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Abstract—Location-based information dissemination has be-
come increasingly popular in the recent years. Extensive research
work has been done on the matching of interested parties to event
information via publish/subscribe systems. However, the rich con-
tent types of such location-specific data, especially when the data
are presented in multimedia form, requires efficient methods with
low cost to transfer the content to the subscribers. In this paper,
the potential of utilising human centric device-to-device (D2D)
communications to disseminate location-based event content is
investigated. The human centric D2D data dissemination process
is formulated as a task assignment problem, which can be
modelled as a Integer Quadratically Constrained Quadratic
Programming (IQCQP) problem. Since the IQCQP problem is
in general NP-hard, a sub-optimal polynomial framework named
EventMe is proposed, which is able to compute a solution with
guaranteed lower bounds on data distribution capacity in terms
of throughput. Through extensive evaluation using several real
world datasets, it has shown that EventMe is able to improve
the network throughput by 100%-500% compared to baseline
methods. A prototype is developed and shows that it is practical
to implement EventMe on mobile devices by generating minimal
control data overhead.

I. INTRODUCTION

With the prevalence of social networks and mobile de-
vices, location-based publish/subscribe techniques [1–3] have
become popular for disseminating information about location-
based events, such as concerts, shows, exhibitions and sales.
The ubiquitous cameras and multimedia systems (e.g. Per-
sicope [4]) enable publishers to produce rich content (e.g.
images or short videos) to promote their events and attract
more participants. However, the expensive and increasingly
congested cellular network in the urban areas makes it both
costly and slow for subscribers to obtain the multimedia
data, whose size could range from several Megabytes to even
Gigabytes. Therefore, techniques to assist location-based event
content distribution (LECD) are more than desired.

Human centric device-to-device (D2D) communications [5,
6] can be considered as a promising solution, which utilises
human power to proactively collect or deliver data to event
subscribers through cheap communication channels such as
WiFi. Human centric approaches have been widely used
in areas such as mobile crowdsourcing/crowdsensing (MCS)
and involve recruiting so-called ‘workers’ to complete data
collection and sensing tasks [7, 8], which are two critical tasks
in various communication networks [9, 10]. In these systems,
the following three types of roles, including requester, worker
and MCS platform, are usually assumed:

Fig. 1. An example of a human centric D2D-enabled LECD system.

• Requesters want to find some other people (workers) to
help them complete tasks, e.g., collecting data, obtaining
information. In order to do this, they would send requests
including the details of the tasks to the MCS platform.
In LECD systems, the requesters are therefore the sub-
scribers who request location-based event content.

• Workers are those who would like to carry out tasks for
others. They would indicate their interests to the tasks
who information can be obtained from the MCS platform.
In LECD systems, workers carry out data dissemination
tasks for subscribers by adopting human centric D2D
communications.

• MCS platform matches requesters’ requests and work-
ers’ preferences and assigns tasks to workers based on
criteria such as lower running cost or maximise benefits in
terms of throughput or spatial coverage [7, 8]. In LECD
systems, the platform assigns data distribution tasks to
workers with the aim to maximise data distribution ca-
pacity of the system.

Based on these settings, the ideal is to design a task
assignment algorithm to maximise the data distribution ca-
pacity (throughput) of the system. However, the existing
methods [7, 8] used for solving task assignment problems
in mobile systems cannot be directly employed due to the
following challenges pertaining to the D2D-enabled LECD
systems:
• Resource constraints. The size of the data delivered by

workers may be limited due to 1) the limited storage of
mobile devices and 2) time constraints for the workers to
get requested data and fulfil tasks.

• Shared event data by subscribers. Event data are usu-
ally popular and shared by many subscribers. Therefore,



given limited resources, delivering the same data to more
subscribers would increase the system capacity.

• Shared tasks by workers. More than one workers would
work on a same task, thus causing the potential problems
of delivering unnecessary duplicated data.

These challenges would potentially cause duplicated efforts
by the workers and under-utilised storage and communication
capacity of the workers. In this paper, we model the task as-
signment problem in D2D-enabled LECD systems as an inte-
ger quadratically constrained quadratic programming (IQCQP)
problem. Due to the complexity of the IQCQP model and the
difficulties to scale, an efficient framework called EventMe
is proposed. To the best of our knowledge, EventMe is the
first framework which models and solves the task assignment
problem for D2D-enabled LECD systems. The detailed con-
tributions of this paper include:
• We formulated the task assignment problem in D2D-

enabled LECD systems as an integer quadratically con-
strained quadratic programming (IQCQP) problem, with
the purpose of maximising the content distribution capac-
ity in terms of throughput.

• Since the IQCQP problem is NP-hard in general, we
develop EventMe, which computes a slightly sub-optimal
solution by applying three polynomial-time algorithms
to specially designed data structures. We also show that
it guarantees a 1/2 lower bound for the optimal data
distribution capacity of the system.

• To evaluate the practical performance of EventMe, we
perform extensive trace driven simulations using vari-
ous datasets. In addition, we develop an Android-based
prototype to study the practical issues of the framework
through real-life experiments. The results demonstrate
that EventMe significantly improves the content distri-
bution capacity compared with the baseline methods.

The remainder of this paper is organised as follows:
Section II presents the model of task assignment in D2D-
enabled LECD systems. The proposed EventMe framework
is discussed in Section III. Evaluation results are presented in
Section IV, and we finally conclude this paper in Section V.

II. TASK ASSIGNMENT MODELLING IN HUMAN CENTRIC
D2D-ENABLE LECD SYSTEMS

Fig.2 shows an example of multiple workers performing
data distribution tasks for multiple subscribers. Workers could
obtain data from WiFi Access Points (AP), the maximum
amount of data they would deliver to each subscriber are
decided by either subscribers or workers in advance. The
amount of data obtained from WiFi is decided by workers,
which could be influenced by both the time constraints due to
human schedules or the storage capacity of workers’ devices.
Since a subscriber may meet multiple workers and vice versa,
same data could be received from different workers, thus
resulting in data duplication and storage waste. In order to
solve these issues, we formulate the task assignment problem
as follows.

Fig. 2. An example of task completion sequence in a system with three
subscribers (1, 2, 3) and three workers (A, B, C).

A. System Modelling and Problem Formulation

Table I summarises a list of essential notations used to
present the model. S and W are the set of subscribers and
workers. The event related data is divided into a set of data
chunks C, where each data chunk in C will be downloaded by
the workers through WiFi APs, and transmitted to subscribers
through D2D communications. T is used to regulate the
temporal order of the tasks. L shows which data chunks a
worker carries and M shows which data a worker delivers to
a subscriber. O and P represent the constraints due to limited
storage or subscribers’ requests.

As presented below, an integer quadratically constrained
quadratic program (IQCQP) can be used to model the data
distribution task assignment problem in D2D-enable LECD
systems. By solving the IQCQP problem, the data distribu-
tion capacity of the LECD systems could be maximised by
avoiding the data duplication issues:

maximize
L, M

K∑
k=1

I∑
i=1

J∑
j=1

Mk
i,jLk

i,j , (1a)

subject to
K∑

k=1

Lk
i,j ≤ Oi,j ,∀ i, j, (1b)

K∑
k=1

Mk
i,j ≤ Pi,j ,∀ i, j, (1c)

Lk
i,j(1− Lk

i′,j) = 0, ∀ Ti,j < Ti′,j , i, j, k,
(1d)

Mk
i,jMk

i,j′ = 0, ∀ i, j 6= j′, k, (1e)

Lk
i,j ,Mk

i,j ∈ {0, 1},∀ i, j, k. (1f)

The control variables in the problem are two 0-1 matrices Mk
i,j

and Lk
i,j while Oi,j , Pi,j and Ti,j are decided by subscribers

and workers, which are known in advance. The details of each
matrix is presented in Table I. We can see that the objective
function (1a) aims to optimise the data delivery throughput
by maximising the total number of unduplicated data chunks
received by all subscribers. Constraint (1b) regulates the
number of data chunks carried by an arbitrary worker Wj

to be less than their desired amount. Constraint (1c) restricts
the number of data chunks delivered from Wj to Si to be less
than their planned data size. Constraint (1d) means that in
order to fully utilise either the WiFi or storage capacity, any



TABLE I
LIST OF NOTATIONS

S The set of all subscribers, S = {Si}, where
i = [1, . . . , I], I = |S|

W The set of all workers, W = {Wj}, where
j = [1, . . . , J ], J = |W|

C The set of all data chunks of the event content, C = {Ck}, where
k = [1, . . . ,K],K = |C|

T A matrix ∈ RI×J . Ti,j represents the time of performing data
delivery task between the ith subscriber and the jth worker.

L A 0-1 matrix ∈ RI×J×K . Lk
i,j = 1 indicates that worker Wj

has data chunk ck when meeting subscriber Si and vice versa.
M A 0-1 matrix ∈ RI×J×K . Mk

i,j = 1 indicates that worker Wj

decides to deliver data chunk Ck to subscriber Si and vice versa.
O A matrix ∈ RI×J . Oi,j represents the maximum data chunks

worker Wj carries before performing tasks at Ti,j .
P A matrix ∈ RI×J . Pi,j represents the planned amount of data to

be delivered to subscriber si from worker Wj .

given data chunk Ck can only be downloaded at most once
by each Wj (i.e. without duplicate data). Similarly, constraint
(1e) states that each subscriber Si does not receive duplicated
data chunks from the workers.

B. Achieving Lower Bounds with A Simplified Problem

It can be verified that problem (1a)-(1f) is an
integer quadratically constrained quadratic program
(IQCQP) [11] (the formulated problem in this paper is
a special case of Mixed Integer QCQP since all control
variables x are integers here). Since computing the optimal
solution of the IQCQP problem is NP-hard in general, we
aim to develop a slightly suboptimal but efficient practical
solution to the problem (1a)-(1f) in polynomial time with
explicit performance bounds, in order to have a scalable
system. Therefore, the following constraints are added to the
original IQCQP model given by (1a)-(1f).

Lk
i,jMk

i,j(1− Lk
i′,jMk

i′,j) = 0, (2a)

where
K∑

k=1

Lk
i,jMk

i,j <

K∑
k=1

Lk
i′,jMk

i′,j∀i, j, k. (2b)

Constraint (2a) states that if the number of data
chunks (

∑K
k=1 Lk

i,jMk
i,j) received by Si from Wj is

less than the data received by Si′ from Wj (as in (2b)),
the data chunks received by Si must be also received by
Si′ (2a). For example, in Fig. 2, if subscriber S1 receives 3
data chunks L1,j from Wj and S2 receives 2 chunks L2,j

from Wj as well, L2,j ⊂ L1,j . By adding the constraint
given in (2a)-(2b), dimensionality of the problem is reduced
from three to two. Constraint (2a) can eliminate the influence
of the workers’ decisions on the subscribers. In the original
problem, the download and delivery decisions by one worker
affect both the other workers and all subscribers, which
produces an optimisation problem over three dimensions.
As a result, the problem can be solved using a polynomial
algorithm with O(I(J + I2)) as shown in section III1.

1This is different from relaxation in which an upper bound can be found for
a maximisation problem with relaxation. However, a lower bound is obtained
for a maximisation problem with more constraints.

III. EVENTME FRAMEWORK: ALGORITHMS WITH
GUARANTEED LOWER BOUNDS AND POLYNOMIAL

COMPLEXITY

In order to solve the formulated problem in the above, we
propose an efficient framework called EventMe in this section.
We also prove its correctness, the lower bound to the optimal
data distribution capacity and computation complexity.

A. Overview

The workflow of EventMe is illustrated in Fig. 3(a), in
which three algorithms 1) greedy allocation, 2) bipartite graph
generation and 3) weighted maximum matching are involved:

1) Subscribers submit requests and workers choose tasks.
After gathering workers’ preference, the coordinator
computes an initial Task Assignment (TA) structure.

2) TA is then updated using a greedy allocation algorithm
as shown in Algorithm 1.

3) A Diff Matrix (DM) is obtained from the updated TA
to generate Row Index Sets (RIS), which includes
Positive Row Index Sets (RIS+) and Negative Row
Index Sets (RIS−). Here, RIS is used to check the
possibility to make further improvement to TA.

4) Algorithm 2 is then used to generate a weighted bipartite
graph BG, in which V+ and V+ are its two parts
representing the sets in RIS+ and RIS− respectively.
The weight wi,j of the edge ei,j connecting V+

〉 and V−|
is computed by |RIS+

i ∩RIS−j |.
5) Maximum weighted matching based Algorithm 3 is

performed on BG to calculate the final TA.
6) Workers and subscribers are notified of the allocated

tasks, i.e., what data, when and where they should
download and relay based on the final TA.

B. Data Structure

Several novel data structures are used in EventMe frame-
work to reduce the computational cost and aid the organization
of the procedures in a systematic way.

1) Task Assignment (TA): TA is used to store information
related to the tasks between workers and subscribers based
on the information from the matrices P and O from the
constraint (1c) and (1b). TA is aligned in rows and columns
and TAi,j is a ‘Task’ and its structure is shown in Fig.3(a)(A):
• Data chunks field in TAi,j is an array that records the

data chunks to be transmitted from Wj to Si.
• Capacity field for TAi,j shows the maximum number

of data chunks which can be transmitted from Wj to Si
when performing a task.

• Diff field is used to record the difference between 1)
the number of assigned data chunks and 2) the max-
imum number of data chunks which can be assigned.
It starts with 0 and can become positive or negative
after performing Algorithm 1. Positive value means it
has capacity remaining, negative means it misses certain
data chunks compared to other tasks in the same column,
while 0 indicates that the capacity for this task is fully



(a) EventMe work flow (b) Illustration of Step 3) in Fig.3(a): Generate Row
Index Sets using Diff Matrix DM

Fig. 3. EventMe framework

Algorithm 1: Greedy allocation
Input : TAi,j (capacity fields ci,j), data chunks size S
Output: Diff Matrix DMi,j , updated TAi,j

j ← 1
maximum capacity: cmax ← 0
maximum capacity for column j: cmax,j ← 0
while cmax + cmax,j < S do

cmax,j ← max
i

(ci,j)

for i ∈ [1 : I] do
TAi,j ← [cmax . . .min(cmax + ci,j , S)]
DMi,j = ci,j −min(S − cmax, cmax,j)

end
cmax ← cmax + cmax,j

j ← j + 1
end

Algorithm 2: Bipartite graph generation
Input : Diff matrix DMi,j , i = 1 . . . I , j = 1 . . . J
Output: RIS+, RIS−
for j ∈ [1 : J ] do

generate RIS+
while max

i
(DMi,j) > 0 do

append {i| ∀DMi,j > 0} to RIS+
DMi,j ← DMi,j − 1,∀DMi,j > 0

end
generate RIS−
while min

i
(DMi,j) < 0 do

append {i| ∀DMi,j < 0} to RIS−
DMi,j ← DMi,j + 1,∀DMi,j < 0

end
end

used. “Diff” fields in TA are gathered to generate Diff
Matrix (DM).

2) Diff Matrix (DM): After running the greedy allocation
algorithm, Diff Matrix (DM) is generated from the computed

“diff” fields of TA and then used to generate the bipartite
graph using Algorithm 2.

3) Positive and Negative Row Index Sets (RIS, RIS+,
RIS−): Improvement on TA can be made using DM: TAi,j

with positive “diff” gets the data which are missed by negative
“diff”. For each column of DM, the positive/negative Row
Index Set (RIS+,RIS−) are formed with the row indices of
TA with positive “diff” fields. The integer value in the “diff”
field indicates the maximum number of times this row index
can be used in generating row sets. Moreover, because of the
constraint (2a), each RIS can be used only once to make
sure that data chunks received by subscribers from the same
worker have the “subset” relationship.

C. Operations in EventMe Framework

We use the example in Fig. 2 to show how the framework
works. To simply the presentation, only three workers, three
subscribers and nine data chunks are used.

Based on the initial TA in Fig. 3(a)(A), the greedy allocation
Algorithm 1 generates a new TA (Fig. 3(a)(B)) by assigning
not yet assigned data chunks to TAi,j for each column from
left to right without violating two constraints: 1) “data chunks”
field in each TAi,j is a subset or superset of the other tasks in
the same column; 2) the number of assigned data chunks does
not exceed the task capacity. In this example, the algorithm
stops after assigning the data chunks in the second column.
The “diff” field also updated. For instance, “diff” in TA2,2

is 3 since it is assigned three data chunks but the maximum
number of assigned data chunks in the same column is six.
The constructed Diff Matrix (DM) is shown in Fig. 3(a)(C).

DM is then used as an input to Algorithm 2. By building a
bipartite graph, improvement can be made to perform match-
ings between tasks TAi,j with DMi,j > 0 and DMi,j < 0.
Here, DMi,j < 0 means that there is at least another task
TAi′,j in the same column having data chunks that TAi,j does
not have. Therefore, TAi,j′ in the same row with DMi,j′ > 0
(remaining capacity) can be used to get those missing data
chunks and improve the results. It can be imagined as tasks
with DMi,j < 0 “borrow” capacity from tasks with DMi,j > 0



Algorithm 3: Maximum weighted matching improvement

Input : RIS+, RIS−
Output: Final Task Assignment TAi,j

Wm,n: weight matrix for pairwise intersection of RIS+
and RIS−, m = 1 . . . |RIS+|, n = 1 . . . |RIS−|

for each RIS+m in RIS+ do
for each RIS−n in RIS− do

Wm,n = |RIS+m ∩RIS
−
n |

end
end
M: matching by applying Hungarian algorithm to W
for each M in M do

append data from TAi,j with MRIS− to TAi′,j′ with
MRIS− , where i, j ∈MRIS+ and i′, j′ ∈MRIS+

end

or “lend” otherwise. For example, S1 only receives two data
chunks from W1 and it misses data chunk #3 compared to
S2. The only way it can receive data chunk #3 is to use W3,
whose task with S1 has extra capacity with DM1,3 > 0.

In (2a), it states that data received by subscribers from the
same worker must be subset or superset of each other. When
“lending” capacity for a TA task in a certain column, all other
tasks in the same column with DMi,j > 0 must also “lend”
the same data chunk. For example, if using the third column to
receive the missing data chunk #3 for S1, all TAi,3 in the third
column must also hold data chunk #3. Therefore, we group
the “diff” fields for each column using RIS. Besides, each
row index only appears once in a certain set in RIS.

The bipartite graph BG with V+ and V− is constructed
using RIS+ and RIS−. All V+ (RIS+) are in left partition
and all V− (RIS−) in the right. The bipartite graph is fully
connected. The weight wi,j of each edge ei,j connecting V+

〉
and V−| is the number of row indexes two vertices have in
common. When two RIS have same row index, capacities
can be reallocated for that row in TA. The generated bipartite
graph is shown in Fig. 3(a)(E) (some of the edges and weights
are not shown due to the limited spaces).

The weighted maximum matching for bipartite graph is
performed on a cost matrix to improve the results. It is
shown in Fig. 3(a)(F) that the subscribers get 19 data chunks
from greedy allocation and receive six more through the
matching. The overall assigned data chunks is thus 25, which
is suboptimal but close to the optimal value 27 for the original
optimization problem.
D. Analysis of the Algorithms

Analysis is performed to show that 1) the algorithm gives
a correct solution and has a 1

2 lower bound to the optimal
maximization problem; 2) the complexity is O(I(J + I2)).

Theorem 1 Solution provided by performing Algorithm 1, 2
and 3 provides a 1

2 lower bound to problem described by (1a)
to (1f). (To prove Theorem 1, we first introduce two Lemmas)

Lemma 1 The solution obtained from weighted maximum
matching does not violate any of the constraints.

Proof By definition, RIS cover the maximum possible
number of rows in one column. If there is a new data chunk
assigned to that column, all rows will have it. Therefore, it
does not violate the solution of the TA. �

Lemma 2 Algorithm 3 gives a 1
2 -approximation ratio to the

solution after greedy allocation is performed.
Proof Each RIS− for DMi,j < 0 can be covered by
RIS+ by using each RIS+ only once. The wasted row
indices (useful row indices which can cover other RIS−) in
each RIS+ therefore make the solution suboptimal. We can
prove by contradiction. If it cannot achieve an 1

2 lower bound,
there will be at least oneRIS+p with more than half of the row
indices wasted, which means that RIS+p can be used to cover
some RIS−q which are not covered by any RIS+. However,
for RIS−q , the number of the uncovered negative row indices
cannot exceed the number of covered ones, which means
it does not waste more than half of its useful row indices.
Otherwise, it will violate the maximum matching condition
since the overall matching can be improved. �

Proof of Theorem 1 Based on Lemma 1 and Lemma 2,
suppose the optimal solution is o, the achieved results from
greedy allocation is g and the improvement from matching is
m. The overall approximation ratio for the combined algorithm
is g+m

o . Since greedy allocation does not cause any wasted
capacity, o− g −m < o

2 ⇔
g+m
o > 1

2 . �
Theorem 2 The computational complexity of EventMe is
O(I(J + I2)).

Proof of Theorem 2 The greedy allocation is a linear
algorithm with a complexity of O(J). Bipartite graph gen-
eration has outer loop of size J and inner loop of size I , so
its complexity is O(J · I). The weighted maximum matching
has complexity of O(I3) [12]. Therefore, total complexity is
O(I(J + I2)). �

IV. TRACE DRIVEN SIMULATIONS AND PROTOTYPE
IMPLEMENTATION

In this section, we evaluate the network throughput achieved
by EventMe in the D2D-enabled LECD system. Network
throughput is defined as the amount of data delivered from
workers to subscribers. Two baseline approaches are compared
to EventMe:
• Random task allocation (Random) method randomly

allocates task data to be delivered by workers.
• Greedy task allocation greedily choose the data to be

delivered for a task. It is similar to the greedy allocation
method introduced in Algorithm 1.

In the following, we first introduce the datasets, performance
metrics, and evaluation parameters used in the evaluation.
Then the stimulation results and prototype implementation are
presented to verify the proposed framework.
A. Datasets

The trace driven simulation uses the following two datasets:
1) GPS traces dataset include over 400,000 pedestrian

mobility data of 187 users collected in four locations
[13]. This dataset provides the mobility data to simulate



the real-life mobility scenarios in the cities, which is im-
portant to evaluate the performance of EventMe because
usually people are more likely to choose tasks without
deviating too much from their schedule.

2) Youtube video dataset [14] provides the typical range
of data size that the system must process and communi-
cate. According to the dataset for ∼300,000 videos, the
length of popular videos (views higher than one million)
is mostly between one and ten minutes. With decent
quality (480p - 1080p), we choose a range of 50 - 250 MB
for the data size parameter in the simulation.

3) WiFi access point (AP) data [15] provide information
of the typical coverage (density) of WiFi AP in urban
areas. In the simulation, we consider a density of 20%,
i.e., mobile users have access to WiFi 20% of the time.

B. Evaluation Parameters

We introduce three evaluation parameters, which potentially
impact the performance of EventMe:
• Data size refers to event content size. Since video data

are used in the simulations, a range of 50 - 250 MB will
be expected as discussed earlier in section IV-A.

• The range of workers’ movement indicates the geo-
graphical radius the workers choose to complete tasks.
In the simulations, we evaluate worker movement range
between one to five km, to show the effect of both small
and large movement range.

• The number of workers impacts the duplication in terms
of tasks preference in the system (many workers choose
same tasks). Thus to evaluate its influence, we indicate
the worker number as a percentage of total participants in
the system from 10% to 90%. The remaining participants
are subscribers.

C. Simulation Results

The simulation is performed using a Java implementation.
We evaluate the performance of EventMe against random (la-
belled as ‘Random’ in the figures) and greedy task alloca-
tion (labelled as ‘Greedy’ in the figures) schemes based on
the network throughput performance metric.

Figure 4 shows the average network throughput w.r.t. worker
movement range, worker percentage, and data size, respec-
tively. As seen from Fig. 4, EventMe can achieve an average
throughput 500% higher compared to the random scheme and
25%-100% higher than the greedy scheme. Different evalua-
tion parameters also show distinct impact on the metrics: 1) a
stable throughput is achieved with varying worker movement
range; 2) the network throughput is smaller with less workers
due to limited number of tasks each worker is able to perform.
While when number of workers increases, the throughput
increases more; 3) the throughput increases when the data
size is larger, which indicates the effectiveness of EventMe
distributing data with large size. Overall, EventMe consistently
outperforms the other competing methods.

The averaged network throughput performance value in
Fig. 4 requires many parameters configurations. Therefore,

the cumulative distribution function (CDF) of the network
throughput performance is illustrated in Fig. 5, which shows
that EventMe performs consistently better than the other
methods given most of the percentiles of the distribution
in terms of achieved network throughput. However, when
workers’ availability is low (≈20%), greedy method tends to
perform better than EventMe at the lower percentile of the
CDF, which indicates a higher variance of the performance
under low worker percentage.

D. Prototype Implementation

We implemented EventMe as a mobile application on An-
droid devices. The prototype is aimed to 1) show that various
components of EventMe, such as event subscription, mobile
D2D communication and task allocation, can work together,
and 2) measure the communication overhead caused by task
allocation. In the application, workers and subscribers can
view on-going events and indicate their needs for data and
tasks. After workers are assigned tasks, both workers and
subscribers will be notified of the expected task completion
information. In order to assist subscribers and workers to
complete tasks, the application also shows a visual map guide
to illustrate where and when the data delivery will take place,
as shown in Fig. 6.

EventMe requires communications of control data between
the smartphone application and the server during task com-
pletion. Therefore, to justify the its practicality, the communi-
cation overhead of EventMe is measured “in the wild” to be
compared with the achieved network throughput. During the
experiments, we recruit ten people, four as workers and six as
subscribers, to use the application to distribute a 100 MB video
clip for a virtual event. In this experiment, 186 MB throughput
is achieved by EventMe with only 2.79 MB (1.5%) control
data generated. It shows that the communication overhead is
extremely low compared to the data delivery capacity achieved
during the experiment.

V. CONCLUSION

In this paper, we investigated the human centric D2D-
enabled location-based event content distribution (LECD) sys-
tems, in which event subscribers obtain event related data
from workers through D2D communications. We formulated
the task assignment problem in the data distribution sys-
tem as the integer quadratically constrained quadratical pro-
gram (IQCQP) with the purpose of maximising data distribu-
tion throughput. To solve the problem, we proposed EventMe
framework, which computes a minimally sub-optimal solution
in polynomial time with guaranteed lower bound. By adopting
the real-world GPS traces, simulation results showed that
the proposed EventMe framework can improve the network
throughput by 20% to 100%. Furthermore, by implement-
ing a prototype in Android smartphones, we evaluated the
communication overhead of the system in terms of control
data compared to the data delivery capacity and showed that
minimal data overhead was generated.
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(c) Data size

Fig. 4. Average network throughput with different evaluation parameters

(a) Worker movement range = 1 km (b) Worker percentage = 20 % (c) Data size = 200 MB

Fig. 5. CDF of network throughput (average throughput) with different evaluation parameters

(a) Event list (b) Visual guide (c) Assigned task

Fig. 6. Screenshots of EventMe prototype
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