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Abstract Inspired by the recent development of deep network-
based methods in semantic image segmentation, we intro-
duce an end-to-end trainable model for face mask extraction
in video sequence. Comparing to landmark-based sparse face
shape representation, our method can produce the segmenta-
tion masks of individual facial components, which can better
reflect their detailed shape variations. By integrating Convo-
lutional LSTM (ConvLSTM) algorithm with Fully Convo-
lutional Networks (FCN), our new ConvLSTM-FCN model
works on a per-sequence basis and takes advantage of the
temporal correlation in video clips. In addition, we also pro-
pose a novel loss function, called Segmentation Loss, to
directly optimise the Intersection over Union (IoU) perfor-
mances. In practice, to further increase segmentation accu-
racy, one primary model and two additional models were
trained to focus on the face, eyes, and mouth regions, re-
spectively. Our experiment shows the proposed method has
achieved a 16.99% relative improvement (from 54.50% to
63.76% mean IoU) over the baseline FCN model on the 300
Videos in the Wild (300VW) dataset.
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1 Introduction

The sparse facial shape descriptor extracted with traditional
landmark-based face-tracker usually cannot capture the full
details of the facial components’ shapes, which are essen-
tial to the recognition of higher level features such as fa-
cial expressions, emotions, identity, and so on. To overcome
the limitations of sparse facial descriptors, we introduce the
concept of face mask, a dense facial descriptor with infor-
mation of semantic facial regions at pixel level like eyes
and mouth. Developing from various deep learning-based
semantic image segmentation methods, we then propose a
novel approach for extracting face mask in video sequence.
Different from semantic face segmentation, face mask ex-
traction handles occlusion in a similar way to facial land-
mark tracking. Namely, the extract face mask is expected to
be complete regardless of occlusion, while typical segmen-
tation result would exclude the occluded area. Face mask
extraction techniques could have many potential and inter-
esting applications in the field of Human-Computer Inter-
action, including face detection & recognition, emotion &
expression recognition, social robots interaction, etc. To the
best of our knowledge, this is the first exploration of face
mask extraction in video sequence with an end-to-end train-
able deep-learning model.

Face mask extraction is a challenging task, especially
for video clips taken in the wild, due to the huge amount of
variations such as indoor & outdoor conditions, occlusions,
image qualities, expressions, poses, skin colours, etc. Early
studies of semantic face segmentation (Kae et al, 2013; Smith
et al, 2013; Lee et al, 2008; Warrell and Prince, 2009) usu-
ally concentrated on the segmentation of still face images,
and their methods were mostly based on heavily engineered
approaches rather than learning.

In recent years, deep-learning techniques, particularly
Convolutional Neural Networks (CNNs), has developed rapidly
in the field of semantic image segmentation. Comparing to
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traditional engineering approaches, the major advantage of
deep-learning methods is their ability to learn robust repre-
sentations through an end-to-end trainable model for a par-
ticular task and dataset, and their performances usually sur-
pass that of hand-crafted features extracted by traditional
computer vision method. Among others, Fully Convolutional
Networks (FCN) (Long et al, 2015) is the first seminal work
of applying deep-learning techniques in semantic image seg-
mentation. FCN substitute the fully connected layers in the
widely-used deep CNN architectures - such as AlexNet (Krizhevsky
et al, 2012), VGG-16 (Simonyan and Zisserman, 2014), Google-
LeNet (Szegedy et al, 2015), ResNet (He et al, 2016) into
convolutional layers, therefore turns the outputs from one-
dimensional vectors to two-dimensional spatial heat-maps,
which are then upsampled to the original image size using
deconvolutional layers (Zeiler et al, 2011; Zeiler and Fergus,
2014). Developed from the baseline FCN, many improve-
ments have been proposed in the following years, achiev-
ing increasingly better performance on benchmark datasets.
Some works have changed the decoder structure of FCN,
like SegNet by Badrinarayanan et al (2017), and some other
models have applied Conditional Random Field (CRF) as a
post-processing step, such as the CRFasRNN work by Zheng
et al (2015) and the DeepLab models (Chen et al, 2016),
and there are also works that utilise dilated convolutions
(Zhou et al, 2015a), or atrous convolutions in other words,
to broaden the reception fields of filters without additional
computation cost, e.g. the DeepLab models by Chen et al
(2016), ENet (Paszke et al, 2016) and the work of Yu and
Koltun (2015).

Comparing to image segmentation, fewer works concern
semantic segmentation in video sequences. Depending on
the training methods, these works can be roughly divided
into 1. fully-supervised methods (Kundu et al, 2016; Liu
and He, 2015; Shelhamer et al, 2016; Tran et al, 2016; Tri-
pathi et al, 2015), where all the annotations are given; 2.
semi-Supervised approaches (Jain and Grauman, 2014; Na-
garaja et al, 2015; Tsai et al, 2016; Caelles et al, 2017),
which require certain pixel-level annotations like the ground
truth of the sequence’s first frame; and 3. weakly-supervised
ones (Saleh et al, 2017; Drayer and Brox, 2016; Liu et al,
2014; Wang et al, 2016), in which only the tags for each
video clips are known. Due to the complex variations in real-
life scenarios, we focus on fully-supervised video semantic
segmentation. In addition, most semi-supervised or weakly-
supervised approaches are proposed to solve the task of video
object segmentation, i.e. binary classification between fore-
ground and background, which limits their application in
multi-class tasks such as face mask extraction.

To utilise the temporal information in video sequences,
several fully-supervised video segmentation methods rely
on graphical models such as Kundu et al (2016); Liu and
He (2015); Tripathi et al (2015), while other approaches are

based on CNN models, e.g. the Clockworks Convnets by
Shelhamer et al (2016), in which a fixed or adaptive clock
was used to control the update rates of different layers ac-
cording to their semantic stability. Other works, such as Zhang
et al (2014) and Tran et al (2016), use 3D convolutions or
3DCNNs to capture the temporal dependencies as well as
the spatial connections. Both approaches have their limita-
tions. Clockworks Convnets do not fully utilise the temporal
information in video sequence since the semantic changes
are only used to adjust clock rates. 3DCNN treats temporal
dimension in the same way as 2D space, thus could limit the
extraction of long-term temporal information.

In this paper, we propose an end-to-end trainable model
which could exploit the temporal information in a more di-
rect and natural way. The key idea is the application of Con-
volutional Long Short Term Memory (ConvLSTM) layer
(Xingjian et al, 2015) in FCN models, which enable the
FCNs to learn the temporal connections while retaining the
ability to learn spatial correlations.

Recurrent Neural Networks, especially LSTMs, have al-
ready shown their capabilities to capture short and long term
temporal dependencies in various computer vision tasks such
as visual speech recognition (Lee et al, 2016; Zimmermann
et al, 2016; Chung and Zisserman, 2016; Petridis et al, 2017b,a).
However, typical RNN models only accept one-dimensional
arrays, which limits the models’ application in tasks that re-
quire multi-dimensional relationships to be kept. To over-
come this limitation, multiple approaches have been pro-
posed, such as the works of Graves et al (2007), the ReNet
architecture of Visin et al (2015), and the aforementioned
ConvLSTM by Xingjian et al (2015).

Among these methods, ConvLSTM directly models the
spatial relationships while keeping LSTM’s ability to cap-
ture temporal dependencies. Another advantage of ConvL-
STM is it can be integrated into existing convolutional net-
works with very little effort because a convolutional layer
can be easily replaced by a ConvLSTM layer with identical
filter settings.

In this work, we introduce the ConvLSTM-FCN model
that combines FCN and ConvLSTM by converting a cer-
tain convolutional layer in the FCN model into a ConvL-
STM layer, thus adding the ability to model temporal de-
pendencies within the input video sequence. Specifically, for
the baseline model, we adopt the structure of FCN model
based on ResNet-50 (He et al, 2016) and then replace the
classifying convolutional layer, which is converted from the
fully connected layer in the original ResNet-50 model, with
a ConvLSTM layer with the same convolutional filter set-
tings. We also add two reshape layers since ConvLSTM lay-
ers require different input dimensions than the convolutional
layers. The ConvLSTM-FCN model accepts video sequence
as input and outputs the predictions of the same size, and the
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temporal information is learnt together with the spatial con-
nections.

To be able to optimise the model toward higher accuracy
in terms of mean Intersection over Union (mIoU), which is
a typical performance metric for segmentation problems, we
also propose a new loss function, called Segmentation Loss.
Unlike the IoU loss in Rahman and Wang (2016), Segmenta-
tion Loss is more flexible and carries more practical mean-
ing in image space. In comparison to the frequently-used
cross-entropy loss, higher mIOU can be achieved when Seg-
mentation Loss is used as the loss function during training.

A dataset with fully annotated face masks in videos would
be needed to evaluate the proposed method. However, at this
moment, no such dataset could be found in the public do-
main. Therefore, in this work, we use the 300 Videos in the
Wild (300VW) dataset (Shen et al, 2015), which contains
per-frame annotations of 68 facial landmarks for 114 short
video clips. These landmark annotations are then converted
into 4 semantic facial regions: face skin, eyes, outer mouth
(lips) and inner mouth.

Our experiments are conducted on the aforementioned
300VW dataset with converted pixel-level labels of 5 class
(the 4 facial regions plus background). As the baseline ap-
proaches, we compare performances of 1. The traditional
68-point facial landmark tracking model (Kazemi and Josephine,
2014); 2. The deeplab-V2 model (Chen et al, 2016); 3. The
ResNet-50 Version FCN (He et al, 2016; Long et al, 2015),
4. The VGG-16 Version of FCN (Simonyan and Zisserman,
2014; Long et al, 2015). We then change the ResNet-50 ver-
sion FCN to ConvLSTM-FCN, so that the temporal infor-
mation in video sequence could be utilised. For better per-
formance, we further extend our method to include three
ConvLSTM-FCN models: a primary model to find the face
region, and two additional models focusing on the eyes and
mouth, respectively. The predictions of the three models are
combined to obtain the final face mask. Our experimental re-
sults show that the utilisation of temporal information could
significantly improve FCN’s performances for face mask ex-
traction (from 54.50% to 63.76% mean IoU), and the perfor-
mance of ConvLSTM-FCN model also surpass that of tradi-
tional landmark tracking models (63.76% Versus 60.09%).

2 Related Works

This section covers the major related works in the field. It is
worth mentioning that, to the best of our knowledge, there is
no similar work in terms of semantic face segmentation or
face mask extraction in video sequence, so we have investi-
gated the studies of video semantic segmentation instead.

2.1 Semantic Image Segmentation

The last few years have witnessed the rapid development of
deep-learning techniques in the field of semantic image seg-
mentation, and most of the state-of-the-art results are achieved
by such models. The FCN by Long et al (2015) is the first
milestone for deep learning in this field. FCN cast the fully
convolutional layers in well-known deep architectures, such
as AlexNet (Krizhevsky et al, 2012), VGG-16 (Simonyan
and Zisserman, 2014), GoogleLeNet (Szegedy et al, 2015),
ResNet (He et al, 2016), to convolutional layers so that the
output of such models is spatial heat-maps instead of tra-
ditional one-dimensional class score. The skip-architecture
of FCN enables the information from coarser layers to be
seen by finer layers, therefore the model can be more aware
of the global context, which is rather important in semantic
segmentation. FCNs have limitations in term of integrating
knowledge of the global context to make appropriate local
predictions since the receptive field of their filters can only
increase linearly when the number of layers grows (Garcia-
Garcia et al, 2017). Therefore, later studies improve their
models’ abilities to utilise the global image context with dif-
ferent approaches.

The works of the DeepLab models (Chen et al, 2016),
ENet (Paszke et al, 2016) and the work of Yu and Koltun
(2015) has involved the application of dilated convolutions,
or so-called atrous convolutions. They are a kind of gener-
alised Kronecker-factored convolutional filters (Zhou et al,
2015a), and they differ from traditional convolutional fil-
ters in that they have wider receptive fields which can grow
exponentially with the dilated rate l (Garcia-Garcia et al,
2017). The standard convolutional operations can be seen
as dilated convolutions with dilated rate = 1. Dilated convo-
lutional layers can have more awareness of the global im-
age context without reducing the resolution of feature maps
too much. Another noticeable improvement is brought by
the works of Yu and Koltun (2015), where their models take
inputs of images at two different scales and then combine
the predictions into one. The ideas of integrating predictions
from multi-scale images can also be seen in the works of
Roy and Todorovic (2016) and Bian et al (2016).

Conditional Random Field (CRF) is a frequently-used
technique for deep semantic segmentation models, such as
the DeepLab models (Chen et al, 2016) and the CRFasRNN
by Zheng et al. Zheng et al (2015). The main advantage
of CRF is that it could capture the long-range spatial rela-
tionships which are usually difficult for CNNs to retain, and
CRF could also help to smooth the edges of the predictions.

2.2 Semantic Face Segmentation

Most earlier works of semantic face segmentation applied
engineering-based approaches. Kae et al (2013) employed a
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restricted Boltzmann machine to build the global-local de-
pendencies such that the global shape can be natural, while
they used CRFs to construct the details of the local shape.
As in the work of Smith et al (2013), a database of exem-
plary face images was first collected and labelled, and face
images were aligned to those exemplary images with a non-
rigid warping. There are also some other earlier works (War-
rell and Prince, 2009; Scheffler and Odobez, 2011; Yacoob
and Davis, 2006; Lee et al, 2008) in this field, however, most
such works utilised engineering-based hand-crafted features,
and it usually takes lots of time to fine-tune those models
for them to work under particular scenarios. Therefore, they
were gradually replaced by deep-learning based approaches.

Compared with the rapid progress of deep learning in
semantic image segmentation, its application in semantic
face segmentation is comparatively rare. Due to the diffi-
culties of pixel-level labelling for huge amounts of data,
currently, there are only a few publicly available datasets
for this task. Two commonly used datasets are Parts Label
dataset (Learned-Miller et al, 2016; Kae et al, 2013), which
contains 2927 images with labels of background, face skin
and hair, and Helen dataset (Le et al, 2012; Smith et al,
2013) including 2330 face images with annotations of face
skin, left/right eyebrow, left/right eye, nose, upper lip, inner
mouth, lower lip and hair. The lack of public face datasets
with pixel-level annotations could be an obstacle for the de-
velopment of deep models in this field.

For those face segmentation approaches using deep mod-
els, the works of Zhou et al (2015b) proposed an interlinked
version of the traditional CNN model, where parts of the
face could be detected except the facial skin. Compared with
FCN, the proposed model is less efficient and its structure is
overly redundant, and it cannot detect semantic part at large
scales, like the facial skin. Güçlü et al (2017) took advan-
tages of multiple deep-learning techniques, i.e. they formu-
lated a CRF by one Convolutional Neural Network for the
unary potential and the pairwise kernels, and one Recurrent
Neural Networks to transform the unary potentials and the
pairwise kernels into segmentation space. The training pro-
cess utilised the idea of Generative Adversarial Networks
(GAN), where the CRF and a discriminator network played
a two-player minimised game. The limitation of this work is
that it requires an initial face segmentation generated by a
facial landmark detection model as the input in addition to
the original face image, while the initial face segmentation
is not necessary in our method.

All these semantic face segmentation approaches were
proposed for still face images, while in the context of video
sequences, where the variations are more complex, these
methods may not be applicable. Currently, to the best of our
knowledge, our work is the first one developed for semantic
face segmentation in video sequence, or face mask extrac-
tion as we propose.

2.3 Video Semantic Segmentation

Video semantic segmentation methods can be roughly sep-
arated into three types through their supervision settings,
which are: 1. The works that handle fully-supervised prob-
lems, i.e. the pixel-level annotations of all frames are known,
2. The semi-supervised video segmentation approaches, in
which partial pixel-level annotations are known, such as only
the ground-truths of the first frame is known for both train-
ing and testing, 3. The weakly-supervised methods focus on
scenarios where only the tags of each video are given for the
learning process. The main-stream interest of video segmen-
tation community is on the semi-supervised problems (Jain
and Grauman, 2014; Nagaraja et al, 2015; Tsai et al, 2016;
Caelles et al, 2017) and the weakly-supervised issues (Saleh
et al, 2017; Drayer and Brox, 2016; Liu et al, 2014; Wang
et al, 2016), while the tasks of these problems are usually
about segmenting one single object out of the background
in a video sequence. This is somehow different from the
scenarios of face mask extraction, where multiple semantic
face parts should be extracted. Therefore, we have investi-
gated the less-focused fully-supervised video segmentation
works.

Some of these fully-supervised works replied on graphic
models Kundu et al (2016); Liu and He (2015); Tripathi et al
(2015). As for these approaches using deep models, the idea
Clockworks Convnets by Shelhamer et al (2016) was based
on the observation that the semantic contents of two succes-
sive frames change relatively slower than pixels. The pro-
posed Clockworks Convnets used a clock at either fixed or
adaptive schedules to control the update rates of different
layers basing on the semantic content evolution. This work
does not fully utilise the temporal information. The works
of Zhang et al (2014) and Tran et al (2016) have both shown
the idea of applying 3DCNN or 3D convolutions to capture
information at time dimension. Treating temporal dependen-
cies in the same way as spatial connections may hinder the
model to understand some subtle temporal information, and
they may not be able to capture the long-term time depen-
dencies.

In our model, the temporal dependencies are extracted
in a more natural and effective approach, through the appli-
cation of Convolutional LSTM.

2.4 Convolutional LSTM

Convolutional LSTM (ConvLSTM) is proposed by Xingjian
et al (2015) to solve the problem of precipitation nowcast-
ing. Its has a similar structure as the FC-LSTM by Graves
(2013), while all the inputs X1, . . . , Xt , cell outputs C1, . . . ,
Ct , hidden states H1, . . . , Ht , input gate it , forget gate ft
and output gate ot in ConvLSTM are 3D tensors, where
the first dimension is the measurements in cell varying over
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time, and the last two dimension are spatial ones (rows and
columns) (Xingjian et al, 2015). The key idea of ConvL-
STM can be expressed in Eq. 1 (Xingjian et al, 2015), where
’∗’ denotes the convolutional operator and ’◦’ means the
Hadamard product.

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦Ct−1 +bi)

ft = σ(Wx f ∗Xt +Wh f ∗Ht−1 +Wc f ◦Ct−1 +b f )

Ct = ft ◦Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 +bc)

ot = σ(Wxo ∗ xt +Who ∗Ht−1 +Wco ◦Ct +bo)

Ht = ot ◦ tanh(Ct)

(1)

ConvLSTM could capture the long and short term tem-
poral dependencies while retaining the spatial relationships
in the feature maps, therefore it is an ideal candidate for
face mask extraction in video sequence. Besides, with these
convolutional operations in cells, a standard convolutional
layer could be easily cast into a ConvLSTM layer with iden-
tical convolutional filters. Due to these advantages, we have
utilised ConvLSTM in FCN structures to understand the tem-
poral dependencies in video sequence.

3 Methodology

The section explains our proposed ConvLSTM-FCN model
and the segmentation loss function. In addition, we also in-
troduce the engineering trick of combining the additional
eye and mouth models with the primary model.

3.1 ConvLSTM-FCN Model

The first FCN model based on VGG-16 (Long et al, 2015)
was proposed in 2015. Many variations of the FCN model
have been developed afterward, usually achieving higher per-
formances and better training efficiency.

In this work, we base our model on the structure of the
FCN model released by Keras-Contributors (2018). This model
is a ResNet-50 version FCN. The details about this model’s
structure are summarised in Table 1. Compared with the
standard ResNet-50 architecture (He et al, 2016), dilated
convolutions with dilated rate = 2 are used in the building
blocks of ’Conv5 x’ layer instead of the ordinary convolu-
tional operations. The ’Conv6’ layer is the classifying layer
which replaces the original fully-connected layer to produce
feature maps of size 20×20 at C channels, where C is the
number of target classes. A bi-linear up-sampling layer of
16s is used instead of a deconvolutional layer.

The conversion of baseline FCN to ConvLSTM-FCN is
performed by replacing the ’Conv6’ layer with a ConvL-
STM layer of identical convolutional filters. Fig. 1 shows
the details of this procedure. The Reshape1 layer is used to

Table 1: Architectures of the baseline FCN model. This
model adopts the input size of 320*320. Building blocks are
illustrated in brackets with the number of stacked blocks.
The structures of building blocks at ’Conv1’, ’Conv2 x’,
’Conv3 x’ and ’Conv4 x’ layers are identical to the original
ResNet-50 model, while in ’Conv5 x’ layer, atrous convo-
lutional filters with dilated rate = 2 are used instead of the
standard convolutions. The ’Conv6’ layer is the classifying
layer that outputs feature maps at C channels, where C is
the number of target classes. The ’UpSampling’ layer bi-
linearly up-samples the feature maps back to the input size
at 16s up-sampling rate.

Layer Name Building Blocks Output
Size

Dilated
Rate

Conv1 7×7, 64, stride 2 160×160 1×1

Conv2 x 3×3 max pooling, stride 2 1×1, 64
3×3, 64
1×1, 256

× 3 79×79 1×1

Conv3 x

 1×1, 128
3×3, 128
1×1, 512

× 4 40×40 1×1

Conv4 x

 1×1, 256
3×3, 256
1×1, 1024

×6 20×20 1×1

Conv5 x

 1×1, 512
3×3, 512
1×1, 2048

×3 20×20 2×2

Conv6 1×1, C, stride 1 20×20 1×1
UpSampling None 320×320 None

output tensor with one additional time dimension ’T’, which
is required by the ConvLSTM layer, and the Reshape2 layer
cast the tensor back. ’T’, the time dimension in the ConvL-
STM layer, refers to the number of frames in a video se-
quence. Therefore, for the ConvLSTM-FCN model to work
effectively, the image orders within one batch should be ar-
ranged properly so that ConvLSTM layer could accept video
sequences in the correct format.

3.2 Segmentation Loss

This section introduces the new loss function that we pro-
pose to optimise mean Intersection over Union (mIoU).

MIoU is the most frequently-used performance metric
in the field of semantic segmentation. For one annotation
set and its predictions, IoU is calculated by the intersection
divided by the union. The intersection is actually the true
positives of the confusion matrix, while the union is the sum
of true positives, false positives and false negatives. mIoU is
the average of IoUs over all classes. Assuming there are a
total of C classes, and the notation ni j stands for the number
of pixels whose annotation is i with prediction j, then mIoU
can be expressed in Eq. 2.
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Fig. 1: An illustration of casting baseline FCN into
ConvLSTM-FCN model. Only these top layers are shown.
’BS’ refers to batch size of images, ’T’ denotes the time di-
mension in ConvLSTM layer and ’C’ is the target classes
number. The ConvLSTM layer in ConvLSTM-FCN has the
same convolutional filters with Conv6 layer in Baseline
FCN. Two reshape layers are added to convert tensor dimen-
sions in ConvLSTM-FCN.

mIoU =
1
C

C

∑
i=1

nii
C

∑
j=1

ni j +
C

∑
j=1

n ji−nii

(2)

The main reason for using mIoU as the metric of seg-
mentation accuracy instead of Classification Rate (CR) is
to avoid the bias caused the class imbalances. Class imbal-
ance is a common and challenging problem in semantic seg-
mentation. For example, a face image usually contains much
fewer eye pixels than background pixels. If all eye and back-
ground pixels are predicted as background, the resulting CR
will still be quite high, which is unfair and misleading. In
contrast, mIoU would be 0 in such case as there would be
no true-positive for the eye pixels. Therefore, in the field of
semantic segmentation, mIoU is used as the main evaluation
metric, and its performance is not directly related to CR.

Cross-entropy loss, or softmax loss, is one of the most
widely-used loss function in deep learning. Although cross-
entropy loss is quite a powerful loss with smooth training
curves, it targets toward higher average Classification Rate
(CR), which does not necessarily lead to improvement in

mIoU. Therefore, using cross-entropy loss in semantic seg-
mentation could not fully fulfil deep models’ potential in the
task. Therefore, we propose a new loss, which we name as
Segmentation Loss, to optimise the model’s mIoU perfor-
mances directly.

The work of Rahman and Wang (2016) has shown a
similar idea of optimising IoU using an IoU loss instead of
cross-entropy loss. This work, however, neglected the prac-
tical meaning of the IoU gradient, and, as a result, takes an
over-simplified form. This will be shown in the following
analysis.

Consider the case of single class segmentation, where
annotations is either 1 (foreground, positive samples) or 0
(background, negative samples). Denote predictions as A,
ground-truths as B and the network parameters as θ . Let
g(θ) = A∩B and f (θ) = A∪B, then this single-class IoU
can be expressed as in Eq. 3:

IoU =
A∩B
A∪B

=
g(θ)
f (θ)

(3)

If we treat IoU as the direct objective function, we need
to find IoU’s gradient, which is denoted as (IoU)′, in order
to optimise this objective function. The deduction of (IoU)′

is shown in Eq. 4.

(IoU)′ = (
g(θ)
f (θ)

)′ =
f (θ)g′(θ)−g(θ) f ′(θ)

f 2(θ)

=
1

f (θ)
g′(θ)+

g(θ)
f 2(θ)

(− f ′(θ))
(4)

The work of Rahman and Wang (2016) set the value of
g′(θ) to 0 for pixels where ground-truths is 0, while f ′(θ)
is set to 0 for positive samples. However, we argue that the
g′(θ) and f ′(θ), which is the gradient for g(θ) and f (θ),
hold their practical meanings in IoU optimisation and should
not be simplified in this approach.

Since g(θ) = A∩B, for the purpose of optimising IoU,
an appropriate gradient g′(θ) should encourage the predic-
tions of the positive samples to change from 0 to 1. Simi-
larly, for f (θ) = A∪B, the gradient (− f ′(θ)) should make
the values of negative samples’ predictions to vary from 1
to 0. From this perspective, g′(θ) stands for the optimisa-
tion direction of positive samples, while (− f ′(θ)) reveals
how to optimise negative samples. With these discoveries,
we could reformulate the loss function regarding IoU in a
meaningful and natural way. Assuming there are a total of
K samples and xi is the ith sample, if we let Wp =

1
f (θ) and

Wn = g(θ)
f 2(θ)

, the proposed Segmentation Loss function can
be found in Eq. 5.

SegLoss =
K

∑
i=1

WpI1(xi)Lp(xi)+
K

∑
i=1

WnI0(xi)Ln(xi) (5)
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In Eq. 5, I1(xi) and I0(xi) are the indicator functions for
positive and negative samples respectively, and Lp(xi) and
Ln(xi) are certain types of loss calculation functions for pos-
itive and negative samples separately.

Extending Eq. 5 to the case of total C classes and per-
forming the normalisation, we can express the complete form
of Segmentation Loss in Eq. 6. It

1(x
t
i) is now the indicator

function for the positive samples of class t, and vice versa
for It

0(x
t
i).

SegLoss =

C

∑
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K

∑
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(W t
pIt

1(x
t
i)Lp(xt

i)+W t
nIt

0(x
t
i)Ln(xt

i))

K
C

∑
t=1

(W t
p +W t

n)

(6)

It can be seen from Eq. 6 that, in our Segmentation Loss,
the loss of positive and negative samples from different classes
is weighted separately by W t

p and W t
n , and these weights are

somehow related to the number of samples over different
classes. For example, if there are fewer samples belonging
to class t, its positive samples are more likely to hold a larger
weight W t

p, since the union of class t can be smaller than that
of other classes. Therefore, our Segmentation Loss has prop-
erly considered the imbalanced data distributions over dif-
ferent classes, which are ignored in cross-entropy loss. Also,
the Segmentation Loss is a more comprehensive loss defini-
tion for IoU optimisation when compared with the work of
Rahman and Wang (2016).

The loss calculation function for positive and negative
samples, which is Lp(xi) and Ln(xi) in Eq. 5 and Eq. 6, could
have a variety of potential definitions. In this paper, we have
provided two different definitions for them. Their first def-
inition, which can be seen as a variant form of categorical
hinge loss, is shown in Eq. 7.

Lp(xi) = max(max(PRi ◦ (GTi)
−1)−PRi ·GTi +g),0)

Ln(xi) = max(PRi ·oneHot(t)−PRi ·GTi +g,0)
(7)

In Eq. 7, GTi and PRi are both 1×C vectors, where
PRi is the model’s prediction for the ith sample xi, e.g. (-
1.2,2.9,7.1) for a 3-class sample, and GTi is the sample’s
ground truth as a one-hot vector, such as (0,1,0) for a ground
truth of 2 with total 3 classes. (GTi)

−1 refers to the inverse of
GTi, for example, if GTi = (0,1,0), then (GTi)

−1 = (1,0,1).
oneHot(t) casts the number t into the one-hot vector, and
max(a,b,c, . . .) returns the maximum element. g is a positive
constant used to increase the discriminativities of loss func-
tion. The symbol ’◦’ represents vector’s Hadamard (element-
wise) product, while ’·’ means the dot product.

A second definition of Lp(xi) and Ln(xi) can be found in
Eq. 8, where the meanings of PRi, GTi, g and oneHot(t) re-
main unchanged. The intuitions of this definition are straight-
forward, encouraging the predicted values of ground truth

class to increase and penalising for those false negative clas-
sifications.

Lp(xi) =−(PRi ·GTi)

Ln(xi) =

{
0, if PRi ·GTi > PRi ·oneHot(t)+g

PRi ·oneHot(t) otherwise
(8)

3.3 Primary and Zoomed-in Models

Fig. 2: An illustration of how the primary and zoomed-in
models work. The primary face masks are extracted out of
the video sequence by the primary model, and these masks
are used to localise the mouth and eye regions. The cropped
mouth and eye sequences are then fed into the additional
mouth and eye models, respectively, to extract mouth and
eye masks at higher accuracies. The primary face mask, eye
and mouth masks are then combined to obtain the final face
mask. (Best seen in colour)

In practice, to further increase segmentation accuracy,
we have trained one primary model for initial face mask ex-
traction and two additional models to focus on the eyes and
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Fig. 3: Several examples of face images/masks from the 300VW dataset. Each column is a pair of face image/mask. The
colours red/green/cyan/blue in face masks stands for facial skin/eye/outer mouth/inner mouth, respectively. (Best seen in

colour)

mouth region, respectively. Particularly, the primary model
takes a face video sequence and outputs face masks for each
frame, and these face masks are used to localise and crop the
eye and mouth regions out of the video sequence. Two ad-
ditional trained models, one for eye and another for mouth
region, are then used to generate the eye and mouth masks,
which are usually more accurate than the corresponding re-
gions in the primary face mask. The final predictions are ob-
tained from the outputs of the three models, i.e. the eye and
mouth masks are mapped back to the primary face mask,
replacing these corresponding areas. The pipeline of how
primary and additional models work is shown in Fig. 2.

4 Experiments

4.1 Dataset

All our experiments are implemented on the 300 Videos in
the Wild (300VW) dataset (Shen et al, 2015). The 300VW
dataset consists of 114 videos taken in unconstrained envi-
ronments and the average duration of each video clip is 64
seconds with a frame rate of 30 fps. All 218595 frames in
these videos have been annotated manually with the 68 fa-
cial landmarks as in the works of Sagonas et al (2013a,b).
The scenarios of this dataset can be roughly divided into
three categories with increasing challenges: 1. Category one
where videos are taken under conditions with good lightings
and potential occlusions such as glasses or beard may occur.
2. Videos of category two can have larger variations than
category one, e.g. in-door environment without enough illu-
mination, overly-exposed cameras, etc. while the occlusions
are similar. 3. Category three is the most challenging one,
with videos of high variations from totally unconstrained en-
vironments.

In order to obtain the face mask ground truths of all
frames in the 300VW dataset, we have converted the 68-
landmark annotations into pixel-level labels of one back-
ground class and four foreground classes: facial skin, eyes,
outer mouth and inner mouth. This is achieved using cu-

bic spline interpolation (with relaxed continuity constraints
on eye corners and mouth corners) on corresponding land-
mark points. Some examples of the obtained face masks are
shown in Fig. 3. It can be seen from the figure that some
videos in 300VW are quite challenging due to the high varia-
tions in head pose, illumination, occlusion, video resolution,
etc.

Fig. 4: Several examples for the eye and mouth sub-
datasets. The first two columns are pairs of eyes/masks,
while the last two columns are the mouths/masks pairs. The
colours green/cyan/blue in masks represents the eyes/outer
mouth/inner mouth, respectively. (Best seen in colour)

After all the face masks have been generated, we have
organised the dataset to suit our experiments. In particular,
we have divided each video into short face sequences of one
second (30 frames), and then for each video, we have ran-
domly picked up 10% of its one-second sequences for our
experiments. Since the information of adjacent one-second
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sequences may heavily overlap with each other, which may
cause over-fitting problems, and also consider the training
efficiency, we only use 10% one-second sequences instead
of all these short clips. For training/validation/testing, we
have randomly selected 619/58/80 one-second sequences,
which contains 18570/1740/2400 face images in total, from
93/9/12 videos, and the training/validation/testing sets are
subject-independent with each other to guarantee a fair eval-
uation. This dataset is called ’300VW-Mask’ dataset, and it
is the dataset which we used to train the primary model and
to evaluate the performance of final predictions.

For the training of these two additional models focus-
ing on eye and mouth regions, we have further generated
two sub-datasets from the afore-mentioned 300VW-Mask
dataset. Specifically, we have cropped eye and mouth re-
gions out of the 300VW-Mask dataset to form these sub-
datasets. For the purpose of robustness, random noises are
added during the cropping process, and we have fixed the
locations of cropping box for every 5 consecutive frames so
that the temporal information within these frames could be
better extracted by the ConvLSTM-FCN models. Fig. 4 has
plotted some examples of these two sub-datasets.

4.2 Experimental Framework

Evaluation Metric As mentioned in Section 3.2, mean In-
tersection over Union (mIoU) is used as the evaluation met-
ric in the field of semantic segmentation, since mIoU is less
sensitive to imbalanced data. Note that we ignored the IoU
of background pixels in our mIoU calculation to focus the
metric on the face mask pixels.

Baseline Approaches For the baseline approaches, we have
compared the performances of the following methods on
the 300VW-Mask dataset: 1. The traditional 68-point facial
landmark tracking model (Kazemi and Josephine, 2014). 2.
The deeplab-V2 model (Chen et al, 2016), 3. The ResNet-50
Version FCN (He et al, 2016; Long et al, 2015), and 4. The
VGG-16 Version of FCN (Simonyan and Zisserman, 2014;
Long et al, 2015).

For the facial landmark tracking model, we have used the
68-landmark model released by DLib library (King, 2009).
This model has adopted the face alignment algorithm in the
work of Kazemi and Josephine (2014), and have been trained
on the iBUG 300-W face landmark dataset (Sagonas et al,
2016). We have implemented a 68-landmark face tracker
with this alignment model using the methods described in
Asthana et al (2014). This face tracker is run on all the test-
ing set sequences, and the 68 output landmark points are
then converted into face masks to calculate the mIoU per-
formance, using the same conversion method as we used to
generate face mask labels for the 300VW dataset.

Deeplab-V2 model is one of the most popular deep mod-
els in still image segmentation, and we have also evaluated
the performance this model as one of the baseline methods.
We have adopted the source code implementation released
by Deeplab, and we have selected the model based on VGG-
16 architecture.

The performances of FCN models are more relevant as
our ConvLSTM-FCN model is based on the FCN architec-
tures. Therefore, we have evaluated two different FCN mod-
els: 1. the ResNet-50 version FCN. This is the baseline FCN
model that we adopted to convert into ConvLSTM-FCN.
Section 3.1 described details about this FCN model and its
conversion into ConvLSTM-FCN model. 2. the VGG-16 ver-
sion FCN. This model has a similar overall architectures
with the baseline FCN model, except that it is based on
VGG-16.

Training ConvLSTM-FCN Models Our ConvLSTM-FCN model,
as mentioned in Section 3.1, is converted from the baseline
FCN model by replacing the classification layer with Con-
vLSTM layers. Therefore, to simplify the training process,
we first trained a baseline FCN model with all the training
images without considering the temporal information. And
then we converted this learned FCN model into ConvLSTM-
FCN, keeping all the weights except the newly-added Con-
vLSTM layer, and then retrained it with data of video se-
quences, where the temporal correlations were learned and
extracted.

In particular, the 300VW-Mask dataset was used to train
the primary model. A baseline FCN was first trained on this
dataset using cross-entropy loss, and this learned model was
used as a reasonable starting point for the training of the pri-
mary ConvLSTM-FCN model. For the primary model, we
have explored how the applications of ConvLSTM layer and
Segmentation Loss could enhance the model’s performances
by freezing all other layers except the ConvLSTM layer. Af-
ter this exploration, we used Segmentation Loss to train the
primary model by applying different learning rates on the
ConvLSTM layer and other layers. Therefore, the training
of the ConvLSTM-FCN model was performed as a two-
step procedure: first, a baseline FCN model was trained with
cross-entropy loss, then this learned model was converted to
a ConvLSTM-FCN model to be trained with Segmentation
Loss.

We have utilised similar training strategies for the addi-
tional eye and mouth models. Namely, we also first trained a
baseline-FCN model focusing on the still eye and mouth im-
ages, and then a ConvLSTM-FCN with pre-trained weights
was trained to capture the temporal dependencies.

Implementations We built and trained our model under the
deep-learning frameworks of Keras (Chollet et al, 2015) and
TensorFlow (Abadi et al, 2015). The models are trained on
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a desktop with a 1080Ti graphics card and also on a cluster
with 10 TITAN X graphics cards. It took around three days
to obtain the final primary and additional models.

For the model training, we have adopted the Adam op-
timiser (Kingma and Ba, 2014), and model’s weights were
saved and evaluated on the validation set after each epoch.
The model with highest validation mIoU was then consid-
ered as the best one and was further evaluated on the test-
ing set. All images were resized to 320 by 320 before they
were fed into the model. For evaluations on the testing set,
model’s output heat-map, whose size is also 320 by 320 pix-
els, was first resized back to the image’s original resolution,
so that the IoU was calculated at this original scale.

The baseline model FCN was trained for a total of 80
epochs with batch size 16, learning rate 0.001 with linear de-
cays and cross-entropy loss. The weights of the trained FCN
model were then used as the starting point for the ConvLSTM-
FCN model, which were trained for another 60 epochs using
Segmentation Loss. The learning rate for ConvLSTM-FCN
model was layer-based, which was 0.001 for the ConvLSTM
layers and 0.001γ for other layers, where γ is a decaying
factor for learning rate. The intuition is to train the newly-
added ConvLSTM layer at larger steps while fine-tuning
these learned layers with comparatively smaller learning rate.

For the ConvLSTM layer, the time dimension T was set
to be 5, i.e. the ConvLSTM layer deals with short sequences
of 5 frames. Therefore, input data of one batch should con-
tain N×5 images, where N is an integer. In our experiments,
we have set N=2, i.e. we have two 5-frame sequences in each
batch.

In the step of integrating the predictions from primary
and additional models, we first used the face masks from the
primary model to approximately localise the eye and mouth
regions for all frames, and then we fixed the cropping box
of such regions for each 5-frame sequence so that the addi-
tional model could work smoothly to extract temporal infor-
mation from these short sequences.

For each experiment, to verify its improvements on the
baseline method, we also calculated whether it is statisti-
cally significant with the baseline FCN model. Particularly,
we split the testing set, which contains 80 one-second se-
quences, into 10 groups, and calculated the P value of these
10 groups between the current experiment and the baseline
model. If the P value is smaller than 0.05, then we consider
this experimental result to be statistically significant from
that of baseline approach.

4.3 Results

Baseline Approaches Table 2 shows the performances of
the four baseline approaches described in Section 4.2. The
mIoU listed in the table is the average IoU of all classes

Table 2: The IoU performances of baseline approaches.
Mean IoU does not take the IoU of background class into
consideration. ’FS’,’OMT’,’IMT’ and ’BG’ in the first row
is short for facial skin, outer mouth, inner mouth and back-
ground.

Methods mIoU FS Eyes OMT IMT BG
Face Tracker 60.09 88.77 50.01 61.04 40.56 97.71
Deeplab-V2 58.66 90.55 50.19 58.58 35.31 94.38

FCN-VGG16 55.71 91.12 44.18 58.60 28.95 94.87
FCN-ResNet50
(Baseline-FCN) 54.50 91.13 45.54 57.14 24.20 94.98

Table 3: The IoU performances of Adam and RMSprop op-
timiser when all layers are frozen except the ConvLSTM
layer. Mean IoU does not include the IoU of background
class. ’†’ denotes that the difference with the baseline-FCN
is statistically significant.

Optimiser mIoU FS Eyes OMT IMT BG
Adam 55.53† 91.07 45.70 57.58 27.78 94.85

RMSprop 54.93 91.31 46.52 58.70 23.20 94.98

Table 4: The mean improvement over baseline-FCN in time
dimension. Larger value indicates greater improvements
over the baseline-FCN. ’T1’ to ’T5’ represents the first
frame to the last (fifth) frame for video sequences of five
frames.

Optimiser T1 T2 T3 T4 T5
Adam 0.113 0.964 0.995 0.950 0.981

RMSprop 0.019 0.174 0.275 0.598 0.657

except the background. It could be seen that although the
face tracker approach has achieved the highest mIoU, its
prediction for facial skin is worst than other deep meth-
ods. The performances of Deeplab-V2 model generally sur-
passes that of two FCN models, mainly on the eye and inner
mouth predictions. These two FCN models achieved simi-
lar performances, giving the best facial skin predictions. All
these deep models were trained with cross-entropy loss, and
the trained model of FCN-ResNet50, which obtains 54.50%
mIoU, would be converted into ConvLSTM-FCN model for
further explorations. This trained model of FCN-ResNet50
will be simply called ’baseline-FCN’ for convenience.

Exploring ConvLSTM layer As mentioned in Section 4.2,
we have made some explorations in order to see if the Con-
vLSTM layer could actually improve the performance by us-
ing temporal information. For simplicity, after the baseline-
FCN model was converted into ConvLSTM-FCN, we have
frozen all other layers and only trained the newly-added Con-
vLSTM layer with cross-entropy loss. We have also tried
two optimisers: Adam (Kingma and Ba, 2014) and RM-
Sprop (Hinton et al, 2012). The results are shown in Ta-
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Table 5: The IoU performances of Segmentation Loss with
different forms of loss calculation function (Lp(xi) and
Ln(xi) in Eq. 6). All layers except the newly-added Con-
vLSTM layer is frozen. Mean IoU does not include the IoU
of background class. ’†’ denotes that the difference with the
baseline-FCN is statistically significant.

Definitions of
Lp(xi), Ln(xi)

mIoU FS Eyes OMT IMT BG

Eq. 7 (g=1) 58.10† 90.90 51.96 59.32 30.20 94.82
Eq. 8 (g=0) 59.04† 90.80 51.61 57.27 36.46 94.91

Eq. 8 (g=0.1) 58.39† 90.56 51.45 57.43 34.11 94.76

ble 3. It could be seen that the Adam and RMSprop op-
timisers both improve the mIoU slightly. For further vali-
dation, we have also computed their improvement over the
baseline-FCN on the time dimension T, which is 5 in our
ConvLSTM-FCN model. It could be seen in Table 4 that,
for all 5-frame sequences, the improvements on the last four
frames is generally higher than that of the first frame, which
indicates the ConvLSTM layer can actually extract temporal
information from video sequences to improve segmentation
accuracy. Besides, it is also interesting to observe that the
temporal smoothing effects are more obvious in the RM-
Sprop experiment, with incremental improvements as time
dimension increases.

Therefore, by these exploration experiments, we have
verified that ConvLSTM could actually produce temporal
smoothing effects for face mask extraction in video sequences.
We have also selected Adam as the optimiser for following
experiments.

Segmentation Loss We have also conducted experiments to
explore to what extend the proposed Segmentation Loss can
lead to better a performance for the ConvLSTM-FCN model.
As explained in Section 3.2, the loss calculation function for
positive and negative samples, which is Lp(xi) and Ln(xi) in
Eq. 6, could have various potential definitions, and we have
provided two forms of them in Eq. 7 and Eq. 8. For the sim-
plicity of the experiments, we have employed the same strat-
egy as in the experiments of exploring ConvLSTM layer,
i.e. after casting the baseline-FCN into ConvLSTM-FCN
model, all other layers are frozen and the only trainable layer
is the newly-added ConvLSTM layer. Then we used Seg-
mentation Loss to train this partially-frozen ConvLSTM-
FCN model. Table 5 summarises the results, and it could
be seen that all results were improved (comparing to those
shown in Table 3) when Segmentation Loss was used instead
of cross-entropy loss. This demonstrates the effectiveness
of the proposed Segmentation Loss in terms of optimising
the ConvLSTM-FCN model. In addition, the loss function
Lp(xi) and Ln(xi) defined Eq. 8 have shown the best mIoU
performance when g is 0, therefore, we have selected the

Table 6: The IoU performances of the primary model with
different γ values. The ConvLSTM layer is trained with
learning rate 0.001, while the learning rate of other layers
are set to be 0.001γ . Mean IoU does not include the IoU of
background class. ’†’ denotes that the difference with the
baseline-FCN is statistically significant.

γ mIoU FS Eyes OMT IMT BG
0.01 60.35† 89.83 56.50 59.61 35.45 93.79
0.02 60.96† 89.85 57.75 60.02 36.23 93.72
0.05 60.04† 90.46 54.89 58.98 35.86 94.36
0.1 60.07† 90.51 54.73 59.74 35.29 94.42

Table 7: The IoU performances of the additional eye model
on the sub-dataset of eyes. The ConvLSTM layer is trained
with learning rate 0.001, while the learning rate of other lay-
ers are set to be 0.001γ . ’†’ denotes that the difference with
the baseline-FCN is statistically significant.

Model Eyes BG
Baseline-FCN 54.29 98.23

ConvLSTM-FCN (γ = 0.01) 56.58 98.25
ConvLSTM-FCN (γ = 0.02) 59.01† 98.14
ConvLSTM-FCN (γ = 0.05) 57.51† 98.24
ConvLSTM-FCN (γ = 0.1) 51.82† 97.88

form in Eq. 8 (g = 0) for Segmentation Loss in the follow-
ing experiments.

Training Primary and Zoomed-in Models As mentioned in
Section 4.2, We have applied similar strategies to train the
primary and additional models. For the primary model, after
the baseline-FCN was transformed into ConvLSTM-FCN,
we have set different learning rates for different layers, which
is 0.001 for ConvLSTM layer and 0.001γ (γ ∈ (0,1)) for
other layers, since we would like the newly-added ConvL-
STM layer to learn faster than other already-trained layers.
The Segmentation Loss with Lp(xi) and Ln(xi) defined in
Eq. 8 (g=0) is used to train the primary ConvLSTM-FCN
model. Table 6 has demonstrated the performances of the
primary model with different γ values. It could be seen that
different γ values could slightly affect the performances,
while training ConvLSTM-FCN model with different inter-
nal learning rates could generally achieve better mIoUs than
just freezing all layers except ConvLSTM layer.

Similarly, for the additional models on eye and mouth re-
gions, we first used cross-entropy loss to train two baseline-
FCN models on the eye and mouth sub-datasets, respec-
tively, and these baseline-models are then converted into ConvLSTM-
FCN models, which are also trained with different inter-
nal learning rates, as in the primary model’s training. Ta-
ble 7 and Table 8 show the performances of baseline-FCN
and ConvLSTM-FCN with different γ values. It can be seen
from the results that ConvLSTM-FCN model with Segmen-
tation Loss could generally improve the performance of the
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Table 8: The IoU performances of the additional mouth
model on the mouth sub-dataset. The ConvLSTM layer is
trained with learning rate 0.001, while the learning rate of
other layers are set to be 0.001γ . Mean IoU does not include
the IoU of background class. ’†’ denotes that the difference
with the baseline-FCN is statistically significant.

Model mIoU OMT IMT BG
Baseline-FCN 49.77 60.30 39.24 97.23
ConvLSTM-

FCN (γ = 0.01) 52.08† 62.06 42.10 97.21

ConvLSTM-
FCN (γ = 0.02) 52.17† 62.80 41.54 97.31

ConvLSTM-
FCN (γ = 0.05) 51.24† 61.01 41.48 97.15

ConvLSTM-
FCN (γ = 0.1) 52.36† 61.20 43.52 96.86

Table 9: The IoU performances of different key techniques
on improving the baseline-FCN models. Mean IoU does not
include the IoU of background class. ’†’ denotes that the
difference with the baseline-FCN is statistically significant.
The primary model is the ConvLSTM-FCN model trained
with 300VW-Mask dataset (γ = 0.05), and the two addi-
tional models are the ConvLSTM-FCN model trained on
two sub-datasets on eye and mouths (γ = 0.02).

Techqniques mIoU FS Eyes OMT IMT BG
FCN-ResNet50
+ cross-entropy 54.50 91.13 45.54 57.14 24.20 94.98

ConvLSTM-
FCN (Freezing
Other Layers) +
cross-entropy

55.53† 91.07 45.70 57.58 27.78 94.85

ConvLSTM-
FCN (Freezing
Other Layers) +
Segmentation

Loss

59.04† 90.80 51.61 57.27 36.46 94.91

Primary Model
+ Segmentation

Loss
60.04† 90.46 54.89 58.98 35.86 94.36

Primary
Model + Two

Additional
Models +

Segmentation
Loss

63.76† 90.58 57.89 62.78 43.79 94.36

baseline-FCN model, and the additional model focusing on
certain face region could achieve better segmentation accu-
racy on that region than that of the primary model.

Integrating Predictions As described in Section 3.3 and Sec-
tion 4.2, the final predictions are obtained by integrating
the face masks of the primary model, which provides lo-
calisations of eye and mouth regions, with the correspond-
ing outputs of two additional models on the eye and mouth
regions. These additional models focus on particular facial

parts, such as eyes, outer and inner mouths, therefore they
could produce more accurate segmentation results for these
regions.

For the final predictions, we have used the primary model
which are trained with γ = 0.05, and the ConvLSTM models
trained with γ = 0.02 for eye and mouth additional models
(the performances of these models could be found in Table
6, Table 7 and Table 8).

The integration results could be found in Table 9, and
this table also summarises the key improvements on the baseline-
FCN model with different techniques. We can see from the
table that combining primary model and additional mod-
els leads to a mIoU performance of 63.76%, which shows
a 16.99% relative improvement on the baseline-FCN ap-
proach. Besides, when compared with these baseline ap-
proaches in Table 2, our proposed method still shows higher
segmentation accuracies, even with the face tracker, which
is the best-performing baseline approach.

4.4 Discussion

In the task of face mask extraction, the temporal dimension
carries important information which could be utilised to im-
prove segmentation accuracies, especially when the infor-
mation provided by current frame is not sufficient to allow
reliable face mask extraction. This temporal-smoothing ef-
fect is what we would like to achieve with our ConvLSTM-
FCN model.

In the case when normal FCN models encounter chal-
lenging segmentation tasks, the introduced ConvLSTM-FCN
should be able to achieve better performances by exploit-
ing information from both temporal and spatial domains.
Fig. 5 plots some typical examples of such situations. As
shown in the figure, the baseline-FCN model, which only
learns the spatial relationships, have difficulties in segment-
ing face images with low qualities, occlusions, poor illumi-
nations, etc. As a result, baseline-FCN could not effectively
segment those smaller facial regions such as eyes and in-
ner mouth under challenging scenarios. However, with the
help of ConvLSTM-FCN model, the extracted face masks
are more robust and realistic, especially for the smaller fa-
cial regions like eyes and inner mouth. The introduction of
the zoomed-in model has further improved the segmentation
results, which again verify the temporal-smoothing effects
introduced by ConvLSTM-FCN.

Fig. 6 shows the mean IoU performances and standard
deviation over all frames of each subject for the baseline-
FCN, primary model and the integration of primary & addi-
tional models. The test set contains 80 one-second sequences
coming from 12 videos, while these 12 videos are subject-
independent with each other. It could be observed that the
primary model or primary + additional have led to better



Face Mask Extraction in Video Sequence 13

Fig. 5: Several face masks extracted with baseline-FCN, the primary model and the integration of primary and additional
models. The colours red/green/cyan/blue in face masks stands for facial skin/eye/outer mouth/inner mouth, respectively.

(Best seen in colour)

Fig. 6: Mean IoU and standard deviation over all frames of each subject. Mean IoU does not include the IoU of background
class. Blue stands for the performances of baseline-FCN, red for the primary model and gray for the integration of primary

and additional models. (Best seen in colour)

performances than baseline-FCN on all the subjects. Be-
sides, we could also see that the performances over different
test subjects are generally similar, despite some fluctuations
brought by the video variations.

5 Conclusion

In this paper, we have presented a novel ConvLSTM-FCN
model for the task of face mask extraction in video sequences.
We have illustrated how to convert a baseline-FCN model
into ConvLSTM-FCN model, which can learn from both
temporal and spatial domains. A new loss function named
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’Segmentation Loss’ has also been proposed for training the
ConvLSTM-FCN model. Last but not least, we also intro-
duced the engineering trick of supplementing the primary
model with two zoomed-in models focusing on eyes and
moth. With all these are combined, we have successfully
improved the performances of baseline-FCN on 300VW-
Mask dataset from 54.50% to 63.76%, making a 16.99% rel-
ative improvement. The analysis of the experimental results
has verified the temporal-smoothing effects brought by the
ConvLSTM-FCN model.
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