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Abstract: Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve
gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification
of the basic chemical components and comprehensive quality control of this herb. In this study,
high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry
(HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to
identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was
developed to determine the major biochemical markers from AF extract. There were 104 compounds
belonging to eight structure types, including 13 amino acids or peptides, seven alkaloids, 18 flavanones,
14 flavones, 15 polymethoxyflavonoids, six triterpenoids, nine coumarins, and 18 volatile oils, as well as
four other compounds that were systematically identified as the basic components from AF, and among
them, 41 compounds were reported for the first time. Twelve bioactive ingredients were chosen as the
benchmark markers to evaluate the quality of AF. The analysis was completed with a gradient elution at
a flow rate of 0.7 mL/min within 55 min. This efficient method was validated showing good linearity,
precision, stability, repeatability and recovery. Furthermore, the method was successfully applied to
the simultaneous determination of 12 chemical markers in different samples of AF. This study could be
applied to the identification of multiple bioactive substances and improve the quality control of AF.

Keywords: Aurantii fructus; HPLC-Q-TOF-MS; GC-MS; HPLC; biochemical markers; quality control

1. Introduction

Aurantii fructus (AF) is the dried and immature fruit of Citrus aurantium L. and its cultivars. It plays
important roles in traditional Chinese medicine (TCM) and is a functional food that has been intensively
applied to treat stagnation of dyspepsia, improve gastrointestinal motility dysfunction, and alleviate
chest pain in traditional therapies [1,2]. There is a general consensus that the pharmacological effects of
herbal medicines are significantly correlated with the chemical composition and the contents of bioactive
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compounds in herbs. The current research shows that the main bioactive constituents in AF are mainly
flavonoids [2–4], alkaloids [1,4,5], coumarins [6,7], and volatile oils [1,8]. Modern pharmacological
studies have shown these compounds to exhibit various activities, e.g., anti-inflammatory [9,10],
anti-oxidation [10,11], regulation of gastrointestinal and prevention of cardiovascular disease [12,13],
and they are considered to be the major bioactive constituents in AF. Plenty of clinical investigations
have shown that the main pharmacological ingredients of AF are flavonoids, such as flavanones and
polymethoxyflavonoids (PMFs), that mainly focus on regulating gastrointestinal dysmotility [12,14,15].

The chemical compounds from AF have been qualitatively or quantitatively analyzed via
ultraviolet spectrophotometry (UV), thin layer chromatography (TLC), gas chromatography (GC),
high performance liquid chromatography (HPLC), gas chromatograph-mass spectrometry (GC-MS),
liquid chromatography mass spectrometry (LC-MS), infra-red spectrum (IR), and nuclear magnetic
resonance (NMR) [1,2,7,16,17]. However, due to the complexity of the structural types of the basic
chemical constituents of TCM, these methods have certain deficiencies in the analysis of the basic
components, and there are incomplete reports for a comprehensive investigation on the constituents of
AF. In particular, some ingredients are found in low sensitivity and trace amounts of the above methods
often lead to insufficient and defective analysis. High-performance liquid chromatography quadrupole
time-of-flight mass spectrometry (HPLC-Q-TOF-MS) is an efficient method with high sensitivity, high
precision, high resolution, fast information acquisition, and has been employed to analyze complicated
profiles of citrus plants in recent years [6,18,19]. Therefore, the detailed chemical constituents of AF
extract can be identified systematically using the HPLC-Q-TOF-MS method. Alternatively, volatile
components with low content can be identified by GC-MS technique.

TCM plays a clinical therapeutic role by applying multiple constituent works on multiple targets
within the body [20], but only two flavanones (naringin, neohesperidin) are defined as the evaluated
markers of quality control for AF in the Chinese Pharmacopoeia [21]. Due to the comprehensive
pharmacological effects of TCM, the evaluated standards of quality control for TCM should be carefully
considered and established based on multiple pharmacodynamic substances in the future.

The aim of this study is to establish a new comprehensive analysis method for gaining insight into the
exhaustive chemical profiles of AF using HPLC-Q-TOF-MS combined with GC-MS. Then, in consideration
of the major pharmacological effects of AF, the typical bioactive ingredients were successfully screened
as the markers of quality control from the complicated compounds of AF based on the analytical data
from mass spectrometry. Then, a simple and effective method for simultaneous determination of bioactive
markers was established by high performance liquid chromatography (HPLC), and AF samples from
different regions were evaluated. To the best of our knowledge, this is the first attempt to improve
qualitative and quantitative methods for the analysis and determination of bioactive ingredients in AF
with efficient procedures [22]. These results supply complete chemical components for further research
and improve the practical application of the consistency evaluation and quality control of AF samples from
different habitats. In addition, they provide comprehensive references for the research and development of
AF to be used as a traditional medicine and functional food.

2. Results and Discussion

2.1. Identification and Analysis of Active Constituents in Ethanol Extract of AF

As many as 86 compounds were identified as the main constituents from AF by ESI-Q-TOF-MS
in the positive and negative ion mode, and the total ion chromatogram was analyzed based on the
standards, fragmentation patterns, literature and the ChemSpider database (Figure 1). The retention
time and mass spectrometry information of each chemical constituent of AF were detected as shown in
Table 1. Eighty-six compounds in the ethanol extract of AF were accurately identified or preliminarily
assigned. These compounds included 13 amino acids or peptides, seven alkaloids, 18 flavanones,
14 flavones, 15 polymethoxyflavonoids, six triterpenoids, nine coumarins, and four other compounds.
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The structures of these compounds were drawn and classified by ChemBio Draw Ultra 14.0, as shown
in Figure S1. Thirty-seven of these compounds were reported in AF for the first time.
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Figure 1. Total ion chromatography of ethanol extract from Aurantii fructus in positive (A) and negative
(B) ion modes.

2.1.1. Amino Acids and Polypeptides

Amino acids are important nutrients needed by the human body and are major primary metabolites
of citrus plants [23], as well as the basic substrates in the biosynthesis of secondary metabolites of many
plants. Although various free amino acids can be detected in different species of citrus, such as lemon,
orange and other fruits [23,24], at present there is still no reports on the amino acid composition of AF.
Owing to the low content and larger polarity of amino acids, it was difficult to obtain their MS2 spectra.
However, based on the high resolution and accuracy of Q-TOF-MS and the accuracy of the measured
molecular weight in the MS data, multiple types of amino acids were found in AF.

Compound 1 displayed a protonated molecule at m/z 147.1130 [M + H]+ with the molecular
formula C6H14N2O2. From the MS data (Table 1), compound 1 corresponds to lysine, which was
isolated previously from citrus fruits [23]. Compound 2 showed a protonated molecule at m/z
147.0748 [M + H]+ with the molecular formula C5H10N2O3. Compound 2 was presumed tentatively
as glutamine [23]. By use of the same method and mass spectrometer formula prediction software
(absolute error <5 ppm), combined with literature references, compounds 3, 4, 5, 6, 7, 8, 9, 10 and 11 can
be identified tentatively as histidine [23], arginine [23,24], proline [23,24], valine [23], isoleucine [23],
leucine [23], tyrosine [23], phenylalanine, and tryptophan [23], respectively (Table 1). In addition,
two polypeptides were found in AF. Compound 12 displayed a protonated molecule at m/z 728.3966
[M + H]+ with the molecular formula C36H53N7O9, and corresponded to citrusin III [25–27], isolated
previously from citrus plants. Compound 13 showed a protonated molecule at m/z 704.3978 [M + H]+

with the molecular formula C34H53N7O9, which is consistent with the literature, and presumed as
citrusin I [26,27]. These 13 compounds were reported in AF for the first time.
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Table 1. Identification of constituents from Aurantii fructus by the high-performance liquid chromatography quadrupole time-of-flight mass spectrometry method in positive
and negative ion modes.

No. TR (min) (ESI+) (ESI−) Fragmentations (ESI+/ESI−) MW (Mea.) MW (MFG) Formula Compound Error b (ppm)

Amino acids and peptides

1 1.221 147.1130 — —/— 146.1057 146.1055 C6H14N2O2 Lysine c −1.25
2 1.329 147.0748 — —/— 146.0495 146.0491 C5H10N2O3 Glutamine c −2.4
3 1.341 156.0761 — —/— 155.0688 155.0695 C6H9N3O2 Histidine c 4.42
4 1.372 175.1184 — —/— 174.1111 174.1117 C6H14N4O2 Arginine c 3.16
5 1.646 116.0709 — —/— 115.0636 115.0633 C5H9NO2 Proline c −2.53
6 2.221 118.0863 — —/— 117.0791 117.0790 C5H11NO2 Valine c −0.62
7 4.445 132.1013 — —/— 131.0941 131.0946 C6H13NO2 Isoleucine c 4.37
8 4.678 132.1016 — —/— 131.0943 131.0946 C6H13NO2 Leucine c 2.43
9 5.813 182.0807 — —/— 181.0734 181.0739 C9H11NO3 Tyrosine c 2.78
10 9.646 166.0862 — —/— 165.0789 165.0790 C9H11NO2 Phenylalanine c 0.54
11 17.321 205.0968 — —/— 204.0895 204.0899 C11H12N2O2 Tryptophan c 1.65
12 42.815 728.3966 — —/— 727.3893 727.3905 C36H53N7O9 Citrusin III c 1.59
13 47.024 704.3978 — —/— 703.3905 703.3905 C34H53N7O9 Citrusin I c 0.07

Alkaloids

14 2.167 138.0549 — —/— 137.0476 137.0477 C7H7NO2 Aminobenzoic acid c 0.39
15 2.490 130.0865 — —/— 129.0792 129.0790 C6H11NO2 Pipecolic acid c −1.82
16 2.865 144.1022 — —/— 143.0950 143.0946 C7H13NO2 Piperidineacetic Acid c −2.33
17 6.876 168.1016 — 150.0853/— 167.0943 167.0946 C9H13NO2 Synephrine a 1.98
18 8.344 152.1071 — —/— 151.0998 151.0997 C9H13NO N-methyltyramine −0.88
19 9.262 268.1027 — —/— 267.0955 267.0968 C10H13N5O4 Adenosine 4.65
20 16.402 196.0970 — —/— 195.0897 195.0895 C10H13NO3 N-Acetylnorsynephrine −0.98

Flavanones

21 22.119 — 741.2261 —/— 742.2334 742.2320 C33H42O19 Naringenin -7-O-triglycoside −1.79
22 24.235 597.1808 595.1663 451.1351, 289.0702/— 596.1736 596.1741 C27H32O15 Eriodictyol-7-O-rutinoside (Eriocitrin) a 0.88
23 24.721 — 449.1101 —/— 450.1174 450.1162 C21H22O11 Eriodictyol-7-O-glucoside c −2.54
24 25.170 597.181 595.1656 451.1353, 289.0701/— 596.1742 596.1741 C27H32O15 Eriodictyol-7-O-neohesperidoside (Neoeriocitrin) a −0.07
25 27.442 581.1858 579.1705 435.1278, 419.1330, 273.0753/— 580.1785 580.1792 C27H32O14 Naringenin-7-O-rutinoside (Narirutin) a 1.21
26 28.694 581.1864 579.1687 435.1285, 419.1327, 273.0755/— 580.1791 580.1792 C27H32O14 Naringenin-7-O-neohesperidoside (Naringin) a 0.13
27 29.021 435.1286 — 273.0751/— 434.1213 434.1213 C21H20O10 Naringenin-7-O-glucoside 0
28 29.633 755.2392 753.2233 —/— C34H42O19 Brutieridin c

29 29.746 611.1968 609.1803 449.1431, 347.0762, 303.0858/— 610.1895 610.1898 C28H34O15 Hesperetin-7-O-rutinoside (Hesperidin) a 0.48
30 31.116 611.1965 609.1811 449.1432, 303.0856/— 610.1892 610.1898 C28H34O15 Hesperetin-7-O-neohesperidoside (Neohesperidin) a 0.98
31 31.726 465.1381 — 303.0861/— 464.1308 464.1319 C22H24O11 Hesperetin-7-O-glucoside 2.24
32 36.794 289.0707 287.0546 —/— 288.0634 288.0634 C15H12O6 Eriodictyol −0.08
33 39.559 595.2017 593.1875 433.1481, 287.0911/— 594.1944 594.1949 C28H34O14 Isosakuranetin-7-O-neohesperidoside (Poncirin) a 0.79
34 41.245 449.1432 — 287.0898/— 448.1360 448.1369 C22H24O10 Isosakuranetin-7-O-glucoside (Isosakuranin) c 2.19
35 43.417 273.0752 271.0610 —/— 272.0680 272.0685 C15H12O5 Naringenin a 1.84
36 44.319 725.2285 723.2127 —/— 724.2212 724.2215 C33H40O18 Melitidin c 0.35
37 45.613 303.0860 301.0730 —/— 302.0788 302.0790 C16H14O6 Hesperetin a 0.9
38 50.531 287.0911 — —/— 286.0838 286.0841 C16H14O5 Isosakuranetin 1.16
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Table 1. Cont.

No. TR (min) (ESI+) (ESI−) Fragmentations (ESI+/ESI−) MW (Mea.) MW (MFG) Formula Compound Error b (ppm)

Flavones

39 20.435 611.1598 — 465.0882, 303.0529/— 610.1526 610.1534 C27H30O16 Quercetin-3-O-rutinoside (Rutin) a 1.29
40 21.337 595.1663 593.1500 —/— 594.1590 594.1585 C27H30O15 Isovitexin-7-O-glucoside (Saponarin) −0.96
41 21.947 625.1762 — —/— 624.1690 624.1690 C28H32O16 Diosmetin-6,8-di-C-glucoside 0.12
42 22.406 625.1750 — —/— 624.1627 624.1690 C28H32O16 Diosmetin-6,8-di-C-glucoside isomer c 2.03

43 23.919 741.2213 — 595.1647, 271.0617/— 740.2141 740.2164 C33H40O19
Apigenin-7-O-rutinoside-4′-O-glucoside c

(Isorhoifolin-4′-O-glucoside) 3.2

44 26.856 463.1240 461.1089 301.0707/— 462.1167 462.1162 C22H22O11 Diosmetin-7-O-glucoside c −1.0
45 27.066 595.1657 — 287.0559/— 594.1584 594.1585 C27H30O15 Luteolin-7-O-rutinoside (Veronicastroside) c 0.06
46 30.431 579.1704 577.1549 271.0596/— 578.1631 578.1636 C27H30O14 Apigenin-7-O-rutinoside (Isorhoifolin) 0.7
47 31.776 609.1802 — 301.0701/— 608.1730 608.1741 C28H32O15 Diosmetin-7-O-rutinoside (Diosmin) 1.89
48 31.594 609.1807 — 301.0716/— 608.1734 608.1741 C28H32O15 Diosmetin-7-O-neohesperidoside (Neodiosmin) 1.18
49 34.740 667.1866 — 301.0718/— 666.1793 666.1796 C30H34O17 Diosmetin-7-O-(6”-O-acetyl) neohesperidoside c 0.41
50 36.519 579.1706 — 271.0600/— 578.1633 578.1636 C27H30O14 Apigenin-7-O-neohesperidoside (Rhoifolin) 0.36
51 41.772 697.1964 — —/— 696.1893 696.1902 C31H36O18 Isovitexin-7-O-xylocoside-2”-O-arabinoside c 1.29
52 46.08 271.0602 — —/— 270.0529 270.0528 C15H10O5 Apigenin −0.37

Polymethoxyflavonoids (PMFs)

53 47.191 329.1022 — 314.0785, 299.0589, 271.0517/— 328.0949 328.0947 C18H16O6 3-Hydroxy-5,7,8-trimethoxyflavone c −0.68
54 48.444 359.1126 — 344.0871, 326.0769, 298.0732/— 358.1053 358.1053 C19H18O7 5-Hydroxy-6,7,3′,4′ -tetramethoxyflavone −0.08
55 49.145 389.1223 — 374.0963, 359.0822, 356.0817, 328.0793/— 388.1150 388.1158 C20H20O8 5-Hydroxy-6,7,3′,4′,5-pentamethoxyflavone c 2.15
56 50.218 373.1271 — 358.1041, 343.0816, 315.0828/— 372.1299 372.1209 C20H20O7 5,7,8,3′,4′-Pentamethoxyflavone (Isosinensetin) 2.8
57 50.857 373.1279 — 358.1050, 343.0926, 312.0896/— 372.1206 372.1209 C20H20O7 5,6,7,3′,4′-Pentamethoxyflavone (Sinensetin) 0.88
58 51.475 389.1220 — 359.0811, 360.0783, 341.0698/— 388.1147 388.1158 C20H20O8 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone (Demethylnobiletin) 2.76
59 51.717 403.1386 — 373.0926, 355.0857, 327.0835/— 402.1313 402.1315 C21H22O8 5,6,7,8,3′,4′ -Hexamethoxyflavone (Nobiletin) a 0.45
60 51.851 433.1495 — 403.1023, 388.0882, 385.0899/— 432.1422 432.1420 C22H24O9 3,5,6,7,8,3′,4′-Heptamethoxyflavone −0.46
61 52.001 343.1170 — 328.0943, 313.0831, 285.0757/— 342.1097 342.1103 C19H18O6 5,6,7,4′-Tetramethoxyflavone 1.74
62 52.135 419.1337 — 389.0973, 361.0911/— 418.1264 418.1264 C21H22O9 5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone c 0.05
63 52.945 359.1129 — 329.0883, 298.0722/— 358.1056 358.1053 C19H18O7 5-Hydroxy-3,6,7,8-tetramethoxyflavone c −1.04
64 52.394 343.1171 — 313.0735, 285.0788, 282.0767/— 342.1198 342.1103 C19H18O6 5,7,8,4′-Tetramethoxyflavone 1.57
65 53.062 373.1276 — 358.1000, 343.0722, 325.0655, 297.0697/— 372.1203 372.1209 C20H20O7 5,6,7,8,4′-Pentamethoxyflavone (Tangeretin) a 1.59
66 53.621 419.1334 — 390.0919, 389.0914, 371.0816/— 418.1261 418.1264 C21H22O9 3-Hydroxy-5,6,7,8,3′,4′-hexamethoxyflavone (Natsudaidai) 0.66
67 54.298 359.1117 — 330.0734, 329.0712, 311.0653/— 358.1044 358.1053 C19H18O7 5-Hydroxy-6,7,8,4′-tetramethoxyflavoned 2.29
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Table 1. Cont.

No. TR (min) (ESI+) (ESI−) Fragmentations (ESI+/ESI−) MW (Mea.) MW (MFG) Formula Compound Error b (ppm)

Triterpenoids

68 24.029 471.2006 — —/— 470.1934 470.1941 C26H30O8 Limonin a 1.53
69 24.621 — 649.2482 —/— 650.2554 650.2575 C32H42O14 Limonin-17-β-D-glucoside 3.15
70 32.610 — 693.2753 —/— 694.2825 694.2837 C34H46O15 Nominin-17-β-D-glucoside c 1.65
71 32.878 — 651.1553 —/— 652.1626 652.1639 C29H32O17 Obacunoic acid-17-β-D-glucoside c 2.08
72 33.619 — 711.2858 —/— 712.2930 712.2942 C34H48O16 Nomilinic acid-17-β-D-glucoside 1.68
73 49.631 471.2013 — —/— 470.1940 470.1941 C26H30O8 Limonin isomer c

Coumarins

74 33.899 301.1065 — —/— 300.0992 300.0998 C17H16O5 Phellopterin 1.78
75 34.139 261.1119 — —/— 260.1047 260.1049 C15H16O4 Meranzin c 0.79
76 37.696 203.0342 — —/— 202.0270 202.0266 C11H6O4 Xanthotoxol a 4.29
77 39.529 287.0909 — —/— 286.0836 286.0841 C16H14O5 Oxypeucedanin 1.85
78 45.872 193.0491 — —/— 192.0419 192.0423 C10H8O4 Scopoletin c 2.05
79 47.999 355.1522 — —/— 354.1449 354.1467 C21H22O5 Epoxybergamottin 4.98
80 49.028 261.1118 — —/— 260.1045 260.1049 C15H16O4 Isomeranzin 1.19
81 53.797 245.1171 — —/— 244.1098 244.1099 C15H16O3 Osthol 0.42
82 55.112 299.1654 — —/— 298.1581 298.1569 C19H22O3 Auraptene a −4.21

Other compounds

83 3.206 — 191.0188 —/— 192.0261 192.0270 C6H8O7 Citric acid 4.57
84 11.989 127.0388 — 109.0289/— 126.0316 126.0317 C6H6O3 5-Hydroxymethyl furfual c 1.11
85 24.460 481.1680 — —/— 480.1607 480.1632 C23H28O11 Paeoniflorin c 5.11
86 28.085 625.2100 — —/— 624.2027 624.2054 C29H36O15 Magnoloside A 4.41

a These compounds were accurately identified with reference standards; b Errors (ppm) were obtained by formula prediction software in the mass spectrometer; c These compounds were
identified in Aurantii fructus for the first time. TR = Retention time; MW (Mea.) = Molecular weight (measured); MW (MFG) = Molecular weight (molecular formula generated).
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2.1.2. Alkaloids

Compound 17 displayed a protonated molecule at m/z 168.1016 [M + H]+ with the molecular formula
C9H13NO2, and MS/MS fragmentation showed peaks at m/z 150.0853 [M + H]+. The fragmentation pattern
of compound 17 agreed with synephrine [28,29], and it was unambiguously identified by comparison with
the standard. Compound 18 showed a protonated molecule at m/z 152.1071 [M + H]+ with the molecular
formula C9H13NO, which is consistent with the literature, and presumed to be N-methyltyramine [28,29].
Compound 19 displayed a protonated molecule at m/z 268.1027 [M + H]+ with the molecular formula
C10H13N5O4, which is consistent with the literature, and presumed to be adenosine [30]. Compound 20
showed a protonated molecule at m/z 196.0970 [M + H]+ with the molecular formula C10H13NO3, which is
consistent with the literature, and presumed to be N-acetylnorsynephrine [29]. In addition, other alkaloids
(absolute error <5 ppm) were analyzed in this experiment. The protonated molecules of compounds 14,
15 and 16 were m/z 138.0549 [M + H]+, m/z 130.0865 [M + H]+, and m/z 144.1022 [M + H]+, respectively.
Due to the high solution of Q-TOF-MS, these compounds were preliminarily assigned to aminobenzoic
acid, pipecolic acid, and piperidine acetic acid, respectively. These three compounds were reported in AF
for the first time.

2.1.3. Flavonones

Flavonones are considered to be the most important compounds obtained from AF. As many
as 18 flavonones were identified by ESI-Q-TOF-MS in this study (Table 1), and among these
flavonones, compounds 22, 24, 25, 26, 29, 30, 33, 35, 37 were unambiguously identified as
eriodictyol-7-O-rutinoside (eriocitrin) [1,2], eriodictyol-7-O-neohesperidoside (neoeriocitrin) [2,31],
naringenin-7-O-rutinoside (narirutin) [1,2,31], naringenin-7-O-neohesperidoside (naringin) [2,30,31],
hesperetin-7-O-rutinoside (hesperidin) [2,30,31], hesperetin-7-O-neohesperidoside (neohesperidin) [1,2,31],
isosakuranetin-7-O-neohesperidoside (poncirin) [1,2], naringenin [2], and hesperetin [2], respectively,
by comparison of the retention time, absorption wavelengths, and m/z values with the reference standards
and the literature.

The remaining compounds could be tentatively assigned by comparing the accurate mass data
(absolute value of error <5 ppm), the formula predictor software, the fragmentation patterns, and the
literature data (Table 1). For example, in the negative mode, compounds 21 and 23 had m/z 741.2261
[M − H]– and m/z 449.1101 [M − H]–, respectively, and the chemical formula were C33H42O19

and C21H22O11, respectively. They were presumed to be naringenin-7-O-triglycoside [2,31] and
eriodictol-7-O-glucoside [32] according to literature. In the positive mode, Compounds 27, 31 and
34 had m/z 435.1286 [M + H]+ with the molecular formula C21H20O10, m/z 465.1381 [M + H]+

with the molecular formula C22H24O11, and m/z 449.1432 [M + H]+ with the molecular formula
C22H24O10, respectively. Their parent nucleus were m/z 273.0751 [M + H]+, m/z 303.0861 [M + H]+,
m/z 287.0898 [M + H]+, respectively, suggesting that they contained glucoside (162 Da). According to
the fragmentation patterns of naringin (26), neohesperidin (30) and poncirin (33), compounds 27, 31
and 34 were tentatively identified as naringenin-7-O-glucoside [33], hesperetin-7-O-glucoside [33],
and isosakuranetin-7-O-glucoside (isosakuranin) [34], respectively (Table 1). Similarly, compounds
32 and 38 were presumed to be eriodictyol [35] and isosakuranetin [35]. Compound 28 displayed
protonated and deprotonated molecules at m/z 755.2392 [M + H]+ and m/z 753.2233 [M − H]–,
respectively, with the molecular formula C34H42O19. It was assigned tentatively to brutieridin [28,36].
Compound 36 showed protonated and deprotonated molecules at m/z 725.2285 [M + H]+ and m/z
723.2127 [M − H]–, respectively, with molecular formula C33H40O18. It was assigned tentatively to
melitidin [28,36]. Among them, naringenin, hesperetin, eriodictyol and isosakuranetin were identified
as the basic nucleus, and flavonones in AF were deduced to be generated based on these nuclei.
Compounds 23, 28, 34 and 36 were reported in AF for the first time.
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2.1.4. Flavones

A total of 14 flavones were identified or preliminarily assigned in the study. Compound 39 was
accurately identified as quercetin-3-O-rutinoside (rutin) [2] by a reference standard and mass spectrometry.
Compounds 40 and 51 displayed protonated molecules at m/z 595.1663 [M + H]+ with molecular
formula C27H30O15 and at m/z 697.1964 [M + H]+ with molecular formula C31H36O18, were assigned
to isovitexin-7-O-glucoside (saponarin) [31,32], and isovitexin-7-O-xylocoside-2”-O-arabi-noside [31],
respectively. Compounds 43, 46 and 50 contained protonated molecules at m/z 741.2213 [M + H]+,
m/z 579.1704 [M + H]+ and m/z 579.1706 [M + H]+, respectively. With the same MS2 fragment
ion at m/z 271 [M + H]+ for these three compounds, it was identified to be apigenin (52) [35]
as a nucleus structure according to the literature data. In positive ion mode, it was presumed
that the two compounds contained rutinoside or neohesperidoside because of the low weight
of 308 Da, and the abundance of the protonated molecule at m/z 271 [M + H]+ in compound
46 was lower than compound 50. Based on the above information and literature reports [2,27],
it was speculated that compounds 46 and 50 were apigenin-7-O-rutinoside (isorhoifolin) [28] and
apigenin-7-O-neohesperidoside (rhoifolin) [28], and compound 43 was preliminarily assigned to
apigenin-7-O-rutinoside-4′-O-glucoside (isorhoifolin-4′-O-glucoside) [37]. Compounds 41 and 42
contained the same protonated molecules at m/z 625 [M + H]+ with the molecular formula C28H32O16,
and were presumed to be isomers of diosmetin-6,8-di-C-glucoside [28] according to the literature.
Compounds 44, 47, 48 contained a same MS2 ion fragment of m/z 301 [M + H]+, and their protonated
molecules were at m/z 463.1240 [M + H]+, m/z 609.1802 [M + H]+, and m/z 609.1807 [M + H]+,
respectively. According to the previous fragmentation patterns combined with literature reports,
these four compounds were speculated to be diosmetin-7-O-glucoside, diosmetin-7-O-rutinoside
(diosmin) [28], and diosmetin-7-O-neohesperidoside (neodiosmin) [28], respectively. Compound 45
was tentatively assigned to luteolin-7-O-rutinoside (veronicastroside) [36,37]. Compound 49 displayed
protonated molecules at m/z 667.1886 [M + H]+ with molecular formula C30H34O17, and it was
speculated to be diosmetin-7-O-(6”-O-acetyl) neohesperidoside according to the MS data (Table 1).
The compounds 42, 43, 44, 45, 49, 51 were reported in AF for the first time.

2.1.5. Polymethoxyflavonoids

Polymethoxyflavonoids (PMFs) are based on the core aglycone structure that is modified by different
numbers and/or positions of methoxyl/hydroxyl substituents [18]. The molecular weights of PMFs can be
calculated in advance by adding n× 30 and/or n× 16 according to the basic flavone structure at 222 Da.
Then, the chemical formula and the corresponding molecular weight of every possible PMF isomer can be
designated, which is very helpful in speculating the structures of PMFs in the complex extracts of AF.

In the study, PMFs were analyzed in the positive ion mode due to the ideal protonated
effect for these compounds. Compounds 59 and 65 were identified undisputed as
5,6,7,8,3′,4′-hexamethoxyflavone (nobiletin) [2,4] and 5,6,7,8,4′-pentamethoxyflavone (tangeretin) [2,4],
respectively, based on the standard substances, retention times, accurate molecular weight and
fragmentation patterns. Generally, these compounds tend to lose nCH3· and produce the ion fragment
[M + H − n × 15]+, and on this basis, the molecular weights that are easy to lose include CH4 (16 Da),
H2O (18 Da), CO (28 Da), CH4 + CH3 (31 Da), H2O + CH3·(33 Da), CO + CH3 (43 Da), CO2 (44 Da),
H2O + CO (44 Da) and CO + H2O + CH3 (59 Da) [18,38]. For example, tangeretin contained the
protonated molecules at m/z 373 [M + H]+ with molecular formula C28H32O16. In addition, prominent
ions at m/z 358.1000 [M + H-CH3]+, m/z 343.0722 [M + H-2CH3]+, m/z 325.0655 [M + H-2CH3-H2O]+,
and m/z 297.0697 [M + H-2CH3-H2O-CO]+ show a loss of 15 Da, 30 Da, 48 Da, and 76 Da, respectively.

According to the fragmentation patterns of PMFs, the literature, and the MS data (Table 1), 3-
hydroxy-5,7,8-trimethoxyflavone (53) [18], 5-hydroxy-6,7,3′,4′-tetramethoxyflavone (54) [2,39], 5-
hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (55) [2,18], 5,7,8,3′,4′-pentamethoxyflavone (56)
(isosinensetin) [2,18], 5,6,7,3′,4′-pentamethoxyflavone(57) (sinensetin), 5-hydroxy-6,7,8,3′,4′-
pentamethoxyflavone(58) [18,39], 3,5,6,7,8,3′,4′-heptamethoxyflavone (60) [2,18], 5,6,7,4′-
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tetramethoxyflavone (61), 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (62) [18], 5-hydroxy-3,6,7,8-
tetramethoxyflavone (63) [18], 5,7,8,4′-tetramethoxyflavone (64) [18,39], 3-hydroxy-5,6,7,8,3′,4′-
hexamethoxyflavone (66) (natsudaidai) [7,39], and 5-hydroxy-6,7,8,4′-tetramethoxyflavone (67) [7,39],
were identified or assigned tentatively. Compounds 53, 55, 62 and 63 were reported in AF for the
first time.

2.1.6. Triterpenoids

Triterpenoids, especially limonoids, are often reported in citrus plants. Studies have shown that they
have good anti-tumor activity, and have antifeedant activity to insects [40]. A total of six triterpenoids
were identified or speculated in AF by Q-TOF-MS analysis. Compound 68 was identified certainly as
limonin [41] by comparing with a reference substance, the retention time and the precise molecular weight.
Compound 73 was speculated to be an isomer of limonin [41] due to the same protonated molecule at m/z
471 [M + H]+ with the molecular formula C26H30O8. Compound 69 showed a deprotonated molecule
at m/z 649.2482 [M −H]− with chemical formula C32H42O14, which was consistent with the literature,
and presumed to be limonin-17-β-D-glucoside [41,42]. Similarly, Compound 70 displayed a deprotonated
molecule at m/z 693.2753 [M − H]− with the chemical formula C34H46O15, and it can be presumed
to be nominin-17-β-D-glucoside [42]. Compounds 71 and 72 were assigned tentatively to obacunoic
acid-17-β-D-glucoside [42] and nomilinic acid-17-β-D-glucoside [41,42], respectively. Compounds 70, 71
and 73 were reported in AF for the first time.

2.1.7. Coumarins

A sum of nine compounds was identified or tentatively speculated as coumarins in the
study. Compounds 76 and 82 were identified accurately as xanthotoxol [32,43] and auraptene [32],
respectively, based on retention times, accurate molecular weights and comparison with reference
substances. Compound 74 was preliminarily deduced as phellopterin [32,43] at a deprotonated
molecule of m/z 301.1065 [M + H]+ with the chemical formula C17H16O5. Compound 75 and
80 contained the same deprotonated molecule (m/z 261 [M + H]+) with the chemical formula
(C17H16O5), and they were identified tentatively as meranzin [44] and isomeranzin [36], respectively.
Similarly, compounds 77, 78, 79 and 81 were tentatively identified as oxypeucedanin [6,32,43],
scopoletin [34], epoxybergamottin [6,43], and osthol [6,32,43], respectively, based on MS information
and literature data. Compounds 75, 78 were reported in AF for the first time.

2.1.8. Other Compounds

Compound 83 showed a deprotonated molecule at m/z 191.0188 [M−H]− with chemical formula
C6H8O7, and was identified as citric acid [4,30], which commonly exists in citrus plants. Compound 84
displayed a protonated molecule at m/z 127.0388 [M + H]+ and MS2 ions at m/z 109.0289 [M + H]+, and was
tentatively deduced to be 5-hydroxymethyl furfual [37]. Compound 85 showed a protonated molecule
at m/z 481.1680 [M + H]+ with the chemical formula C23H28O11, and was assigned to paeoniflorin [31].
Compound 86 displayed a protonated molecule at m/z 625.2100 [M + H]+ with the chemical formula
C29H36O15, and was tentatively deduced as magnoloside A [30]. Compound 84 and 85 were reported in
AF for the first time.

2.2. Analysis of the Constituents of Volatile Oils Obtained from AF

The volatile components of AF were extracted by supercritical fluid extraction technology (SFE),
which is widely used in the extraction of low-pole components with the advantages of low energy
consumption, no pollution, high extraction rate and good product purity. Separation of particular
volatile components was carried out by means of the optimal GC-MS method, as shown in Figure 2.
Then, the AF volatiles were identified by the comparison of their mass spectra with those recorded
in the National Institute of Standards and Technology mass spectral library (NIST05a.L). A total of
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18 volatile compounds [1,8] were identified, as shown in Table 2. The structures of these compounds
were drawn as shown in Figure S2.

The data in Table 2 illustrate the relative amount of each component detected in the AF volatiles
(calculated with their relative peak areas). D-limonene (92) and linalool (96) were identified as the main
aromatic components. In additional, volatile constituents such as (−)-α-pinene (88), α-Phellandrene (89),
3-carene (90), Ocimene (93), 4-carene (94) Cyclohexene (95), and terpineol (97) were commonly found
in AF by comparing literature data [1,8]. Four volatile constituents included thymol (98), copaene (100),
1.6-cyclodecadiene (101) and (+)-aromadendrene (103), which were identified in AF for the first time.
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Table 2. Identification of 18 aromatic constituents from Aurantii fructus by the GC-MS method.

No. TR (min) Compound Formula Relative Amount (%)

87 3.522 p-Xylene C8H10 0.6

88 5.031 (−)-α-Pinene
(−)-α-Pinene C10H16 2.0

89 6.970 α-Phellandrene C10H16 1.5

90 7.128 3-Carene
3-Carene C10H16 0.4

91 7.558 Benzene C6H6 0.8
92 7.575 D-Limonene C10H16 43.1
93 8.318 Ocimene C10H16 0.6

94 8.567 4-Carene
4-Carene C10H16 5.0

95 9.431 Cyclohexene C6H10 0.6
96 9.831 Linalool C10H18O 26.4
97 12.382 Terpineol C10H18O 2.9
98 15.377 Thymol c C10H14O 2.0
99 17.425 Limonene oxide C10H14O 0.1

100 17.581 Copaene c

α-Copaene C15H24 1.0

101 20.222 1.6-Cyclodecadiene c C10H16 7.9
102 21.423 Naphthalene C10H8 1.4

103 22.159 (+)-Aromadendrene c

(+)-Aromadendrene C15H24 0.8

104 24.807 2-Naphthalenemethanol C11H10O 3.0
c These compounds were identified in Aurantii fructus for the first time.
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2.3. Selection of the Quantitative Chemical Markers from AF

The effective constituents obtained from AF are complex and various, according to a previous
qualitative study. For the selection of quantitative chemical markers, four main principles
are followed [45]. First, they are components absorbed in vivo. Generally, the components
absorbed in vivo are considered as potential directly effective materials with therapeutic effects.
Second, the quantitative markers should also exhibit the same or similar activity as indicative of the
TCM. Third, in consideration of the quality control of TCM, quantitative markers should be found from
different individual samples in the TCM. Another important point is that the quantitative markers of
different samples should be taken into account to ensure the improvement of practicality, based on the
Chinese Pharmacopoeia (2015 edition).

In previous studies, flavanones such as naringenin, naringin, narirutin, neohesperidin, hesperidin,
neoeriocitrin and poncirin were identified as the main bioactive components absorbed in rat plasma
after oral administration of AF extract [5,46,47]. Moreover, PMFs, such as nobiletin and tangeretin, were
also absorbed as constituents, because they were found in rat plasma [16,46]. Many investigations have
explored that the main pharmacological effects of these flavonoids, and mainly focus on regulating
gastrointestinal dysmotility [12,14,15], which was consistent with the traditional clinic application
of AF. These compounds were easily detected from different samples of AF, but only naringin and
neohesperidin are defined as the chemical markers in the Chinese Pharmacopoeia (2015 edition).
Hence, the quality control for AF should be comprehensively considered and established based on
multiple pharmacodynamic substances. Except for naringin and neohesperidin, ten other components
(eriocitrin, neoeriocitrin, narirutin, hesperidin, poncirin, naringenin, hesperetin, nobiletin, tangeretin,
auraptene) were selected as quantitative chemical markers in order to establish a comprehensive
quality control for AF.

2.3.1. Optimization of Chromatographic Conditions

Due to the variety and complexity of the constituents in AF, it is necessary to establish a
chromatographic separation method with specificity for the analysis of all the chemical markers.
Therefore, several experimental parameters that influence the separation performance of the proposed
HPLC method were investigated and optimized in the study.

For example, acetonitrile-water was selected as the mobile phase, due to its better separation of
peaks compared with methanol-water in this study, and formic acid was added in the mobile phase
to improve the tail behavior of the flavonoids. Full-wavelength scanning was performed during the
analysis of AF because of the difference in maximum absorption wavelength of these compounds.
The main absorption wavelengths of these markers are 273 nm, 284 nm, and 325 nm, respectively.
According to the analysis of preliminary experiments, the final wavelength was set to 284 nm, which
exhibited good detection of these chemical markers. Moreover, the flow rate of the mobile phase,
column temperature and injection volume were also optimized via pre-experience at an efficient level,
and the solvents saved. These markers were well separated and directly determined, as shown in
Figure 3, which was conducive to the HPLC quantitative analysis of AF.
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Figure 3. HPLC chromatograms of 12 chemical markers (A) and an Aurantii fructus sample (B). (1. eriocitrin,
2. neoeriocitrin, 3. narirutin, 4. naringin, 5. hesperidin, 6. neohesperidin, 7. poncirin, 8. naringenin,
9. hesperetin, 10. nobiletin, 11. tangeretin, 12. auraptene).

2.3.2. Methodological Verification

Calibration and verification of analytical methods are very important for quality assurance (QA)
and quality control (QC) in practical applications. The feasibility of the chromatographic method for
determining these bioactive markers should be evaluated via methodological verification including
linearity, the limits of detection (LOD) and quantification (LOQ), precision, stability, repeatability and
recovery. The analysis was performed by HPLC, and the linearity, precision, accuracy, recovery of each
bioactive marker, and the stability of this method were analyzed as listed in Table 3.

The high-correlation coefficient values (r > 0.9995) obtained indicated that there were good linear
correlations between the concentrations of the relative standard deviations (RSDs) of investigated
compounds and their peak areas within the test concentrations, and the obtained LODs and LOQs
were less than 0.21 µg/mL and 0.67 µg/mL, respectively. The precision, repeatability, and stability
for each compound was less than 1.97%, 3.50%, and 3.38%, respectively. In addition, the developed
method showed good recoveries at a range of 98.35%–102.95%. The results indicated that the HPLC
method was efficient, accurate, and sensitive for quantitative determination of the major chemical
markers in AF.
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Table 3. Linearity, LOD, LOQ, precision, repeatability, stability and recovery of the 12 chemical markers.

Chemical Markers Regression Equation Linearity
(µg/mL)

LOD
(µg/mL)

LOQ
(µg/mL) r Precision

RSD (%)
Repeatability

RSD (%)
Stability
RSD (%)

Recovery
(mean ± SD)

Eriocitrin Y = 17.787X + 0.7195 0.19–39.00 0.06 0.15 0.9999 1.12 0.93 3.17 101.35 ± 1.02
Neoeriocitrin Y = 14.754X - 3.5435 0.38–190.00 0.09 0.33 0.9995 1.65 1.87 3.38 101.89 ± 0.33

Narirutin Y = 25.375X + 13.516 0.41–205.00 0.11 0.40 0.9998 1.56 0.84 0.19 102.36 ± 0.21
Naringin Y = 18.107X + 9.3102 0.44–880.00 0.12 0.38 0.9998 1.97 0.89 0.21 100.98 ± 0.87

Hesperidin Y = 15.396X + 3.6443 0.74–740.00 0.21 0.67 0.9997 1.40 0.83 0.20 102.95 ± 1.21
Neohesperidin Y = 26.069X + 10.197 0.42–840.00 0.10 0.39 0.9999 1.23 0.83 0.09 101.05 ± 1.92

Poncirin Y = 17.126X + 5.1686 0.11–88.00 0.03 0.09 0.9995 0.87 0.72 0.26 100.77 ± 0.65
Naringenin Y = 37.591X + 5.2889 0.06–22.00 0.02 0.06 0.9999 0.86 1.41 0.26 98.35 ± 0.55
Hesperetin Y = 47.777X + 4.2667 0.06–22.50 0.02 0.06 0.9999 0.83 1.99 1.98 99.07 ± 0.73
Nobiletin Y = 38.995X + 2.8379 0.20–39.00 0.05 0.18 0.9999 0.86 2.58 2.23 102.22 ± 1.24

Tangeretin Y = 41.882X + 5.1345 0.19–38.00 0.05 0.17 0.9999 0.90 3.50 0.38 101.99 ± 0.90
Auraptene Y = 11.111X + 1.7305 0.18–36.00 0.04 0.16 0.9999 0.81 1.13 1.29 98.36 ± 1.59

2.3.3. Quantitative Determination of the Chemical Markers in AF

Different samples of AF (Table S1) were analyzed by the proposed method to determine the
12 chemical markers by HPLC. The quantitative results are presented in Figure 4A. Naringin and
neohesperidin were the main constituents, the contents of which varied from 80.40–106.81 mg/g,
and 26.97–102.3 mg/g in 11 samples, respectively. All the samples were in accordance with the
standards of the Chinese Pharmacopoeia except for batch 11, because it might be a variety. In addition,
it was found that narirutin, hesperidin, poncirin, and neoeriocitrin were also considerably varied
from 2.87-9.15 mg/g, 5.10–38.14 mg/g, 1.80–9.40 mg/g, and 1.27–6.48 mg/g, respectively (Table S2).
Meanwhile, the content of 12 markers in 11 samples had a relatively large variation. Therefore, it was
recommendable to evaluate the quality in different samples of AF.

Hierarchical cluster analysis was performed based on the quantitative determination results
from the different samples of AF in order to finding relatively homogeneous clusters. The contents
of the 12 components in AF samples were defined as the variables in the analysis to differentiate
and classify the 11 samples. In the dendrogram, the quantitative relationship reflected the degree of
similarity between different AF samples. As shown in Figure 4B, 11 samples could be divided into
three main clusters. Generally, samples with common contents of the compounds, such as samples 1, 2,
3, 4, 5, and 10, were arranged to be a clusters (I) in normal content range of the 12 chemical markers.
Higher contents of the markers in the samples 6, 7, 8 and 9 were gathered to clusters II with high
quality. Sample 11 was a single, generated as clusters III. Because of the huge difference content of the
main chemical markers, naringin and neohesperidin in the sample were lower than other samples,
but with a higher content of hesperidin (Figure 4A). The different samples of AF were discriminated
by hierarchical cluster analysis for quality evaluation.Molecules 2018, 23, x FOR PEER REVIEW  16 of 21 
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3. Materials and Methods

3.1. Materials, Chemicals and Reagents

Eleven samples of Aurantii fructus (AF) samples from different habitats were collected and
identified by Associate Professor Tang Qi. Reference standards included synephrine, eriocitrin,
neoeriocitrin, rutin, narirutin, naringin, hesperidin, neohesperidin, limonin, xanthotol, poncirin,
naringenin, hesperetin, nobiletin, tangeretin and auraptene with a purity of over 98% were purchased
from Yuan-ye Bio-Technology Co., Ltd. (Shanghai, China). Chromatographic grade formic acid,
methanol, ethanol and acetonitrile were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China) and used for extractive and analytical procedures.

3.2. HPLC-Q-TOF-MS Conditions

Mass spectrum identification was performed on an Agilent 1290 HPLC system (Agilent
Technologies, Palo Alto, CA, USA) combined with an accurate Agilent 6530 Q-TOF-MS mass
spectrometer. Chromatographic separations used an XAqua C18 (2.1 × 150 mm, 5 µm, Agilent
Technologies, Acchrom Technologies Co., Ltd, Beijing, China), the mobile phase A was deionized water
(0.1% formic acid), and the mobile phase B was acetonitrile. The injection volume was 10 µL and the
flow rate was 0.7 mL/min. The detection wavelength was set to 284 nm and the column temperature
was maintained at 30 ◦C. The gradient elution procedure was optimized as follow: 0~10 min, 0~3.5% B;
10~13 min, 3.5~5% B; 13~18 min, 5~15% B; 18~21 min, 15~17.5% B; 21~32 min, 17.5~22% B; 32~44 min,
22~31% B; 44~58 min, and 31~90% B. Then, the effluent of the HPLC mobile phase was split (10:1)
and guided into the electrospray ionization (ESI) source. MS conditions were performed as follow:
Capillary voltage, 3500 V; nebulizer pressure, 50 psi; nozzle voltage, 1000 V; flow rate of drying gas,
6 L/min; temperature of sheath gas, 350 ◦C; flow rate of sheath gas, 11 L/min; skimmer voltage, 65 V;
OCT1 RF Vpp, 750 V; fragmentor voltage, 135 V. The mass information was recorded in the range of
m/z 100–1000 Da. The MS2 data of the selected targets were analyzed by regulating multilevel collision
energy (18–45 eV). Data handling of the chemical compounds of AF was analyzed by the Mass Hunter
Qualitative Analysis B.04.00.

3.3. GC-MS Conditions

GC-MS analysis of volatile oils was performed on an Agilent 6850 Network GC System coupled to
an Agilent 5975C VL Mass Selective Detector (MSD). An HP-5 MS capillary column (30.0 m × 250 µm
× 0.25 µm) was used for the separation. Helium (purity 99.99%) was employed as the carrier gas,
with a flow rate of 3.0 mL/min. The splitting ratio was set at 10:1. The injection volume was 1.0 µL
and the interface temperature to 250 ◦C. The MS source temperature was set to 230 ◦C and the MS
quadrupole temperature to 150 ◦C. The mass spectra plot was acquired using the full scan monitoring
mode with a mass scan range of m/z 45–450. The column temperature was initially set at 50 ◦C (3 min
held) and programmed to rise at 5 ◦C/min to 220 ◦C (3 min held), 5 ◦C/min to 250 ◦C (3 min held),
and 5 ◦C/min to 310 ◦C (3 min held).

3.4. HPLC Quantitative Determination Conditions

An Agilent 1260 HPLC system with a ZORBAX SB-C18 column (4.6 mm × 250 mm, 5 µm, Agilent
Technologies, Palo Alto, CA, USA) was employed for the determination of chemical markers in AF.
The mobile phases, injection volume, flow rate, detection wavelength and column temperature were
consistent with Section 3.2, but with a little difference in the elution procedure as follows: 0~5 min,
10~15% B; 5~10 min, 15~18% B; 10~15 min, 18~20% B; 15~20 min, 20~22% B; 20~25 min, 22~22% B;
25~30 min, 22~25% B; 30~32 min, 25~28% B; 32~35 min, 28~50% B; 35~38 min, 50~50% B; 38~40 min,
50~65% B; 40~43 min, 65~90% B; 43~48 min, 90~90% B; 48~50 min, 90~10% B; 50~55 min, 10% B.
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3.5. Preparation of Samples and Standards

3.5.1. Preparation of AF Extract (Ethanol Solution)

The conditions were optimized in our previous study via response surface methodology. In short,
50 mg of each AF sample was added to 20 mL of 58% ethanol, and extracted for 17 min in a 70 ◦C
water bath by use of an ultrasonic instrument with a constant power (200 W, 40 Hz). After the process,
the solution weight was re-adjusted and complement, then the extract solution was filtered through a
0.22 µm membrane for further direct Q-TOF-MS analysis and HPLC determination. This extraction
procedure was fast, low energy, low solvent consumption, and low toxicity, and could be considered to
be an economical preparation method.

3.5.2. Preparation of AF Extract (Volatile Oils)

A 500 g AF sample was added into the supercritical fluid extraction device. The conditions of the
device included temperature (50 ◦C), pressure (20 Mpa), time (2 h) and flow of CO2 (2 L/h), and were
improved. Then, the volatile oils were sealed immediately for direct GC-MS analysis. This extraction
method was a friendly procedure with low volatility and no toxicity.

3.5.3. Preparation of Mixed Standard Solution

The standards of eriocitrin (0.39 mg), neoeriocitrin (0.38 mg), narirutin (0.41 mg), naringin
(0.44 mg), hesperidin (0.37 mg), neohesperidin (0.42 mg), poncirin (0.44 mg), naringenin (0.44 mg),
hesperetin (0.45 mg), nobiletin (0.39 mg), tangeretin (0.38 mg), and auraptene (0.36 mg) were dissolved
in 0.5 mL of methanol to obtain the mixed standard solution. A series of concentration gradients were
prepared by serial dilution and were filtered through a 0.22 µm membrane and directly determined.

3.6. Validation of Quantitative Analysis HPLC

To determine the limits of detection and quantification, methanol stock solution containing the
12 reference compounds was diluted into a series of appropriate concentrations with the same solvent,
and aliquots of the diluted solutions were injected into HPLC for analysis. The limits of detection
(LOD) and quantification (LOQ) under the present chromatographic conditions were determined at
S/N (the ratios of signal to noise) of three and 10, respectively. Calibration curves were fitted by HPLC
response for at least seven appropriate concentrations in triplicate of each markers. The precision
was investigated by analyzing a proper calibration sample with the chromatographic system and
repeated six times. For repeatability, the mixed solution was examined for six replicates within one day.
To investigate the stability of the sample, the sample solution was analyzed at different time points
(0, 1, 2, 4, 6, 12, 18, and 24 h). To evaluate the accuracy of the analytical method, the recovery study
was measured by analyzing spiked samples. A certain amount of reference substances (low, medium,
and high concentrations) were added into a certain amount of AF samples, respectively, and then were
extracted and analyzed under the proposed method.

4. Conclusions

A sum of 104 compounds were identified or tentatively assigned in this study from ethanol extraction
and volatile oils of AF by HPLC-Q-TOF-MS and GC-MS methods. The detailed chemical composition
of AF was systematically illustrated and classified by comparing retention times, MS spectra of exact
mass, fragmentation behaviors and data previously reported on this issue. Among them, 41 compounds
were reported in AF for the first time. This provides the basic chemical data for further pharmacological
and clinical research. Then, the direct quantitative determination of 12 biochemical markers for AF was
efficiently established by the HPLC method that could be suitable for the quality control of AF. The main
advantage of the proposed method is the low required amount of the sample, low organic solvents, and low
energy consumption, from sample preparation to analytical procedures. Thus, it could be considered an
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efficient method for analysis and determination of AF samples [22,48]. We anticipate that this research
will become an important basis for better comprehension of the pharmacological profiles and for practical
application of the QA and QC of AF, which should be developed into a high quality traditional Chinese
medicine and health functional foods in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/9/2189/
s1, Figure S1: Structures of 86 compounds form ethanol extract of Aurantii fructus. Figure S2: Structures of
18 compounds in volatile oils of Aurantii fructus. Table S1: 11 samples of Aurantii fructus obtained from different
habitats. Table S2: Contents of chemical markers in Aurantii fructus from11 different samples (mg/g).
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