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Several approaches to linear-scaling Density Functional Theory (LS-DFT) which seek to achieve
accuracy equivalent to plane-wave methods do so by optimizing in situ a set of local orbitals in
terms of which the density matrix can be accurately expressed. These local orbitals, which can
also accurately represent the canonical Kohn-Sham orbitals, qualitatively resemble the maximally-
localized Wannier functions employed in band structure interpolation. As LS-DFT methods are
increasingly being used in real-world applications demanding accurate band structures, it is natural
to question the extent to which these optimized local orbitals can provide sufficient accuracy. In
this article, we present and compare, in principle and in practice, two methods for obtaining band
structures. We apply these to a (10, 0) carbon nanotube as an example. By comparing with
the results from a traditional plane-wave pseudopotential calculation, the optimized local orbitals
are found to provide an excellent description of the occupied bands and some low-lying unoccupied
bands, with consistent agreement across the Brillouin zone. However free-electron-like states derived
from weakly bound states independent of the σ and π orbitals can only be found if additional local
orbitals are included.

PACS numbers: 71.15.Ap

I. INTRODUCTION

Methods for inferring detailed information about the
electronic structure throughout the first Brillouin zone
(BZ) from first-principles calculations on a discrete mesh
of Bloch wavevectors1–4 have received significant atten-
tion over the last 15 years. The most popular approach
to date has been the interpolative scheme based upon
maximally-localizedWannier functions (MLWFs)2,5,6 ob-
tained by a post-processing of the results from standard
codes7,8. These methods have been used for a wide
range of applications, not just within density-functional
theory (DFT) but also many-body perturbation theory
within both the GW approximation9 and Bethe-Salpeter
equation10 due to their importance for theoretical spec-
troscopy. Other notable applications include electric po-
larization11–13, orbital magnetization14–16 and topologi-
cal insulators17–19. These and others have been described
in a recent review alongside the theory of Wannier func-
tions6.

Linear-scaling or O(N) methods for first-principles
electronic structure calculations20–22 based on DFT now
provide routine access to the total energy and atomic
forces23 of systems consisting of many thousands of
atoms24,25, giving rise to new opportunities for applica-
tions in different fields, as discussed for example in recent
reviews on the subject26,27. Methods that optimize a set
of Wannier-like localized orbitals28–32 are also capable of
achieving accuracy equivalent to plane-waves (PWs) or
other systematic basis sets31,33. This article explores the
use and limitations of in situ optimized orbitals, often

referred to as support functions, for band structure in-
terpolation.

Due to the large simulation cells appropriate for linear-
scaling methods, the correspondingly small BZs are sam-
pled using the Γ-point only, with the added benefit that
the local orbitals may be chosen to be real rather than
complex. However, in the contemporary DFT approach,
the total energies and atomic forces computed represent
averages of the valence electronic structure across the BZ
and return relatively little information about the sys-
tem in view of the effort invested in their calculation.
Moreover, the support functions are formally related34

to the canonical Kohn-Sham (KS) orbitals and therefore,
in principle at least, contain far more information about
the electronic structure.

It is straightforward to obtain the KS energies and or-
bitals from the support functions by a single diagonaliza-
tion of the ground-state self-consistent KS Hamiltonian
matrix. Although such a post-processing step does not
scale linearly, the minimal size of the local orbital set
means that its contribution to the overall computational
cost remains small for systems containing up to several
thousand atoms. A method for performing band struc-
ture interpolation across the BZ based upon the local
orbitals would therefore provide much richer information
about the electronic structure, allow a detailed assess-
ment of the accuracy of this description and provide a
basis for further calculations including (local) densities
of states.

For materials which require a large number of atoms
for a proper treatment, such as complex nanostructures
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or defective systems requiring large supercells, the high
computational cost prohibits the standard approach of
extracting MLWFs from cubic-scaling DFT. The use
of a support function based approach would therefore
be invaluable for applications such as generating band
structures of materials containing low defect concentra-
tions and calculating quantities such as effective masses.
Where applicable, supercell band structures can then be
compared to those obtained from primitive cell calcula-
tions, using unfolding or projection techniques. As an ex-
ample, a spectral function projection method which uses
such localized orbitals to obtain bandstructures for the
primitive cell35, has been used to obtain insights into the
behaviour of various complex heterostructures compared
with the equivalent monolayers36,37.

Despite the formal connection between support func-
tions and MLWFs, the extent to which they form an ac-
curate basis for band structure interpolation in practice
has not previously been explored. In other words, do the
approximations made in a typical calculation, such as the
imposition of strict localization radii or imperfect conver-
gence, prevent accurate band structure interpolation? In
this work we answer this question, while also considering
what is the best method for obtaining band structures
from a support function basis.

Methods for calculating band structures fall into two
main classes, each relating to one of the two equiva-
lent statements of Bloch’s theorem. Codes based upon
atomic-type basis sets adopt the interpolative tight-
binding approach that is also employed for Wannier inter-
polation2,5, whereas within PW codes, an extrapolative
approach3 based on k ·p perturbation theory38 has been
successfully implemented39. In order to compare the two
methods we choose to use the basis of localized orbitals
generated by the linear-scaling method implemented in
the ONETEP code34,40, however similar results would be
expected for related methods. In principle, the localized
orbitals of ONETEP, referred to as non-orthogonal gen-
eralized Wannier functions (NGWFs)32, straddle both
approaches: they form a minimal basis of local orbitals
that have been optimized in terms of an underlying basis
equivalent to a set of PWs. When implemented within
the ONETEP code, the two approaches give similar but
different results that are interpreted here in terms of a
simple one-dimensional Kronig Penney model.

The paper is organized as follows: in Sec. II the rele-
vant theory underlying the ONETEP method is outlined,
and two approaches are described by which the KS en-
ergies and orbitals may be obtained at a general point
in the BZ. In Sec. III these two methods are compared
for a one-dimensional toy model that illustrates the ad-
vantages and disadvantages of each. Section IV discusses
the results obtained from both approaches when imple-
mented in the ONETEP code and applied to a carbon
nanotube. Conclusions are drawn in Sec. V.

II. METHODOLOGY

A. Linear-Scaling Methods

The single-particle density-matrix (DM) ρ(r, r′) pro-
vides a complete description of the fictitious KS system
in DFT. The DM may be described in the diagonal repre-
sentation provided by the canonical KS orbitals {ψn(r)}
and associated occupancies {fn} (where fn = 1 for occu-
pied states lying below the chemical potential and fn = 0
otherwise) or more generally in terms of a set of non-
orthogonal orbitals {φα(r)} and a so-called density kernel
Kαβ:

ρ(r, r′) =
∑

n

ψn(r)fnψn(r
′) =

∑

αβ

φα(r)K
αβφβ(r

′) .

(1)
Note that spin and k-point labels have been dropped, the
former for simplicity and the latter due to the assump-
tion of Γ-point sampling justified above. Eq. 1 takes
the form of a similarity transformation where there is
a linear transformation between the canonical and non-
orthogonal orbitals. For a linear-scaling method it is
necessary to choose a representation in which the non-
orthogonal orbitals are also localized in space and to ex-
ploit the nearsightedness of the DM41 by enforcing spar-
sity on the density kernel. The ground state of a system
may then be found by minimizing the total energy with
respect to the DM subject to the constraints of normal-
ization and idempotency42–45.
In ONETEP, the minimization is performed both with

respect to the density kernel46 and the NGWFs32. Vari-
ous methods exist to calculate the density kernel at lin-
ear scaling cost; in ONETEP a combination of purifi-
cation42 and penalty functional47 approaches are used,
as described in detail elsewhere46. The initial guess for
the NGWFs consists of a set of fireballs (FBs)48, which
are generated by self-consistently solving the KS equa-
tions for an isolated atom using the same pseudopoten-
tial and exchange correlation functional as for the full
system. The NGWF optimization is then carried out by
expanding them in terms of a basis set of primitive func-
tions that have been variously known as periodic car-
dinal sine (psinc)49, Dirichlet50 or Fourier Lagrange51

functions. These functions are the discrete equivalent of
the Dirac delta function, which are arranged on the grid
points of a regular mesh commensurate with the simula-
tion cell. Each NGWF is associated with an atom and
is expanded in a restricted set of psinc functions whose
grid points lie within spheres of a given radius centred
on that atom. Fast Fourier transforms (FFTs) may then
be employed as in PW codes to apply the Hamiltonian,
in particular the kinetic energy52, with a reduced FFT
box53 used consistently to achieve linear scaling.
ONETEP has been shown to achieve linear scaling for

the entire calculation with controlled accuracy compara-
ble to that of PW pseudopotential codes54. The result
is a set of NGWFs, each of which has been optimized
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in situ according to its individual chemical environment
in terms of a basis equivalent to a set of PWs. A mini-
mal set of NGWFs may then be used successfully whilst
avoiding some of the pitfalls of local orbitals such as basis
set superposition error55.
Using the approach described above, the KS eigenval-

ues are not explicitly referenced. However, they may be
recovered by a one-off diagonalization in the optimized
NGWF basis at the end of a calculation. While the
NGWFs are designed to accurately represent the valence
states, there is no guarantee that they are capable of also
representing the KS conduction states. In some cases
the first few unoccupied states might still be relatively
well represented by the NGWF basis, however in gen-
eral the conduction state energies are significantly over-
estimated, with some states not captured at all54,56. In
order to overcome this problem, a method has been de-
vised wherein a second set of NGWFs are optimized to
explicitly represent a select number of (bound) conduc-
tion states. The density operator, ρ̂, is used to project
out the valence states, so that when a sufficiently large
energy shift σ is applied, the conduction states of inter-
est become lower in energy than the valence states. The
Hamiltonian operator therefore becomes:

Ĥ → Ĥ − ρ̂
(

Ĥ − σ
)

ρ̂ . (2)

Using this Hamiltonian, a second non-self-consistent cal-
culation can be performed following a ground state cal-
culation to obtain a set of conduction NGWFs and asso-
ciated density kernel, for which the total occupancy cor-
responds to the requested number of conduction states.
In order to reach a comparable level of accuracy, the con-
duction NGWF radii are typically larger than those re-
quired for valence NGWFs. Before diagonalizing the un-
projected Hamiltonian, the conduction NGWFs are com-
bined with the valence NGWFs to form a joint basis.
Provided sufficiently large localization radii are used, the
joint basis is capable of representing both the occupied
and unoccupied KS states to a similar high level of accu-
racy56,57.

B. Band Structure Calculation

For any periodic system that is invariant under trans-
lation by a lattice vector R, Bloch’s theorem states that
any eigenstate of the Hamiltonian ψ(r) must satisfy

ψ(r+R) = eik·R ψ(r) , (3)

where k is the Bloch wave vector or crystal momentum.
An equivalent statement is

ψ(r) = eik·r u(r) , (4)

where u(r) = u(r+R) is a cell-periodic function. If G is
a reciprocal lattice vector such that eiG·R = 1 then from
the first formulation (3) it is clear that the statements

of Bloch’s theorem for wave vectors k and k + G are
identical and these may be considered equivalent. Hence
kmay be chosen from the first BZ and the band structure
may be represented as periodic in reciprocal space.
The KS Hamiltonian takes the following general form

(in Hartree atomic units ~ = me = 1):

Ĥ = −1

2
∇2 + V (r) +

∑

I

|pI〉EI 〈pI | , (5)

where the local potential V (r) is cell-periodic and the
third term represents the action of a non-local norm-
conserving pseudopotential in separable form58 in which
I is a composite index running over ions and angular mo-
mentum channels, {|pI〉} are the projectors and {EI} the
associated energies.
To calculate the band structure from a linear-scaling

calculation, it is necessary to obtain the KS energies and
orbitals at an arbitrary k-point in terms of a set of real
local orbitals, e.g., NGWFs optimized in a self-consistent
ground-state total energy calculation using the Γ-point
only.

1. NGWF Approach

We now present two approaches to calculating the
band structure, one of which is inspired by Eq. 3 and re-
lated to tight-binding (TB) and Wannier interpolation,
in which the wave function at a general k-point with band
index n is written

ψTB
nk (r) =

∑

R

eik·R
∑

α

cTB
nkαφα(r−R) , (6)

involving a sum over all lattice vectors R. In this ap-
proach identical copies of each NGWF for each cell are
made from the home cell (R = 0). The Hamiltonian for
a general k-point is then constructed from Eq. 5 with
additional k-dependent phase factors arising when a ma-
trix element corresponds to NGWFs from neighbouring
cells. This is straightforward when the NGWFs are local-
ized within a single cell – the k-dependent Hamiltonian
matrix elements are written as

HTB
αβ (k) = 〈φα|Ĥ |φβ〉

∏

i

θ(ki, rαi − rβi, Ri) , (7)

where rα(β) is the centre of φα(β) expressed in fractional
coordinates, and the one-dimensional phase factors θ take
the form

θ(k, r, R) =







1 |r| ≤ 1
2

eikR r > 1
2

e−ikR r < − 1
2

. (8)

Diagonalization of this Hamiltonian yields the KS ener-
gies and orbitals, i.e., the set of expansion coefficients
{cTB

nkα}, for the wave vector k.
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An alternative approach relates to the second formu-
lation of Bloch’s theorem (4) which expresses the wave
function as

ψKP
nk (r) = eik·runk(r) = eik·r

∑

α

cKP
nkα

∑

R

φα (r−R) ,

(9)
where the expansion of unk(r) in terms of NGWFs is
explicitly cell-periodic, a construction that fits naturally
with a PW or psinc basis set. Indeed, this approach is
successfully employed in PW calculations. As suggested
by k ·p perturbation theory, the Bloch phase factor may
be treated analytically to derive a k-dependent Hamil-
tonian that acts on the cell-periodic part of the wave
function

Ĥ(k) = −1

2
∇2−ik·∇+

k2

2
+V (r)+

∑

I

|pI(k)〉EI 〈pI(k)| ,

(10)
where the phase factor has been incorporated into
the projectors, which have thus become k-dependent:
〈r|pI(k)〉 = eik·rpI(r). In contrast to Eq. 7, the Hamilto-
nian matrix elements do not contain any additional phase
factors and are simply calculated as

HKP
αβ (k) = 〈φα|Ĥ(k)|φβ〉 . (11)

In short, for the TB method k enters into the Hamilto-
nian matrix elements via phase factors associated with
the NGWFs, while for the k · p method k enters into
the Hamiltonian matrix elements through a k-dependent
Hamiltonian operator. As for the TB method, the k · p
band structure is again obtained by diagonalization.

III. TOY MODEL

Before comparing the two approaches to calculating
band structures using ONETEP, we first make use of a
simple one-dimensional model. In the following we de-
scribe the setup of this toy model, i.e. the choice of po-
tential and definition of the localized basis sets which
are designed to mimic some of the features of ONETEP
NGWFs. Using this model, we identify characteristic fea-
tures of the two methods for cases where the basis set is
incomplete using both analytic and numerical analyses.

A. Description of the Model

We choose to use the one-dimensional Kronig-Penney
model, where the Hamiltonian is defined as

Ĥ = −1

2

d2

dx2
+ V (x) , (12)

with a periodic potential V (x) = V (x+ L), given by

V (x) =

{

V0 0 ≤ x < b
0 −w ≤ x < 0

(13)

and the lattice parameter L = b+ w. The potential and
lowest energy state are illustrated in Fig. 1.

0

V0

-L -w 0 b L 2L

V

x

FIG. 1. (Color online) Potential (red) for the Kronig Penney
model with the lowest energy state (blue) (at k = 0) super-
imposed.

The band structure for this model may be found by
solving a transcendental equation numerically. This is
used as a reference for results obtained from a fully nu-
merical approach employing piecewise polynomial non-
orthogonal basis functions (to mimic the role of NGWFs
of different quality) for which Hamiltonian matrix ele-
ments may be found analytically. Basis functions are
centred on the nodes of a regular grid with spacing a
such that L =Ma.
The first basis is piecewise quadratic and continuous up

to and including the first derivative. Basis functions only
overlap their nearest neighbours. The function centred
at x = 0 is denoted N0(x) and then Nm(x) ≡ N0(x−ma)
is centred at x = ma.

N0(x) =

√

30

23a
×







1− 2 (x/a)
2

0 ≤ |x| < a/2

2 (1− |x|/a)2 a/2 ≤ |x| < a
0 |x| ≥ a

(14)

The second basis consists of cubic B-splines28 contin-
uous up to the second derivative but twice as wide as
the first set and hence overlapping up to third nearest
neighbours.

B0(x) =

√

140

151a
×















1− (3/2) (x/a)
2

+ (3/4) (|x|/a)3 0 ≤ |x| < a

(1/4) (2− |x|/a)3 a ≤ |x| < 2a
0 |x| ≥ 2a

(15)
These two functions have been chosen to examine the

effect of basis set quality. In particular, the optimization
process for NGWFs imposes no explicit constraints on
their continuity, either at the boundary or inside the lo-
calization region. Instead, continuity is desirable because
it minimizes the kinetic energy, since the Fourier trans-
form f̃(q) of a function f(x) decays as q−(n+1) where n is
the order of lowest discontinuous derivative. Hence the
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TABLE I. Overlap, momentum and kinetic energy matrix el-
ements for the two basis sets employed in Sec. III normalized
such that s0 = 1. By symmetry p0 = 0 and o−n = o∗

n
where o

may be replaced by s, p or t. Results for each basis should all
be divided by the number shown in the second (÷) column.

Overlap Momentum Kinetic

÷ s1 s2 s3 ip1a ip2a ip3a t0a
2 t1a

2 t2a
2 t3a

2

N 46 7 0 0 30 0 0 80 -40 0 0

B 2416 1191 120 1 1715 392 7 1680 -315 -504 -21

behaviours of the N and B bases are expected to differ
qualitatively.

B. Free-Electron Limit

First, the free-electron V0 = 0 limit is examined. In
this case the exact forms of the wave functions are known:
ψnk(x) ∼ ei(k+nG)x where G = 2π/L. The discrete
translational symmetry (invariant under translation by
any multiple of a) of the Hamiltonian constructed using
the N and B bases can similarly be exploited to write
down the eigenvectors cTB

nkm = e2πi(k/G+n)m/M/
√
M and

cKP
nkm = e2πinm/M/

√
M where the index m labelling the

centre of the basis function is analogous to the NGWF
index α in Eqs. 6 and 9.
In the free-electron limit the translational invariance

also means that matrix elements depend only on the sep-
aration of the basis centres, i.e., for some operator Ô,
the matrix elements for the B basis between functions
centred at x = la and x = ma, Olm = om−l where

on =

∫

B0(x)Ô Bn(x) dx . (16)

Matrix elements for the overlap Ô ≡ 1, momentum
Ô ≡ −id/dx and kinetic Ô ≡ −(1/2)d2/dx2 operators
are summarized in Table I. In this special case band
structures may be calculated analytically from the ex-
pectation values of the TB and k ·p Hamiltonians in the
corresponding eigenstates.
Defining θnk = 2π(k/G+n)/M , the band structure for

the TB approach (including overlaps up to third nearest
neighbour) is given by

εTB
n (k) =

t0 + 2t1 cos θnk + 2t2 cos 2θnk + 2t3 cos 3θnk
s0 + 2s1 cos θnk + 2s2 cos 2θnk + 2s3 cos 3θnk

(17)
which is a quotient of Fourier series as expected from
tight-binding. This is manifestly periodic in reciprocal
space, i.e., εTB

n (k) = εTB
n (k +G). Similarly,

εKP
n (k) =

1

2
k2 +

Tn + Pn|k|
Sn

(18)

where for basis functions that overlap up to third nearest
neighbours

Sn = s0 + 2s1 cos θn0 + 2s2 cos 2θn0 + 2s3 cos 3θn0 (19)

and similarly for Tn in terms of {tm}. For Pn:

Pn = 2(−1)ni [p1 sin θn0 + p2 sin 2θn0 + p3 sin 3θn0] .
(20)

This takes the form of an expansion about k = 0 and
is not periodic in k, so that degeneracy of bands at the
BZ boundary is not guaranteed. However this method
does return the correct effective mass for all bands n:
m⋆KP

n (k) = (d2εn/dk
2)−1 = 1. By contrast, expanding

the TB result for the lowest band (n = 0) about k = 0,
εTB
0 (k) ≈ T0/S0 + k2/[2m⋆TB

n (0)] where

m⋆TB
n (0) =

S2
0/2

(s1 + 4s2 + 9s3)T0 − (t1 + 4t2 + 9t3)S0
.

(21)
For the N basis, m⋆TB

n (k = 0) = 3/4 whereas for the B
basis the correct value is obtained. Hence the accuracy
of the band curvature depends upon the quality of the
basis used.

Both methods predict the same value for the bottom
of the lowest band ε0(0) = T0/S0 which should vanish.
This is the case for both bases used here, but is not a
universal feature and depends upon the ability of a basis
set to describe exactly the lowest state ψ00(x) = 1/

√
L,

i.e. a constant.

The qualitative difference between the two basis sets
is clearly demonstrated by examining ε1(0). For both
methods, the B basis is correct to leading order with an
error of order M−6 whereas the N basis is wrong by a
factor of 4/3 consistent with the error in the TB effective
mass.

The methods are also distinguished by examining the
energies of the lowest two bands at the BZ boundary,
which should be degenerate. The TB method guarantees
this by construction, but for the k · p method this is not
the case, so that for a poor quality basis gaps appear
at the BZ boundary. Indeed, for the k · p method, for
k → k + G, uk+G(x) = uk(x)e

iGx and thus the basis
used to describe uk(x) must also be able to describe its
product with eiGx. For all but a few high energy PWs
at the edge of the cutoff sphere, this product is perfectly
represented in a PW basis and so no such gaps arise.
However for the toy model, and as will be seen in the
following also for the NGWF basis, this is not expected
to be the case.
To illustrate this point we have considered two types of

poor quality basis set: an intrinsically lower quality basis
which is nonetheless well converged in terms of the num-
ber of basis functions, i.e. basis N with M = 200, and
a basis set which is of high quality but with an insuffi-
cient number of basis functions, i.e. basis B with M = 8.
In terms of ONETEP, these two setups might loosely
be compared to a set of NGWFs with large enough lo-
calization radii but which have been poorly optimized
(e.g. loose convergence thresholds) or not optimized at
all, and to NGWFs which have been well optimized but
which have insufficient degrees of freedom, e.g due to lo-
calization radii which are too small.
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TABLE II. Low energy eigenvalues for the free-electron case
at the Γ-point and BZ boundary for both basis sets compared
to the analytic values, calculated with the given number of
basis functions, M . Where applicable, both TB and k · p

values are included. Energies are given in Ha.

Analytic N(M = 200) B(M = 8)

TB k · p TB k · p

ε0 (G/2) 4.9348 6.5798 4.9348 4.9348 4.9348

ε1(0) 19.7392 26.3198 19.7394

ε1 (G/2) 4.9348 6.5798 11.5164 4.9348 4.9350

Using these two setups we have calculated the free-
electron band structure numerically using both the k · p
and TB methods; the results are plotted in Fig. 2, with
selected eigenvalues also given in Table II. The antici-
pated differences between the two methods can be clearly
seen for the N basis, where the poor quality of the basis
set results in calculated eigenvalues with energies which
are increasingly too high for increasing band index. In
such a case, the k · p method preserves the correct band
curvature as expected, but at the expense of unphysical
gaps opening at the BZ boundary. The TB method, on
the other hand, preserves the correct BZ degeneracies,
but results in the incorrect band curvature. The selected
number of basis functions for N is sufficiently high that
the eigenvalues have converged on the analytic values,
e.g. the factor of 4/3 error in ε1(0) can be seen in Ta-
ble II. The same qualitative differences between the two
methods for calculating band structures are also present
for the B basis, however since the basis is of much higher
quality even for such a small number of basis functions,
the errors in the eigenvalues are very small and thus the
two methods give very similar results.

C. Kronig-Penney Model

We now introduce a localized potential in the form of
the Kronig-Penney potential with the values V0 = 100,
b = 0.25 and L = 1.0, with the aim of exploring weakly-
hybridised states. We keep the same basis setup as be-
fore. It is interesting at this point to also consider the
implications of supercell calculations, i.e. how the two
methods for band structure calculation compare when
band folding and unfolding occurs, since such effects fre-
quently come into play for the typical system sizes stud-
ied with ONETEP. In order to investigate this point, we
calculated band structures for a primitive cell of length
L, as well as a supercell of length 2L, containing two
repeats of the primitive cell.
The resulting band structures are plotted in Fig. 3. For

the primitive cell calculation, the differences between the
two methods are less noticeable than for the free-electron
band structure and are only really distinguishable close
to the BZ boundary, where the methods give differing
band curvatures, with the TB results slightly closer to the
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FIG. 2. (Color online) Low energy free-electron band struc-
tures for the N [top] and B [bottom] basis sets using both the
TB [left] and k ·p [right] methods. The analytical solution is
shown for reference (black lines).

reference. For the supercell results however, the discrep-
ancy between the two methods is more significant, with
gaps again appearing at the BZ boundary for the k · p
method. In this case we have direct access to the band
structure of the primitive cell, however for a ONETEP
calculation where it can be the case that only supercell
calculations are accessible, an unfolding procedure would
be necessary. In this case, such an unfolding would re-
sult in discontinuities in the bands when using the k · p
method.

In summary, we have compared the two methods for
calculating band structures through the use of a one-
dimensional model employing localized basis sets of dif-
ferent quality. When the basis set is of good quality,
the two methods give comparable results, however for an
incomplete basis set there are notable differences. Con-
sidering first the free electron case, we have demonstrated
that the TB style approach imposes perodicity in recip-
rocal space, guaranteeing the correct band degeneracies
at the BZ boundary. For the k ·p method, however, this
is not the case, so that for a poor basis set, unphysical
gaps appear at the BZ boundary. On the other hand, the
k · p approach gives the correct effective mass, while for
the TB method the use of a low quality basis set results
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FIG. 3. (Color online) The four lowest energy bands for a
Kronig Penney potential with V0 = 100, b = 0.25 and L = 1.0
for the N [top] and B [bottom] basis sets using both the TB
[left] and k·p [right] methods. The band structures have been
calculated for a primitive cell (PC), as well as for a supercell
(SC) comprising two primitive cells. The analytic solution is
also plotted for comparison (black lines).

in incorrect band curvatures. When a Kronig-Penney
potential is introduced to the model, the band structure
generated with the TB method is qualitatively better,
with unphysical gaps again appearing for the k · p ap-
proach for supercell calculations. Given the above, the
TB style method is the clear method of choice.

IV. (10, 0) CARBON NANOTUBE

Having explored the differences between the two meth-
ods for band structure calculation in the context of a toy
model, we now use the case study of a (10, 0) carbon
nanotube (CNT), which is depicted in Fig. 4, to see how
the above conclusions carry over to a real system. In
order to have a reference against which to compare the
results of our ONETEP calculations, we have also calcu-
lated the band structure using the PW based CASTEP59

DFT code. The same pseudopotential was used for both
ONETEP and CASTEP, while the ONETEP psinc grid
spacing was also set to be equivalent to the PW cut-off

energy of 916 eV which was used in CASTEP. The grid
spacing (and thus cut-off energy) was selected to ensure
the number of psinc grid points was divisible by the num-
ber of CNT repeat units, to ensure translational symme-
try. The nanotube was aligned along the z-axis, and the
unit cell was padded by more than 25 Å in the x and y di-
rections to reduce interactions between periodic images.
We used the PBE exchange-correlation functional60. All
ONETEP calculations were at the Γ-point only.

FIG. 4. Atomic structure of the (10, 0) CNT. The end view
[top left], primitive cell [top right] and an eight repeat unit
supercell [bottom] are depicted.

In the first instance, we performed ONETEP calcu-
lations for a supercell containing eight repeat units of
the CNT and thus 320 atoms. We used four NGWFs
per carbon atom. The CASTEP calculation was for the
primitive cell, with a Monkhorst-Pack k-point mesh of
1× 1× 8. The ONETEP supercell band structures were
unfolded for comparison with CASTEP. As with the toy
model, we wished to consider cases where the basis is of
relatively low quality as well as a good calculation setup,
and thus considered two scenarios where the basis would
be considered poor, namely an NGWF basis which con-
sists of unoptimized fireballs but with reasonable local-
ization radii of 7 a0, and a well optimized NGWF basis
but with small radii of 5 a0, which are respectively de-
noted by FB(7) and NGWF(5). This was compared with
a good calculation setup with an optimized NGWF basis
with radii of 7 a0, denoted by NGWF(7).
The band structures calculated using both methods

and associated densities of states (DOS) are plotted in
Fig. 5. Considering first only the valence states, it is
clear that the unoptimized basis is poor, with the band
structure showing significant differences with the PW ref-
erence, both at the Γ-point and across the BZ. The situ-
ation is improved upon optimizing the NGWFs, even for
small radii, for which there are only quite small devia-
tions from the PW band structure, while for the calcula-
tion with larger NGWF radii there is excellent agreement
between the ONETEP and PW band structure. Impor-
tantly, the NGWF basis is capable of correctly repro-
ducing the band structure across the whole BZ, despite
having only been explicitly optimized at the Γ-point.
For the conduction states, although the final calcula-
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FIG. 5. (Color online) Density of states [left] and band struc-
tures calculated using the TB [middle] and k ·p [right] meth-
ods for different setups, compared to the PW reference. The
ONETEP setups consist of unoptimized fireballs (FB) with
NGWF radii of 7 a0 [top], and optimized NGWFs with radii
of 5 a0 [middle] and 7 a0 [bottom]. In each case there were four
NGWF functions per carbon atom. For the DOS a Gaussian
smearing of 0.05 eV was applied. Each plot has been shifted
so that the highest occupied molecular orbital (HOMO) is at
zero.

tion setup shows the smallest errors, in each case there
is nonetheless a visible error compared to the PW result.
This is unsurprising given that, as discussed above, the
NGWF optimization procedure is designed to construct
a basis which can accurately represent the valence states.
Therefore, even though the error is reduced by increasing

the NGWF radii, this is not in itself sufficient to guar-
antee a good basis representation for the empty states.
In the following we therefore also perform band structure
calculations using a second set of conduction NGWFs.
As predicted, discontinuities are present in the band

structure when using the k · p method, although these
are smallest for the good quality basis and larger for all
basis sets for the conduction states. The origins of this
are more clearly demonstrated in Fig. 6, where the cal-
culation with the small NGWF radii was repeated for
a smaller supercell of four units. The folded and un-
folded band structures are compared, so that the corre-
spondance between unphysical gaps at the BZ boundary
and discontinuities at the corresponding k-points in the
unfolded band structure is clearly visible. As expected,
no such gaps are present for the TB method and thus the
unfolded bands remain smooth and continuous. Further-
more, the shape of the conduction bands is also better
calculated with the TB method, for example for the band
which is just above 3 eV at the Γ point, the local shape
of the bands (i.e. between discontinuities) deviates no-
ticeably from the PW band. This is consistent with the
observations from the Kronig-Penney model, where the
TB approach resulted in bands with a shape closer to the
reference.
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FIG. 6. (Color online) Demonstration of the origin of band
discontinuities when using the k ·p method [right], compared
with the continous bands resulting from the TB method [left].
The folded supercell (SC) band structure for a supercell of
four repeat units is contrasted with the unfolded band struc-
ture in the primitive Brillouin zone (PBZ). A single band has
been highlighted in black (darker blue) to emphasize the pres-
ence of gaps (discontinuities) in the folded (unfolded) band.
The plot has been shifted so that the HOMO is at zero.

It is also interesting to compare the ONETEP band
structures with the PW reference in a more quantitative
manner. To do so, we calculate the band structures over
a dense sampling of k-points and determine the average
absolute difference between the PW and ONETEP en-
ergies, after first shifting the energy values to account
for the difference in HOMO values. This average error
is calculated separately for the valence states and for a
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fixed number of conduction states; the values are given
in Table III. Similar values were obtained when the en-
ergies were compared for only those k-points that were
included in the Monkhorst-Pack mesh for the CASTEP
calculation. As expected, the valence errors for the un-
optimized basis are significantly higher, with the error
decreasing for increasing NGWF radii once the basis is
optimized. In all three cases the conduction errors are
significant. Interestingly, the average errors are very sim-
ilar for the two methods, with k · p worse for the con-
duction states but otherwise virtually identical for the
valence states. Nonetheless, the TB approach is clearly
the method of choice, in agreement with the conclusions
drawn from the toy model calculations.

A. Conduction States

We now investigate in more detail the conduction state
band structure. In order to have the possibility of em-
ploying large NGWF radii, we increase the size of the
supercell to contain 11 repeat units, otherwise the sim-
ulation setup remains the same. In the following we use
only the TB method, since it has proven to be the better
choice.
We compare four different calculation setups: two with

only valence NGWFs and two with both valence and con-
duction NGWFs. These combinations were chosen to al-
low us to compare the varying impacts of increasing the
number of valence NGWFs without performing a con-
duction calculation, adding conduction NGWFs, and in-
creasing the conduction NGWF radii. For shorthand, we
use the notation Nvval(rv)+Nccond(rc), where Nv (Nc)
is the number of valence (conduction) NGWFs and rv
(rc) denotes the valence (conduction) NGWF radii. The
four setups are as follows:

1. 4 valence NGWFs with radii of 7 a0, no conduction
NGWFs (4val(7))

2. 9 valence NGWFs with radii of 7 a0, no conduction
NGWFs (9val(7))

3. 4 valence NGWFs with radii of 7 a0 and 5 conduc-
tion NGWFs with radii of 7 a0 (4val(7)+5cond(7))

4. 4 valence NGWFs with radii of 7 a0 and
5 conduction NGWFs with radii of 11 a0
(4val(7)+5cond(11))

The number of conduction states to optimize was se-
lected to include all states which are less than 5 eV above
the HOMO at the Γ-point, as calculated with CASTEP.
A significant number of additional states (eight times
the number actually required) were included in the con-
duction density kernel in an initial pre-optimization pro-
cess56.
The results are plotted in Fig. 7 and the correspond-

ing quantitative errors given in Table III. For both the

ONETEP and PW band structures and DOS, we only de-
pict explicitly optimized conduction states. For 4val(7),
the lower energy conduction bands are in relatively good
agreement with the PW results, with the largest differ-
ences appearing at the BZ boundary. However the higher
energy nearly free-electron states, which are equivalent to
the weakly bound delocalized states that sit above and
below a graphene sheet61, are completely absent. When
the number of NGWFs per atom is increased to nine
(9val(7)), the agreement for the low energy states is excel-
lent and there are some free-electron like states present,
however their energies are nonetheless significantly over-
estimated.
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FIG. 7. (Color online) Density of states [left] and band struc-
tures calculated using the TB method for different setups,
compared to the PW reference. The NGWF setups are given
in the figure, where Nvval(rv) denotes Nv valence NGWFs
with radius rv and Nccond(rc) denotes Nc conduction NG-
WFs with radius rc. A Gaussian smearing of 0.05 eV was
applied for the DOS. Each plot has been shifted so that the
highest occupied molecular orbital (HOMO) is at zero.

The 9val(7) and 4val(7)+5cond(7) setups have the
same number of basis degrees of freedom (same total
number of NGWFs and radii) and so can be directly
compared. Indeed the band structures are of similar
quality, with 4val(7)+5cond(7) showing marginally bet-
ter agreement on average. However when the conduction
NGWF radii are increased to 11 a0 (4val(7)+5cond(11)),
the agreement for all states is markedly improved, with
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TABLE III. Average and maximum errors across bands and k-points with respect to the PW band structure, in eV. Calculation
setups are the same as those used for Fig. 5 and 7. The number of CNT units, whether or not the NGWFs have been optimized,
the number of valence and conduction NGWFs per atom and their respective localization radii are indicated. The valence error
is that averaged across all occupied states, while the conduction error has been calculated for the number of unoccupied states
for which the calculated PW energy is less than 5.0 eV above the HOMO at the Γ point.

Number of Optimized Valence NGWFs Conduction NGWFs TB Error (Av., Max) k · p Error (Av., Max)

CNT units NGWFs Number Radii Number Radii Valence Conduction Valence Conduction

8 ✘ 4 7.0 - - 0.49, 1.21 0.57, 3.16 0.49, 1.22 0.59, 3.16

8 ✔ 4 5.0 - - 0.04, 0.10 0.72, 3.25 0.04, 0.10 0.73, 3.26

8 ✔ 4 7.0 - - 0.03, 0.08 0.52, 3.19 0.03, 0.09 0.54, 3.20

11 ✔ 4 7.0 - - 0.03, 0.08 0.52, 3.19 - -

11 ✔ 9 7.0 - - 0.03, 0.08 0.21, 1.37 - -

11 ✔ 4 7.0 5 7.0 0.03, 0.08 0.20, 1.34 - -

11 ✔ 4 7.0 5 11.0 0.03, 0.08 0.04, 0.16 - -

the quantitative difference with the PW band structure
at a similar level as for the valence states. As with the
valence band structure, it is important to note that a
consistent level of accuracy is maintained throughout the
BZ.
Given that the accuracy of the 9val(7) and

4val(7)+5cond(7) band structures are of similar qual-
ity, one might wonder if a conduction calculation is in-
deed necessary, or if it would also be possible to achieve
high quality results by continuing to increase the valence
NGWF radii. However, although increasing the radii
might indeed improve the quality, systematic improve-
ment is not guaranteed, particularly for the higher en-
ergy conduction states. The results obtained using the
conduction approach on the other hand, are expected to
be at least as good as a valence only calculation with the
same number of degrees of freedom, and in the majority
of cases should be significantly better.

V. CONCLUSIONS

In summary, we have presented two methods for cal-
culating band structures using a local orbital basis set,
which are derived from k · p perturbation theory and
tight-binding respectively. The two methods were ini-
tially compared in the context of a one-dimensional
model, using a Kronig-Penney potential and two differ-
ent localized basis sets: a piecewise quadratic nearest
neighbour basis and cubic B-splines. Subsequently, the
two approaches were compared for a set of optimized lo-
cal orbitals, referred to as NGWFs, obtained from the
ONETEP linear-scaling DFT code for the example of a
(10, 0) carbon nanotube.
For high quality basis sets, i.e. B-splines in the case of

the toy model and an optimized set of NGWFs with suf-
ficient degrees of freedom for the ONETEP calculations,
band structures generated with the two methods are sim-
ilar. However, for a lower quality basis, such as the near-

est neighbour basis set or unoptimized local orbitals, the
k ·p style method was found to produce unphysical gaps
at the BZ boundary. When unfolding band structures ob-
tained from supercell calculations, these gaps translate
to discontinuities in the band structure. This problem
can arise even for a moderate quality basis set, although
the discontinuities are much smaller. The tight-binding
style method guarantees the correct BZ periodicity so
that this problem does not occur. Furthermore when the
error with respect to the plane-wave reference is assessed
quantititavely, the errors are smaller than or equal to
those for the k · p style method. Therefore the tight-
binding style approach is the recommended method for
calculating band structures in ONETEP or similar linear
scaling approaches.

The CNT band structures generated from ONETEP
were compared to results from a traditional plane-wave
pseudopotential calculation, both qualitatively and quan-
titatively. When a reasonable localized radius was used
for the NGWF basis, excellent agreement was observed
with the PW reference across the entire BZ for the occu-
pied and low energy unoccupied KS states. However the
higher energy free-electron-like bands were missing from
the generated band structure. When a second set of NG-
WFs optimized explicitly for the conduction states is also
included, excellent agreement is obtained for both occu-
pied and unoccupied states, including the free-electron-
like states. In short, given sufficient degrees of freedom,
including the use of conduction NGWFs where neces-
sary, the NGWF basis generated by ONETEP forms an
excellent basis for band structure interpolation using a
tight-binding style approach.

In the future it would be interesting to also compare
the above results with ONETEP calculations where the
imposition of the NGWF localization is relaxed in one
or more directions, i.e. for partially localized or hybrid
Wannier functions. This approach has recently been im-
plemented in ONETEP62 and is particularly applicable
to 2D-periodic systems such as surfaces or interfaces. In
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particular, such an approach would be expected to result
in better convergence for the higher energy conduction
states.
Finally, beyond the calculation of band structures, ML-

WFs are also widely employed as a basis for model Hamil-
tonian approaches, including tight-binding. Given the
above conclusions, the support functions generated from
linear-scaling DFT should also be highly suitable for this
purpose. In the context of the material considered in
this work, an example might be the derivation of tight-
binding parameters for defective nanotubes. Given the
large system sizes which are accessible to linear-scaling
DFT, this approach would also provide an opportunity
for validating effective models. For example one could di-
rectly compare large scale DFT calculations with smaller
scale model Hamiltonian calculations in order to deter-
mine whether sufficient degrees of freedom had been in-
cluded in the model. A similar process can be applied
to semiconductors at low doping levels. For example, ef-
fective Hamiltonians derived from ONETEP calculations
have been used to study sulphur-doped silicon at various

(low) defect concentration levels63.
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