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Abstract

We introduce variational approximations for curve evolutions in two-dimensional
Riemannian manifolds that are conformally flat, i.e. conformally equivalent to the
Euclidean space. Examples include the hyperbolic plane, the hyperbolic disk, the
elliptic plane as well as any conformal parameterization of a two-dimensional surface
in Rd, d ≥ 3. In these spaces we introduce stable numerical schemes for curvature
flow and curve diffusion, and we also formulate a scheme for elastic flow. Variants of
the schemes can also be applied to geometric evolution equations for axisymmetric
hypersurfaces in Rd. Some of the schemes have very good properties with respect
to the distribution of mesh points, which is demonstrated with the help of several
numerical computations.
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1 Introduction

The evolution of curves in a two-dimensional manifold driven by a velocity involving
the (geodesic) curvature of the curve appears in many situations in geometry and in
applications. Examples are curve straightening via the elastic energy or image processing
on surfaces. The first mathematical results on such flows go back to the work of Gage and
Hamilton (1986), who studied curvature flow in the Euclidean plane. Later evolutions in
more complex ambient spaces have been studied, see e.g. Grayson (1989); Cabezas-Rivas
and Miquel (2007); Andrews and Chen (2017). In the Euclidean case it can be shown
that closed curves shrink to a point in finite time and they become more and more round
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as they do so, see Gage and Hamilton (1986) and Grayson (1987). In the case of a general
ambient space the solution behaviour is more complex. For example, some solutions exist
for arbitrary times and others can become unbounded in finite or infinite time, see e.g.
Grayson (1989).

Curvature flow is a second order flow. However, also fourth order flows are of in-
terest. Here we mention the elastic (Willmore) flow of curves and curve diffusion, both
of which are highly nonlinear. Elastic flow is the L2–gradient flow of the elastic energy,
and in the hyperbolic plane and on the sphere it was recently studied by Dall’Acqua and
Spener (2017, 2018) and Dall’Acqua et al. (2018), respectively. The curve diffusion flow,
sometimes also called surface diffusion flow, is the H−1–gradient flow for the length of the
curve, and, like the elastic flow, it also features second derivatives of the curvature.

In this paper, we also want to study situations, in which a curve evolves in a two-
dimensional manifold that is not necessarily embedded in R3. An important example is
the hyperbolic plane H2, which due to Hilbert’s classical theorem cannot be embedded
into R3, see Hilbert (1901) and e.g. Pressley (2010, §11.1). It will turn out that we
can derive stable numerical schemes for curve evolutions in two-dimensional Riemannian
manifolds that are conformally equivalent to the Euclidean space. This means that charts
exist such that in the parameter domain the metric tensor is a possibly inhomogeneous
scalar multiple of the classical Euclidean metric. This in particular implies that the chart
is angle preserving, we refer to Kühnel (2015) for more details.

The numerical approximation of the evolution of curves in an Euclidean ambient space
is very well developed, with many papers on parametric as well as level set methods. We
refer to Deckelnick et al. (2005) for an overview. However, for more general ambient spaces
only a few papers dealing with numerical methods exist. Some numerical work is devoted
to the evolution of curves on two-dimensional surfaces in R3. We refer to Mikula and
Ševčovič (2006); Barrett et al. (2010); Benninghoff and Garcke (2016) for methods using
a parametric approach. Besides, also a level set setting is possible in order to numerically
move curves that are constrained on surfaces, see Cheng et al. (2002); Spira and Kimmel
(2007).

The setting in this paper is as follows. Let I = R/Z be the periodic interval [0, 1] and
let ~x : I → R2 be a parameterization of a closed curve Γ ⊂ R2. On assuming that

|~xρ| ≥ c0 > 0 ∀ ρ ∈ I , (1.1)

we introduce the arclength s of the curve, i.e. ∂s = |~xρ|−1 ∂ρ, and set

~τ(ρ) = ~xs(ρ) =
~xρ(ρ)

|~xρ(ρ)|
and ~ν(ρ) = −[~τ(ρ)]⊥ , (1.2)

where ·⊥ denotes a clockwise rotation by π
2
.

On an open set H ⊂ R2 we define a metric tensor as

[(~v, ~w)g](~z) = g(~z)~v . ~w ∀ ~v, ~w ∈ R2 for ~z ∈ H , (1.3)
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where ~v . ~w = ~vT ~w is the standard Euclidean inner product, and where g : H → R>0 is
a smooth positive weight function. This is the setting one obtains for a two-dimensional
Riemannian manifold that is conformally equivalent to the Euclidean plane. In local
coordinates the metric is precisely given by (1.3), see e.g. Jost (2005); Kühnel (2015);
Schippers (2007). Let us mention that a two-dimensional Riemannian manifold locally
allows for a conformal chart, see e.g. Taylor (2011, §5.10). Examples of such situations
are the hyperbolic plane, the hyperbolic disc and the elliptic plane. Other examples
are given by curves on two-dimensional surfaces in Rd, d ≥ 3, that can be conformally
parameterized, such as spheres without pole(s), catenoids and torii. Coordinates (x1, x2) ∈
H together with a metric g as in (1.3) are called isothermal coordinates, i.e. in all situations
considered in this paper we assume that we have isothermal coordinates. We refer to
Section 2 and Kühnel (2015, 3.29 in §3D) for more information.

For a time-dependent curve ~x the simplest curvature driven flow is given as

Vg = κg . (1.4)

Here Vg = g
1
2 (~x) ~xt . ~ν is the normal velocity with respect to the metric (1.3), and

κg = g−
1
2 (~x)

[
κ − 1

2
~ν .∇ ln g(~x)

]
(1.5)

is the curvature of the curve with respect to the metric g. The vector ~ν, defined in (1.2)
is the classical Euclidean normal, and κ is the classical Euclidean curvature of the curve.
It satisfies the property

κ ~ν = ~κ = ~τs = ~xss =
1

|~xρ|

[
~xρ
|~xρ|

]
ρ

, (1.6)

see Deckelnick et al. (2005).

In the Euclidean case, i.e. in the case g ≡ 1, the right hand side in the curvature
flow (1.4) is equal to κ, and in particular the parameterization ~x only appears via ~xρ,
cf. (1.5), (1.6). This is crucial for stability proofs for numerical methods that have been
introduced earlier, cf. Dziuk (1988); Barrett et al. (2007a); Deckelnick et al. (2005). In the
case of a general ambient space, additional nonlinearities involving the variable ~x itself
appear in κg, so that the variational structure of (1.6) is lost. This makes the design
of stable schemes highly non-trivial. In fact, no such schemes appear in the literature
so far. We will introduce stable fully discrete schemes with the help of a non-standard
convex-concave splitting. In particular, the splitting has to be chosen in terms of g

1
2 .

With the help of the splitting, we propose in Section 3 a semi-implicit scheme for which
stability can be shown.

The outline of this paper is as follows. In Section 2 we derive the governing equations
for curvature flow, curve diffusion and elastic flow, provide weak formulations and relate
the introduced flows to geometric evolution equations for axisymmetric hypersurfaces.
In Section 3 we introduce finite element approximations and show existence and unique-
ness as well as stability results. Section 4 is devoted to several numerical results, which
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demonstrate convergence rates as well as a qualitatively good mesh behaviour. In two
appendices we derive exact solutions and derive the geodesic curve evolution equations
for a conformal parameterization.

2 Mathematical formulations

It is the aim of this paper to introduce numerical schemes for the situation where a
curve Γ = ~x(I) evolves in a two-dimensional Riemannian manifold that is conformally
equivalent to the Euclidean space. Curvature flow is the L2–gradient flow of the length
functional and we first review how length is defined with respect to the metric g. The
length induced by (1.3) is defined as

[|~v|g](~z) = ([(~v,~v)g](~z))
1
2 = g

1
2 (~z) |~v| ∀ ~v ∈ R2 for ~z ∈ H . (2.1)

The distance between two points ~z0, ~z1 in H is defined as

distg(~z0, ~z1) = inf

{∫ 1

0

[|~γρ(ρ)|g](~γ(ρ)) dρ : ~γ ∈ C1([0, 1], H) , ~γ(0) = ~z0 , ~γ(1) = ~z1

}
.

(2.2)
It can be shown that (H, distg) is a metric space, see Jost (2005, §1.4).

On recalling (2.1), the total length of the closed curve Γ ⊂ H is given by

Lg(~x) =

∫
I

[|~xρ|g](~x) dρ =

∫
I

g
1
2 (~x) |~xρ| dρ . (2.3)

If Γ = ~x(I) encloses a domain Ω ⊂ H, with ∂Ω = Γ, we define the total enclosed area as

Ag(Ω) =

∫
Ω

g(~z) d~z . (2.4)

For later use we observe that if Γ = ~x(I) = ∂Ω is parameterized clockwise, then ~ν◦~x−1, re-
call (1.2), denotes the outer normal to Ω on ∂Ω = Γ. An anti-clockwise parameterization,
on the other hand, yields that ~ν ◦ ~x−1 is the inner normal.

We remark that if we take (1.3) with

g(~z) = (~z .~e2)−2 and H = H2 := {~z ∈ R2 : ~z .~e2 > 0} , (2.5a)

then we obtain the Poincaré half-plane model which serves as a model for the hyperbolic
plane. Clearly,

g(~z) = 1 and H = R2 (2.5b)

simplifies to the standard Euclidean situation. In the context of the numerical approx-
imation of geometric evolution equations for axisymmetric surfaces in R3, in the recent
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papers Barrett et al. (2018a,b) the authors considered gradient flows, and their numerical
approximation, of the energy

AS(~x) = 2 π

∫
I

~x .~e2 |~xρ| dρ . (2.5c)

Here we note that as the authors in Barrett et al. (2018a,b) considered surfaces that are
rotationally symmetric with respect to the x2–axis, they in fact considered (2.5c) with ~e2

replaced by ~e1. We note that (2.3) collapses to (2.5c) for the choice

g(~z) = 4 π2 (~z .~e2)2 and H = H2 . (2.5d)

We also consider more general variants of (2.5a), namely

g(~z) = (~z .~e2)−2µ , µ ∈ R , and H = H2 , (2.5e)

so that (2.5a) corresponds to µ = 1, while formally (2.5b) corresponds to µ = 0. As
the latter choice leads to a constant metric, a suitable translation of the initial data in
the ~e2 direction will ensure that any evolution for (2.5b) is confined to H2, and so (2.5b)
and (2.5e) with µ = 0 are equivalent. In addition, (2.5d), up to the constant factor
4π2, corresponds to µ = −1. For the evolution equations we consider in this paper, the
constant factor 4 π2 will only affect the time scale of the evolutions.

We remark that for µ 6= 1 the metric space H2 with the metric (2.2) induced by (2.5e)
is not complete. To see this, we observe that the distance (2.2) between a~e2 and b~e2, for
a < b, is bounded from above by∫ b

a

u−µ du = (1− µ)−1
(
b1−µ − a1−µ) .

Hence, in the case µ > 1, the distance converges to zero as a, b→∞, and so (n~e2)n∈N is
a Cauchy sequence without a limit in H2. In the case µ < 1 we can argue similarly for
the Cauchy sequence (n−1 ~e2)n∈N, as its limit ~0 6∈ H2. The Hopf–Rinow theorem, cf. Jost
(2005), then implies that the metric space H2 with the metric induced by (2.5e) for µ 6= 1
is not geodesically complete. Of course, in the special case µ = 0 we can choose H = R2

to obtain the complete Euclidean space, (2.5b).

Further examples are given by the family of metrics

g(~z) =
4

(1− α |~z|2)2
and H =

{
Dα = {~z ∈ R2 : |~z| < α−

1
2} α > 0 ,

R2 α ≤ 0 .
(2.6)

see e.g. Schippers (2007, Definition 4.4). We note that (2.6) with α = 1 gives a model for
the hyperbolic disk, see also Kraus and Roth (2013, Definition 2.7). The metric (2.6) with
α = −1, on the other hand, models the geometry of the elliptic plane. This is obtained
by doing a stereographic projection of the sphere onto the plane, see (2.73a), below, for
more details.
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We note that the sectional curvature of g, also called the Gaussian curvature of g, can
be computed by

S0(~z) = −∆ ln g(~z)

2 g(~z)
~z ∈ H , (2.7)

see e.g. Kraus and Roth (2013, Definition 2.4). We observe that for (2.5e) it holds that

S0(~z) = −µ (~z .~e2)2 (µ−1) ~z ∈ H , (2.8)

while for (2.6) it holds that
S0(~z) = −α ~z ∈ H . (2.9)

Of special interest are metrics with constant sectional curvature. For example, (2.5b)
gives S0 = 0, (2.5a), i.e. (2.5e) with µ = 1, gives S0 = −1, while (2.6) gives S0 = −α .

From now on we consider a family of curves Γ(t), parameterized by ~x(·, t) : I → H ⊂
R2. It then holds that

d

dt
Lg(~x(t)) =

∫
I

[
∇ g

1
2 (~x) . ~xt + g

1
2 (~x)

(~xt)ρ . ~xρ
|~xρ|2

]
|~xρ| dρ . (2.10)

Let
∂sg = |~xρ|−1

g ∂ρ = g−
1
2 (~x) |~xρ|−1 ∂ρ = g−

1
2 (~x) ∂s . (2.11)

We introduce

~νg = g−
1
2 (~x)~ν = −g−

1
2 (~x) ~x⊥s = −~x⊥sg and ~τg = ~xsg , (2.12)

so that ~τg . ~νg = 0 and |~τg|2g = |~νg|2g = (~νg, ~νg)g = g(~x)~νg . ~νg = 1, and let

Vg = (~xt, ~νg)g = g
1
2 (~x) ~xt . ~ν = g

1
2 (~x)V . (2.13)

It follows from (1.6) that

∇ g
1
2 (~x) = [~ν (~ν .∇) + ~τ (~τ .∇)] g

1
2 (~x) = ~ν (~ν .∇) g

1
2 (~x) + ~τ

1

|~xρ|

[
g

1
2 (~x)

]
ρ

= ~ν (~ν .∇) g
1
2 (~x) +

1

|~xρ|

[
g

1
2 (~x)

~xρ
|~xρ|

]
ρ

− g
1
2 (~x)

1

|~xρ|

[
~xρ
|~xρ|

]
ρ

= ~ν (~ν .∇) g
1
2 (~x) +

1

|~xρ|

[
g

1
2 (~x)

~xρ
|~xρ|

]
ρ

− g
1
2 (~x)κ ~ν . (2.14)

Combining (2.10), (2.14) and (2.13) yields that

d

dt
Lg(~x(t)) =

∫
I

(
∇ g

1
2 (~x)− 1

|~xρ|

[
g

1
2 (~x)

~xρ
|~xρ|

]
ρ

)
. ~xt |~xρ| dρ

=

∫
I

[
~ν .∇ g

1
2 (~x)− g

1
2 (~x)κ

]
~ν . ~xt |~xρ| dρ

6



=

∫
I

[
~νg .∇ g

1
2 (~x)− κ

]
Vg |~xρ| dρ

= −
∫
I

g−
1
2 (~x)

[
κ − ~νg .∇ g

1
2 (~x)

]
Vg |~xρ|g dρ

= −
∫
I

κg Vg |~xρ|g dρ , (2.15)

where, on recalling (2.12),

κg = g−
1
2 (~x)

[
κ − ~νg .∇ g

1
2 (~x)

]
= g−

1
2 (~x)

[
κ − 1

2
~ν .∇ ln g(~x)

]
. (2.16)

Clearly, the curvature κg is the first variation of the length (2.3).

For the metric (2.5e) we obtain that

κg = (~x .~e2)µ
[
κ + µ

~ν .~e2

~x .~e2

]
, (2.17)

while for (2.6) we have

κg = 1
2

(1− α |~x|2)
[
κ − 2α (1− α |~x|2)−1 ~x . ~ν

]
. (2.18)

In addition, combining (2.16), (2.12) and (2.14) yields that

g(~x)κg ~ν =
1

|~xρ|

[
g

1
2 (~x)

~xρ
|~xρ|

]
ρ

−∇ g
1
2 (~x) . (2.19)

Weak formulations of (1.6) and (2.19) will play an important role in this paper, and so
we state them here for later reference. The natural weak formulation of (1.6) is∫

I

κ ~ν . ~η |~xρ| dρ+

∫
I

(~xρ . ~ηρ) |~xρ|−1 dρ = 0 ∀ ~η ∈ [H1(I)]2 , (2.20)

while a natural weak formulation of (2.19) is∫
I

g(~x)κg ~ν . ~η |~xρ| dρ+

∫
I

[
∇ g

1
2 (~x) . ~η + g

1
2 (~x)

~xρ . ~ηρ
|~xρ|2

]
|~xρ| dρ = 0 ∀ ~η ∈ [H1(I)]2 .

(2.21)

2.1 Curvature flow

It follows from (2.15) that
Vg = κg (2.22)

is the natural L2–gradient flow of Lg with respect to the metric induced by g, i.e.

d

dt
Lg(~x(t)) +

∫
I

κ2
g |~xρ|g dρ = 0 . (2.23)
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On recalling (2.13) and(2.16), we can rewrite (2.22) equivalently as

g(~x) ~xt . ~ν = κ − 1
2
~ν .∇ ln g(~x) . (2.24)

We consider the following weak formulation of (2.24).
(A): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κ(t) ∈ L2(I) such that
(2.20) holds and∫

I

g(~x) ~xt . ~ν χ |~xρ| dρ =

∫
I

(
κ − 1

2
~ν .∇ ln g(~x)

)
χ |~xρ| dρ ∀ i.e. χ ∈ L2(I) . (2.25)

An alternative strong formulation of curvature flow to (2.24) is given by

g(~x) ~xt = ~κ − 1
2

[~ν .∇ ln g(~x)]~ν , (2.26)

where we recall (1.6). We observe that (2.26) fixes ~xt to be totally in the normal direction,
in contrast to (2.24). We consider the following weak formulation of (2.26).
(B): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and ~κ(t) ∈ [L2(I)]2 such that

∫
I

g(~x) ~xt . ~χ |~xρ| dρ =

∫
I

(
~κ . ~χ− 1

2
[~ν .∇ ln g(~x)]~ν . ~χ

)
|~xρ| dρ ∀ ~χ ∈ [L2(I)]2 , (2.27a)∫

I

~κ . ~η |~xρ| dρ+

∫
I

(~xρ . ~ηρ) |~xρ|−1 dρ = 0 ∀ ~η ∈ [H1(I)]2 . (2.27b)

In order to develop stable approximations, we investigate alternative formulations
based on (2.21). Firstly, we note that combining (2.24) and (2.16) yields

g(~x) ~xt . ~ν = g
1
2 (~x)κg . (2.28)

We then consider the following weak formulation of (2.28).
(C): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κg(t) ∈ L2(I) such that
(2.21) holds and∫

I

g(~x) ~xt . ~ν χ |~xρ| dρ =

∫
I

g
1
2 (~x)κg χ |~xρ| dρ ∀ χ ∈ L2(I) . (2.29)

Clearly, choosing χ = κg in (2.29) and ~η = ~xt in (2.21) yields (2.23), on noting (2.13),
(2.12) and (2.15).

On recalling (2.12), we introduce

~κg = κg ~νg = g−
1
2 (~x)κg ~ν , (2.30)

so that an alternative formulation of curvature flow to (2.22) is given by

~xt = Vg ~νg = ~κg , (2.31)
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where we have recalled (2.13) and (2.12). Similarly to (2.26), the flow (2.31) is again
totally in the normal direction. On recalling (2.21) and (2.30), we consider the following
weak formulation of (2.31).
(D): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and ~κg(t) ∈ [L2(I)]2 such
that∫

I

g(~x) ~xt . ~χ |~xρ| dρ =

∫
I

g(~x) ~κg . ~χ |~xρ| dρ ∀ ~χ ∈ [L2(I)]2 , (2.32a)∫
I

g
3
2 (~x) ~κg . ~η |~xρ| dρ+

∫
I

[
∇ g

1
2 (~x) . ~η + g

1
2 (~x)

~xρ . ~ηρ
|~xρ|2

]
|~xρ| dρ = 0 ∀ ~η ∈ [H1(I)]2 .

(2.32b)

Choosing ~χ = g
1
2 (~x) ~κg in (2.32a) and ~η = ~xt in (2.32b) yields

d

dt
Lg(~x(t)) +

∫
I

g
3
2 (~x) |~κg|2 |~xρ| dρ = 0 , (2.33)

which is equivalent to (2.23), on recalling (2.15), (2.30) and (2.1).

We observe that the variable κg can be eliminated from (C), by choosing χ = g
1
2 (~x)~ν . ~η

in (2.29), and then combining (2.29) and (2.20), to yield∫
I

g
3
2 (~x) (~xt . ~ν) (~η . ~ν) |~xρ| dρ+

∫
I

[
∇ g

1
2 (~x) . ~η + g

1
2 (~x)

~xρ . ~ηρ
|~xρ|2

]
|~xρ| dρ = 0

∀ ~η ∈ [H1(I)]2 . (2.34)

Similarly, ~κg can be eliminated from (D) by choosing ~χ = g
1
2 (~x) ~η in (2.32a) to yield∫

I

g
3
2 (~x) ~xt . ~η |~xρ| dρ+

∫
I

[
∇ g

1
2 (~x) . ~η + g

1
2 (~x)

~xρ . ~ηρ
|~xρ|2

]
|~xρ| dρ = 0 ∀ ~η ∈ [H1(I)]2 .

(2.35)

2.2 Curve diffusion

We consider the flow

Vg = −(κg)sgsg = −g−
1
2 (~x)

[
g−

1
2 (~x) [κg]s

]
s

= − 1

g
1
2 (~x) |~xρ|

[
[κg]ρ

g
1
2 (~x) |~xρ|

]
ρ

, (2.36)

where we have recalled (2.11). On noting (2.15), and similarly to (2.23), it follows that
(2.36) is the natural H−1–gradient flow of Lg with respect to the metric induced by g, i.e.

d

dt
Lg(~x(t)) +

∫
I

(∂sg κg)2 |~xρ|g dρ = 0 . (2.37)
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Moreover, if Γ(t) = ~x(I, t) encloses a domain Ω(t) ⊂ R2, with ~ν ◦ ~x−1 denoting the outer
normal on ∂Ω(t) = Γ(t), on recalling (2.4), (2.1) and (2.13), it follows from a transport
theorem, see e.g. Deckelnick et al. (2005, (2.22)), that

d

dt
Ag(Ω(t)) =

d

dt

∫
Ω(t)

g(~z) d~z =

∫
I

g(~x)V |~xρ| dρ =

∫
I

Vg |~xρ|g dρ . (2.38)

Hence solutions to (2.36) satisfy, on noting (2.1), that

d

dt
Ag(Ω(t)) = −

∫
I

(κg)sgsg |~xρ|g dρ = −
∫
I

[
g−

1
2 (~x) [κg]ρ

]
ρ

dρ = 0 , (2.39)

and so the total enclosed area is preserved.

Our weak formulations are going be to based on the equivalent equation

g(~x) ~xt . ~ν = − 1

|~xρ|

(
[κg]ρ

g
1
2 (~x) |~xρ|

)
ρ

, (2.40)

recall (2.13).

We consider the following weak formulation of (2.40), on recalling (2.16).
(E): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κ(t) ∈ H1(I) such that
(2.20) holds and∫

I

g(~x) ~xt . ~ν χ |~xρ| dρ =

∫
I

g−
1
2 (~x)

(
g−

1
2 (~x)

[
κ − 1

2
~ν .∇ ln g(~x)

])
ρ
χρ |~xρ|−1 dρ

∀ χ ∈ H1(I) . (2.41)

We also introduce the following alternative weak formulation for (2.40), which treats
the curvature κg as an unknown.
(F): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κg(t) ∈ H1(I) such that
(2.21) holds and∫

I

g(~x) (~xt . ~ν)χ |~xρ| dρ =

∫
I

g−
1
2 (~x) [κg]ρ χρ |~xρ|−1 dρ ∀ χ ∈ H1(I) . (2.42)

Choosing χ = κg in (2.42) and ~η = ~xt in (2.21) yields that (2.37) holds, on noting from
(2.11) that

(∂sg κg)2 |~xρ|g = g−1(~x) |~xρ|−2 (∂ρ κg)2 g
1
2 (~x) |~xρ| = g−

1
2 (~x) (∂ρ κg)2 |~xρ|−1 . (2.43)

2.3 Elastic flow

Here we consider an appropriate L2–gradient flow of the elastic energy Wg(~x), where on
recalling (2.30), (1.3), (2.16) and (2.1), we set

Wg(~x) = 1
2

∫
I

|~κg|2g |~xρ|g dρ = 1
2

∫
I

κ2
g |~xρ|g dρ
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= 1
2

∫
I

g−
1
2 (~x)

(
κ − 1

2
~ν .∇ ln g(~x)

)2 |~xρ| dρ = 1
2

∫
I

g−
1
2 (~x) κ̃2

g |~xρ| dρ . (2.44)

In the above, on recalling (2.16), we have defined

κ̃g = g
1
2 (~x)κg = κ − z , with z = ~νg .∇ g

1
2 (~x) = 1

2
~ν .∇ ln g(~x) . (2.45)

In the following we often omit the dependence of g on ~x, and we simply write g for g(~x)
and so on. It follows from (2.44), (2.45), (2.13) and (2.1) that

d

dt
Wg(~x(t))

= 1
2

∫
I

(g−
1
2 )t κ̃2

g |~xρ| dρ+

∫
I

g−
1
2 (κ̃g)t κ̃g |~xρ| dρ+ 1

2

∫
I

g−
1
2 κ̃2

g ~xρ . (~xt)ρ |~xρ|−1 dρ

= 1
2

∫
I

(~xt .∇ g−
1
2 ) κ̃2

g |~xρ| dρ+

∫
I

g−
1
2 (κ̃g)t κ̃g |~xρ| dρ− 1

2

∫
I

(g−
1
2 κ̃2

g ~xs)s . ~xt |~xρ| dρ

= 1
2

∫
I

(~xt .∇ g−
1
2 ) κ̃2

g |~xρ| dρ+

∫
I

g−
1
2 (κ̃g)t κ̃g |~xρ| dρ

− 1
2

∫
I

[
(~xs .∇ g−

1
2 ) κ̃2

g ~xs + 2 g−
1
2 κ̃g (κ̃g)s ~xs + g−

1
2 κ̃2

g κ ~ν
]
. ~xt |~xρ| dρ .

= 1
2

∫
I

(~ν .∇ g−
1
2 ) κ̃2

g V |~xρ| dρ+

∫
I

g−
1
2 κ̃g [(κ̃g)t − (κ̃g)s ~xs . ~xt] |~xρ| dρ

− 1
2

∫
I

g−
1
2 κ̃2

g κ V |~xρ| dρ

= 1
2

∫
I

[
(~ν .∇ g−

1
2 )− g−

1
2 κ
]
κ2
g Vg |~xρ|g dρ+

∫
I

κg [(κ̃g)t − (κ̃g)s ~xs . ~xt] |~xρ| dρ .

(2.46)

We have from (2.45) that

κg − g−
1
2 κ = −1

2
g−

1
2 ~ν .∇ ln g = ~ν .∇ g−

1
2 , (2.47)

and so it follows from (2.46) that

d

dt
Wg(~x(t)) = 1

2

∫
I

[
κg − 2 g−

1
2 κ
]
κ2
g Vg |~xρ|g dρ+

∫
I

κg [(κ̃g)t − (κ̃g)s ~xs . ~xt] |~xρ| dρ .

(2.48)

In order to deal with the last integral in (2.48), we observe the following. It follows from
(1.2), (1.6) and (2.13) that

~νs = −κ ~xs , ~νss = −κs ~xs − κ2 ~ν , (2.49a)

~νt = −((~xs)t . ~ν) ~xs = −((~xρ |~xρ|−1)t . ~ν) ~xs = −((~xt)s . ~ν) ~xs , (2.49b)

~νt − (~xs . ~xt)~νs = −Vs ~xs . (2.49c)

Combining (2.49a,b) yields, on recalling (2.13), that

κt = −(~xs)t . ~νs − ~xs . (~νs)t = κ (~xs)t . ~xs − ~xs . (~νs)t = −~xs . (~νs)t = −~xs . (~νρ |~xρ|−1)t
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= −~xs . (~νt)s + (~xs . ~νs) ~xs . (~xt)s = −~xs . (~νt)s − κ ~xs . (~xt)s = −~xs . (~νt)s + ~νs . (~xt)s

= ~xs . [((~xt)s . ~ν) ~xs]s + ~νs . (~xt)s = ((~xt)s . ~ν)s + ~νs . (~xt)s

= (~xt . ~ν)ss − (~xt . ~νs)s + ~νs . (~xt)s = (~xt . ~ν)ss − ~xt . ~νss = (~xt . ~ν)ss + ~xt . [κs ~xs + κ2 ~ν]

= Vss + κ2 V + κs ~xs . ~xt , (2.50)

compare also with Barrett et al. (2017, (A.3)). It follows from (2.45), (2.50) and (2.49c)
that

(κ̃g)t − (κ̃g)s ~xs . ~xt = κt − κs ~xs . ~xt − (zt − zs ~xs . ~xt) = Vss + κ2 V − (zt − zs ~xs . ~xt)

= Vss + κ2 V − 1
2

(~νt − (~xs . ~xt)~νs) .∇ ln g − 1
2

((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν

= Vss + κ2 V + 1
2
Vs ~xs .∇ ln g − 1

2
((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν . (2.51)

Combining (2.48) and (2.51) yields, on noting (2.13), (2.1), (1.6), (2.45) and (2.11), that

d

dt
Wg(~x(t)) = 1

2

∫
I

[
κg − 2 g−

1
2 κ
]
κ2
g Vg |~xρ|g dρ+

∫
I

κg [Vss + κ2 V ] |~xρ| dρ

+ 1
2

∫
I

κg [Vs ~xs .∇ ln g − ((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν] |~xρ| dρ

= 1
2

∫
I

[
κg − 2 g−

1
2 κ
]
κ2
g Vg |~xρ|g dρ+

∫
I

[(κg)ss + κ2 κg]V |~xρ| dρ

− 1
2

∫
I

[(κg)s ~xs .∇ ln g + κg ~xss .∇ ln g + κg ~xs . (∇ ln g)s]V |~xρ| dρ

− 1
2

∫
I

κg [((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν] |~xρ| dρ

= 1
2

∫
I

[
κg − 2 g−

1
2 κ
]
κ2
g Vg |~xρ|g dρ+

∫
I

g−1 [(κg)ss + κ2 κg]Vg |~xρ|g dρ

− 1
2

∫
I

[(κg)s (ln g)s + 2κg κ z + κg ~xs . (∇ ln g)s]V |~xρ| dρ

− 1
2

∫
I

κg [((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν] |~xρ| dρ

=

∫
I

[
1
2
κ3
g − g−

1
2 κ κ2

g + (κg)sgsg − (g−
1
2 )s (κg)sg + g−1 κ2 κg

]
Vg |~xρ|g dρ

+

∫
I

[(κg)sg (g−
1
2 )s − g−1 κg κ z]Vg |~xρ|g dρ

− 1
2

∫
I

κg [((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν + ~xs . (∇ ln g)s V ] |~xρ| dρ

=

∫
I

[
(κg)sgsg + 1

2
κ3
g − g−1 κ κg

(
g

1
2 κg − κ + z

)]
Vg |~xρ|g dρ

− 1
2

∫
I

κg [((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν + ~xs . (∇ ln g)s V ] |~xρ| dρ

=

∫
I

[
(κg)sgsg + 1

2
κ3
g

]
Vg |~xρ|g dρ

− 1
2

∫
I

κg [((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν + ~xs . (∇ ln g)s V ] |~xρ| dρ . (2.52)
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It remains to deal with the final integral in (2.52). To this end, we note that

((∇ ln g)t − (~xs . ~xt) (∇ ln g)s) . ~ν + ~xs . (∇ ln g)s V
= ~ν . (D2 ln g) ~xt − (~xs . ~xt)~ν . (D

2 ln g) ~xs + V ~xs . (D2 ln g) ~xs

= V ~ν . (D2 ln g)~ν + V ~xs . (D2 ln g) ~xs = V ∆ ln g . (2.53)

Combining (2.52) and (2.53) yields, on noting (2.13), (2.1) and (2.7), that

d

dt
Wg(~x(t)) =

∫
I

[
(κg)sgsg + 1

2
κ3
g

]
Vg |~xρ|g dρ− 1

2

∫
I

κg (∆ ln g)V |~xρ| dρ

=

∫
I

[
(κg)sgsg + 1

2
κ3
g + S0(~x)κg

]
Vg |~xρ|g dρ . (2.54)

It follows from (2.54) that elastic flow is given by

Vg = −(κg)sgsg − 1
2
κ3
g − S0(~x)κg . (2.55)

Remark. 2.1. We note that in the special case (2.5b), it follows from (2.16) and (2.7)
that κg = κ and S0 = 0, and so (2.55) collapses to

V = −κss − 1
2
κ3 , (2.56)

i.e. to elastic flow in the Euclidean plane, compare e.g. Barrett et al. (2008, (1.8)).

Remark. 2.2. In the special case (2.5a), i.e. (2.5e) with µ = 1, it follows from (2.8) that
sectional curvature S0 = −1 is constant, and so (2.55) collapses to

Vg = −(κg)sgsg − 1
2
κ3
g + κg , (2.57)

which is also called hyperbolic elastic flow. In order to show that (2.57) is equivalent to
(5) in Dall’Acqua and Spener (2017), for the length parameter λ = 0, i.e. to

~xt = −(∇⊥sg)
2 ~κg − 1

2
|~κg|2g ~κg + ~κg = −(∇⊥sg)

2 ~κg − 1
2
κ3
g ~νg + κg ~νg , (2.58)

we make the following observations. It follows from (2.30), (2.17) for µ = 1, (2.11),
(2.12) and ~e⊥2 = ~e1 that

~κg = (~x .~e2)2

[
κ +

~ν .~e2

~x .~e2

]
~ν = ~x .~e2 [(~x .~e2) ~xs]s − (~x .~e2) (~xs . ~e2) ~xs + (~x .~e2) (~ν .~e2)~ν

= ~xsgsg − (~x .~e2) [(~xs . ~e2) ~xs − (~ν .~e2)~ν] = ~xsgsg − (~x .~e2)−1
[
(~xsg . ~e2) ~xsg − (~νg . ~e2)~νg

]
= ~xsgsg − (~x .~e2)−1

[
(~xsg . ~e2) ~xsg − (~x⊥sg . ~e2) ~x⊥sg

]
= ~xsgsg − (~x .~e2)−1

[
(~xsg . ~e2) ~xsg + (~xsg . ~e1) ~x⊥sg

]
= ~xsgsg + (~x .~e2)−1

[
−2 (~xsg . ~e1) (~xsg . ~e2)~e1 +

(
(~xsg . ~e1)2 − (~xsg . ~e2)2

)
~e2

]
, (2.59)

which agrees with Dall’Acqua and Spener (2017, (12)). Alternatively, one can also write
(2.59), on noting the last equation on its second line, as

~κg = ∇sg ~xsg , (2.60)

13



where the covariant derivative is defined by

∇sg ~f = ~fsg + (~x .~e2)−1
[
(~f .~e1)~νg − (~f .~e2) ~xsg

]
, (2.61)

on recalling (2.12) and that ~e⊥1 = −~e2. We remark that (2.60) agrees with the expression
under (1) in Dall’Acqua and Spener (2017), on noting the expression for ∇sg on the top
of page 5 in Dall’Acqua and Spener (2017). In addition, we define

∇⊥sg ~f = ∇sg ~f − (∇sg ~f, ~xsg)g ~xsg = (∇sg ~f, ~νg)g ~νg , (2.62)

see Dall’Acqua and Spener (2017, (13)). It follows from (2.62) and (2.61), on recalling
(2.12), that

∇⊥sg ~f =
[
(~fsg , ~νg)g + (~x .~e2)−1 (~f .~e1)

]
~νg . (2.63)

We now compute ∇⊥sg ~κg. On recalling (2.12) and (2.30), we have that (~κg)sg = (κg ~νg)sg =
(~x .~e2 κg ~ν)sg , and so, on recalling (2.11), we have that

((~κg)sg , ~νg)g = (~x .~e2)−1 [(~x .~e2)κg ~ν]sg ~ν = (~x .~e2)−1 [(~x .~e2)κg]sg = (κg)sg + ~xs . ~e2 κg .
(2.64)

Hence it follows from (2.63), (2.64), (2.12), (2.30) and (1.2) that

∇⊥sg ~κg =
[
(κg)sg +

[
~xs . ~e2 + (~x .~e2)−1 ~νg . ~e1

]
κg
]
~νg =

[
(κg)sg + [~xs . ~e2 + ~ν .~e1]κg

]
~νg

= (κg)sg ~νg . (2.65)

Therefore (2.30) and (2.65) yield that

(∇⊥sg)
2 ~κg = ∇⊥sg [∇⊥sg (κg ~νg)] = ∇⊥sg [(κg)sg ~νg] = (κg)sgsg ~νg . (2.66)

On combining (2.66) and (2.58), we have that

~xt =
[
−(κg)sgsg − 1

2
κ3
g + κg

]
~νg , (2.67)

which agrees with (2.57) in the normal direction on noting (2.13).

Our weak formulations of (2.55) are going be to based on the equivalent equation

g(~x) ~xt . ~ν = − 1

|~xρ|

(
[κg]ρ

g
1
2 (~x) |~xρ|

)
ρ

− 1
2
g

1
2 (~x)κ3

g − g
1
2 (~x)S0(~x)κg , (2.68)

where we have recalled (2.13) and (2.11). Note the similarity between (2.68) and (2.40).
On recalling (2.16), we consider the following weak formulation of (2.68), in the spirit of
(E) for (2.40).
(U): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κ(t) ∈ H1(I) such that
(2.20) holds and∫

I

g(~x) ~xt . ~ν χ |~xρ| dρ =

∫
I

g−
1
2 (~x)

(
g−

1
2 (~x)

[
κ − 1

2
~ν .∇ ln g(~x)

])
ρ
χρ |~xρ|−1 dρ
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− 1
2

∫
I

g−1(~x)
[
κ − 1

2
~ν .∇ ln g(~x)

]3
χ |~xρ| dρ

−
∫
I

S0(~x)
[
κ − 1

2
~ν .∇ ln g(~x)

]
χ |~xρ| dρ ∀ χ ∈ H1(I) . (2.69)

We also introduce the following alternative weak formulation for (2.68), which treats the
curvature κg as an unknown, in the spirit of (F) for (2.40).
(W): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κg(t) ∈ H1(I) such
that (2.21) holds and∫

I

g(~x) ~xt . ~ν χ |~xρ| dρ =

∫
I

g−
1
2 (~x) [κg]ρ χρ |~xρ|−1 dρ− 1

2

∫
I

g
1
2 (~x)κ3

g χ |~xρ| dρ

−
∫
I

S0(~x) g
1
2 (~x)κg χ |~xρ| dρ ∀ χ ∈ H1(I) . (2.70)

For the numerical approximations based on (U) and (W) it does not appear possible to
prove stability results that show that discrete analogues of (2.44) decrease monotonically
in time. Based on the techniques in Barrett et al. (2012), it is possible to introduce
alternative weak formulations, for which semidiscrete continuous-in-time approximations
admit such a stability result. We will present and analyse these alternative discretizations
in the forthcoming article Barrett et al. (2018c).

2.4 Geodesic curve evolutions on surfaces via conformal maps

Let ~Φ : H → Rd, d ≥ 3, be a conformal parameterization of the embedded two-
dimensional Riemannian manifold M ⊂ Rd, i.e. M = ~Φ(H) and |∂~e1~Φ(~z)|2 = |∂~e2~Φ(~z)|2
and ∂~e1~Φ(~z) . ∂~e2~Φ(~z) = 0 for all ~z ∈ H. While such a parameterization in general does
not exist, we recall from Taylor (2011, §5.10) that any orientable two-dimensional Rie-
mannian manifold can be covered with finitely many conformally parameterized patches.
Below we give some examples for M ⊂ R3, where such a conformal parameterization
exists. Then the corresponding metric tensor is given by gij = ∂~e1~Φ . ∂~e2~Φ = g δij for the
metric

g(~z) = |∂~e1~Φ(~z)|2 = |∂~e2~Φ(~z)|2 ~z ∈ H . (2.71)

We recall from Kühnel (2015, 4.26 in §4E) that for (2.71) it holds that

S0(~z) = −∆ ln g(~z)

2 g(~z)
= K(~Φ(~z)) ~z ∈ H , (2.72)

where K denotes the Gaussian curvature of M.

An example for (2.71) is the stereographic projection of the unit sphere, without the
north pole, onto the plane, where

~Φ(~z) = (1 + |~z|2)−1 (2 ~z .~e1, 2 ~z .~e2, |~z|2 − 1)T ,
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g(~z) = 4 (1 + |~z|2)−2 and H = R2 ; (2.73a)

which yields a geometric interpretation to (2.6) with α = −1. Further examples are the
Mercator projection of the unit sphere, without the north and the south pole, where

~Φ(~z) = cosh−1(~z .~e1) (cos(~z .~e2), sin(~z .~e2), sinh(~z .~e1))T ,

g(~z) = cosh−2(~z .~e1) and H = R2 ; (2.73b)

as well as the catenoid parameterization

~Φ(~z) = (cosh(~z .~e1) cos(~z .~e2), cosh(~z .~e1) sin(~z .~e2), ~z . ~e1)T ,

g(~z) = cosh2(~z .~e1) and H = R2 . (2.73c)

Based on Sullivan (2011, p. 593) we introduce the following conformal parameterization of

a torus with large radius R > 1 and small radius r = 1. In particular, we let s = [R2−1]
1
2

and define

~Φ(~z) = s ([s2 + 1]
1
2 − cos(~z .~e2))−1 (s cos ~z .~e1

s
, s sin ~z .~e1

s
, sin(~z .~e2))T ,

g(~z) = s2 ([s2 + 1]
1
2 − cos(~z .~e2))−2 and H = R2 . (2.73d)

We observe that the parameterizations given in (2.73b–d) are not bijective, since ~Φ(H)
covers the surface M infinitely many times.

It can be shown that geodesic curvature flow, geodesic curve diffusion and geodesic
elastic flow on M = ~Φ(H) reduce to (2.22), (2.36) and (2.55) for the metric g in H,
respectively. See Appendix B for details. Hence the numerical schemes introduced in this
paper yield novel numerical approximations for these geodesic evolution equations. As
all the computations take place in H, the discrete curve that approximates ~Φ(~x(I)) will
always lie onM. This is similar to the approach in Mikula and Ševčovič (2006), where a
(local) graph formulation for M is employed. But it is fundamentally different from the

direct approach considered in Barrett et al. (2010), where ~Φ(~x(I)) ⊂ R3 is discretized. An
advantage of the approach in this paper is that one always stays on M, whereas in the
approach of Barrett et al. (2010) the curve can leaveM by a small error. A disadvantage

of the strategy in this paper, compared to Barrett et al. (2010), is that if M \ ~Φ(H)
is nonempty, then curves going through these singular points cannot be considered, and
curves coming close to these singular points pose numerical challenges. For example, the
north pole of the unit sphere, i.e. ~e3 ∈ R3, is such a singular point for (2.73a), while both
the north and the south pole, i.e. ±~e3 ∈ R3, are such singular points for (2.73b). We
also note that in the examples (2.73c,d), any closed curve ~x(I) in H will correspond to a

curve ~Φ(~x(I)) on the surface M that is homotopic to a point. In order to model other
curves, the domain H needs to be embedded in an algebraic structure different to R2. In
particular, H = R × R/(2 π Z) for (2.73c) and H = R/(2 π sZ) × R/(2 π Z) for (2.73d),
respectively.
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2.5 Geometric evolution equations for axisymmetric hypersur-
faces

We recall that the metric (2.5d) is of relevance when considering geometric evolution
equations for axisymmetric hypersurfaces in R3. However, the natural gradient flows
considered in that setting differ from the flows considered in this paper. Let us briefly
recall some geometric evolution equations for closed hypersurfaces S(t) in Rd, d ≥ 3. We
refer to the review article Deckelnick et al. (2005) for more details. The mean curvature
flow for S(t), i.e. the L2 |S–gradient flow of surface area, is given by the evolution law

VS = km on S(t) , (2.74)

where VS denotes the normal velocity of S(t) in the direction of the normal ~nS . Moreover,
km is the mean curvature of S(t), i.e. the sum of the principal curvatures of S(t). The
surface diffusion flow for S(t) is given by the evolution law

VS = −∆S km on S(t) , (2.75)

where ∆S is the Laplace–Beltrami operator on S(t).

For an axisymmetric hypersurface that is generated from the curve Γ(t) = ~x(t) by
rotation around the x1–axis, the total surface area is given by (2.5c). Moreover, the mean
curvature flow (2.74) can be written in terms of the metric (2.5d) as

V = κ − ~ν .~e2

~x .~e2

= g
1
2 (~x)κg ⇐⇒ Vg = g(~x)κg , (2.76)

see Barrett et al. (2018a), where we have noted (2.16), (2.12) and (2.13). Hence (2.76)
differs from the curvature flow (2.22) for (2.5d) by a space-dependent weighting factor.
We note that, in contrast to (2.22), the flow (2.76) is invariant under constant rescalings
of g, e.g. both (2.5d) and (2.5e) with µ = −1 lead to the same flow (2.76).

Moreover, surface diffusion, (2.75), for axisymmetric hypersurfaces can be written, in
terms of the metric (2.5d), as

2 π (~x .~e2)V = −2π

[
~x .~e2

[
κ − ~ν .~e2

~x .~e2

]
s

]
s

= −2π
[
~x .~e2

[
g

1
2 (~x)κg

]
s

]
s

⇐⇒ Vg = −
[
g

1
2 (~x)

[
g

1
2 (~x)κg

]
s

]
s
, (2.77)

see Barrett et al. (2018b), where we have noted (2.16), (2.12) and (2.13). Hence (2.77)
is dramatically different from the curve diffusion flow (2.36) for (2.5d). Once again we
note that, in contrast to (2.36), the flow (2.77) is invariant under constant rescalings of g,
e.g. both (2.5d) and (2.5e) with µ = −1 lead to the same flow (2.77). Solutions of (2.77)

conserve the quantity 2π
∫

Ω(t)
~z .~e2 d~z =

∫
Ω(t)

g
1
2 (~z) d~z in time, which again differs from

(2.39), recall (2.4).
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Remark. 2.3. The metric (2.5d) can be generalized to model the evolution of axisym-
metric hypersurfaces S(t) in Rd, d ≥ 3. In particular, we let

g(~z) = [ς(d− 1)]2 (~z .~e2)2 (d−2) and H = H2 , (2.78)

where ς(n) = 2 π
n
2 [Γ(n

2
)]−1 denotes the surface area of the n-dimensional unit ball. Then

mean curvature flow, (2.74), is given by

V = κ − (d− 2)
~ν .~e2

~x .~e2

= g
1
2 (~x)κg ⇐⇒ Vg = g(~x)κg , (2.79)

in terms of the metric (2.78), where we have recalled (2.16), (2.12) and (2.13). We note
that (2.79) collapses to (2.76) in the case d = 3. Surface diffusion, (2.75), is still given
by the last equation in (2.77), now for the metric (2.78). These results can be rigorously
shown by extending the results in Appendix B in Barrett et al. (2018b) from R3 to Rd,
with the help of generalised spherical coordinates.

Using the techniques developed in the present paper, it is then possible to derive weak
formulations and stable finite element schemes for mean curvature flow and surface dif-
fusion of axisymmetric hypersurfaces in Rd, d ≥ 3, similarly to the special case d = 3
treated in Barrett et al. (2018a,b).

In the recent paper Barrett et al. (2018b), the authors considered numerical approxi-
mations of Willmore flow for axisymmetric surfaces. The Willmore energy for the surface
S generated by Γ(t) through rotation around the x1–axis is given by

WS(~x) = π

∫
I

~x .~e2

(
κ − ~ν .~e2

~x .~e2

)2

|~xρ| dρ , (2.80)

recall Barrett et al. (2018b). In terms of the metric (2.5d), on recalling (2.16), (2.12) and
(2.1), this can be rewritten as

WS(~x) = 1
2

∫
I

g(~x)κ2
g |~xρ|g dρ , (2.81)

which clearly differs from Wg(~x) = 1
2

∫
I
κ2
g |~xρ|g dρ, as defined in (2.44). Hence the flow

(2.55), for (2.5e) with µ = −1, has no relation at all to the Willmore flow of axisymmetric
surfaces. However, for the metric (2.5a) it holds, on recalling (2.17) for µ = 1, (2.1),
(2.80), (1.6) and as I is periodic, that

Wg(~x) = 1
2

∫
I

κ2
g |~xρ|g dρ = 1

2

∫
I

~x .~e2

(
κ +

~ν .~e2

~x .~e2

)2

|~xρ| dρ

= (2π)−1WS(~x) + 2

∫
I

κ ~ν .~e2 |~xρ| dρ = (2π)−1WS(~x) + 2

∫
I

~xss . ~e2 |~xρ| dρ

= (2π)−1WS(~x) , (2.82)
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see also Dall’Acqua and Spener (2017, §2.2.1). Hence there is a close relation between the
hyperbolic elastic flow, (2.57), and Willmore flow for axisymmetric surfaces. In particular,
on recalling (2.82), (2.54), (2.8) and (2.5e) for µ = 1, (2.13) and (2.1), it holds that

d

dt
WS(~x(t)) = 2 π

d

dt
Wg(~x(t)) = 2 π

∫
I

[
(κg)sgsg + 1

2
κ3
g − κg

]
Vg |~xρ|g dρ

= 2π

∫
I

[
(κg)sgsg + 1

2
κ3
g − κg

]
g(~x)V |~xρ| dρ

= 2π

∫
I

[
(κg)sgsg + 1

2
κ3
g − κg

]
g

3
2 (~x) ~x .~e2 V |~xρ| dρ . (2.83)

Hence Willmore flow for axisymmetric surfaces, i.e. the L2 |S–gradient flow of (2.80), can
be written as

V = g
3
2 (~x)

(
−(κg)sgsg − 1

2
κ3
g + κg

)
⇐⇒ g−2(~x)Vg = −(κg)sgsg − 1

2
κ3
g + κg , (2.84)

i.e. the two flows only differ via a space-dependent weighting, recall (2.57). In particular,
steady states and minimizers of the two flows agree.

3 Finite element approximations

Let [0, 1] = ∪Jj=1Ij, J ≥ 3, be a decomposition of [0, 1] into intervals given by the nodes
qj, Ij = [qj−1, qj]. For simplicity, and without loss of generality, we assume that the
subintervals form an equipartitioning of [0, 1], i.e. that

qj = j h , with h = J−1 , j = 0, . . . , J . (3.1)

Clearly, as I = R/Z we identify 0 = q0 = qJ = 1.

The necessary finite element spaces are defined as follows:

V h = {χ ∈ C(I) : χ |Ij is linear ∀ j = 1→ J} and V h = [V h]2 .

Let {χj}Jj=1 denote the standard basis of V h, and let πh : C(I) → V h be the standard
interpolation operator at the nodes {qj}Jj=1.

Let (·, ·) denote the L2–inner product on I, and define the mass lumped L2–inner
product (u, v)h, for two piecewise continuous functions, with possible jumps at the nodes
{qj}Jj=1, via

(u, v)h = 1
2

J∑
j=1

hj
[
(u v)(q−j ) + (u v)(q+

j−1)
]
, (3.2)

where we define u(q±j ) = lim
δ↘0

u(qj ± δ). The definition (3.2) naturally extends to vector

valued functions.
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Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable
time steps ∆tm = tm+1−tm, m = 0→M−1. We set ∆t = maxm=0→M−1 ∆tm. For a given

~Xm ∈ V h we set ~νm = − [ ~Xm
ρ ]⊥

| ~Xm
ρ |

, as the discrete analogue to (1.2). Given ~Xm ∈ V h, the fully

discrete approximations we propose in this section will always seek a parameterization
~Xm+1 ∈ V h at the new time level, together with a suitable approximation of curvature.
One class of schemes will rely on the following discrete analogue of (2.20). Let κm+1 ∈ V h

be such that (
κm+1 ~νm, ~η | ~Xm

ρ |
)h

+
(
~Xm+1
ρ , ~ηρ | ~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h . (3.3)

We note that any of the schemes featuring the side constraint (3.3), i.e. (Am)h, (Em)h and
(Um)h, below, exhibit a discrete tangential velocity that leads to a good distribution of

vertices. In particular, a steady state Γm = ~Xm(I) will satisfy a weak equidistribution
property, i.e. any two neighbouring elements are either parallel or of the same length.
Moreover, for general evolutions the distribution of vertices tends to equidistribution,
with the convergence being faster for smaller time step sizes. The reason is that any
curve Γm = ~Xm(I), for which there exists a κ ∈ V h such that(

κ~νm, ~η | ~Xm
ρ |
)h

+
(
~Xm
ρ , ~ηρ | ~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h , (3.4)

can be shown to satisfy the weak equidistribution property. In particular, the obvious
semidiscrete variants of (Am)h, (Em)h and (Um)h satisfy the weak equidistribution property
at every time t > 0. We refer to Barrett et al. (2007a, Rem. 2.4) and to Barrett et al.
(2011) for more details.

Two other classes of schemes, which will also exhibit nontrivial discrete tangential
motions, will be based on discrete analogues of (2.21). The first variant is given as
follows. Let κm+1

g ∈ V h be such that(
g( ~Xm)κm+1

g ~νm, ~η | ~Xm
ρ |
)h

+
(
∇ g

1
2 ( ~Xm), ~η | ~Xm

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ~ηρ | ~Xm
ρ |−1

)h
= 0 ∀ ~η ∈ V h . (3.5)

Schemes based on (3.5) will still be linear, but their induced tangential motion does not
lead to equidistribution. In order to allow for stability proofs, we now adapt the time
discretization in (3.5). In particular, we make use of a convex/concave splitting of the

energy density g
1
2 in (2.3). This idea, for the case of a scalar potential Ψ : R → R, goes

back to Elliott and Stuart (1993), and we adapt their approach to the situation here, i.e.

g
1
2 : R2 ⊃ H → R>0. In particular, we assume that we can split g

1
2 into

g
1
2 = g

1
2
+ + g

1
2
− such that ±g

1
2
± is convex on H. (3.6)

Note that such a splitting exists if D2 g
1
2 is bounded from below on H, in the sense that

there exists a symmetric positive semidefinite matrix A ∈ R2×2 such that D2 g
1
2 (~z) + A

is symmetric positive semidefinite for all ~z ∈ H. For example, the splitting can then be
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chosen such that g
1
2
+(~z) = g

1
2 (~z) + 1

2
~z . A~z and g

1
2
−(~z) = −1

2
~z . A~z. It follows from the

splitting in (3.6) that

∇ [g
1
2
+(~u) + g

1
2
−(~v)] . (~u− ~v) ≥ g

1
2 (~u)− g

1
2 (~v) ∀ ~u,~v ∈ H . (3.7)

The alternative discrete analogue of (2.21), compared to (3.5), is then given as follows.
Let κm+1

g ∈ V h be such that(
g( ~Xm)κm+1

g ~νm, ~η | ~Xm
ρ |
)h

+
(
∇ [g

1
2
+( ~Xm+1) + g

1
2
−( ~Xm)], ~η | ~Xm+1

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ~ηρ | ~Xm
ρ |−1

)h
= 0 ∀ ~η ∈ V h . (3.8)

We note that, in contrast to (3.5), the side constraint (3.8) will lead to nonlinear schemes.

We observe that in the cases (2.5a–c) and (2.5e) with µ ∈ R \ (−1, 0) a splitting of

the form (3.6) exists. In particular, for µ ∈ R \ (−1, 0) the function g
1
2 (~z) = (~z .~e2)−µ is

convex on H = H2, since D2 g
1
2 (~z) = µ (µ+ 1) (~z .~e2)−(µ+2) ~e2⊗~e2 is positive semidefinite

for ~z ∈ H2. Hence we can choose

g
1
2
+(~z) = g

1
2 (~z) = (~z .~e2)−µ and g

1
2
−(~z) = 0 , (3.9)

with ∇ g
1
2
+(~z) = −µ (~z .~e2)−(µ+1) ~e2. Moreover, for the class of metrics (2.6) a splitting of

the form (3.6) also exists. To this end, we note that D2 g
1
2 (~z) = 16α2 (1 − α |~z|2)−3 ~z ⊗

~z + 4α (1− α |~z|2)−2 Id. Clearly, if α > 0 then g
1
2 is convex on H. If α ≤ 0, on the other

hand, then D2 g
1
2 is clearly the sum of a positive semidefinite and a negative semidefinite

matrix, with A = −4α Id being such that D2 g
1
2 + A is symmetric positive semidefinite

on H. Hence we can choose{
g

1
2
+(~z) = g

1
2 (~z) and g

1
2
−(~z) = 0 α > 0 ,

g
1
2
+(~z) = g

1
2 (~z)− 2α |~z|2 and g

1
2
−(~z) = 2α |~z|2 α ≤ 0 .

(3.10)

Similarly, for the metric (2.73b) we note that

D2 g
1
2 (~z) = (tanh2(~z .~e1)− cosh−2(~z .~e1)) cosh−1(~z .~e1)~e1 ⊗ ~e1 ,

and so we can choose

g
1
2
+(~z) = g

1
2 (~z) + 1

2
(~z .~e1)2 and g

1
2
−(~z) = −1

2
(~z .~e1)2 . (3.11)

For the metric (2.73c) we observe that D2 g
1
2 (~z) = cosh(~z .~e1)~e1 ⊗ ~e1, and so we can

choose
g

1
2
+(~z) = g

1
2 (~z) and g

1
2
−(~z) = 0 . (3.12)

Finally, for the metric (2.73d) we note that

D2 g
1
2 (~z) = s

[
2 sin2(~z .~e2)

([s2 + 1]
1
2 − cos(~z .~e2))3

− cos(~z .~e2)

([s2 + 1]
1
2 − cos(~z .~e2))2

]
~e2 ⊗ ~e2 ,
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g 1
2
~ν .∇ ln g(~x) ∇ g 1

2 (~x) ∇ g
1
2
−(~x) S0(~x)

(2.5e) −µ ~ν .~e2
~x .~e2

− µ
(~x .~e2)µ+1 ~e2 0 −µ (~x .~e2)2 (µ−1)

(2.6) 2α~x . ~ν
1−α |~x|2

4α
(1−α |~x|2)2

~x 4 [α]− ~x −α

(2.73b) − tanh(~x .~e1)~ν .~e1 − tanh(~x .~e1)
cosh(~x .~e1)

~e1 −(~x .~e1)~e1 1

(2.73c) tanh(~x .~e1)~ν .~e1 sinh(~x .~e1)~e1 0 − cosh−4(~x .~e1)

(2.73d) − sin(~x .~e2)~ν .~e2

[s2+1]
1
2−cos(~x .~e2)

− s sin(~x .~e2)

([s2+1]
1
2−cos(~x .~e2))2

~e2 − s ~x .~e2

([s2+1]
1
2−1)2

~e2
[s2+1]

1
2 cos(~x .~e2)−1

s2

Table 1: Expressions for terms that are relevant for the implementation of the presented
finite element approximations. Here [α]− := min{0, α}.

and so we can choose

g
1
2
+(~z) = g

1
2 (~z) + 1

2
s ([s2 + 1]

1
2 − 1)−2 (~z .~e2)2 and g

1
2
−(~z) = g

1
2 (~z)− g

1
2
+(~z) . (3.13)

For the metrics we consider in this paper, we summarize in Table 1 the quantities that
are necessary in order to implement the numerical schemes presented below.

3.1 Curvature flow

We consider the following fully discrete analogue of (A), i.e. (2.25), (2.20).

(Am)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1) ∈ V h × V h such that
(3.3) holds and(

g( ~Xm)
~Xm+1 − ~Xm

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
κm+1 − 1

2
~νm .∇ ln g( ~Xm), χ | ~Xm

ρ |
)h

∀ χ ∈ V h . (3.14)

We remark that the scheme (Am)h, in the case (2.5b), collapses to the scheme Barrett
et al. (2007b, (2.3a,b)), with f = id, for Euclidean curve shortening flow.

We make the following mild assumption.

(A)h Let | ~Xm
ρ | > 0 for almost all ρ ∈ I, and let dim spanZh = 2, where

Zh =

{(
g( ~Xm)~νm, χ| ~Xm

ρ |
)h

: χ ∈ V h

}
⊂ R2.

Lemma. 3.1. Let the assumption (A)h hold. Then there exists a unique solution

( ~Xm+1, κm+1) ∈ V h × V h to (Am)h.
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Proof. As (3.14), (3.3) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X, κ) ∈ V h × V h such that(
g( ~Xm)

~X

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
κ, χ | ~Xm

ρ |
)h

∀ χ ∈ V h , (3.15a)(
κ~νm, ~η | ~Xm

ρ |
)h

+
(
~Xρ, ~ηρ | ~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h . (3.15b)

Choosing χ = πh[g−1( ~Xm)κ] ∈ V h in (3.15a) and ~η = ~X ∈ V h in (3.15b) yields that(
| ~Xρ|2, | ~Xm

ρ |−1
)

+ ∆tm

(
g−1( ~Xm) |κ|2, | ~Xm

ρ |
)h

= 0 . (3.16)

It follows from (3.16) that κ = 0 and that ~X ≡ ~Xc ∈ R2; and hence that

0 =
(
g( ~Xm) ~Xc, χ ~νm | ~Xm

ρ |
)h

= ~Xc .
(
g( ~Xm)~νm, χ | ~Xm

ρ |
)h

∀ χ ∈ V h . (3.17)

It follows from (3.17) and assumption (A)h that ~Xc = ~0. Hence we have shown that

(Am)h has a unique solution ( ~Xm+1, κm+1) ∈ V h × V h.

We consider the following fully discrete analogue of (B), i.e. (2.27a,b).

(Bm)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, ~κm+1) ∈ V h × V h such that(
g( ~Xm)

~Xm+1 − ~Xm

∆tm
, ~χ | ~Xm

ρ |

)h

=
(
~κm+1 − 1

2
[~νm .∇ ln g( ~Xm)]~νm, ~χ | ~Xm

ρ |
)h

∀ ~χ ∈ V h , (3.18a)(
~κm+1, ~η | ~Xm

ρ |
)h

+
(
~Xm+1
ρ , ~ηρ | ~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h . (3.18b)

We remark that the scheme (Bm)h, in the case (2.5b), collapses to the scheme in Dziuk
(1994, §6) for Euclidean curve shortening flow.

Lemma. 3.2. There exists a unique solution ( ~Xm+1, ~κm+1) ∈ V h × V h to (Bm)h.

Proof. As (3.18a,b) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X,~κ) ∈ V h × V h such that(
g( ~Xm)

~X

∆tm
, ~χ | ~Xm

ρ |

)h

=
(
~κ, ~χ | ~Xm

ρ |
)h

∀ ~χ ∈ V h , (3.19a)(
~κ, ~η | ~Xm

ρ |
)h

+
(
~Xρ, ~ηρ | ~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h . (3.19b)

Choosing ~χ = ~πh[g−1( ~Xm)~κ] ∈ V h in (3.19a) and ~η = ~X ∈ V h in (3.19b) yields that(
| ~Xρ|2, | ~Xm

ρ |−1
)

+ ∆tm

(
g−1( ~Xm) |~κ|2, | ~Xm

ρ |
)h

= 0 . (3.20)
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It follows from (3.20) that ~κ = ~0 and then from (3.19a) that ~X = ~0. Hence we have shown

that (3.18a,b) has a unique solution ( ~Xm+1, ~κm+1) ∈ V h × V h.

We consider the following two fully discrete analogues of (C), i.e. (2.29), (2.21).

(Cm)h: Let ~X0 ∈ V h. For m = 0, . . . ,M−1, find ( ~Xm+1, κm+1
g ) ∈ V h×V h such that (3.5)

holds and(
g( ~Xm)

~Xm+1 − ~Xm

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
g

1
2 ( ~Xm)κm+1

g , χ | ~Xm
ρ |
)h

∀ χ ∈ V h . (3.21)

(Cm,?)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1
g ) ∈ V h × V h such that

(3.8) and (3.21) hold.

We remark that the schemes (Cm)h and (Cm,?)h, with (3.9), in the case (2.5b), collapse
to the scheme Barrett et al. (2007b, (2.3a,b)), with f = id, for Euclidean curve shortening
flow.

We consider the following two fully discrete analogues of (D), i.e. (2.32a,b).

(Dm)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, ~κm+1
g ) ∈ V h × V h such that(

g( ~Xm)
~Xm+1 − ~Xm

∆tm
, ~χ | ~Xm

ρ |

)h

=
(
g( ~Xm)~κm+1

g , ~χ | ~Xm
ρ |
)h

∀ ~χ ∈ V h , (3.22a)(
g

3
2 ( ~Xm)~κm+1

g , ~η | ~Xm
ρ |
)h

+
(
∇ g

1
2 ( ~Xm), ~η | ~Xm

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ~ηρ | ~Xm
ρ |−1

)h
= 0 ∀ ~η ∈ V h . (3.22b)

(Dm,?)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, ~κm+1
g ) ∈ V h × V h such that

(3.22a) holds and(
g

3
2 ( ~Xm)~κm+1

g , ~η | ~Xm
ρ |
)h

+
(
∇ [g

1
2
+( ~Xm+1) + g

1
2
−( ~Xm)], ~η | ~Xm+1

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ~ηρ | ~Xm
ρ |−1

)h
= 0 ∀ ~η ∈ V h . (3.23)

We remark that the schemes (Dm)h and (Dm,?)h, with (3.9), in the case (2.5b), collapse
to the scheme in Dziuk (1994, §6) for Euclidean curve shortening flow.

Overall we observe that (Cm)h and (Dm)h are linear schemes, while (Cm,?)h and (Dm,?)h
are nonlinear. For the linear schemes we can prove existence and uniqueness, while for
the nonlinear schemes we can prove unconditional stability.

Lemma. 3.3. Let the assumption (A)h hold. Then there exists a unique solution

( ~Xm+1, κm+1
g ) ∈ V h × V h to (Cm)h.

Proof. As (3.21), (3.5) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X, κg) ∈ V h × V h such that(
g( ~Xm)

~X

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
g

1
2 ( ~Xm)κg, χ | ~Xm

ρ |
)h

∀ χ ∈ V h , (3.24a)
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(
g( ~Xm)κg ~ν

m, ~η | ~Xm
ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xρ, ~ηρ | ~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h . (3.24b)

Choosing χ = κg ∈ V h in (3.24a) and ~η = ~X ∈ V h in (3.24b) yields that(
g

1
2 ( ~Xm) | ~Xρ|2, | ~Xm

ρ |−1
)

+ ∆tm

(
g

1
2 ( ~Xm) |κg|2, | ~Xm

ρ |
)h

= 0 . (3.25)

It immediately follows from (3.25) that κg = 0, and that ~X ≡ ~Xc ∈ R2. Hence it follows

from (3.24a) that ~Xc . ~z = 0 for all ~z ∈ Zh, and so assumption (A)h yields that ~Xc = ~0.

Hence we have shown that (Cm)h has a unique solution ( ~Xm+1, κm+1
g ) ∈ V h × V h.

Lemma. 3.4. Let | ~Xm
ρ | > 0 for almost all ρ ∈ I. Then there exists a unique solution

( ~Xm+1, ~κm+1
g ) ∈ V h × V h to (Dm)h.

Proof. As (3.22a,b) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X,~κg) ∈ V h × V h such that(
g( ~Xm)

~X

∆tm
, ~χ | ~Xm

ρ |

)h

=
(
g( ~Xm)~κg, ~χ | ~Xm

ρ |
)h

∀ ~χ ∈ V h , (3.26a)(
g

3
2 ( ~Xm)~κg, ~η | ~Xm

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xρ, ~ηρ | ~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h . (3.26b)

Choosing ~χ = ~πh[g
1
2 ( ~Xm)~κg ∈ V h in (3.26a) and ~η = ~X ∈ V h in (3.26b) yields that(

g
1
2 ( ~Xm) | ~Xρ|2, | ~Xm

ρ |−1
)

+ ∆tm

(
g

3
2 ( ~Xm) |~κg|2, | ~Xm

ρ |
)h

= 0 (3.27)

It immediately follows from (3.27) that ~κg = ~0, and that ~X = ~Xc ∈ R2. Combined with

(3.26a) these imply that ~Xc = ~0. Hence we have shown that (Dm)h has a unique solution

( ~Xm+1, ~κm+1
g ) ∈ V h × V h.

On recalling (2.3), for ~Z ∈ V h we let

Lhg(~Z) =
(
g

1
2 (~Z), |~Zρ|

)h
. (3.28)

We now prove discrete analogues of (2.23) and (2.33) for the schemes (Cm,?)h and (Dm,?)h,
respectively.

Theorem. 3.5. Let ( ~Xm+1, κm+1
g ) be a solution to (Cm,?)h, or let

( ~Xm+1, ~κm+1
g ) be a solution to (Dm,?)h. Then it holds that

Lhg( ~X
m+1) + ∆tm


(
g

1
2 ( ~Xm) |κm+1

g |2, | ~Xm
ρ |
)h(

g
3
2 ( ~Xm) |~κm+1

g |2, | ~Xm
ρ |
)h ≤ Lhg( ~X

m) , (3.29)

respectively.
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Proof. Choosing χ = ∆tm κ
m+1
g in (3.21) and ~η = ~Xm+1 − ~Xm in (3.8) yields that

−∆tm

(
g

1
2 ( ~Xm) |κm+1

g |2, | ~Xm
ρ |
)h

=
(
∇ [g

1
2
+( ~Xm+1) + g

1
2
−( ~Xm)], ( ~Xm+1 − ~Xm) | ~Xm+1

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ( ~Xm+1
ρ − ~Xm

ρ ) | ~Xm
ρ |−1

)h
≥
(
g

1
2 ( ~Xm+1)− g

1
2 ( ~Xm), | ~Xm+1

ρ |
)h

+
(
g

1
2 ( ~Xm), | ~Xm+1

ρ | − | ~Xm
ρ |
)h

=
(
g

1
2 ( ~Xm+1) | ~Xm+1

ρ | − g
1
2 ( ~Xm) | ~Xm

ρ |, 1
)h

= Lhg( ~X
m+1)− Lhg( ~Xm) , (3.30)

where we have used (3.7) and the inequality ~a . (~a−~b) ≥ |~b| (|~a| − |~b|) for ~a, ~b ∈ R2. This
proves the desired result (3.29) for (Cm,?)h. The proof for (Dm,?)h is analogous.

Remark. 3.6. We observe that in most of the above fully discrete schemes it is possible
to eliminate the discrete curvatures, κm+1

g or ~κm+1
g , to derive discrete analogues of (2.34)

and (2.35), respectively. To this end, let ~ωm ∈ V h be the mass-lumped L2–projection of
~νm onto V h, i.e.(

~ωm, ~ϕ | ~Xm
ρ |
)h

=
(
~νm, ~ϕ | ~Xm

ρ |
)

=
(
~νm, ~ϕ | ~Xm

ρ |
)h

∀ ~ϕ ∈ V h . (3.31)

Then, on recalling (3.31) and on choosing χ = πh[g
1
2 ( ~Xm) ~η . ~ωm] ∈ V h in (3.21) for

~η ∈ V h, the scheme (Cm,?)h reduces to: Find ~Xm+1 ∈ V h such that(
g

3
2 ( ~Xm)

~Xm+1 − ~Xm

∆tm
. ~ωm, ~η . ~ωm | ~Xm

ρ |

)h

+
(
∇ [g

1
2
+( ~Xm+1) + g

1
2
−( ~Xm)], ~η | ~Xm+1

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ~ηρ | ~Xm
ρ |−1

)h
= 0 ∀ ~η ∈ V h . (3.32)

and similarly for (Cm)h, (Dm)h and (Dm,?)h. A related variant to (3.32) is given by: Find
~Xm+1 ∈ V h such that(

g
3
2 ( ~Xm)

~Xm+1 − ~Xm

∆tm
. ~νm, ~η . ~νm | ~Xm

ρ |

)h

+
(
∇ [g

1
2
+( ~Xm+1) + g

1
2
−( ~Xm)], ~η | ~Xm+1

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ~ηρ | ~Xm
ρ |−1

)h
= 0 ∀ ~η ∈ V h . (3.33)

Similarly to Theorem 3.5, the scheme (3.33) can also be shown to be unconditionally stable,
i.e. a solution to (3.33) satisfies

Lhg( ~X
m+1) + ∆tm

g 3
2 ( ~Xm)

∣∣∣∣∣ ~Xm+1 − ~Xm

∆tm
. ~νm

∣∣∣∣∣
2

, | ~Xm
ρ |

h

≤ Lhg( ~X
m) . (3.34)
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Remark. 3.7. Note that in the case µ = −1, the function g
1
2
+(~z) = g

1
2 (~z) = ~z .~e2 is linear,

and ∇ g 1
2 (~z) = ~e2. As a consequence, the numerical integration in the second and third

terms in (3.5), (3.8), (3.22b) and (3.23) plays no role. In fact, in this case the schemes
(Cm)h, (Dm)h and (Cm,?)h, (Dm,?)h, with (3.9), collapse to their namesakes in Barrett
et al. (2018a), if we account for the space-dependent weighting factor that differentiates
(2.76) from (2.22).

Remark. 3.8. Using the techniques from Barrett et al. (2018a), it is straightforward to
adapt the presented schemes to deal with open curves, with fixed endpoints. These schemes
then allow to compute approximations to geodesics in the hyperbolic plane, for example. In
particular, we replace I = R/Z by I = [0, 1] and define V h

∂ = {~η ∈ V h : ~η(0) = ~η(1) = ~0}.
Then in place of (Am)h we seek ( ~Xm+1, κm+1) ∈ V h × V h, with ~Xm+1 − ~Xm ∈ V h

∂, such
that (3.14) holds, as well as (3.3), with V h replaced by V h

∂. For later reference, we call
this adapted scheme (A∂m)h.

3.2 Curve diffusion

We consider the following fully discrete approximation of (E), i.e. (2.41), (2.20), where,
in order to make the approximation more practical, we introduce an auxiliary variable.
(Em)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1, km+1) ∈ V h × V h × V h

such that (3.3) holds and(
g( ~Xm)

~Xm+1 − ~Xm

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
g−

1
2 ( ~Xm)

[
km+1 − Zm

]
ρ
, χρ | ~Xm

ρ |−1
)h

∀ χ ∈ V h , (3.35a)(
g

1
2 ( ~Xm) km+1, ζ | ~Xm

ρ |
)h

=
(
κm+1, ζ | ~Xm

ρ |
)h

∀ ζ ∈ V h , (3.35b)

where Zm ∈ V h is such that(
g

1
2 ( ~Xm)Zm, ξ | ~Xm

ρ |
)h

= 1
2

(
~νm .∇ ln g( ~Xm), ξ | ~Xm

ρ |
)h

∀ ξ ∈ V h . (3.35c)

We note that it does not appear possible to prove the existence of a unique solution to
(Em)h.

We consider the following two fully discrete analogues of (F), i.e. (2.42), (2.21). The
first scheme will be linear, while the second scheme will be nonlinear, and will admit a
stability proof.
(Fm)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1

g ) ∈ V h × V h such that
(3.5) holds and(

g( ~Xm)
~Xm+1 − ~Xm

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
g−

1
2 ( ~Xm) [κm+1

g ]ρ, χρ | ~Xm
ρ |−1

)h
∀ χ ∈ V h .

(3.36)
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(Fm,?)h: Let ~X0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1
g ) ∈ V h × V h such that

(3.8) and (3.36) hold.

We remark that the schemes (Em)h, (Fm)h and (Fm,?)h, with (3.9), in the case (2.5b),
collapse to the scheme Barrett et al. (2007a, (2.2a,b)) for Euclidean curve/surface diffu-
sion.

Lemma. 3.9. Let the assumption (A)h hold. Then there exists a unique solution ( ~Xm+1,
κm+1
g ) ∈ V h × V h to (Fm)h.

Proof. As (3.36), (3.5) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X, κg) ∈ V h × V h such that(
g( ~Xm)

~X

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
g−

1
2 ( ~Xm) [κg]ρ, χρ | ~Xm

ρ |−1
)h

∀ χ ∈ V h , (3.37a)(
g( ~Xm)κg ~ν

m, ~η | ~Xm
ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xρ, ~ηρ | ~Xm

ρ |−1
)h

= 0 ∀ ~η ∈ V h . (3.37b)

Choosing χ = κg ∈ V h in (3.37a) and ~η = ~X ∈ V h in (3.37b) yields that(
g

1
2 ( ~Xm) | ~Xρ|2, | ~Xm

ρ |−1
)h

+ ∆tm

(
g−

1
2 ( ~Xm) |[κg]ρ|2, | ~Xm

ρ |−1
)h

= 0 . (3.38)

It follows from (3.38) that κg = κc ∈ R and ~X ≡ ~Xc ∈ R2. Hence it follows from (3.37a)

that ~Xc . ~z = 0 for all ~z ∈ Zh, and so assumption (A)h yields that ~Xc = ~0. Similarly,
it follows from (3.37b) and the fact that Zh must contain a nonzero vector that κc = 0.

Hence we have shown that (Fm)h has a unique solution ( ~Xm+1, κm+1
g ) ∈ V h × V h.

We now prove a discrete analogue of (2.37), recall also (2.43), for the scheme (Fm,?)h.

Theorem. 3.10. Let ( ~Xm+1, κm+1
g ) be a solution to (Fm,?)h. Then it holds that

Lhg( ~X
m+1) + ∆tm

(
g−

1
2 ( ~Xm) |[κg]ρ|2, | ~Xm

ρ |−1
)h
≤ Lhg( ~X

m) . (3.39)

Proof. Choosing χ = ∆tm κ
m+1
g in (3.36) and ~η = ~Xm+1 − ~Xm in (3.8) we obtain,

similarly to (3.30), that

−∆tm

(
g−

1
2 ( ~Xm) |[κm+1

g ]ρ|2, | ~Xm
ρ |−1

)h
=
(
∇ [g

1
2
+( ~Xm+1) + g

1
2
−( ~Xm)], ( ~Xm+1 − ~Xm) | ~Xm+1

ρ |
)h

+
(
g

1
2 ( ~Xm) ~Xm+1

ρ , ( ~Xm+1
ρ − ~Xm

ρ ) | ~Xm
ρ |−1

)h
≤ Lhg( ~X

m+1)− Lhg( ~Xm) . (3.40)

This proves the desired result (3.39).
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3.3 Elastic flow

We consider the following fully discrete finite element approximation of (U), i.e. (2.69)
and (2.20), similarly to the approximation (Em)h for (E).

(Um)h: Let ~X0 ∈ V h and κ0 ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1, km+1) ∈
V h × V h × V h such that (3.3), (3.35b) hold and(

g( ~Xm)
~Xm+1 − ~Xm

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
g−

1
2 ( ~Xm)

[
km+1 − Zm

]
ρ
, χρ | ~Xm

ρ |−1
)h

− 1
2

(
g−1( ~Xm)

[
κm − 1

2
~νm .∇ ln g( ~Xm)

]3

, χ | ~Xm
ρ |
)h

−
(
S0( ~Xm)

[
κm − 1

2
~νm .∇ ln g( ~Xm)

]
, χ | ~Xm

ρ |
)h

∀ χ ∈ V h , (3.41)

where Zm ∈ V h is defined by (3.35c).

We consider the following fully discrete finite element approximation of (W), i.e. (2.70)
and (2.21).

(Wm)h: Let ~X0 ∈ V h and κ0
g ∈ V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1

g ) ∈ V h × V h

such that (3.5) holds and(
g( ~Xm)

~Xm+1 − ~Xm

∆tm
, χ ~νm | ~Xm

ρ |

)h

=
(
g−

1
2 ( ~Xm) [κm+1

g ]ρ, χρ | ~Xm
ρ |−1

)h
− 1

2

(
g

1
2 ( ~Xm) (κmg )3, χ | ~Xm

ρ |
)h
−
(
S0( ~Xm) g

1
2 ( ~Xm)κmg , χ | ~Xm

ρ |
)h

∀ χ ∈ V h . (3.42)

Clearly, for the metric (2.5b) we have that S0 = 0, and so the last terms in (3.41) and
(3.42) vanish. In fact, in this case the schemes (Um)h and (Wm)h collapse to the scheme
Barrett et al. (2007a, (2.45a,b)), with λm = 0, for Euclidean elastic flow.

Remark. 3.11. It is often of interest to add a length penalization term to the energy
(2.44), and hence consider the L2–gradient flow of

W λ
g (~x) = Wg(~x) + λLg(~x) , (3.43)

recall (2.3), for some λ ∈ R≥0, see e.g. Dall’Acqua and Spener (2017). It is straightforward
to generalize our weak formulations and finite element approximations to this case. For
example, the scheme (Wm)h is adapted by adding the term λ (g

1
2 ( ~Xm)κm+1

g , χ | ~Xm
ρ |)h to

the right hand side of (3.42), and we call this new scheme (Wλ
m)h for later reference.

4 Numerical results

We recall from (2.4) that

Ag(~x) =

∫
Ω

g(~z) d~z =

∫
I

~φg(~x) . ~ν |~xρ| dρ , where ∇ . ~φg = g in H , (4.1)
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if ν ◦ ~x−1 denotes the outer normal on ∂Ω = Γ = ~x(I). With this in mind, we define the

following approximation of Ag( ~X
m),

Ahg( ~X
m) =

(
~φg( ~X

m) . ~νm, | ~Xm
ρ |
)h
. (4.2)

For the different metrics we consider, the function ~φg can be chosen as follows.

(2.5e) ~φg(~z) =

{
(1− 2µ)−1 (~z .~e2)1−2µ ~e2 µ 6= 1

2
,

ln(~z .~e2)~e2 µ = 1
2
,

(2.6) ~φg(~z) =

{
2 [α |~z|2 (1− α |~z|2)]−1 ~z α 6= 0 ,

2 ~z α = 0 ,

(2.73b) ~φg(~z) = tanh(~z .~e1)~e1 ,

(2.73c) ~φg(~z) = 1
2

(~z .~e1 + sinh(~z .~e1) cosh(~z .~e1))~e1 ,

(2.73d) ~φg(~z) = 2 [s2+1]
1
2

s
arctan

( [s2+1]
1
2 +1

s
tan ~z .~e2

2

)
+

sin ~z .~e2

[s2 + 1]
1
2 − cos ~z .~e2

.

For solutions of the scheme (Um)h, we define

Wm
g = 1

2

(
g−

1
2 ( ~Xm)

[
κm − 1

2
~νm .∇ ln g( ~Xm)

]2

, | ~Xm
ρ |
)h

(4.3)

as the natural discrete analogue of (2.44), while for solutions of the scheme (Wm)h we
define

W̃m
g = 1

2

(
g

1
2 ( ~Xm)

[
κmg
]2
, | ~Xm

ρ |
)h
. (4.4)

On recalling (1.6), and given Γ0 = ~X0(I), we define the initial data κ0 ∈ V h for the

scheme (Um)h via κ0 = πh
[
~κ0 . ~ω0

|~ω0|

]
, where we recall (3.31), and where ~κ0 ∈ V h is such that

(
~κ0, ~η | ~X0

ρ |
)h

+
(
~X0
ρ , ~ηρ | ~X0

ρ |−1
)

= 0 ∀ ~η ∈ V h .

With this definition of κ0, we define the initial data κ0
g ∈ V h for the scheme (Wm)h via

κ0
g = πh

[
g−

1
2 ( ~X0)

[
κ0 − 1

2
~ω0 .∇ ln g( ~X0)

]]
.

We also consider the ratio

rm =
maxj=1→J | ~Xm(qj)− ~Xm(qj−1)|
minj=1→J | ~Xm(qj)− ~Xm(qj−1)|

(4.5)

between the longest and shortest element of Γm, and are often interested in the evolution
of this ratio over time.

30



(Am)h (Bm)h

J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 2.1544e-01 2.7956e-02 — 4.7884e-02 —

64 1.0792e-01 7.6597e-03 1.872810 1.3493e-02 1.832236

128 5.3988e-02 1.9572e-03 1.969971 3.4819e-03 1.955728

256 2.6997e-02 4.9196e-04 1.992498 8.7754e-04 1.988657

512 1.3499e-02 1.2315e-04 1.998231 2.1982e-04 1.997249

Table 2: Errors for the convergence test for (A.1) with (A.5), with r(0) = 1, a(0) = 2,
over the time interval [0, 0.1].

4.1 The hyperbolic plane, and (2.5e) for µ ∈ R

Unless otherwise stated, all our computations in this section are for the hyperbolic plane,
i.e. (2.5a) or, equivalently, (2.5e) with µ = 1.

4.1.1 Curvature flow

From the Appendix A.1 we recall the true solution (A.1) with (A.5) for hyperbolic cur-
vature flow, (2.22) in the case (2.5a). We use this true solution for a convergence test for
the various schemes for curvature flow. Here we start with a nonuniform partitioning of
a circle of radius r(0) = 1 centred at a(0)~e2, where a(0) = 2. In particular, we choose
~X0 ∈ V h with

~X0(qj) = a(0)~e2 + r(0)

(
cos[2π qj + 0.1 sin(2 π qj)]

sin[2 π qj + 0.1 sin(2 π qj)]

)
, j = 1, . . . , J , (4.6)

recall (3.1). We compute the error

‖Γ− Γh‖L∞ = max
m=1,...,M

max
j=1,...,J

|| ~Xm(qj)− a(tm)~e2| − r(tm)| (4.7)

over the time interval [0, 0.1] between the true solution (A.1) and the discrete solutions
for the schemes (Am)h and (Bm)h. We note that the extinction time for (A.5) is T0 =
−1

2
ln 3

4
= 0.144. Here we use the time step size ∆t = 0.1h2

Γ0 , where hΓ0 is the maximal
edge length of Γ0. The computed errors are reported in Table 2. The same errors for
the schemes (Cm)h, (Dm)h, (Cm,?)h and (Dm,?)h can be seen in Table 3. We observe that
all schemes exhibit second order convergence rates, with the smallest errors produced by
(Am)h and (Cm,?)h.

For the scheme (Am)h we show the evolution of a cigar shape in Figure 1. The
discretization parameters are J = 128 and ∆t = 10−4. Rotating the initial shape by 90◦

degrees yields the evolution in Figure 2. We note that in both cases the curve shrinks
to a point. The same computations for the remaining schemes, i.e. (Bm)h, (Cm)h, (Dm)h,
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(Cm)h (Dm)h (Cm,?)h (Dm,?)h

J ‖Γ− Γh‖L∞ ‖Γ− Γh‖L∞ ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 3.4212e-02 5.2395e-02 2.7155e-02 — 4.9299e-02 —

64 9.3803e-03 1.4744e-02 7.5112e-03 1.855491 1.3918e-02 1.825973

128 2.3970e-03 3.8047e-03 1.9237e-03 1.965475 3.5945e-03 1.953402

256 6.0251e-04 9.5887e-04 4.8381e-04 1.991478 9.0613e-04 1.988107

512 1.5082e-04 2.4019e-04 1.2112e-04 1.998003 2.2699e-04 1.997089

Table 3: Errors for the convergence test for (A.1) with (A.5), with r(0) = 1, a(0) = 2,
over the time interval [0, 0.1].

Figure 1: (Am)h Curvature flow towards extinction. Solution at times t = 0, 0.1, . . . , 0.5.

On the right are plots of the discrete energy Lhg( ~X
m) and of the ratio (4.5).

Figure 2: (Am)h Curvature flow towards extinction. Solution at times t = 0, 0.01, . . . , 0.2.

On the right are plots of the discrete energy Lhg( ~X
m) and of the ratio (4.5).
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Figure 3: The ratio plots (4.5) for the schemes (Bm)h, (Dm)h, (Dm,?)h, (Cm)h and (Cm,?)h
for simulations as in Figure 1.

Figure 4: (A∂m)h Geodesics in the hyperbolic plane, obtained with curvature flow. The

left geodesic connects the points (±2, 1)T , with Lhg( ~X
M) = 2.887, while the right geodesics

connects (−2, 0.1)T and (2, 2)T , with Lhg( ~X
M) = 4.620.

(Cm,?)h and (Dm,?)h, yield very similar results, with the main difference being the evolution
of the ratio (4.5). For the simulation in Figure 1, we present the plots of this quantity for
these alternative schemes in Figure 3, where we observe that the obtained curves are far
from being equidistributed. In particular, the ratio for the schemes (Bm)h, (Dm)h (Dm,?)h
reaches almost 60, while it remains bounded below 3 for the schemes (Cm)h and (Cm,?)h.
This compares with a final ratio of about 1.2 in Figure 1.

We now employ the scheme (A∂m)h to compute some geodesics. To this end, we use as
initial data a straight line segment between the two fixed endpoints, and let the scheme
run until time T = 10, at which point the discrete energy Lhg( ~X

m) is almost constant in
time. For each run the discretization parameters are J = 128 and ∆t = 10−4. For the
hyperbolic plane, we show the final curves ΓM in Figure 4. Repeating the first of the two
geodesic computations for the metric (2.5e) with µ = 0.1 and µ = 2 yields the results in
Figure 5.
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Figure 5: (A∂m)h Geodesics connecting the points (±2, 1)T for (2.5e) with µ = 0.1 (left)

and µ = 2 (right). The discrete lengths are Lhg( ~X
M) = 3.977 and Lhg( ~X

M) = 1.645,
respectively.

Figure 6: (Em)h Curve diffusion towards a circle. Solution at times t = 0, 0.1, 0.5, 2. On

the right are plots of the discrete energy Lhg( ~X
m) and of the ratio (4.5), with plots of the

ratio (4.5) for the schemes (Fm)h and (Fm,?)h below.

4.1.2 Curve diffusion

For curve diffusion in the hyperbolic plane, circles are steady state solutions. This follows
from the fact that, analogously to the Euclidean case, circles in the hyperbolic plane have
constant curvature, see (A.2) in Appendix A.1. For the scheme (Em)h we now show the
evolutions of two cigar shapes towards a circle. The discretization parameters are J = 128
and ∆t = 10−4. In Figure 6 the initial shape is aligned horizontally, whereas in Figure 7
it is aligned vertically. The relative area losses, measured in terms of (4.2), were −0.24%
and 0.04% for these two simulations. Repeating the simulations for the schemes (Fm)h

and (Fm,?)h produces nearly identical results, with the main difference being the larger
ratios (4.5). For the simulations corresponding to Figure 6, the ratio reaches a value of
about 6, and the relative area loss is −0.01% for both (Fm)h and (Fm,?)h. For the runs
shown in Figure 7 the ratio (4.5) reaches a value around 2, and the relative area losses
are 0.13% and 0.14%, respectively.

For the metric (2.5e) with µ 6∈ {0, 1}, circles are in general not steady state solutions
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Figure 7: (Em)h Curve diffusion towards a circle. Solution at times t = 0, 10−3, 10−2, 0.2.

On the right are plots of the discrete energy Lhg( ~X
m) and of the ratio (4.5), with plots of

the ratio (4.5) for the schemes (Fm)h and (Fm,?)h below.

for curve diffusion. We demonstrate this with numerical experiments for the metrics (2.5e)
with µ = 0.1 and µ = 2. For the case µ = 0.1 we start from the initial data (4.6) with
a(0) = 1.01 and r(0) = 1, and compute the evolution with the scheme (Em)h with the
discretization parameters J = 128 and ∆t = 10−3. The results are shown in Figure 8,
where we note that the relative area loss, measured in terms of (4.2), was −0.04% for this
experiment. The final shape has height 2.224 and width 2.233. For the case µ = 2 we use
the initial data (4.6) with a(0) = 2 and r(0) = 1, and leave all the remaining parameters
unchanged. The evolution is shown in Figure 9, with a relative area loss of 0.22%. The
final shape has height 0.03617 and width 0.03609.

4.1.3 Elastic flow

For hyperbolic elastic flow, (2.57), we recall the true solution (A.1) with (A.11a,b) from
Appendix A.1. We use this true solution for a convergence test for our two schemes for
elastic flow. Similarly to Table 2 we start with the initial data (4.6) with r(0) = 1 and
a(0) = 1.1. We compute the error ‖Γ − Γh‖L∞ over the time interval [0, 1] between the
true solution (A.1) and the discrete solutions for the schemes (Um)h and (Wm)h. We
recall from Appendix A.1 that the circle will sink and shrink. In fact, at time T = 1
it holds that r(T ) = 0.645 and a(T ) = 0.792, so that σ(T ) = a(T )

r(T )
= 1.227 < 2

1
2 , see

Appendix A.1. Here we use the time step size ∆t = 0.1h2
Γ0 , where hΓ0 is the maximal edge

length of Γ0. The computed errors are reported in Table 4. We repeat the convergence
test with the initial data r(0) = 1 and a(0) = 2, so that the circle will now raise and
expand. In fact, at time T = 1 it holds that r(T ) = 1.677 and a(T ) = 2.411. so that

σ(T ) = a(T )
r(T )

= 1.437 > 2
1
2 , see Appendix A.1. The computed errors are reported in

Table 5.
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Figure 8: (Em)h Curve diffusion for (2.5e) with µ = 0.1, starting from a circle. Solution
at times t = 0, 1, 10, 100, and separately at time t = 100. On the right is a plot of the
discrete energy Lhg( ~X

m).

Figure 9: (Em)h Curve diffusion for (2.5e) with µ = 2, starting from a circle. Solution at

times t = 0, 1, 10, 100. On the right is a plot of the discrete energy Lhg( ~X
m).

(Um)h (Wm)h

J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 2.1544e-01 3.5987e-02 — 3.1536e-02 —

64 1.0792e-01 8.7266e-03 2.049469 7.9745e-03 1.988856

128 5.3988e-02 2.1624e-03 2.014294 1.9958e-03 1.999924

256 2.6997e-02 5.3929e-04 2.003821 4.9957e-04 1.998529

512 1.3499e-02 1.3474e-04 2.000990 1.2489e-04 2.000136

Table 4: Errors for the convergence test for (A.1) with (A.11a,b), with r(0) = 1, a(0) =
1.1, over the time interval [0, 1].
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(Um)h (Wm)h

J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 2.1544e-01 1.8228e-01 — 4.0407e-02 —

64 1.0792e-01 4.3289e-02 2.079649 1.0436e-02 1.958277

128 5.3988e-02 1.0699e-02 2.018035 2.6286e-03 1.990692

256 2.6997e-02 2.6668e-03 2.004616 6.5835e-04 1.997688

512 1.3499e-02 6.6621e-04 2.001168 1.6467e-04 1.999384

Table 5: Errors for the convergence test for (A.1) with (A.11a,b), with r(0) = 1, a(0) = 2,
over the time interval [0, 1].

For the scheme (Um)h we show the evolution of a cigar shape in Figure 10. The
discretization parameters are J = 128 and ∆t = 10−4. Rotating the initial shape by 90◦

degrees yields the evolution in Figure 11. As expected, in both cases the curve evolves
to a circle. In the first case, at time tm = 4 it holds that σm = am

rm
= 1.412 < 2

1
2 , where

am = 1
2

(maxI ~X
m . ~e2 + minI ~X

m . ~e2) and rm = 1
2

(maxI ~X
m . ~e2 − minI ~X

m . ~e2), and so
the approximate circle is going to continue to sink and shrink. This is evidenced by the
plot of am over time in Figure 10, where we see that am eventually decreases. In the
second simulation, on the other hand, we observe at time tm = 2 that σm = 1.415 > 2

1
2 ,

and so here the approximate circle will continue to rise and expand, which can also be
seen from the plot of am over time in Figure 11. The same computations for the scheme
(Wm)h yield almost identical results, with the main difference being the evolution of the
ratio (4.5). We present the plots of this quantity for the scheme (Wm)h for these two
simulations in Figure 12, where we observe that the obtained curves are far from being
equidistributed, although the ratio (4.5) remains bounded, eventually settling on a value
close to 4.

Finally, on recalling Remark 3.11, we repeat the simulation in Figure 10 now for the
scheme (Wλ

m)h with λ = 1. As expected, the length penalization means that now the
evolution reaches a steady state, as can be seen from the plots in Figure 13.

4.2 The elliptic plane, and (2.6) for α ∈ R

Unless otherwise stated, all our computations in this section are for the elliptic plane, i.e.
(2.73a) or, equivalently, (2.6) with α = −1.

Similarly to Figure 4, we use the scheme (A∂m)h to compute some geodesics in the
elliptic plane. Here it can happen that a finite geodesic does not exist, and so the evolution
of curvature flow will yield a curve that expands continuously. We visualize this effect in
Figure 14. Here the initial curve consists of two straight line segments which connect the
points (±9,∓1)T with (9, 9)T in H. As the discretization parameters we choose J = 128
and ∆t = 10−4.
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Figure 10: (Um)h Hyperbolic elastic flow towards a sinking and shrinking circle. Solution
at times t = 0, 0.1, 0.5, 2, 4. On the right are plots of the discrete energy (4.3), of the ratio
(4.5) and of am.

4.3 Geodesic evolution equations

In order to demonstrate the possibility to compute geodesic evolution laws with the intro-
duced approximations, we present a computation for geodesic curvature flow on a Clifford
torus. To this end, we employ the metric induced by (2.73d) with s = 1, so that the

torus has radii r = 1 and R = 2
1
2 . As initial data we choose a circle in H with radius

4 and centre (0, 2)T . For the simulation in Figure 15 we use the scheme (Am)h with the
discretization parameters J = 256 and ∆t = 10−3. In H it can be observed that the
initial circle deforms and shrinks to a point. On the surfaceM = ~Φ(H), the initial curve
is homotopic to a point, and so unravels and then shrinks to a point.
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Figure 11: (Um)h Hyperbolic elastic flow towards a rising and expanding circle. Solution
at times t = 0, 0.01, 0.02, 0.1, 0.5, 2. On the right are plots of the discrete energy (4.3), of
the ratio (4.5) and of am.

Figure 12: (Wm)h The ratio plots (4.5) for the two simulations as in Figure 10 and 11.
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Figure 13: (Wλ
m)h Generalized hyperbolic elastic flow, with λ = 1, towards a circle.

Solution at times t = 0, 0.1, . . . , 2. On the right are plots of the discrete energy W̃m
g +

λLhg( ~X
m), and of the ratio (4.5).

Figure 14: (A∂m)h Curvature flow towards an infinite geodesic in the elliptic plane. The

solutions ~Xm at times t = 10−3, 10−2, 0.1, 1. On the right we visualize ~Φ( ~Xm) at the same
times, for (2.73a), with the north pole, ~e3, represented by a red dot.
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Figure 15: (Am)h Geodesic curvature flow on a Clifford torus. The solutions ~Xm at

times t = 0, 1, 10, 20, 30, 39. On the right we visualize ~Φ( ~Xm) at times t = 0, 30, 39, for
(2.73d) with s = 1.

Conclusions

We have derived and analysed various finite element schemes for the numerical approx-
imation of curve evolutions in two-dimensional Riemannian manifolds. The considered
evolution laws include curvature flow, curve diffusion and elastic flow. The Rieman-
nian manifolds that can be considered in our framework include the hyperbolic plane,
the hyperbolic disk and the elliptic plane. More generally, any metric conformal to the
two-dimensional Euclidean metric can be considered. We mention that locally this is
always possible for two-dimensional Riemannian manifolds. An example of this are two-
dimensional surfaces in Rd, d ≥ 3, which are conformally parameterized. Our approach
also allows computations for geometric evolution equations of axisymmetric hypersurfaces
in Rd, d ≥ 3.

For the standard Euclidean plane our proposed schemes collapse to variants introduced
by the authors in much earlier papers, see Barrett et al. (2007a,b).

A Some exact circular solutions

Here we state some exact solutions for the three geometric evolution equations we consider,
i.e. (2.22), (2.36) and (2.55), for selected metrics g.
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A.1 The hyperbolic plane

Here we consider circular solutions in the hyperbolic plane, based on the exact solution
for hyperbolic elastic flow from Dall’Acqua and Spener (2018, Lemma 3.1).

In particular, we make the ansatz

~x(ρ, t) = a(t)~e2 + r(t) [cos 2 π ρ~e1 + sin 2π ρ~e2] ρ ∈ I , (A.1)

for a(t) > r(t) > 0 for all t ∈ [0, T ]. Then it follows from (2.17) for µ = 1 that

κg(ρ, t) =
a(t)

r(t)
ρ ∈ I , t ∈ [0, T ] . (A.2)

Moreover, it holds that

Vg = (~x .~e2)−1 ~xt . ~ν = − (a(t) + r(t) sin 2 π ρ)−1 [a′(t) sin 2π ρ+ r′(t)] . (A.3)

We now consider curvature flow, (2.22). With the ansatz (A.1), on noting (A.2) and
(A.3), we have that (2.22) reduces to

a′(t) sin 2π ρ+ r′(t) = −(a(t) + r(t) sin 2 π ρ)
a(t)

r(t)
. (A.4)

Differentiating (A.4) with respect to ρ yields that a′(t) = −a(t), and hence a(t) = e−t a(0).
Combining this with (A.4) yields that

r′(t) = −a(t)
a(t)

r(t)
⇒ 1

2

d

dt
r2(t) = −a2(t) = −e−2 t a2(0) .

Hence

r2(t)− r2(0) = −2 a2(0)

∫ t

0

e−2u du = −2 a2(0)
[
−1

2
e−2 t + 1

2

]
= a2(0)

[
e−2 t − 1

]
,

and so (A.1) with

a(t) = e−t a(0) , r(t) =
(
r2(0)− a2(0)

[
1− e−2 t

]) 1
2 (A.5)

is a solution to (2.22). We observe that circles move towards the ~e1–axis and shrink as

they do so. The finite extinction time is T0 = −1
2

ln

[
1−

(
r(0)
a(0)

)2
]
.

As regards (2.36), it is obvious from (A.2) that any solution of the form (A.1) satisfies
Vg = 0, and so circles are stationary solutions for curve diffusion.

Finally, for the elastic flow (2.55), we recall the exact solution for the hyperbolic elastic
flow, (2.57), from Dall’Acqua and Spener (2018, Lemma 3.1).
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With the ansatz (A.1), on noting (A.2) and (A.3), we have that (2.57) reduces to

a′(t) sin 2 π ρ+ r′(t) = −(a(t) + r(t) sin 2 π ρ)

(
a(t)

r(t)
− a3(t)

2 r3(t)

)
. (A.6)

Differentiating (A.6) with respect to ρ yields that

a′(t) = −r(t)
(
a(t)

r(t)
− a3(t)

2 r3(t)

)
, (A.7)

and combining this with (A.6) yields that

r′(t) = −a(t)

(
a(t)

r(t)
− a3(t)

2 r3(t)

)
. (A.8)

On setting

σ(t) =
a(t)

r(t)
> 1 ⇒ σ′(t) =

a′(t)

r(t)
− a(t) r′(t)

r2(t)
, (A.9)

it follows from (A.7) and (A.8) that

σ′(t) = σ(t) (1− 1
2
σ2(t)) (σ2(t)− 1) , (A.10)

which agrees with (3.4) in Dall’Acqua and Spener (2018) for λ = 0. If σ denotes a solution
to (A.10), then it follows from (A.7) that a and r satisfy

d

dt
ln a(t) =

a′(t)

a(t)
= 1

2
σ2(t)− 1 ⇒ a(t) = a(0) exp

(
−t+ 1

2

∫ t

0

σ2(u) du

)
, (A.11a)

r(t) =
a(t)

σ(t)
. (A.11b)

On recalling that σ(t) > 1, we note that σ(t) = 2
1
2 is the only steady state solution

of (A.10), and hence circles with ratios σ(t) = 2
1
2 are steady state solutions of (2.57).

Moreover, circles with σ(t) > 2
1
2 will rise and expand indefinitely in time, reducing the

ratio σ(t) > 2
1
2 as they do so. On the other hand, circles with σ(t) < 2

1
2 will sink and

shrink indefinitely in time, increasing the ratio σ(t) < 2
1
2 as they do so.

In order to compute solutions to (A.10) in practice, we let F (y) = y−1 |1− 1
2
y2|− 1

2 (y2−
1), so that F ∈ C∞((1, 2

1
2 ) ∪ (2

1
2 ,∞)). Then F ′(y) = y−2 (1 − 1

2
y2)−1 |1 − 1

2
y2|− 1

2 , and
hence a solution σ to (A.10) satisfies

d

dt
F (σ(t)) = σ′(t)F ′(σ(t)) =

σ2(t)− 1

σ(t) |1− 1
2
σ2(t)| 12

= F (σ(t)) , (A.12)

which means that a solution σ to (A.10) satisfies the nonlinear equation

F (σ(t)) = F (σ(0)) et . (A.13)
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A.2 The hyperbolic disk and the elliptic plane

Here we consider the metric (2.6). For α = 1 we then obtain exact solutions for the
hyperbolic disk, while α = −1 corresponds to the elliptic plane. In the latter case these
solutions can be related to the exact solutions for the corresponding geodesic flows on the
sphere from Barrett et al. (2010), recall §2.4.

In particular, on making the ansatz

~x(ρ, t) = r(t) [cos 2 π ρ~e1 + sin 2π ρ~e2] ρ ∈ I , (A.14)

for r(t) > 0 for all t ∈ [0, T ], it follows from (2.18) that

κg(ρ, t) = 1
2

(
1 + α r2(t)

)
[r(t)]−1 ρ ∈ I , t ∈ [0, T ] . (A.15)

Moreover, it holds that

Vg = g
1
2 (~x) ~xt . ~ν = −2 (1− α r2(t))−1 r′(t) . (A.16)

We now consider curvature flow, (2.22). It follows from (A.16) and (A.15) that

d

dt
r2(t) = 1

2

(
α2 r4(t)− 1

)
. (A.17)

Clearly, if α = 0 then r(t) = [r2(0)− 1
2
t]

1
2 is the well-known shrinking circle solution for

Euclidean curvature flow. For α 6= 0, in order to compute solutions to (A.17) in practice,

we let G(y) = |(1 + α y2)−1 (1− α y2)|
1
α , so that G ∈ C∞((0, |α|− 1

2 ) ∪ (|α|− 1
2 ,∞)), recall

also (2.6). Then G′(y) = 4 y (α2 y4 − 1)−1G(y) and hence a solution to (A.17) satisfies

d

dt
G(r(t)) = r′(t)G′(r(t)) = G(r(t)) , (A.18)

which means that a solution to (A.17) satisfies the nonlinear equation

G(r(t)) = G(r(0)) et , (A.19)

which can be inverted explicitly. In the case α = −1, we recall from (2.73a) that the
circle (A.14) of radius r(t) in the elliptic plane corresponds to a circle of radius R(t) =
2 (1 + r2(t))−1 r(t), and at height (r2(t) + 1)−1 (r2(t)− 1), on the unit sphere in R3. It can
be easily shown that if r(t) satisfies (A.19) for α = −1, then

R(t) = [1− (1−R2(0)) e2 t]
1
2 , (A.20)

which is the solution of geodesic curvature flow on the unit sphere, given by Barrett et al.
(2010, (5.6)). Observe that for R(0) ∈ (0, 1), the finite extinction time is T0 = 1

2
ln 1

1−R2(0)
.

As regards (2.36), it is obvious from (A.15) that any solution of the form (A.14)
satisfies Vg = 0, and so circles centred at the origin are stationary solutions to curve
diffusion for (2.6).
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Finally, we consider the elastic flow (2.55). With the ansatz (A.14), on noting (A.15),
(A.16) and (2.9), we have that (2.55) reduces to

− 2 (1− α r2(t))−1 r′(t) = − 1
16

(1 + α r2(t))3 r−3(t) + 1
2
α (1 + α r2(t)) r−1(t) . (A.21)

This implies the ODE

d

dt
r4(t) = 1

8
(1− α2 r4(t)) (1− 6α r2(t) + α2 r4(t)) . (A.22)

In the case α = −1, we recall from (2.73a) that the circle (A.14) of radius r(t) in the
elliptic plane corresponds to a circle of radius R(t) = 2 (1 + r2(t))−1 r(t), and at height
(r2(t) + 1)−1 (r2(t) − 1), on the unit sphere in R3. It can be easily shown that if r(t)
satisfies (A.22) for α = −1, then R(t) satisfies d

dt
R4(t) = 2 (1−R4(t)), i.e.

R(t) = [1− (1−R4(0)) e−2 t]
1
4 , (A.23)

which is the solution for geodesic elastic flow on the unit sphere given by Barrett et al.
(2010, (5.7)). Hence in the case α = −1 we can obtain r(t) from

r(t) = R−1(t)

{
(1 + [1−R2(t)]

1
2 ) r(0) ≥ 1 ,

(1− [1−R2(t)]
1
2 ) r(0) < 1 ,

where R(t) = [1− (1−R4(0)) e−2 t]
1
4 ,

(A.24)
with R(0) = 2 (1 + r2(0))−1 r(0).

Finally, for the case α = 1, it follows from (A.22) that

d

dt
r4(t) = 1

8
(1− r4(t)) (1− 6 r2(t) + r4(t)) . (A.25)

We note, on recalling (2.6), that r(t) = 2
1
2 − 1 is a stable stationary solution to (A.25).

Hence circles with larger radii will shrink, and circles with smaller radii will expand. In
order to solve (A.25) in practice, we define Q(y) = (1 +y2)−1 |1−6 y2 +y4|− 1

2 (1−y2)2, so

that Q ∈ C∞((0, 2
1
2 − 1)∪ (2

1
2 − 1, 1)) with Q′(y) = 32 (1− y4)−1 (1− 6 y2 + y4)−1 y3Q(y).

Hence d
dt
Q(r(t)) = Q(r(t)), and so a solution to (A.25) satisfies the nonlinear equation

Q(r(t)) = Q(r(0)) et . (A.26)

We remark that an alternative to (A.24) for the case α = −1 is to solve, similarly to
(A.26), the nonlinear equation Q−(r(t)) = Q−(r(0)) et, where Q−(y) = (1 − y2)−1 (1 +

6 y2 + y4)−
1
2 (1 + y2)2.

B Geodesic curve evolution equations

Let ~Φ : H → Rd be a conformal parameterization of an embedded two-dimensional Rie-
mannian manifoldM⊂ Rd, i.e.M = ~Φ(H) and |∂~e1~Φ(~z)|2 = |∂~e2~Φ(~z)|2 and ∂~e1~Φ(~z) . ∂~e2~Φ(~z) =
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0 for all ~z ∈ H. Given the parameterization ~x : I → H of the closed curve Γ ⊂ H, we let
~y = ~Φ ◦ ~x be a parameterization of G ⊂ M. We now show that geodesic curvature flow,
geodesic curve diffusion and geodesic elastic flow for G = ~y(I) on M reduce to (2.22),
(2.36) and (2.55) for the metric g defined by

g(~z) = |∂~e1~Φ(~z)|2 = |∂~e2~Φ(~z)|2 ~z ∈ H . (B.1)

For later use we observe that

D ~Φ(~z)~v .D ~Φ(~z) ~w = g(~z)~v . ~w ∀ z ∈ H , ~v, ~w ∈ R2 , (B.2)

where D ~Φ(~z) = [∂~e1 ~Φ(~z) ∂~e2 ~Φ(~z)] ∈ Rd×2 for ~z ∈ H. A simple computation, on noting
(B.2) and (2.1), yields that

~yρ = D ~Φ(~x) ~xρ ⇒ |~yρ| = g
1
2 (~x) ~xρ = |~xρ|g . (B.3)

Hence it follows from (2.11) that

∂sy = |~yρ|−1 ∂ρ = |~xρ|−1
g ∂ρ = ∂sg , (B.4)

and so the unit tangent to the curve ~y(I) is given by

~τM = ~ysy = D ~Φ(~x) ~xsg = D ~Φ(~x)~τg , (B.5)

on recalling (2.12). Similarly, we define the normal ~νM as the unit normal to ~y(I) that is
perpendicular to ~τM and that lies in the tangent space to M, i.e.

~νM = (~xsg . ~e1 ∂~e2 ~Φ(~x)− ~xsg . ~e2 ∂~e1 ~Φ(~x)) = D ~Φ(~x) [−~x⊥sg ] = D ~Φ(~x)~νg , (B.6)

where we have recalled (2.12). Note that (B.6), in the case d = 3, agrees with the
definition of ~νM in Barrett et al. (2010, p. 10). We further note from (B.5) that ~ysysy is
perpendicular to ~τM, and hence

~ysysy = κM ~νM + ~κF , (B.7)

where ~κF is normal to M, and where κM denotes the geodesic curvature of ~y(I).

Clearly, it follows from (B.3) that the length of ~y(I) is given by

LM(~y) =

∫
I

|~yρ| dρ =

∫
I

|~xρ|g dρ = Lg(~x) . (B.8)

We compute, on noting (B.8), (B.4), (B.7), (B.6), (B.2), (2.13) and (2.12), that

d

dt
LM(~y) =

∫
I

~yρ
|~yρ|

. (~yρ)t dρ = −
∫
I

(
~yρ
|~yρ|

)
ρ

. ~yt dρ = −
∫
I

~ysysy . ~yt |~yρ| dρ

= −
∫
I

κM ~νM . ~yt |~yρ| dρ = −
∫
I

κMD ~Φ(~x)~νg . D ~Φ(~x) ~xt |~xρ|g dρ
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= −
∫
I

κM g(~x)~νg . ~xt |~xρ|g dρ = −
∫
I

κM Vg |~xρ|g dρ . (B.9)

It follows from (B.9), (2.15) and (B.8) that

κg = κM . (B.10)

In addition we have from (B.6), (B.2), (2.12) and (2.13) that

VM = ~yt . ~νM = D ~Φ(~x) ~xt . D ~Φ(~x)~νg = Vg . (B.11)

Hence the flow (2.22) for ~x(I) in H is equivalent to the flow

VM = κM (B.12)

for ~y(I) onM, which is the so-called geodesic curvature flow, see also Barrett et al. (2010,
(2.19)) for the case d = 3.

Similarly, it follows from (B.11), (B.10) and (B.4) that the flow (2.36) for ~x(I) in H
is equivalent to the the geodesic curve diffusion flow

VM = −(κM)sgsg , (B.13)

see also Barrett et al. (2010, (2.20)) for the case d = 3. Finally, in order to relate (2.55)
for d = 3 to geodesic elastic flow, i.e. the L2–gradient flow of

1
2

∫
I

κ2
M |~yρ| dρ = 1

2

∫
I

κ2
g |~xρ|g dρ = Wg(~x) , (B.14)

recall (B.10), (B.3) and (2.44), we note from from Barrett et al. (2010, (2.32)) that
geodesic elastic flow for ~y(I) on M is given by

VM = −(κM)sysy − 1
2
κ3
M −K(~y)κM , (B.15)

where K(~z) denotes the Gaussian curvature of M at ~z ∈ M. It follows from (B.11),
(B.10), (B.4) and (2.72) that (B.15) and (2.55) are equivalent.
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