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Abstract—In this paper, we aim to maximize the end-to-
end achievable rate of multiple-input multiple-output (MIMO)
decode-and-forward (DF) where the relay is an energy harvest-
ing (EH) node using the time switching (TS) scheme. The relay
first harvests the energy from the source, then uses its harvested
energy to forward the information carrying signal from the
source to the destination. The EH model at the relay is a
nonlinear model. Also, we assume that the channel knowledge is
imperfect at the relay and destination. We propose the structure
of the optimal covariance matrices at the source (during EH and
information decoding periods), the optimal covariance matrix at
the relay and the optimal EH time ratio. Through the simulation
results, we compare between different linear/nonlinear EH
models and we show the gain/loss performance of the linear
model compared to other nonlinear EH models.

Index Terms—Multiple-input multiple-output (MIMO),
decode-and-forward (DF), radio frequency energy harvesting
(EH), time switching (TS), nonlinear EH model, imperfect
channel state information (CSI).

I. Introduction

Energy harvesting (EH) from the environment is a promis-

ing technique to make wireless communication systems self-

sustainable and perpetual operable. Radio frequency (RF)

signals are an emerging technique to harvest energy. The

first experiences involving electromagnetic power transfer,

or wireless power transfer (WPT), dates back to 1901 when

Tesla tried to build the large high-voltage wireless power

station, the Wardenclyffe tower that was never successful.

Nowadays, WPT is getting more interest to investigate the

simultaneous use of RF signals for WPT and wireless in-

formation transfer (WIT), namely the simultaneous wireless

information and power transfer (SWIPT).

SWIPT has been widely studied in single-input single-

output (SISO) systems [1], [2], in multiple-input multiple-

output (MIMO) systems [3], in MIMO relay systems [4]–[7],

etc. [1] and [2] are the pioneering papers that have studied

the SWIPT in SISO system through flat fading and frequency

selective channels, respectively. The tradeoff region between

the information rate and energy harvested, namely the R-E

tradeoff region, for the co-located information decoding (ID)

and EH receivers were investigated. Later on, [3] extended

the work done in [1] and [2] to study MIMO system and

considered more practical co-located receivers which are the

power splitting (PS) and time switching (TS) schemes. The

PS and TS schemes separate the WPT and WIT tasks over

the time domain and the power domain, respectively. The

R-E tradeoff regions for the separated receivers and the co-

located PS and TS practical receivers were studied for the

MIMO system. In [4], a two-hop amplify-and-forward (AF)

relay system was investigated where a separate multi-antenna

EH receiver is present to harvest the energy from the source

and relay data transmission using the orthogonal space-

time block codes (STBC). The rate-energy tradeoff region

was characterized when the channel state information (CSI)

is perfectly available and the tradeoff between the outage

probability and energy were characterized when only second

order statistics of CSI is available. In [5], a two-hop SISO

orthogonal frequency division multiplexing (OFDM) decode-

and-forward (DF) relay system was investigated where the

relay harvests the energy from the source using the PS

scheme. The resource allocation was studied to maximize

the total achievable transmission rate. In [6], a two-hop full-

duplex relay system was investigated where the relay is an

EH node equipped with two antennas and using the TS

scheme. Both AF and DF relaying protocols were studied,

and analytical characterization of the achievable throughput

was analyzed. In [7], the throughput maximization problem

was considered in MIMO DF relay system with an EH relay

and possibly imperfect CSI for the ideal scheme, and the

practical TS and PS schemes.

However, most research works assume the linearity con-

dition between the direct current and the stored energy. In

other terms, the harvested energy is linearly dependent on

the received power and the knowledge of the conversion

efficiency is enough to model the EH concept. However,

in practice, the EH concept is not linear, and the linearity

assumption was always taken to simplify the analysis. Only

recently, few works have proposed some nonlinear EH

models either heuristic or mathematical models. In [8], a new

practical nonlinear EH model was proposed and its relevance

was verified through the comparison with some experimental

data results. In [9], a heuristic practical nonlinear EH model

was considered in studying the power allocation algorithm

of MIMO Systems. In [10], a rate-energy tradeoff region

of SWIPT was studied for MIMO system considering the

nonlinear EH model studied in [8]. The separated EH and ID

receivers and the co-located EH and ID receivers, namely the

PS and TS schemes, were investigated. In [11], a minimiza-

tion transmit power was considered where a multi-antenna

hybrid access point (HAP) is transmitting data and energy to

heterogeneous users where the energy receivers are using the



PS scheme and considering a nonlinear EH model. In [12],

the performance analysis of a time-slotted wireless powered

communication (WPC) system was studied using a nonlinear

model.

In line with this research works, we propose to maximize

the end-to-end achievable rate of MIMO DF relay system

where a general nonlinear EH model is assumed at the

relay and imperfect CSI is assumed at the relay and the

destination. The objective of this work is to check if there is

a performance gain/loss in terms of the end-to-end achievable

rate when we assume a nonlinear EH model.

II. SystemModel

We consider a MIMO DF relay system with a source S ,

a relay R and a destination D. All the nodes have multiple

antennas. The number of antennas at S , R and D are Ns, Nr

and Nd, respectively. The channel between S and R and the

channel between R and D are denoted by H ∈ CNr×Ns and

G ∈ CNd×Nr , respectively, and are assumed to be quasi-static

block-fading channels. We consider the half-duplex mode at

the relay. The relay is an EH node that harvests the energy

from the source and uses the harvested energy to forward

the source signal to the destination. The relay is equipped

with EH and ID receivers.

A. Time Switching (TS) Scheme

The relay uses the TS scheme to harvest energy. The TS

receiver separates the EH and ID modes over two orthogonal

time slots. Let α denote the time ratio allocated to the EH

mode, with 0 ≤ α ≤ 1. Each of the transmissions from source

to relay and from relay to destination occurs over a period of

duration 1−α
2

. Let R
TS
s,1 and R

TS
s,2 be the covariance matrices

at the source during the ID and EH periods, respectively.

Let R
TS
r be the covariance matrix at the relay. We assume

that the source has an average transmit power constraint Ps ,

i.e., tr
(

R
TS
s,i

)

≤ Ps, for i = 1, 2, where tr(·) denotes the trace

operator and E [·] is the mean operator.

B. Nonlinear Energy Harvesting at R

Usually, research works on SWIPT assume a linear

EH model. Recently, few works consider more practical

nonlinear EH models. In this work, we consider a general

nonlinear EH model to which apply many proposed practical

models in the literature. First, if Ps is the transmit power at

the source and R
TS
s,2 is the source covariance matrix during

the EH period, the received power at the EH receiver is given

by

Prec

(

Rs,2

)

= tr
(

HRs,2H
H
)

. (1)

The harvested energy at the relay is given by

Qr

(

α, Rs,2

)

= αΨ
(

tr
(

HRs,2H
H
))

, (2)

where Ψ (·) is the EH model either linear or not and has

different modeling

Ψ (x) =



























ζx, if EH model is linear,
β(x)−MΩ

1−Ω
, if EH model is nonlinear 1,

ξ (x) x, if EH model is nonlinear 2,

(3)

with x ≥ 0 is the received power, where ζ ∈ [0, 1] is

a constant referring to conversion efficiency in the linear

model, β (x) = M
1+e−a(x−b) , Ω =

1
1+eab , M is the maximum

harvested energy, a and b are experimental parameters which

reflect the nonlinear charging rate with respect to the input

power and the minimum required turn-on voltage for the

start of current flow through the diode [8], respectively,

ξ(x) =
p2 x2+p1 x+p0

q3 x3+q2 x2+q1 x+q0
is a heuristic model for the conversion

efficiency proposed in [13].

Since it is an EH model, Ψ (x) should obey to a couple of

properties in accordance to the law of energy conservation:

• Ψ (x) ≥ 0.

• Ψ (x) ≤ x.

C. Imperfect Channel State Information at R and D

We assume that we have imperfect knowledge of the

channel H at the relay and imperfect knowledge of the

channel G at the destination.

H = Ĥ + E1 + U1, (4)

G = Ĝ + E2 + U2, (5)

where Ĥ and Ĝ are the estimated channels of H and

G, E1 and E2 are the error matrices associated to the

feedback/forward delay errors, and U1 and U2 are the error

matrices associated to the channel estimation errors, respec-

tively. Ei and Ui, i = 1, 2, are Gaussian random matrices with

zero mean and variances equal to σ2
Ei

and σ2
Ui

, respectively.

Let us denote by σ2
i
= σ2

Ei
+σ2

Ui
. The error matrices E1 and

U1 and the error matrices E2 and U2 are uncorrelated with

H and G, respectively. We assume that E1 is known at the

relay and E2 is known at the destination.

In this case, the received power at the relay becomes

equal to

Prec

(

Rs,2

)

= P̂rec

(

Rs,2

)

+ C1, (6)

where P̂rec

(

Rs,2

)

= tr

(

ĤRs,2Ĥ
H
)

and C1 = rHσ
2
1
Ps, where

rH is the rank of H.

Subsequently, the harvested energy and the transmit

power at the relay are given by

Qr

(

α, Rs,2

)

= αΨ

(

tr

(

ĤRs,2Ĥ
H
)

+C1

)

, (7)

Pr

(

α, Rs,2

)

=
2α

1 − α
Ψ

(

tr

(

ĤRs,2Ĥ
H
)

+C1

)

. (8)

Moreover, the expressions of the rates of the two hops

are written as

RS−R

(

Rs,1

)

=
1

2
log2

∣

∣

∣

∣

∣

∣

I +
1

χ1

ĤRs,1Ĥ
H

∣

∣

∣

∣

∣

∣

, (9)

RR−D (Rr) =
1

2
log2

∣

∣

∣

∣

∣

∣

I +
1

χ2

(

α, Rs,2

) ĜRrĜ
H

∣

∣

∣

∣

∣

∣

, (10)

where χ1 = σ
2
1
Ps + σ

2
r , and χ2

(

α, Rs,2

)

= σ2
2
Pr

(

α, Rs,2

)

+

σ2
d
, where σ2

r and σ2
d

are the noise variances at R and D,

respectively.



The overall end-to-end rate for DF relaying protocol is

given by

R
(

α, Rs,1, Rr

)

= (1 − α) min

(

RS−R

(

Rs,1

)

,RR−D (Rr)

)

. (11)

III. RateMaximization Problem in TSR Protocol

We aim to optimize the covariance matrices at the source

and the relay in a way to maximize the end-to-end achievable

rate. The optimization problem can be expressed as

max
α,Rs,1 ,Rs,2,Rr

R
(

α, Rs,1, Rr

)

, (12a)

s.t. tr
(

Rs,1

)

≤ Ps, (12b)

tr
(

Rs,2

)

≤ Ps, (12c)

tr (Rr) ≤
2α

1 − α
Ψ

(

tr

(

ĤRs,2Ĥ
H
)

+ C1

)

, (12d)

Rs,1 � 0, Rs,2 � 0, Rr � 0, 0 ≤ α ≤ 1, (12e)

where (12b) and (12c) are the source transmit constraints

during the ID mode and EH mode, respectively, (12d) is

the transmit power constraint at the relay which is equal to

the harvested energy from the source over the use duration.

The rate maximization problem (12) is non-convex due to

the objective function and the constraint (12d). The channel

estimation errors in the R-D rate makes the objective function

a non-concave function.

A. New Optimization Variables

In order to solve this problem, we first decouple the

dependence of the R-D rate on Rs,2 and Rr, by using other

optimization variables which are

R̃s,1 =
1

χ1

Rs,1, (13)

R̃r =
1

σ2
2

2α
1−α
Ψ

(

tr

(

ĤRs,2Ĥ
H
)

+C1

)

+ σ2
d

Rr. (14)

We denote by Φ (·, ·) the function defined as:

Φ (α, x) =

2α
1−α
Ψ (x +C1)

σ2
2

2α
1−α
Ψ (x +C1) + σ2

d

. (15)

Using these new optimization variables, the optimization

problem becomes

max
α,R̃s,1 ,Rs,2,R̃r

1 − α

2
min

(

log2

∣

∣

∣

∣

∣

∣

I + ĤR̃s,1Ĥ
H

∣

∣

∣

∣

∣

∣

,

log2

∣

∣

∣

∣

∣

∣

I + ĜR̃rĜ
H

∣

∣

∣

∣

∣

∣

)

, (16a)

s.t. tr
(

R̃s,1

)

≤
Ps

χ1

, (16b)

tr
(

Rs,2

)

≤ Ps, (16c)

tr
(

R̃r

)

≤ Φ

(

α, tr

(

ĤRs,2Ĥ
H
))

, (16d)

R̃s,1 � 0, Rs,2 � 0, R̃r � 0, 0 ≤ α ≤ 1. (16e)

This step solves the non-convexity problem of the objective

function. But, still we cannot solve this problem due to the

right-hand side of the constraint (16d). Next, in order to solve

the obtained problem, we first fix α ∈ (0, 1) and we solve for

a given α. Then, the optimal α can be obtained using any

one-dimensional search method such as the greedy search or

the bisection method. Note that it is clear why the optimal

α cannot be zero or one. Because, in both cases, the overall

rate will be zero. Next, we solve for a given α ∈ (0, 1).

B. Properties of Φ

In what follows, we present the following lemma regard-

ing the function Φ:

Lemma 1: Φ (α, x) is a monotonically increasing function

with respect to x, if Ψ (x) does so, and is a monotonically

increasing function with respect to α.

Proof: The proof can be easily obtained by just deriving

the expression of Φ (α, x). The derivative of Φ (α, x) with

respect to x can be expressed as

δΦ (α, x)

δx
=

2α
1−α
σ2

d

δΨ (x+C1)

δx
(

σ2
2

2α
1−α
Ψ (x +C1) + σ2

d

)2
. (17)

So, Φ (α, x) is a monotonically increasing function with

respect to x, if Ψ (x) does also. Moreover, the derivative of

Φ (α, x) with respect to α is expressed as

δΦ (α, x)

δα
=

2Ψ (x +C1)σ2
d

(1 − α)2
(

σ2
2

2α
1−α
Ψ (x +C1) + σ2

d

)2
> 0. (18)

So, Φ (α, x) is a monotonically increasing function with

respect to α.

This result is important as it will allow us to simplify our

optimization problem.

Remark 1: Note that the function Ψ (·) as defined in (3) is

a monotonically increasing function. If another EH model is

considered, Lemma 1 holds as long as the new function Ψ (·)

is a monotonically increasing function. Also, the condition

in Lemma 1 makes sense in the way that the more the power

is received, the more the energy is harvested. Next, we solve

the optimization problem (16) for a given α ∈ (0, 1).

C. Optimal Source Covariance Matrix During EH Mode Rs,2

At this point, we can see that the source covariance

matrix Rs,2 during the EH mode is only present in the

constraints (16c), (16d), and (16e).

Lemma 2: The optimal source covariance matrix Rs,2

during the EH mode is the one that maximizes the right hand

side of the constraint (16d), which is the harvested energy at

the relay during the EH period, as long as (16c) is satisfied.

Proof: We can show this observation by contradiction.

If the triplet R̃
∗

s,1, R
∗
s,2, and R̃

∗

r are the optimal solution to our

optimization problem (16) such that Φ

(

α, tr

(

ĤR
∗
s,2Ĥ

H
))

<

max
Rs,2 s.t. tr(Rs,2)≤Ps

Φ

(

α, tr

(

ĤRs,2Ĥ
H
))

. So, there exists another

source covariance matrix R̂s,2 s.t. Φ

(

α, tr

(

ĤR̂s,2Ĥ
H
))

>

Φ

(

α, tr

(

ĤR
∗
s,2Ĥ

H
))

. Thus, the overall rate of the triplet R̃
∗

s,1,

R̂s,2, and R̃
∗

r will be greater than the overall rate of the

optimal solution, which is in contradiction.



So, it is clear that in order to maximize the overall end-to-end

rate, the optimal Rs,2 is the one that maximizes right hand

side of the constraint (16d), which is the harvested energy

at the relay during the EH period.

Subsequently, the optimal source covariance matrix Rs,2 is

given in the following corollary

Corollary 1: Using Lemma 2, the optimal source covari-

ance matrix Rs,2 is written as

R
∗
s,2 = Ps vĤ,1 v

H

Ĥ,1
, (19)

where vĤ,1 is the eigenvector corresponding to the maximum

eigenvalue λĤ,1 of Ĥ
H

Ĥ.

Proof: Using Lemma 2, the optimal source covariance

matrix Rs,2 is solution to

max
Rs,2

Φ

(

α, tr

(

ĤRs,2Ĥ
H
))

, (20a)

s.t. tr
(

Rs,2

)

≤ Ps, (20b)

Rs,2 � 0. (20c)

Subsequently, as was shown in Lemma 2 in [10], the solution

of the energy harvested maximization problem is equivalent

to the received power maximization problem as long as the

function Φ (α, ·) is a monotonically increasing with respect

to x. So, the optimal source covariance matrix Rs,2 is also

solution to

max
Rs,2

tr

(

ĤRs,2Ĥ
H
)

, (21a)

s.t. tr
(

Rs,2

)

≤ Ps, (21b)

Rs,2 � 0. (21c)

The obtained equivalent problem is well-investigated in

SWIPT research works and its solution is ranked one and

is given by (19).

Using Corollary 1, the received power, the harvested energy,

and Φ

(

α, tr

(

ĤRs,2Ĥ
H
))

are given by

Prec,max = PsλĤ,1 +C1, (22)

Ψmax = Ψ
(

PsλĤ,1 + C1

)

, (23)

Qr,max (α) = αΨmax, (24)

Φmax (α) = Φ

(

α, tr

(

ĤR
∗
s,2Ĥ

H
))

=

2α
1−α
Ψmax

σ2
2

2α
1−α
Ψmax + σ

2
d

, (25)

respectively.

D. Optimal Source and Relay Covariance Matrices During

ID Mode Rs,1 and Rr

First, let us consider the singular value decompositions

(SVDs) of Ĥ and Ĝ are

Ĥ = UĤ D
1/2

Ĥ

(

VĤ

)H
, (26)

Ĝ = UĜ D
1/2

Ĝ

(

VĜ

)H
, (27)

respectively, where UĤ , VĤ , UĜ and VĜ are unitary ma-

trices with dimensions Nr × rH , Ns × rH , Nd × rG and

Nr × rG, respectively, DĤ = diag
(

λĤ,1, . . . , λĤ,rH

)

and DĜ =

diag
(

λĜ,1, . . . , λĜ,rG

)

are the diagonal matrices containing the

eigenvalues arranged in a decreasing order of ĤĤ
H

and

ĜĜ
H

, respectively, and rH and rG are the rank of Ĥ and

Ĝ, respectively.

The optimal source and relay covariance matrices during

ID mode Rs,1 and Rr are expressed in the following corollary

Corollary 2: The optimal source and relay covariance

matrices during ID mode Rs,1 and Rr are expressed as

R
∗
s,1 = χ1VĤ D̃sV

H

Ĥ
, (28)

R
∗
r =

(

σ2
2

2α

1 − α
Ψmax + σ

2
d

)

VĜ D̃rV
H

Ĝ
, (29)

where D̃s = diag
(

λ̃s,1, . . . , λ̃s,rH

)

and D̃r =

diag
(

λ̃r,1, . . . , λ̃r,rG

)

are the diagonal matrices whose

elements are given by the water-filling solution [14] as

λ̃s,i =

(

1
β1
− 1
λĤ,i

)+

, for i = 1, . . . , rH , and λ̃r, j =

(

1
β2
− 1
λĜ, j

)+

,

for j = 1, . . . , rG, and β1 and β2 are the Lagrange

multiplier satisfying the constraints
∑rH

i=1
λ̃s,i =

Ps

χ1
, and

∑rG

j=1
λ̃r, j = Φmax (α), respectively.

Proof: Applying the results in Corollary 1 to the opti-

mization problem (16), we obtain the following optimization

problem which optimizes the covariance matrices R̃s,1 and

R̃r as

max
R̃s,1 ,R̃r

min

(

log2

∣

∣

∣

∣

∣

∣

I + ĤR̃s,1Ĥ
H

∣

∣

∣

∣

∣

∣

, log2

∣

∣

∣

∣

∣

∣

I + ĜR̃rĜ
H

∣

∣

∣

∣

∣

∣

)

, (30a)

s.t. tr
(

R̃s,1

)

≤
Ps

χ1

, (30b)

tr
(

R̃r

)

≤ Φmax (α) , (30c)

R̃s,1 � 0, R̃r � 0. (30d)

The problem (30) is convex and the constraints are de-

coupled. We can split this optimization problem into two

subproblems which are

max
R̃s,1

log2

∣

∣

∣

∣

∣

∣

I + ĤR̃s,1Ĥ
H

∣

∣

∣

∣

∣

∣

, (31a)

s.t. tr
(

R̃s,1

)

≤
Ps

χ1

, (31b)

R̃s,1 � 0, (31c)

max
R̃r

log2

∣

∣

∣

∣

∣

∣

I + ĜR̃rĜ
H

∣

∣

∣

∣

∣

∣

, (31d)

s.t. tr
(

R̃r

)

≤ Φmax (α) , (31e)

R̃r � 0. (31f)

These two subproblems are equivalent to the throughput

maximization of one-hop MIMO system given an average

transmit power constraint at the transmitter in (31b) and

(31e) and their optimal solution R̃s,1 and R̃r have the

following forms

R̃s,1 = VĤ D̃sV
H

Ĥ
, (32)

R̃r = VĜ D̃rV
H

Ĝ
. (33)

Substituting these expressions in (13) and (14), we get the

results in the corollary 2



Subsequently, the corresponding achievable rates over the

S-R link and the R-D link are given by

RS−R

(

Rs,1

)

=

rH
∑

i=1

log2

(

1 + λĤ,iλ̃s,i

)

, (34)

RR−D (Rr) =

rG
∑

i=1

log2

(

1 + λĜ,iλ̃r,i

)

. (35)

E. Optimal EH Time Ratio α

The optimal time ratio for the EH slot α is given in the

following corollary:

Corollary 3: The optimal time ratio for the EH slot α is

expressed as

α =
Sσ2

d

2Ψmax − S (2σ2
2
Ψmax − σ

2
d
)
. (36)

Proof: Using the previous results, the equivalent opti-

mization problem with respect to α is

max
α

(1 − α)

rG
∑

i=1

log2

(

1 + λĜ,iλ̃r,i

)

, (37a)

s.t.

rG
∑

j=1

λ̃r, j ≤

2α
1−α
Ψmax

σ2
2

2α
1−α
Ψmax + σ

2
d

, (37b)

0 < α < 1. (37c)

If the constraint (37b) is inactive, the optimal α will

converge to zero. Otherwise, the optimal α is the one that

verifies the constraint (37b) with equality.

tr
(

R̃r

)

= S =

rG
∑

j=1

λ̃r, j =

2α
1−α
Ψmax

σ2
2

2α
1−α
Ψmax + σ

2
d

. (38)

Hence, the optimal α is given by

α =
Sσ2

d

2Ψmax − S (2σ2
2
Ψmax − σ

2
d
)
. (39)

IV. Numerical Results

In this section, we present some numerical results to

show the maximum achievable rate of MIMO DF relay

system with different linear and nonlinear EH models and

with possibly imperfect CSI. For the nonlinear EH models,

we are using the nonlinear EH model based on the sig-

moidal function proposed in [8], and the heuristic model

for the conversion efficiency in [13]. To make sure that

Lemma 1 is satisfied, we choose the EH models with an

increasing function Ψ(·). The nonlinear models are based on

two experimental results from [15] and [16]. First, the data

measurements in [15] were shown in [8], [10] to be fitted by

the sigmoidal model with parameters a = 1500, b = 0.0022,

and M = 24 mW. Moreover, the data measurements in

[16] were shown to be fitted by the sigmoidal model with

parameters with parameters a = 47083, b = 2.9 uW, and

M = 24 mW in [12], and by the heuristic function with

parameters p2 = 1.23, p1 = 10.5, p0 = −0.238, q3 = 1,

q2 = −0.125, q1 = 0.24, and q0 = 0.00045 in [13]. Also, the
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Figure 1. The achievable end-to-end rate, the corresponding harvested
energy at R, and the corresponding time ratio α versus the transmit power
Ps at S in dB, with Ns = Nr = Nd = 4, σ2

r = σ
2
d
= 10−4 dB, with imperfect

CSI σ2
Ei
= σ2

Ui
= 0.1 and the nonlinear models in agreement with [16].

authors in [13] showed that the data in [17] has a maximum

conversion efficiency 60%. So, the linear model is considered

with two conversion efficiencies: the maximum one ζ = 1

and a more realistic one ζ = 0.4. The number of transmit

antennas at all the nodes is equal to 4 and the noise variances

at the relay and destination are equal to −40 dB [9]. In all

figures, the value of Emax corresponds to maximum harvested

energy Ψmax varying with the EH model considered either

linear or nonlinear (sigmoidal or heuristic).

In Fig. 1, we have plotted the achievable end-to-end



rate, the corresponding harvested energy at R, and the

corresponding time ratio α versus the transmit power Ps

at S in dB, with imperfect CSI σ2
Ei
= σ2

Ui
= 0.1. The

nonlinear EH models are following the data measurements

in [16] with parameters a = 47083, b = 2.9 uW, and

M = 24 mW [12] for the sigmoidal nonlinear EH model,

and p2 = 1.23, p1 = 10.5, p0 = −0.238, q3 = 1, q2 = −0.125,

q1 = 0.24, and q0 = 0.00045 [13] for the heuristic nonlinear

EH model. First, we can see that the heuristic nonlinear

EH model outperforms all the other linear/nonlinear EH

models in terms of the maximum end-to-end rate. Moreover,

the sigmoidal nonlinear EH model with M = Emax and

M = 0.7Emax outperforms the linear model with a practical

conversion efficiency ζ = 0.4, for −10 < S NR ≤ 10 dB.

Otherwise, all the EH models perform alike in terms of the

maximum end-to-end rate. In terms of the harvested energy,

the relay harvests more energy for the heuristic nonlinear

EH model, especially in the high power regime. We can see

also that the linear models with both ζ = 1 and ζ = 0.4

and the heuristic nonlinear EH model have the lowest time

ratio α, especially in the low power regime. At this point,

we can say that the heuristic nonlinear EH model presents a

performance gain in terms of end-to-end rate, especially in

the high power regime.

In Fig. 2, we have plotted the achievable end-to-end

rate, the corresponding harvested energy at R, and the

corresponding time ratio α versus the transmit power Ps

at S in dB, with imperfect CSI σ2
Ei
= σ2

Ui
= 0.1. The

nonlinear EH models are following the data measurements

in [15] with parameters a = 1500, and b = 0.0022. First,

we can see that the sigmoidal nonlinear EH model proposed

in [8], [10] with parameters a = 1500, b = 0.0022, and

M = 24 mW achieves the highest maximum end-to-end

rate and outperforms the linear model with the maximum

conversion efficiency ζ = 1 and all the other EH models.

Moreover, we can see that the sigmoidal nonlinear EH model

with M = Emax and M = 0.7Emax outperforms the linear

model with a practical conversion efficiency ζ = 0.4 in the

high power regime. However, in the low power regime, the

linear models with both ζ = 1 and ζ = 0.4 outperform all the

nonlinear models except the one with M = 24 mW. At this

point, we can see that the linear model engenders losses in

terms of end-to-end rate, in the high power regime. While,

the sigmoidal nonlinear EH model with M = 24 mW presents

a performance gain compared to the other schemes, in terms

of end-to-end rate. In terms of the harvested energy, the relay

harvests more energy for the linear models with both ζ = 1

and ζ = 0.4 and the sigmoidal nonlinear EH model with

M = 24 mW. We can see also that the time ratio α for the

linear models with both ζ = 1 and ζ = 0.4 and the sigmoidal

nonlinear EH model with M = 24 mW is the lowest one,

especially in the low power regime.

V. Conclusion

In this paper, we have studied the rate maximization

problem for the MIMO DF relay system where the relay is

an EH node using a nonlinear EH model and with imperfect
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Figure 2. The achievable end-to-end rate, the corresponding harvested
energy at R, and the corresponding time ratio α versus the transmit power
Ps at S in dB, with Ns = Nr = Nd = 4, σ2

r = σ
2
d
= 10−4 dB, with imperfect

CSI σ2
Ei
= σ2

Ui
= 0.1 and the nonlinear models in agreement with [15].

CSI at the relay and the destination. We have proposed the

source and relay covariance matrices and the optimal time

ratio α for the EH mode. Through the simulation results, we

compared between different linear/nonlinear EH models and

we have highlighted the gain/loss performance when using

the linear EH model compared to the other nonlinear EH

model. We have seen that the linear model has the same

performance as the nonlinear models for very low power

regime. For the high power regime, either the heuristic or

the sigmoidal nonlinear EH model outperforms the linear



EH model depending on the circuitry used.
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