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Abstract: We study the numerical realisation of optimal consensus control laws for agent-
based models. For a nonlinear multi-agent system of Cucker-Smale type, consensus control is
cast as a dynamic optimisation problem for which we derive first-order necessary optimality
conditions. In the case of a smooth penalisation of the control energy, the optimality system is
numerically approximated via a gradient-descent method. For sparsity promoting, non-smooth
�1-norm control penalisations, the optimal controllers are realised by means of heuristic methods.
For an increasing number of agents, we discuss the approximation of the consensus control
problem by following a mean-field modelling approach.
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1. INTRODUCTION

This paper addresses centralised control problems for
second-order, nonlinear, multi-agent systems (MAS). In
such dynamics, the state of each agent is characterised
by a pair (xi, vi), representing variables which we refer
to as position and velocity, respectively. The uncontrolled
system consists of simple binary interaction rules between
the agents, such as attraction, repulsion, and alignment
forces. This commonly leads to self-organisation phenom-
ena, flocking or formation arrays. However, this behaviour
strongly depends on the cohesion of the initial configura-
tion of the system, and therefore control design is rele-
vant in order to generate an external intervention able to
steer the dynamics towards a desired configuration. For
second-order MAS, it is of particular interest the study
of consensus emergence and control. In this context, we
understand consensus as a travelling formation in which
every agent has the same velocity. Self-organised consen-
sus emergence for the Cucker-Smale model, see Cucker
and Smale (2007), has been already characterised in Ha
and Liu (2009); Carrillo et al. (2010a). The problem of
consensus control for Cucker-Smale type models has been
discussed in Caponigro et al. (2013); Bongini et al. (2015).
A related problem is the design of controllers achieving a
given formation, which has been previously addressed in
Perea et al. (2009); Borz̀ı and Wongkaew (2015).

Contributions. In this work we focus on the design of
centralised control laws enforcing consensus emergence.
For this, we cast the consensus control problem in the
framework of optimal control theory, for which an ad-hoc
computational methodology is presented. We consider a
finite horizon control problem, in which the deviation of

the population with respect to consensus is penalised along
a quadratic control term. We derive first-order optimality
conditions, which are then numerically realised via the
Barzilai-Borwein (BB) gradient descent method. While
the use of gradient methods is a standard tool for the
numerical approximation of optimal control laws, see Borz̀ı
and Schulz (2011), the use of the BB method for large-scale
agent-based models is relatively recent, Deroo et al. (2012),
and we report on its use as a reliable method for optimal
consensus control problems (OCCP) in nonlinear MAS.
While the control performance is satisfactory, our setting
allows the controller to act differently on every agent at
every instant. The question of a more parsimonious control
design remains open. As an extension of the proposed
methodology, we address the finite horizon OCCP with a
non-smooth, sparsity-promoting control penalisation. This
control synthesis is sparse, acting on a few agents over a
finite time frame, however its numerical realisation is far
more demanding due to the lack of smoothness in the cost
functional. To circumvent this difficulty, we propose a nu-
merical realisation of the control synthesis via metaheuris-
tics related to particle swarm optimisation (PSO), and
to nonlinear model predictive control (NMPC). Finally,
based on the works Carrillo et al. (2010a,b); Fornasier
and Solombrino (2014); Bongini et al. (2017); Albi et al.
(2017a, 2016); Albi and Kalise (2018), we discuss the re-
sulting mean-field optimal control problem: that obtained
as the number of agents N tends to ∞ and the micro-
state (xi(t), vi(t)) of the population is replaced by an agent
density function f(t, x, v).

Structure of the paper. In Section 2 we revisit the Cucker-
Smale model and results on consensus emergence and
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control. In Section 3 we address the OCCP via first-
order necessary optimality conditions and its numerical
realisation. Section 4 introduces the sparse OCCP and
its approximation. Concluding, in Section 5 we present
a mean-field modelling approach for OCCP when the
number of agents is sufficiently large.

2. THE CUCKER-SMALE MODEL AND CONSENSUS
EMERGENCE

We consider a set of N agents with state (xi(t), vi(t)) ∈
Rd × Rd, where d is the dimension of the physical space,
interacting under second-order Cucker-Smale dynamics

dxi

dt
= vi ,

dvi
dt

=
1

N

N∑
j=1

a(‖xi − xj‖)(vj − vi) (2.1)

x(0) = x0 , v(0) = v0 , (2.2)

where a(r) is a communication kernel of the type

a(r) =
K

(1 + r2)β
, β ≥ 0 ,K > 0 , (2.3)

and we use the notation x(t) = (x1(t), . . . , xN (t))t, v(t) =
(v1(t), . . . , vN (t))t ∈ RdN . Both ‖ · ‖ and ‖ · ‖2 are
indistinctly used for the �2-norm, while ‖ · ‖1 stands for
the �1-norm. We will focus on the study of consensus
emergence, i.e. the convergence towards a configuration
in which

vi = v̄ =
1

N

N∑
j=1

vj ∀i. (2.4)

Note that although the interaction kernel a(r) decays as
the distance between agents increasing, the interconnec-
tion topology remains unchanged, i.e., all the agents inter-
action with all the agents in the swarm at all times. For
a system of the type (2.1)-(2.2), a consensus configuration
will remain as such without any external intervention, and
positions will evolve in planar formation. The emergence
of consensus as a self-organisation phenomenon, either by
a sufficiently cohesive initial configuration (x0,v0) or a
strong interaction a(r), is a problem of interest in its own
right. To study consensus emergence, it is useful to define
the form B : RdN × RdN → R

B(w,v) =
1

2N2

N∑
i,j=1

‖wi − vj‖2 .

Note that for a population in consensus, B(v,v) ≡ 0.
A solution (x(t),v(t)) to (2.1)-(2.2) tends to a consensus
configuration if and only if

V (t) := B(v(t),v(t)) → 0 as t → +∞.

Analogously, we define X(t) := B(x(t),x(t)). We briefly
recall some well-known results on self-organised consensus
emergence.

Theorem 1. Unconditional consensus emergence (Cucker
and Smale (2007); Carrillo et al. (2010b)). Given an
interaction kernel a(r) = K

(1+r2)β
with K > 0 and 0 ≤

β ≤ 1
2 , the Cucker-Smale dynamics (2.1)-(2.2) convergence

asymptotically to consensus, i.e. V (0) ≤ e−λtV (t), for
λ > 0.

Theorem 2. Conditional consensus emergence (Ha and Liu
(2009); Ha et al. (2010)). For a(r) = K

(1+r2)β
with K > 0

and 1
2 ≤ β, if

√
V (0) <

+∞∫

√
X(0)

a(2
√
Ns) ds ,

then the Cucker-Smale dynamics (2.1)-(2.2) convergence
asymptotically to consensus.

In this work we are concerned with inducing consensus
through the synthesis of an external forcing term u(t) =
(u1(t), . . . , uN (t))t in the form

dxi

dt
= vi , (2.5)

dvi
dt

=
1

N

N∑
j=1

a(‖xi − xj‖)(vj − vi) + ui(t) , (2.6)

xi(0) = x0 , vi(0) = v0 , i = 1, . . . , N , (2.7)

where the control signals ui ∈ U = {u : R+ −→ U} and U
a compact subset of Rd.

3. THE OPTIMAL CONTROL PROBLEM AND
FIRST-ORDER NECESSARY CONDITIONS

In this section we entertain the problem of obtaining
a centralised forcing term u(t) which will either induce
consensus on an initial configuration (x0,v0) that would
otherwise diverge, or which accelerates the rate of conver-
gence for initial data that would naturally self-organise.
Formally, for T > 0 and given a set of admissible control
signals UN : R+

0 → [L∞(0, T ;Rd)]N for the entire popula-
tion, we seek a solution to the minimisation problem

min
u(·)∈UN

J (u(·);x0,v0) :=

∫ T

0

�(v(t),u(t)) dt , (3.8)

with the running cost defined as

�(v,u) :=
1

N

N∑
j=1

(
‖v̄ − vj‖2 + γ ‖uj‖2

)
, (3.9)

with γ > 0, subject to the dynamics (2.5)-(2.7).

3.1 First-order optimality conditions

While existence of a minimiser u∗ of (3.8) follows from
the smoothness and convexity properties of the system
dynamics and the cost, the Pontryagin Minimum Principle
Pontryagin et al. (1962) yields first-order necessary condi-
tions for the optimal control. Let (pi(t), qi(t)) ∈ Rd×Rd be
adjoint variables associated to (xi, vi), then the optimality
system consists of a solution (x∗,v∗,u∗,p∗,q∗) satisfying
(2.5)-(2.7) along with the adjoint equations

−dpi
dt

=
1

N

N∑
j=1

a′ (‖xj − xi‖)
‖xj − xi‖

〈qj − qi, vj − vi〉 (xj − xi) ,

(3.10)

−dqi
dt

= pi +
1

N

N∑
j=1

a (‖xj − xi‖) (qj − qi)−
2

N
(v̄ − vi) ,

(3.11)

pi(T ) = 0 , qi(T ) = 0 , i = 1, . . . , N , (3.12)
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and the optimality condition

u(t) = argmin
w∈RdN

N∑
j=1

(〈
qj ,

dvj
dt

〉
+

γ

N
‖wj‖2

)
= −N

2γ
qt .

(3.13)

3.2 A gradient-based realisation of the optimality system

The adjoint system (3.10)-(3.13) is used to implement a
gradient descent method for the numerical realisation of
the optimal control law. It can be readily verified that the
gradient of the cost J in (3.8) is given by

∇J (u) = qt +
2γ

N
u , (3.14)

obtained by differentiating (3.13) with respect to u. With
this expression for ∇J , the gradient iteration is presented
in Algorithm 1.

Algorithm 1 Gradient descent method with BB update.

Require: tol > 0, kmax, u
0, u−1.

k = 0;
while

∥∥∇J
(
uk

)∥∥ > tol and k < kmax do

1) Obtain (xk,vk) from (2.5)-(2.7) with uk;
2) Obtain (pk,qk) from (3.10)-(3.12) with (xk,vk);
3) Evaluate the gradient ∇J

(
uk

)
as in (3.14);

4) Compute the step

αk :=

〈
uk − uk−1,∇J

(
uk

)
−∇J

(
uk−1

)〉

‖∇J (uk)−∇J (uk−1)‖2
; (3.15)

5) Update uk+1 = uk − αk∇J
(
uk

)
;

6) k := k + 1;
end while

In Algorithm 1, the gradient is first obtained by integrating
the forward-backward optimality system, and then the
step αk in 4) is chosen as in the Barzilai-Borwein method,
see Barzilai and Borwein (1988).

3.3 Numerical experiments

Figure 3.1 shows a comparison of the free two-dimensional
dynamics of a sample initial condition (x0,v0) and the
system under an approximation to the optimal control
u∗ found with this algorithm. A Runge-Kutta 4th order
scheme was used to integrate the differential equations for
the state and the adjoint with end time T = 10, time step
dt = 0.1 (resulting on NT = 51 points for the time discreti-
sation), and a stopping tolerance for the gradient norm of
10−3. The condition (x0,v0) is chosen such that consensus
would not be reached naturally; long-time numerics of the
free system show that V (t) converges to an asymptotic
value around V̄ = 0.4. In the controlled setting, consensus
is reached rapidly as can be seen from the trajectories
themselves, as well as from the fast convergence of the
functional V (t) to zero. Furthermore, the norm of the
control also decreases in time as the system is steered
towards and into the self-organisation region.

4. THE SPARSE CONSENSUS CONTROL AND ITS
APPROXIMATION VIA HEURISTICS

In this section, we address the problem of enforcing spar-
sity on the optimal consensus strategy. As shown in Albi

Fig. 3.1. Free vs. controlled (shown in red) dynamics. Top:
trajectories. Middle: functional V (t). Bottom: norm
of the optimal control u∗

i (t) for each agent.

et al. (2017b); Bongini and Fornasier (2014); Caponigro
et al. (2013); Kalise et al. (2017), one way to do it is by
using as control cost the �1-norm ‖·‖1 in the minimisation
problem (3.8), instead of the standard squared �2-norm
‖ · ‖22. However, the choice of the non-differentiable control
cost ‖ · ‖1 gives rise to a non-smooth cost functional
J , for which gradient-based numerical solvers like the
one presented in Section 3.2 are not directly suitable.
To circumvent the non-smoothness of J , we shall resort
to a metaheuristic procedure known as particle swarm
optimisation (PSO).

4.1 Particle Swarm optimisation

First introduced in Kennedy and Eberhart (1995); Shi
and Eberhart (1998), PSO is a numerical procedure that
solves a minimisation problem by iteratively trying to
improve a candidate solution. PSO solves the problem by
generating a population of points in the discrete control
state space of solutions UN = Rd×N×NT called particles.
Each particle is treated as a point in this D = d×N×NT -
dimensional space with coordinates (zi1, . . . , ziD), and the
cost functional is evaluated at each of these points. The
best previous position (i.e., the one for which the cost
functional is minimal) of any particle (mi1, . . . ,miD) is
recorded, together with the index h of the best particle
among all the particles. We let then the particles evolve
according to the system

zij := zij + wij ,

wij := wij + c1ξ(mij − zij) + c2η(mhj − zij),

where c1, c2 > 0 are two constant parameters and ξ, η
are two random variables with support in [0, 1]. PSO is
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a metaheuristic since it makes few or no assumptions
about the problem being optimised and can search very
large spaces of candidate solutions: in particular, PSO
does not use the gradient of the problem being optimised,
which means PSO does not require that the optimisation
problem be differentiable. However, it yields to a decrease
of the cost function. Notice that whenever the dimension
of the control space D is very large (that is, either d, N
or NT are large), the problem suffers from the curse of
dimensionality, as the evaluation of J at all the particles
and the subsequent search for the best position becomes
prohibitively expensive. To mitigate this difficulty, we
shall optimise within a nonlinear model predictive control
(NMPC) loop with short prediction horizon.

4.2 Nonlinear Model Predictive Control

For a prediction horizon of H steps, for k = 1, . . . , NT −H
and a discrete time version of the dynamics (2.1)-(2.2), we
minimise the following performance index

H∑
h=0

1

N

N∑
j=1

(
‖vk+h − vk+h

j ‖22 + γ‖uk+h
j ‖rr

)
, (4.16)

for some �r-norm with r ≥ 1, generating a sequence of
controls (uk,uk+1, . . . ,uk+H) from which only the first
term uk is taken to evolve the dynamics from k to k + 1.
The system’ state is sampled again and the calculations
are repeated starting from the new current state, yielding
a new control and a new predicted state path. Although
this approach is suboptimal with respect to the full time
frame optimisation presented in Section 3, in practice it
produces very satisfactory results.

ForH = 1, the NMPC approach recovers an instantaneous
controller, whereas for H = NT − 1 it solves the full time
frame problem (3.8). Such flexibility is complemented with
a robust behaviour, as the optimisation is re-initialised
every time step, allowing to address perturbations along
the optimal trajectory. For further references, see Mayne
et al. (2000).

4.3 Numerical experiments

We now report the results of the numerical simulations of
(3.8) with ‖ · ‖1 and ‖ · ‖22 together with the setup PSO-
NMPC described above. The aim is to check whether the
optimal control obtained with the �1-control cost is sparser
than the one obtained with the �2-norm. To do so, we
shall compare their norms at each time, since a sparse
control will be equal to 0 most of the time. Starting from
an initial configuration (x0,v0) that does not converge
to consensus, we compare the effect of a different NMPC
horizon H ∈ {3, 10} and of a different �r-control cost for
r ∈ {1, 2} in (4.16) on the optimal control strategy.

We test the PSO-NMPC procedure with H = 3 periods
ahead instead of the full time frame. Figure 4.2 shows the
controlled dynamics of the agents with the optimal control
obtained for r = 1 (top) and r = 2 (bottom). Both controls
decisively improve the alignment behaviour with respect to
the uncontrolled dynamics. Figure 4.3 shows the behaviour
of the V functional: for both controlled dynamics, the
velocity spread V (t) goes steadily to 0. To see how sparse
the controls are, for each control strategy in Figure 4.4 we

show the corresponding heat map, i.e., the matrix H such
thatHik contains the norm of the control acting on the i-th
agent at step k. The stronger the control, the brighter the
entry shall be: we can notice that the heat map for r = 1
is sparser than the one for r = 2, being concentrated on
few bright spots. This corroborates the findings of Bongini
and Fornasier (2014); Caponigro et al. (2013), where the
sparsifying powers of an �1-control cost were shown.

Fig. 4.2. Controlled dynamics for H = 3. Top: agents’
dynamics for r = 1. Bottom: agents’ dynamics for
r = 2.

Fig. 4.3. Functional V (t) for H = 3. Blue: uncontrolled
dynamics. Red: �1-cost. Yellow: �2-cost.

Fig. 4.4. Heat map of control strategies for H = 3, control
action in time for each agent. Top: the case of r = 1.
Bottom: the case of r = 2.
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5. THE CONTINUOUS CONTROL PROBLEM

We consider the continuous control problem that results in
the limit of the discrete problem from Section 3 asN → ∞.
Formally, the forced Cucker-Smale dynamics (2.5)-(2.7)
can be written as a Vlasov-type transport equation

∂f

∂t
+ (v · ∇x) f +∇v · [(A(x, v) ∗ f + u(t, x, v)) f ] = 0,

(5.17)
where A(x, v) = a(|x|)v and f, u : [0, T ] × R2 × R2 → R
are the probability density for the state and a forcing term,
respectively. An equivalent minimisation problem can be
posed:

min
u∈U

J (u; f0) :=

∫ T

0

�(f, u) dt , (5.18)

for fixed T > 0 and a running cost �(f, u) given by the
expression:

∫

R2d

∥∥∥∥v −
∫

R2d

w df(y, w)

∥∥∥∥
2

+ γ ‖u(t, x, v)‖2 df(x, v).

(5.19)

The solutions of the discrete control problem (3.8) con-
verge to that of the continuous problem (5.17), as dis-
cussed in Fornasier and Solombrino (2014). This can be
verified numerically by fixing an initial distribution f0 and
studying the sequence solutions of the discrete problem
with initial conditions sampled from said distribution; a
subsequence is known to converge as N → ∞. Besides the
solution, the optimal value of the objective functional J ∗

N
is also expected to converge, which can be verified. Initial
conditions without natural consensus were constructed by
sampling x from a superposition of two Gaussian distri-
butions and letting x = v. The marginal distributions of
f0 on x and in v are shown in Figure 5.5. A sequence of
such discrete problems were solved for several values of
N . Figure 5.6 shows the comparison between the free and
controlled trajectories for various values of N . The Runge-
Kutta scheme was used to solve the differential equations
for the state and the adjoint with end time T = 5, time
step dt = 0.1 (resulting on 51 points for the time discreti-
sation), and a stopping tolerance of 10−2. Figure 5.7 shows
the evolution of the optimal cost J ∗

N , which appears to be
of order J ∗

N ∼ O(1) as expected for the convergence as
N → ∞. Figure 5.8 shows the marginal distribution of
f(T ) on v for the free and forced settings with the same
scale; the controlled case yields a singular distribution
indicating consensus. Figure 5.9 shows a heat map of the
optimal control u∗

i (t). We observed that the average norm
of the control is of ∼ O(1) as N → ∞; furthermore the
time at which the control is nearly zero is roughly constant
for large N . Table 5.1 shows the evolution of the number
of optimisation iterations (i.e. loops on Algorithm 1) as
well as the computation CPU time in hours; notice that
the number of iterations remains roughly constant, while
the computation time scales quadratically in N .
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Fig. 5.5. Marginal distribution of f0 on x and v.

Fig. 5.6. Free vs. optimally controlled (shown in red)
dynamics. Top: N = 50. Middle: N = 400. Bottom:
N = 2000.

Fig. 5.7. Evolution of J ∗ with N ∈ {50, 100, · · · , 2000}.
REFERENCES

Albi, G., Choi, Y.P., Fornasier, M., and Kalise, D. (2017a).
Mean-field control hierarchy. Appl. Math. Optim., 76(1),
93–175.

Albi, G., Bongini, M., Cristiani, E., and Kalise, D. (2016).
Invisible control of self-organizing agents leaving un-
known environments. SIAM J. Appl. Math., 76(3),
1683–1710.

Albi, G., Fornasier, M., and Kalise, D. (2017b). A Boltz-
mann approach to mean-field sparse feedback control.
IFAC-PapersOnLine, 50(1), 2898 – 2903.

2018 IFAC MICNON
Guadalajara, Mexico, June 20-22, 2018

5



 Rafael Bailo  et al. / IFAC PapersOnLine 51-13 (2018) 1–6 5

5. THE CONTINUOUS CONTROL PROBLEM

We consider the continuous control problem that results in
the limit of the discrete problem from Section 3 asN → ∞.
Formally, the forced Cucker-Smale dynamics (2.5)-(2.7)
can be written as a Vlasov-type transport equation

∂f

∂t
+ (v · ∇x) f +∇v · [(A(x, v) ∗ f + u(t, x, v)) f ] = 0,

(5.17)
where A(x, v) = a(|x|)v and f, u : [0, T ] × R2 × R2 → R
are the probability density for the state and a forcing term,
respectively. An equivalent minimisation problem can be
posed:

min
u∈U

J (u; f0) :=

∫ T

0

�(f, u) dt , (5.18)

for fixed T > 0 and a running cost �(f, u) given by the
expression:

∫

R2d

∥∥∥∥v −
∫

R2d

w df(y, w)

∥∥∥∥
2

+ γ ‖u(t, x, v)‖2 df(x, v).

(5.19)

The solutions of the discrete control problem (3.8) con-
verge to that of the continuous problem (5.17), as dis-
cussed in Fornasier and Solombrino (2014). This can be
verified numerically by fixing an initial distribution f0 and
studying the sequence solutions of the discrete problem
with initial conditions sampled from said distribution; a
subsequence is known to converge as N → ∞. Besides the
solution, the optimal value of the objective functional J ∗

N
is also expected to converge, which can be verified. Initial
conditions without natural consensus were constructed by
sampling x from a superposition of two Gaussian distri-
butions and letting x = v. The marginal distributions of
f0 on x and in v are shown in Figure 5.5. A sequence of
such discrete problems were solved for several values of
N . Figure 5.6 shows the comparison between the free and
controlled trajectories for various values of N . The Runge-
Kutta scheme was used to solve the differential equations
for the state and the adjoint with end time T = 5, time
step dt = 0.1 (resulting on 51 points for the time discreti-
sation), and a stopping tolerance of 10−2. Figure 5.7 shows
the evolution of the optimal cost J ∗

N , which appears to be
of order J ∗

N ∼ O(1) as expected for the convergence as
N → ∞. Figure 5.8 shows the marginal distribution of
f(T ) on v for the free and forced settings with the same
scale; the controlled case yields a singular distribution
indicating consensus. Figure 5.9 shows a heat map of the
optimal control u∗

i (t). We observed that the average norm
of the control is of ∼ O(1) as N → ∞; furthermore the
time at which the control is nearly zero is roughly constant
for large N . Table 5.1 shows the evolution of the number
of optimisation iterations (i.e. loops on Algorithm 1) as
well as the computation CPU time in hours; notice that
the number of iterations remains roughly constant, while
the computation time scales quadratically in N .

6. ACKNOWLEDGEMENTS

JAC was partially supported by the EPSRC grant
EP/P031587/1.

Fig. 5.5. Marginal distribution of f0 on x and v.

Fig. 5.6. Free vs. optimally controlled (shown in red)
dynamics. Top: N = 50. Middle: N = 400. Bottom:
N = 2000.

Fig. 5.7. Evolution of J ∗ with N ∈ {50, 100, · · · , 2000}.
REFERENCES

Albi, G., Choi, Y.P., Fornasier, M., and Kalise, D. (2017a).
Mean-field control hierarchy. Appl. Math. Optim., 76(1),
93–175.

Albi, G., Bongini, M., Cristiani, E., and Kalise, D. (2016).
Invisible control of self-organizing agents leaving un-
known environments. SIAM J. Appl. Math., 76(3),
1683–1710.

Albi, G., Fornasier, M., and Kalise, D. (2017b). A Boltz-
mann approach to mean-field sparse feedback control.
IFAC-PapersOnLine, 50(1), 2898 – 2903.

2018 IFAC MICNON
Guadalajara, Mexico, June 20-22, 2018

5



6 Rafael Bailo  et al. / IFAC PapersOnLine 51-13 (2018) 1–6

Fig. 5.8. Marginal distributions of f(T ) on v, N = 2000.
Top: free setting. Bottom: controlled setting. Con-
sensus emergence produces a concentration of the
distribution around a single velocity close to (0, 2).

Fig. 5.9. Heat map of ‖u∗
i (t)‖ with N = 2000.

Agents (N) 50 100 150 200 250 300
Iterations (I) 26 25 24 27 28 28
Time (T) 0.1 0.1 0.3 0.7 1.1 1.4

N 1550 1600 1650 1700 1750 1800
I 28 28 28 28 28 28
T 49.1 51.7 52.8 58.8 59.8 65.0

N 1850 1900 1950 2000
I 27 29 28 28
T 65.4 75.3 77.4 82.8

Table 5.1. Number of iterations (I) and CPU
time (T ) in hours for N agents for the discrete

optimisation problem.
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