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Abstract—Hardware accelerators are attractive targets for
running scientific simulations due to their power efficiency. Since,
large software simulations can take person years to develop,
it is often impractical to use hardware acceleration, which
requires significantly more development effort and expertise than
software development. We present the design and implementation
of a proof-of-concept compiler toolchain which enables rapid
prototyping of hardware finite difference solvers for partial dif-
ferential equations, generated from a high-level domain specific
language. Multiple fields, grid staggering and non-linear terms
are supported. We demonstrate that our approach is practical
by generating and evaluating hardware designs derived from the
heat and simplified shallow water equations.

I. INTRODUCTION

Large-scale scientific simulations are intensive both in terms
of computation and in power consumption. Reconfigurable
architectures are a promising target to run such simulations
due to their high power efficiency. However, these architectures
have not been widely adopted.

A major obstacle to using reconfigurable hardware for
scientific simulation is the high complexity of developing
hardware designs which can take an order of magnitude longer
time than the corresponding software design [1]. Additionally, a
developer requires both a significant understanding of hardware
design and of the underlying mathematics of the simulation
they are implementing. If scientists wish to make alterations to
the model, these changes again require hardware expertise and
will most likely take longer than the corresponding changes
in a software implementation. Without sophisticated tools,
hardware acceleration will never be practical for many scientific
simulations.

In the software domain, great success in solving similar
issues has been achieved though the use of domain-specific
languages (DSLs). Using a DSL description, scientists can
define and alter scientific models in a notation familiar to them.
Meanwhile, compiler experts can develop a toolchain that
generates optimised code for these equations, without needing
to understand the subtleties of the underlying mathematics.

In this work, we present an initial attempt to bring this
methodology to finite difference solvers implemented in
reconfigurable hardware. We present the design, approach and
implementation of a compiler that given partial differential

equations (PDEs) specified using a DSL, generates a hardware
design for a finite difference solver.

We make the following contributions:
• A novel approach compiling tensor algebra through multi-

level DSLs to reconfigurable hardware designs;
• A prototype tool implementing the proposed approach

based on Haskell and targeting Maxeler platforms;
• Evaluation of the approach based on designs for a

simplified version of the shallow water equations and the
heat equation, illustrating the DSLs and the performance
and power consumption of the resulting designs.

II. BACKGROUND

The Unified Form Language (UFL), adopted by the FEniCS
project [2], is used to specify finite element variational forms
and provides the input to a compiler that manipulates high-level
mathematical expressions and generates optimised C output.
The DSL is embedded in Python and provides abstractions
at the level of tensor algebra. Calculations of basis functions
and quadrature tabulation are performed inside the compiler
automatically.

There has been significant research into the use of DSLs
for improving FPGA design productivity [3], ranging from
those that expose a general compute model to those that target
specific applications such as packet filtering, image and signal
processing. For example, the Delite [4] compiler framework
has been used to transform functional descriptions to hardware
designs via pattern matching. Our work primarily targets
optimisations that require finite difference domain specific
knowledge while addressing hardware synthesis, whereas Delite
targets more general optimisations.

Schmitt et al. have explored using DSLs to generate
multi-grid solvers for FPGAs [5]. The DSLs appear to be
primarily used to encode Multigrid solver algorithms rather
than specification of high-level equations themselves.

Maxeler’s MaxGenFD library [6] targets high-performance
stencil implementations for finite difference problems. It does
not attempt to generate stencils from high-level descriptions,
does not support non-linear terms, and boundary conditions
support is specific to seismic problems. We are not aware of
any work that attempts to target finite difference hardware
designs from a high-level description.
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Fig. 1. The conceptual design flow we target and the specific implementation
we present.

Although not a focus of this paper, extensive research exists
on the optimisation of stencil operations on FPGAs which is
relevant to the future development of our hardware design back
end [7], [8], [9].

III. APPROACH

Our approach consists of two levels of DSLs. A top-level
DSL designed to permit expressions of finite difference solvers
in a notation familiar to scientists (TARA-1) and a lower-level
internal DSL intended to target streaming architectures (TARA-
2). Both our conceptual and implementation design flow are
shown in Figure 1. Ideally, the user of our compiler toolchain
does not need to be aware of TARA-2, and all compilers in
the workflow are invoked automatically by the build system.
In practice, enabling access to TARA-2 and other lower-level
representations may enable optimisations not yet implemented
automatically to be performed manually, depending on user
expertise. In addition, having the TARA-1 compiler output its
internal representations during execution has proven useful for
verifying the correctness of its rewrites.

The TARA-1 DSL

The specification language for our top-level DSL is inspired
by the Unified Form Language [2] (UFL) developed for the
FEniCS project for specifying finite-element discretisations of
PDEs. For a consistent syntax, it resembles Python, but has
no imperative features.

We show a simple example of the TARA-1 DSL for the heat
equation in Figure 2.

The types that can be declared are as follows:

# Constants
h = NamedLiteral(name="h", value=0.014)
dt = NamedLiteral(name="dt", value=0.1)
alpha = NamedLiteral(name="alpha", value=1e-4)
n = NamedLiteral(name="n", value=253)

# Field and update
u = Field(name="heat", rank=0)
heat_eq = Equation(Dt(u), alpha * div(grad(u)))

# Boundary conditions and solve
source = BoundaryCondition(u, 1,
subdomains=["top", "bottom", "left"])

sink = BoundaryCondition(u, 0,
subdomains=["right"])

step = Solve(name="step", spatial_order=1,
temporal_order=1, equations=[heat_eq],
boundary_conditions=[source, sink], delta_t=dt)

# Mesh
m = Mesh(name="HeatSolver", dim=2, fields=[u],
solves=[step], spacing=[h,h], dimensions=[n, n])

Fig. 2. The heat equation specified in the TARA-1 DSL. A heat source is
placed at the top, left and bottom edges and the right edge acts as a sink.

Field Fields are tensor-valued quantities that vary over a
mesh. Although their rank (scalar, vector etc.) is defined,
dimension is not. The components of a field can be
staggered in each mesh direction which is required by
some numerical methods to achieve stability (Figure 5).

BoundaryCondition These enable Dirichlet or Neumann
boundary conditions to be specified for subsets of the
mesh’s edge domain.

MeshConstant These are tensor-valued quantities that do not
vary over a mesh, but may be changed between mesh
updates. These can be used to specify quantities that may
vary across runs.

NamedLiteral These are scalar-valued quantities that will
never change. Although constants can be declared directly,
using a NamedLiteral allows their identity to be preserved
throughout the code generation pipeline.

Equation These specify how to calculate the temporal deriva-
tive for a given field. Constants and other fields can be
referenced, and derivatives applied to fields.

Solve Solves contain equations to update at least one field on
a mesh. Solves specify the accuracy with which fields and
their spatial derivatives must be evaluated, the temporal
accuracy of field updates and any boundary conditions to
be applied.

Mesh Meshes are discretisations of physical space on which
fields are defined. Meshes possess a list of fields and
the associated solves for those fields. Meshes specify the
problem dimension rather than fields, enabling equations
to be written dimension agnostically. Grid-point spacing
and mesh size are also specified which are important for
leveraging optimisations when these values are known
constants.

In the TARA-1 DSL, we facilitate the expression of field
updates using vector calculus, providing operators such as
grad (∇) and div (∇·). This makes specifications both more



concise and less error-prone since vector calculus operators may
expand to relatively complex scalar expressions. Additionally,
vector calculus operators have physical interpretations which
are obscured when flattened to scalar derivatives.

Transforming to a streaming architecture

We now describe the mechanism by which our DSL can be
transformed to a streaming architecture design.

Tensor Algebra Flattening: In this step, a scalar expression
is derived for each element of the tensor expression forming
the right hand side of a field update.

• Field and constant references are expanded to tensors of
references to their scalar elements.

• Tensor algebra operators such as grad and div are
expanded to tensors of derivative operators then applied
to their operands.

• The rank of the resulting expression is checked against
the left-hand side of the field updates.

After this step, a symbolic expression has been computed
for each scalar element of the temporal derivative of each
field. In all expressions, spatial derivatives are applied to scalar
valued-expressions.

Discretising spatial derivatives: In this step, spatial deriva-
tives are transformed into discretised expressions referring to
the mesh on which the equations are being solved. This involves
the transformation of the symbolic expressions constructed in
the previous step:

1) For each scalar expression, derivatives are pushed to
the bottom of the tree of each expression. This is done
through application of the sum, product and quotient rules.
Since only fields can have non-zero spatial derivatives,
all derivative operations end up applied to either fields
or derivatives of fields.

2) Expressions representing zero or more spatial derivatives
applied to an element of a field are rewritten to a new type
of terminal which incorporates the number of derivatives
taken in each dimension.

3) Based on the order of spatial accuracy and degree
of derivative required in each dimension, Lagrange
polynomials are constructed over symbolic field grid-
point values. These are then symbolically differentiated
and partially evaluated at a location dependent on grid-
staggering.

4) The terminals constructed in step 2 are replaced by the
stencil expressions derived in step 3.

We draw attention to two important aspects. Firstly, grid-
staggering [10]. This is a technique used to avoid discretisation
errors in velocity-pressure simulations. Typically, values for
a scalar quantity will be stored in the centre of a grid but
velocity components will be defined on cell faces. As any
tensor component of a field may be staggered in multiple
dimensions, a vector field in d dimensions has 2d
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possible
staggerings (512 for a 3D vector field).

The stencil generated for a field reference depends not just on
the order of spatial accuracy required, but the relative staggering

between the field being referenced and the field being updated
on the left-hand side of an expression. For example, given
a height field h, and a velocity field whose components are
u and v, calculating the value of v could require different
stencils depending on whether it is being referenced from
an expression updating v, h or itself. For this reason, it is
important to maintain abstractions above the stencil level to
adequately support finite difference techniques.

Secondly, we note that it is sometimes assumed that stencil-
type updates are merely a weighted combination of surrounding
points. While this supports linear operators, more complex
equations contain non-linear terms, requiring more general
expression support; the convective acceleration term of Navier-
Stokes is an example of this.

Deriving time-stepping: We target explicit finite difference.
We automatically derive Adams-Bashforth co-efficients for
temporal accuracy of a specified order by symbolically integrat-
ing the Lagrange polynomial constructed over the previously
computed temporal derivatives of a field.

Boundary conditions: TARA-1 provides a way to associate
Dirichlet or Neumann boundary conditions to edge domains.
Currently, the only edge domains supported are the edges of the
mesh itself. General support of boundary conditions typically
requires solving a linear system to determine how values should
be assigned to ghost points, or determining the coefficients
of alternative stencils that are used for updates in proximity
of a boundary condition. Higher-order boundary conditions
are especially problematic from a performance perspective
since they may require significant resources (if implemented
in hardware) but are used infrequently.

Due to the complexity and potential impact of such design
choices, we have chosen to first implement boundary conditions
for low-order problems, which we know can be generated
efficiently. Dirichlet and Neumann boundary conditions are
translated to a set of directives that specify a subset of a mesh
row or column to apply an operation to which consists of a
simple update to a constant value or offset adjacent value. This
approach is temporary, with the longer-term aim to symbolically
derive appropriate expressions for boundary conditions and
incorporate them directly into the update stencil.

Design synthesis from the TARA-2 DSL

We treat the step of converting the discretised model into
a hardware design as a distinct step. We have created an
independent tool for this process that can be used outside
of the overall tool-chain. The input for this tool chain is a
second DSL (TARA-2) designed to be restrictive enough to
encourage inputs conducive to creating performant hardware
but permissive enough to support most inputs for 2D stencil
finite difference calculations.

We assume the existence of a single 2D regular grid. We
then require a description of the state that must be preserved
across time steps. This state consists only of a list of scalars
that are defined at each point on the grid. While the input
to the tool-chain may have described a mesh where some
variables are spatially staggered or are non-scalar quantities,



this design forces all the fields to be aligned to a single grid
and transformed to scalars for the purpose of computation.

As the single grid now contains all of the data, the process of
creating a hardware design is simplified – the design can step
through the single grid, updating all the fields simultaneously.

Next, we require a description of how each field is updated.
This is done by specifying a scalar expression used to update
each point in the field (the stencil update), with all updates
treated as happening in parallel. These statements ignore
boundary conditions as these are handled separately. Fields may
be referenced in the assignment, but when used they represent
the value that the field has at the point being updated before
the current update occurred. Values of fields at other locations
in the grid can be accessed through use of the Offset operator.
This takes the field and a relative position, and returns the
value of the field at the location relative to the current point.
The Current operator returns the value of its argument would
take if computed after the update has finished, facilitating
some expression reuse across variable updates. In this way, we
support arbitrary stencil-like operations including those that
involve multiple fields and non-linear terms.

We permit alternative update expressions to be used for the
initial model updates, and an expression which can be used
to initialise each cell variable. This is required for spin-up
when using higher-order time stepping schemes, as previous
derivatives have not yet been computed. Since the initial value
generation and update steps require negligible compute, these
are performed on the CPU.

Finally, we require a mechanism for applying boundary
conditions. Boundary conditions at the higher level are trans-
lated to a set of update operations that can be implemented
efficiently in hardware. Each operation is described by which
grid-points it applies to and what action occurs at that location.
The location is described as either a single row or column in
the grid, and a start and end index within that group. Boundary
conditions are applied after the stencil update step is complete.
The operation may simply replace the value with a constant,
or use an offset operation applied to a neighbouring point
value to calculate a new value. Though this approach works
for low-order boundary conditions, a different approach may
be necessary for higher-order scenarios.

Using the description above, we can generate a hardware
design. From the way the DSL is constructed, it becomes
simple to devise a kernel that streams in the fields in grid
order, and then streams out the fields after a single update.
These kernels can be chained together such that n kernels
produce the state after n updates.

We can therefore produce a template hardware design for
models described by this DSL. This includes the kernel, host
communication, and host code. The information included in the
DSL can then be incorporated into this template to generate the
working hardware design. The final step is to run the hardware
design through the standard hardware and software compilation
tools to generate an executable file.

TARA-2 is still general enough to permit code generation for
multiple architectures (C is also implemented) and also provides

a level at which optimisations may be implemented that could
not be applied further along the toolchain. Finite difference
stencil expressions are amenable to common-subexpression
elimination (CSE) optimisations that target properties of
polynomials and would not be applied by default in either
software compilers or hardware synthesis tools. Maintaining
coefficients as rationals also enables more effective CSE than is
possible after conversion to floating point representations [11].
At this step, it would be possible to extract expensive operations
from field expressions (e.g. trigonometric functions) and convert
them to constant field expressions. Such an optimisation is
beyond the scope of a high-level synthesis tool, especially
if the expressions must be evaluated on the host at run-time
before hardware execution.

IV. IMPLEMENTATION

We have implemented the approach described in Section III
in a prototype compiler written in Haskell. For parsing TARA-1
we use the Parsec parser combinator library. For manipulation
of symbolic expressions we use our own representation
with sum and product representations based on maps from
expressions to coefficients or powers, respectively. This was
inspired by GiNaC [12].

Our top-level compiler is capable of generating expressions
involving tensor fields of arbitrary rank and dimension, and
calculates discretised expressions for approximating derivatives
and explicit time-stepping for arbitrary orders of accuracy.

Throughout our symbolic manipulation, we retain coefficients
as rational values wherever possible. Previous work [11]
has shown that this has two benefits: firstly, we do not
incur any form of floating point rounding errors during our
expression manipulation; secondly, maintaining the exact values
of coefficients facilitates more effective CSE which is beneficial
for reducing hardware resource requirements. Currently our
TARA-2 compiler does not directly support rationals or common
sub-expression elimination, but could be modified to do so in
future.

Our main limitations currently surround the treatment of
boundary conditions. As mentioned in Section III, we limit
ourselves to lower order boundary conditions that can be
translated to a set of directives that are efficiently implementable
by the TARA-2 compiler.

Our TARA-2 compiler takes an input designed to be ef-
ficiently compilable to streaming architectures. FPGAs are
targeted via the Maxeler hardware synthesis toolchain and con-
ventional CPUs via C. Due to our description’s specificity, we
expect that we could generate efficient GPU implementations
via OpenCL or CUDA, and hardware implementations via
other high-level synthesis tools (e.g. Vivado HLS) in future.

The TARA-2 DSL is intended to support scientific sim-
ulations, but is much more low-level than TARA-1. It is
implemented as an embedded subset of Haskell. For the heat
equation example in Figure 2, we provide an example of the
TARA-2 DSL in Figure 3. The main properties include:



heat = CellVariable "heat"
heat_dt0 = CellVariable "heat_dt0"

model = do
setWidth (253 + 3)
setHeight (253 + 3)
addUpdate "heat" (heat + Current heat_dt0 * 0.1)
addUpdate "heat_dt0" (25.0 / 49.0 *

(heat * (-4.0) + Offset heat (-1) 0 +
Offset heat 0 (-1) + Offset heat 0 1 +
Offset heat 1 0))

setBC "heat" Vertical 1 1 254 (SetValue 1.0)
setBC "heat" Horizontal 254 1 254 (SetValue 1.0)
setBC "heat" Horizontal 1 1 254 (SetValue 1.0)
setBC "heat" Vertical 254 1 254 (SetValue 0.0)

Fig. 3. Excluding boilerplate, the TARA-2 DSL showing declarations and
updates for the heat equation.

No tensor support Scalar-valued fields are defined through
the definition of CellVariables. Tensor-valued fields must
be flatted to their scalar components, simplifying indexing.

Static allocation All values associated with a cell including
any derivatives that need storage must be given a name,
making it trivial to synthesize appropriate data structures.
These are declared with the CellVariable keyword. The
setWidth and setHeight keywords define the mesh size.
Currently these must be constant which enables simplifi-
cations of indexing in hardware.

General stencil syntax Updates are specified for variables
using the addUpdate keyword to declare how each scalar
element of a field will be calculated. Such expressions
can use both mesh offsets and references to other vari-
ables. These expressions are constructed using the Offset
keyword.

No time-stepping There is no concept of time-stepping at this
level so the bookkeeping to manage access to the last
n derivatives of a field by a time-stepping scheme must
be handled by declaring appropriate CellVariables. The
distinction between values calculated during the previous
or current iteration is maintained however, to facilitate
reuse of common sub-expressions between field updates.
The Current keyword can be used to access expressions
for CellVariables at the current iteration.

No discretisation Aspects of temporal and spatial discretisa-
tion such as time-step size and grid-point interval must
be handled by incorporating these values where necessary
in the expressions supplied to the DSL. Staggered fields
are handled by generating the appropriate expressions.

Boundary conditions Boundary conditions are mapped to a
fixed set of primitives that can be synthesised efficiently
on the FPGA. The setBC keyword specifies that a range
of the entries of a particular row or column should be
overwritten with a specified expression. SetValue defines
a constant whereas NegateValueAwayFromZero negates
the adjacent value in the away-from-zero direction. Other
directives exist, but we do not expand upon them. We
intend to switch to the current update syntax for them in
future.

-- Similarly for u_0 (x) and u_1 (y) fields
h = CellVariable "h"
h_dt0 = CellVariable "h_dt0"
h_dt1 = CellVariable "h_dt1"

model = do
setWidth (128 + 3)
setHeight (128 + 3)
-- Directives for h and u_1 omitted
addUpdate "u_0" (u_0 +
u_0_dt0 * (-40.0) / 3.0 +
u_0_dt1 * 25.0 / 6.0 +
Current u_0_dt0 * 115.0 / 6.0)

addInitialUpdate "u_0" 2 (u_0 +
Current u_0_dt0 * 10.0)

addUpdate "u_0_dt0" (h * 7.6640625e-5 +
Offset h 1 0 * (-7.6640625e-5) + u_0 *
(u_0 + (-Offset u_0 (-1) 0)) * (-7.8125e-6) +
Offset u_1 0 (-1) * (u_0 +
(-Offset u_0 0 (-1))) * (-7.8125e-6))

addUpdate "u_0_dt1" u_0_dt0
setBC "u_0" Vertical 0 1 129 NegateValueAwayFromZero
setBC "u_0" Vertical 129 1 129 NegateValueTowardsZero
setBC "u_0" Horizontal 129 0 129 (SetValue 0.0)
setBC "u_0" Horizontal 1 0 129 (SetValue 0.0)

Fig. 4. A redacted form of the TARA-2 DSL showing height-field declarations
and updates for the shallow water equations. Updates and declarations for the
velocity field have been omitted.

The output of the TARA-2 compiler includes both an input
program to the Maxeler high level synthesis toolchain (which
is then compiled to a hardware design), and host code which
allows a CPU to interface with an FPGA and use the synthesised
bitstream. C output is also supported which is used for our
CPU benchmarks.

V. EVALUATION

To evaluate our compiler, we compile and execute an FPGA
design for two different PDEs. First, the heat equation:

∂u

∂t
= α∇2u (1)

A representation of this equation in the TARA-1 DSL is
shown in Figure 2 and the TARA-2 DSL is shown in Figure 3.
Boundary conditions are applied so that the left, top and bottom
edges of the mesh are a heat source and the right edge is a
sink. We run all experiments on a mesh of 253 × 253 cells,
and employ first-order accurate spatial discretisation and time-
stepping. Euler timestepping requires calculation but not storage
of the temporal derivative, so for our benchmarks, we manually
modify Figure 3 to inline the heat dt0 value directly into
the update expression. This optimisation can easily be done
automatically, but is done manually due to the way our TARA-1
compiler currently outputs time-stepping expressions.

Our second PDE is a simplified version of the shallow
water equations (SSWE). Specifically, we neglect the kinematic
viscosity term, but note that the equation remains non-linear.



# Definitions (g, H and dt omitted)
u = Field(name="v", rank=1,

spatial_staggering="dimension")
h = Field(name="h", rank=0)
nu = NamedLiteral(name="nu", value=0.0)
hx = NamedLiteral(name="hx", value=128000.0)
nx = NamedLiteral(name="nx", value=128)

V_Eq = Equation(Dt(u), nu * div(grad(u))
-dot(u, grad(u)) - g * grad(h))

H_Eq = Equation(Dt(h), -div((h + H) * u))
V_BC = BoundaryCondition(u, [0, 0])
H_BC = BoundaryCondition(Dn(h), 0)

TimeStep = Solve(name="step", spatial_order=1,
temporal_order=3, equations=[V_Eq, H_Eq],
boundary_conditions=[V_BC, H_BC], delta_t=dt)

sigmax = pow(pos[0] - (nx * hx) / 2.0, 2) /
pow(3.0 * nx * hx / 20.0, 2)

sigmay = pow(pos[1] - (nx * hx) / 2.0, 2) /
pow(3.0 * nx * hx / 20.0, 2)

m = Mesh(name="shallow_water", dim=2, fields=[u, h],
solves=[TimeStep], spacing=[hx, hx],
dimensions=[nx, nx],
initial=[("h", 100 * exp(-sigmax - sigmay))])

Fig. 5. A TARA-1 DSL description showing declarations and updates for a
simplification (ν = 0) of the shallow water equations. A no-slip boundary
condition is applied to the velocity at the edge of the domain. The normal
derivative of the height field is set to 0 at the edges. A function is specified
that is used to initialise the height field so that it has a central peak.

∂h

∂t
= −∇ · ((H + h)v) (2)

∂v

∂t
= −g∇h− u · ∇u (3)

We show the TARA-1 DSL representation of the simplified
shallow water equations in Figure 5. We use a grid-size of
128 × 128 cells, with first-order accurate spatial discretisa-
tion and third-order accurate temporal discretisation (Adams-
Bashforth). The horizontal and vertical velocity components
are staggered in their respective directions, giving an Arakawa
C-grid scheme [10].

We compile our DSL descriptions to hardware designs and
execute on actual hardware. Details of hardware resource utili-
sation are shown in Table I. We also show performance results
of both our hardware builds and software implementations
generated from our TARA-2 DSL descriptions in Table II.

We show field renderings from the heat conduction and
simplified shallow water executions in Figures 6 and 7,
respectively.

All performance tests are run on a Maxeler MaxStation
containing a Maxeler Max3 DFE (data-flow engine) with a
Xilinx Virtex-6 SX475T FPGA (40 nm), a quad-core Intel Core
i7-870 processor (45 nm), and 16 GiB of DDR3-1600 RAM.
Static power requirements are measured at 95.6 W. Static and
dynamic power measurements are taken using an ammeter
placed in the path of the host machine’s power supply. When
compiling FPGA bitstreams we use MaxCompiler 2015.2.

(a) t = 10 s (b) t = 100 s

Fig. 6. Renderings of the heat field generated by executing a hardware design
for our heat solver generated from a DSL description. The top, left and bottom
boundaries act as a heat source and the right boundary as a sink.

(a) t = 0 s (b) t = 2× 106 s

(c) t = 4× 106 s (d) t = 6× 106 s

Fig. 7. Renderings of the height field generated by executing a hardware design
for our simplified shallow water solver generated from a DSL description. The
initial conditions define a curved peak of water in the centre of the region
which reflects off the edges of the domain.

We attempt to build designs with different numbers of kernels
at 150 MHz and choose the largest design that successfully
compiles. We then build that design with a range of clock rates
(multiples of 10 MHz) to determine the highest achievable
clock rate. In a fully automated process, these values could be
chosen using exponential search. During place and route we
build up to 9 cost tables for each design, and try a lower clock
rate if timing is not passed. For SSWE we build with both
the maximum number of kernels that fit on the device, and
with 1 fewer kernel. For heat conduction we build the largest
number of kernels that fit and is a multiple of 5, and with 5
fewer kernels. We use a smaller number of kernels since a



Design LUTs DSPs BRAM Number of Kernels Clock Frequency
(MHz)

SSWE (FPGA, 11 mantissa, 8 exponent) 203422 (68.4%) 1008 (50.0%) 567 (26.6%) 14 200
SSWE (FPGA, 24 mantissa, 8 exponent) 183947 (61.8%) 1840 (91.3%) 567 (26.6%) 10 190

Heat (FPGA, 11 mantissa, 8 exponent) 210309 (70.7%) 360 (17.9%) 444 (20.9%) 90 190
Heat (FPGA, 24 mantissa, 8 exponent) 202177 (67.9%) 1200 (59.5%) 299 (18.7%) 75 150

TABLE I
HARDWARE RESOURCE UTILISATION OF OUR HEAT AND SIMPLIFIED SHALLOW WATER SOLVERS. EACH DESIGN IS PIPELINED SUCH THAT MULTIPLE

SUCCESSIVE TIMESTEPS ARE EVALUATED SIMULTANEOUSLY WITH EACH KERNEL HANDLING A SINGLE TIMESTEP UPDATE.

Design Time / cell up-
date (µs)

Time improve-
ment

Dynamic
Power (W)

Energy / cell
update (nJ)

Energy
improvement

GFLOP/s

SSWE (FPGA, 11 mantissa, 8 exponent) 6.15 6.634x 93.74 0.576 22.7x 200.8
SSWE (FPGA, 24 mantissa, 8 exponent) 11.1 3.675x 100.1 1.111 11.8x 111.3

SSWE (CPU, single precision, single-core) 326 0.125x 40.26 13.12 1x 3.790
SSWE (CPU, single precision, ideal 8-core) 40.8 1x N/A N/A N/A 30.32

Heat (FPGA, 11 mantissa, 8 exponent) 3.86 4.171x 89.3 0.344 14.7x 118.8
Heat (FPGA, 24 mantissa, 8 exponent) 5.86 2.747x 85.3 0.500 10.1x 78.29

Heat (CPU, single precision, single-core) 129 0.125x 39.32 5.07 1x 3.556
Heat (CPU, single precision, ideal 8-core) 16.1 1x N/A N/A N/A 28.45

TABLE II
PERFORMANCE AND ENERGY UTILISATION RESULTS FOR THE HEAT AND SIMPLIFIED SHALLOW WATER SOLVERS RUNNING ON THE CPU IN SINGLE

PRECISION, AND ON FPGA HARDWARE IN SINGLE AND REDUCED PRECISION. RESULTS WERE COLLECTED OVER AT LEAST A MINUTE OF WALL-CLOCK
TIME.

design with fewer kernels can achieve higher performance if
it achieves a higher clock rate. Each kernel corresponds to a
single timestep update so the number of kernels in a design
indicates the number of timesteps being processed in parallel
in the pipeline.

We make use of the FPGA’s flexibility to support non-
standard precision by building designs with 11 mantissa
bits which maintains numerical stability over extended runs
(several simulated days). We use single precision and also build
hardware at single precision to allow for a direct comparison.
Mesh data is stored off-chip in DRAM located on the Maxeler
board and therefore are not limited to the available BRAM
on the FPGA. Mesh sizes may be arbitrary (so long as the
mesh data is large enough to fill the pipeline and fit in DRAM).
Since mesh data is written to/from DRAM, simulation does not
require any significant communication with the host. Designs
are built so that they continuously send mesh data to the host
system, which is used to produce the renderings in Figures 6
and 7.

Our CPU implementation is single-threaded and generated
from the TARA-2 description. The structure of the code is
consistent with finite difference implementations using hand-
written stencil updates but higher performance would likely
be achieved if a stencil compiler such as Pochoir [13] could
be leveraged. Code is compiled using version 12.1.4 of the
Intel C compiler with the ‘-Ofast -no-prec-div -ipo’
flags. For time comparisons we show artificial speed results
for an 8-core implementation where each core achieves the
same performance as the single-core implementation (perfect
scaling).

Updating a single cell in the simplified shallow water
equations (SSWE) model requires 72 floating-point operations

(36 multiplications, 28 additions and 8 subtractions). We
find that the 131 × 131 simplified shallow water hardware
implementation is able to update 2790 million cells per second
(200.8 GFLOP/s), whereas the single-core CPU is able to
update 52 million cells per second (3.79 GFLOP/s).

For the heat model we use a grid with 256×256 grid points.
There are 7 FLOPs per cell update (2 multiplications and 5
additions). The hardware implementation is able to update
16978 million cells per second (118.8 GFLOP/s) whereas the
single-core CPU is able to update 508 million cells per second
(3.556 GFLOP/s)

For SSWE, the FPGA requires 97.4 W of dynamic power,
hence 0.576 nJ per cell update, whereas the single-core CPU
requires 40.26 W of dynamic power, hence 13.12 nJ per cell
update. For the heat model the FPGA requires 89.3 W of
dynamic power (0.344 nJ per cell update), whereas the single
core CPU requires 39.32 W of dynamic power (5.07 nJ per
cell update).

VI. DISCUSSION AND INSIGHTS

The design of existing software DSLs for code generation of
PDEs inspires the design of our own top-level DSL. However,
through the construction of our compilation toolchain, we have
gained knowledge of hardware-specific concerns affected by
the implementation of our DSLs.

Since the evaluation of stencils is the most computationally
intensive part of finite difference schemes, these are typically
targeted for code generation. In software, boundary conditions
are more likely to be handled by hand-written code. However,
requiring a scientist to edit lower-level representations defeats
the purpose of our DSL. In addition, we have chosen to
synthesise hardware for boundary conditions rather than
handling them via communication with the host system. Doing



so would potentially limit the performance of designs depending
on the latency of communication, particularly in cases where
the iteration rate is valued over mesh size. Requiring a
scientist to edit a hardware description of a boundary condition
implementation is particularly undesirable. Hence we find that a
high-level specification of boundary conditions is an important
requirement for our DSL.

The TARA-1 DSL specifically allows specification of mesh
size and grid-spacing. These can be chosen to either be constant
or runtime-specified values. Choosing constant values for grid
spacing allows us to specialise kernels and reduce hardware
requirements. Specifying a constant grid size simplifies the
hardware required to perform indexing operations and allows
determining the exact memory required for grid buffering,
again enabling a reduction in logic. Specialising these values
in software has little benefit and so are typically handled as
variables. We have deliberately designed our DSL to incorporate
the specification of mesh properties which would typically not
be included in a finite difference stencil description. Enabling
flexibility in specification of these and other values makes it
possible for the user to choose between run-time flexibility
or exploiting hardware-specific optimisations, depending on
requirements.

VII. CONCLUSION

We have described the design principles and implementation
of a toolchain that can take a high-level specification of a finite
difference problem and synthesize a hardware design for a
solver.

This approach reduces the time taken to modify the key
aspects of a finite difference hardware solver such as equation
terms, spatial and temporal order of accuracy, field staggering
and boundary conditions, to a matter of seconds, with no
hardware-specific knowledge required. Without this approach,
it would typically this would require someone with both knowl-
edge of hardware synthesis and the underlying mathematics
to make these changes in hours or days. Our proof-of-concept
toolchain demonstrates that it is practical to rapidly iterate on
such designs, significantly increasing productivity.

We have presented examples of the TARA-1 and TARA-2
DSLs for heat conduction and for simplified shallow water test-
cases, along with the rationale behind their design. Through a
multi-level compiler toolchain, we generate hardware designs
and show hardware utilisation metrics, performance and power
consumption. Pipelining enables high compute intensity to be
achieved on computations that are typically memory-bound,
demonstrating that our approach is also practical from a
performance perspective.

Through development of the toolchain, we gain much
understanding of the requirements of these DSLs when used to
target hardware designs, in particular the need for flexibility in
aspects that allow hardware designs to be specialised and the
need to fully encompass certain problem characteristics such
as mesh spacing and time-stepping scheme inside our DSL.

Future work includes support for three-dimensional problems,
generation of boundary conditions for higher-order approxi-

mations, applying our approach to larger scale models and
developing debugging support for synthesized hardware [14].
With FPGA hardware now available in the cloud, multi-FPGA
implementations are of particular interest.
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