis far
from the field orientation switching at low Ba values to intermediate
states and back to positive saturation at <B B| |b a . These irreversible
events then cause the accumulation of negative delta-like sources along
a negative-valued vertical ridge (Fig. 4, region i). To the right of this,
negative contributions produced by the irreversible events of particles
undergoing hysteresis loops with more than two jumps, which corre-
sponds to the fraction of particles with hard axes very closely aligned
with the external field, cause the structure of region iii to differ sig-
nificantly from the >K 01 case (Fig. 3, region iii).

For >K 01 (Fig. 3), the pattern formation is similar, if only with the
position and width of the features changing. However, a fundamental
difference is that for >K 01 there is not an appreciable fraction of
particles with hysteresis loops with more than two irreversible events.
This is manifested in the FORC distribution by the absence of negative

sources to the right of the negative vertical ridge as well as by dimin-
ished positive contributions, which causes the boomerang-shaped fea-
ture (Fig. 3, region iii).

The position of the features in the FORC diagram for <K 01 (Fig. 4)
is slightly offset from being centered around the =B 0u axis. This has
been observed before in both measured and modelled FORC diagrams
[6,8–10]. Newell [10] attributes this to either a numerical artifact in-
troduced by the least-square fitting-type calculation of the FORC dis-
tribution or to thermal effects. However, at least in this study, this
should be attributed to the irreversible contributions accumulating just
below the central ridge, which are absent in the >K 01 case.

The FORC diagrams obtained here for non-interacting ensembles of
SD particles with cubic MCA show good agreement with the weakly
interacting ensembles of Harrison and Lascu [6] as far as overall shape,
e.g., the tilted negative ridge (Figs. 3, 4). The elongated, negative-va-
lued ridge is highly significant and related to the presence of inter-
mediate states, i.e., more than one irreversible event along the hyster-
esis curve. Uniaxial particles cannot produce this type of FORC
distribution sources [8,10], so this is possibly a unique magnetic fin-
gerprint of non-interacting to weakly interacting, coherent-rotating SD
particles with cubic MCA or other non-uniaxial types of MCA. The tilted
negative ridge has been observed before in FORC measurements of
synthetic and natural greigite ( <K 01 [19]) samples [14].

For comparison with Harrison and Lascu [6], FORC diagrams for
materials with log-normal distributions of K1 were produced for both
signs of K1. The probability density function

⎜ ⎟= ⎛
⎝
− ⎛

⎝
− ⎞

⎠
⎞
⎠

∗
∗

∗
W K

K σ π
K μ
σ

( ) 1
2

exp 1
2

log
,

2

(16)

where =∗K K K/ 1, with = −μ 1/32 and =σ 1/4 was used for calculating
the weighted averages, e.g., for a K value twice the material’s value for
K1 the weight factor is equal to W (2). Values of M K,S 1 for iron and
magnetite were used: for iron, = ×M 1.7 10 A/ms

6 [3] and
= ×K 4.8 10 J/m1

4 3 [5]; for magnetite, = ×M 4.8 10 A/ms
5 and

= − ×K 1.2 10 J/m1
4 3 [3]. The FORC diagram for magnetite (Fig. 5b) is

remarkably similar to that by Harrison and Lascu [6]. The difference
between both K1 sign cases is most apparent when comparing the ne-
gative ridge shapes (Fig. 5, regions i) and the shape of the boomerang
region (Fig. 5, regions iii). The range of coercivities (Fig. 5, insets) was
found to be 10–50mT for iron and 5–30mT for magnetite, with a peak
response at ∼ 22 mT and ∼ 12 mT, respectively. These peak responses
are relatively large compared to rock magnetic measurements, namely
5–15mT for iron and 3–12mT for magnetite [3]. This is due to our
model not incorporating thermal switchings and having a broad

Fig. 3. Reversal curves and FORC diagram for >K 01 . a) Reversal curves (every tenth curve is shown) and b) corresponding FORC diagram (SF=10). Gaussian
filtering was used for further smoothing.
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distribution of K1 values.

4. Conclusion

The FORC distribution and diagram of noninteracting dispersions of
SD particles with cubic MCA was calculated. The numerical algorithm
was found to be robust and fast. It is important that the minimiser takes
sensible steps in order to closely follow the gradient-descent direction
and not end up in local energy minima across energy barriers; the
Armijo-Goldstein control parameters used in this study ensure these
conditions.

The mechanism behind the FORC diagram pattern formation of
dilute dispersions of SD particles with cubic MCA was identified.
Different patterns emerge according to the sign of K1. The main dif-
ference between the <K 01 and >K 01 cases is that for the negative case
there are more particles in the randomly aligned ensemble which
support up to two intermediate states during hysteresis. This in turn
causes the regions labelled iii (Figs. 3–5)) to take on distinct shapes. The
FORC diagram pattern of non-interacting to weakly interacting, cubic
MCA SD particle ensembles are robust, which supports the idea of FORC
diagram use for the identification of a noninteracting to weakly-inter-
acting fraction of SD particles with cubic MCA.

The elongated negative ridge can be interpreted as the FORC signal
unique to noninteracting to weakly-interacting SD particles with cubic
or other non-uniaxial types of MCA. Identification of this signal should
be straightforward since its noninteracting nature means that it is es-
sentially additive. Experimental work with dilute dispersions of fine
particles of iron, magnetite or other magnetic minerals with a cubic
MCA can provide confirmation.
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