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ARTICLE INFO ABSTRACT

MSC: The incorporation of an efficient contact mechanics algorithm into a phase field sintering model is presented.
00-01 Contact stresses on the surface of arbitrarily shaped interacting bodies are evaluated and built into the model as
99-00 an elastic strain energy field. Energy relaxation through deformation is achieved by diffusive fluxes along stress
Keywords: gradients and rigid body motion of the deforming particles maintain contact between the particles. The proposed
Phase field model is suitable for diffusion deformation mechanisms occurring at stresses below the yield strength of a defect-
Contact free material; this includes Nabarro-Herring creep, Coble creep and pressure-solution. The effect of applied
Pressure pressure on the high pressure-high temperature (HPHT) liquid phase sintering of diamond particles was in-
i;z:ferlmg vestigated. Changes in neck size, particle coordination and contact flattening were observed. Densification rates

due to the externally applied loads were found to be in good agreement with a new theory which implicitly
incorporates the effect of applied external pressure.

1. Introduction

Sintering is the thermal consolidation of discrete powder particles to
form a coherent compact component and is an important fabrication
process in the manufacturing of many engineering products. Certain
materials that are used in demanding high temperature applications are
inherently resistant to sintering by high temperature alone [1]. This
includes materials such as certain ceramics (alumina, carbides), re-
fractory metals (titanium, aluminium) and even some alloys (steels,
Nimonic, TiAl) [2]. Other materials such as diamond and cubic bor-
onitride (cBN) also require high pressures in order to maintain phase
stability during sintering [3].

The classical driving force for bonding between the particles during
sintering is mediated by surface energy reduction. During this process, a
gradient in the chemical potential between the free particle surface and
the inter-particle contacts results in atomic diffusion and bonding.
During pressure-assisted sintering, the particles attain a complex stress
state with significant elastic energy stored in the particle contacts.
Differences in stress between the centre of the contact and free surface
provide additional gradients in the chemical potential. Material transfer
along the stress gradients result in deformation and particle centres
moving closer to each other. Mechanical stresses thus serve to enhance
the driving force and lead to an increase in the densification kinetics
during sintering [1].

There are three main densification processes active during pressure

assisted sintering, namely: cold compaction, hot compaction and dif-
fusion. HPHT diamond sintering, shown schematically in Fig. 1, poss-
eses all three. At relatively low temperatures, cold compaction dom-
inates; stresses above the yield stress of the material result in
densification through fracture and particle rearrangement. At higher
temperatures, hot compaction becomes dominant; stresses above the
yield strength result in dislocations and plastic deformation. At mod-
erate to high temperatures, mechanical stresses below the yield strength
still result in densification via creep deformation or diffusion [4]. This
paper will focus on the latter of the three processes. For an elastic de-
fect-free material, the diffusive process can be further subdivided into
three distinct mechanisms: Nabarro-Herring creep [5], Coble creep [6]
and pressure-solution [7]. The type of deformation mechanism ex-
perienced by the material is dependent on the sintering conditions and
material properties. The dominant mechanism is determined by the
fastest diffusional pathway. The pathways for Nabarro-Herring creep,
Coble creep and pressure-solution are lattice, grain-boundary and sur-
face diffusion respectively. In reality, the deformations operate si-
multaneously with the densification rate summed over the active me-
chanisms [4]. In the case of diamond sintering, a metal catalyst,
typically cobalt or nickel, becomes liquid at the sintering temperature
and provides a much faster diffusional pathway for material transfer.
Many different computational models describing the microstructure
evolution during sintering exist; notable papers and reviews of these
models are available [8,9,1,10,11]. The incorporation of mechanical
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(c) Hot compaction

stresses in these models is, however, sparsely reported in the literature;
this is because tracking of the particle interfaces during deformation is
not trivial, especially when other processes such as surface energy re-
duction due to inter-particle bonding are considered. Bjork [12] in-
corporated stresses into a sintering model by coupling the vacancy
annihilation phenomenon in a kinetic Monte Carlo algorithm with the
finite element method. This multi-scale approach required that the
microstructure be re-meshed at each time step as it evolved. Recent
advances in rigid body motion [8] and model dimensionalisation [13]
have made the phase field simulation of sintering an extremely at-
tractive option. One of the biggest strengths of phase field models is
that they allow the evolution of complex arbitrary interfaces to be re-
solved in time without having to explicitly track their exact position.
Furthermore, the versatility of phase field models means that new
physics can easily be incorporated. A review of the phase field method
for microstructure evolution is available [14]. To this end, an elastic
phase field model for pressure assisted sintering is presented.

The development of micro-elasticity theory and its effect on mi-
crostructure evolution in phase field models has previously been re-
ported in the literature; however, these models typically concern
themselves with examples such as the strain energy resulting from
elastic mismatch at the interfaces [15] and phase transformation strain
[16]. Other examples include the effect of elastic strain energy on
precipitate growth [17] and a dissolution front [18]. The inclusion of
elastic strain in phase field sintering models is, however, limited. The
effect of strain energy on the grain growth kinetics for a pore-free fully
dense polycrystalline material has been investigated [19].

The application of a general micro-elasticity theory to a phase field
sintering model for a porous material is presented in [20] and [21]. In
both cases presented, the particles were not initially in contact. Dis-
placement boundary conditions were applied to the edges of the si-
mulation domain and the void space surrounding the particles acted as
a pressure transmitting medium. Elasticity throughout the domain was
computed using a coupled fully implicit finite-element solver. While the
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Fig. 1. A schematic of the four stages of the HPHT sintering
process for diamond. (a) During initial compaction, the par-
ticles fracture and crush. (b) Upon fracture, the particles
densify through rearrangement. (c) Heat and pressure applied
to the particles result in dislocations and plastic deformation
at the contacts. (d) At sintering temperature, the metal cata-
lyst becomes liquid, infiltrates the diamond pore space and
facilitates mass transport.

(b) Cold compaction- rearrangement

H

(d) Liquid phase sintering

incorporation of micro-elasticity in the aforementioned sintering model
would allow the study of the evolution of sintering particles subjected
to external loads and strong contact interaction between individual
grains, the implementation of a contact algorithm to allow the study of
pressure-assisted densification in these models is missing. Incorporation
of a contact algorithm in such a system would require an advanced
finite-element/discrete-element approach and would increase the
computational time significantly, especially in the presence of a large
number of particles. In light of this limitation and in the absence of a
model that explicitly captures the interactions between grains due to
contact and related elastic deformations, we propose the implementa-
tion of a modeling strategy that allows incorporation of contact me-
chanics within a phase-field sintering model to capture pressure-as-
sisted densification. The presented model allows the calculation of
stresses at the inter-particle contact regions to be calculated semi-ana-
lytically and thus scales to systems involving very many particles with
minimal computational overhead.

In Section 2, the theoretical framework is presented. The model is
then applied to the high pressure liquid phase sintering of diamond
particles and details of the computational implementation are provided
in Section 3. The effect of external pressure on a single particle pressing
onto a non-interacting rigid wall, two sintering particles experiencing a
uniaxial load and lastly, the high-pressure sintering of a multi-particle
compact are investigated in Section 4. To end with, the paper is con-
cluded by providing and discussing the simulation results and evalu-
ating opportunities for further research within the field in Section 5.

2. Formulation

The model is constructed as a modification of the advection-diffu-
sion sintering phase field model initially proposed by Wang [8] and
later extended to include elastic energy by Biswas et al. [20]. The
proposed model thus shares the same free energy functional and phase
field equations as in [20], however, as will be shown later, differs



B. Dzepina et al.

e
;U %rh

o

\J

N,

Journal of the European Ceramic Society 39 (2019) 173-182

Fig. 2. Schematic illustrating two contacting diffuse interface
particles of radius r. I indicates the particle interior, p the centre
of mass and £ the diffuse particle boundary which has a width .
A plot of the spatial variation of the phase field and order para-
meter variables along line H-H are displayed on top. The overlap
of the diffuse interfaces £, along line K-K is plotted on the side
with Q15 e the centre of the contact and a the diameter of the
contact area. The blue and yellow arrows indicate the advection

significantly in that we proposed an original way to deal with contact
stresses and to implement them within the phase field framework.
Within this formalism, the solid particles are initiated by a scalar field ¢
(r, t), called the phase field variable. The phase field variable represents
the mass density, or in the case of diamond sintering, the fractional
solute concentration of carbon in the liquid metal phase. The solute
concentration is a function of position, r, and time, t. Within a solid
particle, the solute concentration is considered fully saturated and ¢
takes a value of 1. Conversely, in the pure liquid phase, c takes a value
of 0. At the interface between the solid and liquid there exists a smooth
diffuse region where c € (0, 1). The particles are further described by
another scalar field, known as the order parameter. Each particle in the
system possesses its own order parameter field, ,(r, t), wherei = 1, 2,
..., D, is the index of the particle and p is the total number of unique
particles in the simulation domain. The order parameter is thus used to
describe the unique identity of each particle with its own crystal-
lographic orientation. A schematic of two contacting particles and their
phase field and order parameters is shown in Fig. 2.

According to the principles of gradient thermodynamics [22], the
free energy, F, of the system within the domain, V, is constructed as
follows:

19 o By
F= [ |fm. )+ = Vel + > VP + £y av

i=1 (€)]
where f, is the non-equilibrium bulk free energy, V is the gradient
operator, . and f3, are the gradient energy coefficients and f,; is the
elastic strain energy density resulting from inter-particle contact. The
first term of Eq. (1) describes the energy associated with a homogenous
mixture of the different phases and takes the form of the following
multi-well Landau polynomial:

fy =Ac*Q —c)?*+B c2+6(1—c)27)i2—4(2—c)2ni3
» 2
+ 3(2 7)1-2)

A and B are material specific constants related to the height of the
energy barriers for phase mixing. The bulk free energy term thus acts to
separate out a mixture of phases. The second term in Eq. (1) describes
the energy associated with the gradient of the free surfaces between the
solid and liquid phase. The third term describes the energy associated
with gradients in the order parameter and is related to the grain
boundary energy. The conservation of phases is enforced by the con-
tinuity equation:

@
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Q13 max direction, N, and normal force vector, F,, acting on particle 1
respectively.
Q;,
oc
—+Vj=0
a ®)

where j is the total solute flux density through a particular point in

space and is comprised of a diffusional flux, j4s and an advective flux,

judv:

j = jdif + jadv (4)
In order to minimise the energy of the system, a variational deri-

vative of the free energy with respect to the phase field variable gives

rise to the generalised chemical potential as follows:

_OF

=%

()
The driving force for diffusion is the gradient of the chemical po-
tential:

Jaig = —MVu (6)

where jgr is the diffusional flux density. Assuming a constant molar
volume, V,,, the mobility, M, can be estimated from the diffusion
coefficient, D, according to the equation:

_ DV,
" RT ™
where R is the universal gas constant and T the temperature. The dif-
fusion coefficient can be decomposed into its surface, lattice and grain
boundary diffusivities as demonstrated in [8]. This form of the diffu-
sivity would enable the model to study pressure-solution, Nabarro-
Herring and Coble creep deformation mechanisms by taking into ac-
count the respective diffusional pathways.

By combining Egs. (1), (3), (4) and (6), we obtain the modified form
of the Cahn-Hilliard non-linear advection diffusion equation for the
temporal evolution of the phase field variable:

o Sl .
(le:i E:l _Jadv]' ®)

dc
The temporal evolution of the non-conserved order parameter field
for the ith grain is similarly derived by the variational derivative with
respect to the order parameter and is given by the modified Allen—Cahn
structural relaxation equation:

d] d)
=-L i A - V. ji adv
n; on; ’

i

- B.Vi +

an;

at —B VI +

(C)]
where j; qqv is the advection flux for the ith grain and L is the Allen—Cahn
mobility which is related to the grain boundary mobility M, by the
relation: B,L = vysM, [13].

The diffuse interfaces are allowed to develop for a small finite
amount of time, t;,;;, and the contact patches between interacting grains
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Table 1

Table of material constants and model parameters for diamond-nickel sintering.
Material constants Value Source
Yes 3.3 J/m? [24], [25]
Yl 2.7 J/m? [26]
D 2 x107° m%/s [27]
My 7 x 107 m%/Js [28] ®
E 1143 GPa [29]
Vin 7.7 x 10° m®/mol Estimated from [30]
A 6.2 x 10° J/m® Calculated according to [13]
B 2.2 x 10° J/m® Calculated according to [13]
Be 2.36 X 107° J/m Calculated according to [13]
B, 3.71 x 107° J/m Calculated according to [13]
Phenomenological constants Value Source
q 0.01 b
m. 1.5 x 10~3 m*/Ns b
s 15X 10" °m b

@ As literature values for the grain boundary mobility for diamond M, was
not available, a typical ceramics grain boundary mobility selected from [28]
was used instead.

> phenomenological constants were used for g, m, and 8. An intentionally
large value for the diffuse interface width, §, was chosen for computational
expediency (it has been shown that this does not affect the kinetic or thermo-
dynamic driving forces [31]).

i and j are defined by the overlap of their order parameters fields ac-
cording to the geometric operation:

07
QU:{JJ

where g is the overlap threshold for identifying contact between ad-
jacent particles. The operation £ is typically used to identify grain
boundaries, but its use has been extended to identify particle contact in
the proposed model. The location of the maximum value of the op-
eration, £ mq, is thus henceforth called the centre of the contact be-
tween particles i and j.

By normalising the values of the order parameter fields in the
overlap Q;with respect to the maximum value within the contact in
question, the function £;;/£2y ma is used as the discrete approximation
of the normalised stress distribution within the contact.

The peak stress in the centre of a spherical contact, oy, is calculated
as follows:

3F,

0= ——=
2ma?

nm 2 q

ny <q (10)

(€8]

where F,, is the normal force acting on the particle surface and, a, is the
contact area measured from the result of the function £;. This form of
the peak stress is applicable to spheroidal particles at the start of sin-
tering as presented in this study. It's form would be different for non-
spheroidal contacts and is the subject of further investigation.

The elastic strain energy density in the contact is thus calculated as
follows:

felz,/v‘

where E is the elastic modulus of the material.

As material diffuses along elastic energy gradients away from the
centre of the contact, rigid body motion is required to maintain contact
between the two particle surfaces. The restorative force for any particle
in contact with its partner is thus calculated as:

P gy

Qjjmax E (12)

Fyaav = (N)(Clog matine = i max) (13)

N is direction vector between the centre of mass of the particle, g;, and
the contact point centre, £ mqe and has a magnitude of unity. The
second term is the magnitude of the advective force, and is calculated as
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the deviation of the phase field variable at the centre of the contact,
C|¢ij,max’ from the value obtained at t;,;; which corresponds to the time
when the vacancies are assumed to be saturated at the initial contact
point and the elastic energy in the system is switched on, clo; .y tinic- AS
in Wang's model [8], the driving force behind the advective force is the
vacancy annihilation mechanism which, in our case, is amplified by the
over-saturation of vacancies resulting from elastic energy in the con-
tact. The force thus ensures that surfaces stay in contact to maintain
mechanical equilibrium from the applied pressure. Due to the fact that
the majority of confined particles possess several contact partners, the
contribution of torque acting on the particles is likely to be minimal and
therefore rotational motion was omitted from the model. The advection
velocity field acting on the order parameter of the ith particle is thus a
sum of the pairwise forces resulting from all interacting particles:

m &

Vadv,i = 7 Z Fadv,ija

U 14
where m, is the translational mobility and V; is the volume of the ith
particle. Strictly speaking, a force on the particle should result in its
acceleration; however, since the particle motion due to the advective
force is a highly dissipative process [8], the velocity of the particle is
used instead. The advection flux density acting on the order parameters
is then given by:

Jiady = NiViadv- (15)

The overall advection velocity field acting on the solid phase is thus
a sum of the velocity fields acting on the respective order parameters:

)4
Jagw =€ Vi,adv-
‘ Z - (16)

3. Implementation

In order to demonstrate the model, the initial implementation and
all simulations were performed in two dimensions. The phase field
equations were dimensionalised and parametrised to a real material by
relating the constants M, A, B, . and f, to the diffusion coefficient, D,
grain boundary energy, vy, Nickel-Diamond interface energy, vy, and
grain boundary width, §, according to the equations of Ahmed et al.
[13]. In the present example, only two phases were considered at the
chosen temperature of 1800 K, namely, the solid phase which is dia-
mond and the liquid phase which is molten nickel. To make the model
applicable to liquid phase rather than solid state sintering, the so-
lid—vapour interfacial energy in Ahmed's work was replaced with the
solid-liquid interfacial energy. The model parameters used for the
Nickel-Diamond system are listed in Table 1.

Several assumptions were made to simplify the model for demon-
stration purposes: elasticity and diffusion were assumed to be isotropic
and constant at the given temperature, only limited plastic deformation
is expected and was therefore not accounted for and the grain-boundary
energy for diamond was taken as the average value over many possible
mismatch angles. It is also assumed that the inter-particle forces re-
sulting from the surface tension of the liquid are negligible compared to
those arising from the application of external pressure.

Pressure gradients in the liquid arising from rigid body motion and
migration of the interfaces are likely to be small and negligible; con-
vection in the liquid phase was thus not considered.

In order to strike a balance between computational efficiency, suf-
ficient diffuse interface resolution and minimised diffuse interface ef-
fects at the chosen grain-size scale, careful consideration of the mesh
spacing and diffuse interface width was necessary. General guidelines
based on a quantitative analysis [23] are that the diffuse interface
width be at least three mesh points, § = 3Ax with the radius of the
smallest particle be at least the diffuse interface width R = §. Based on
mesh convergence tests and the aforementioned guidelines, mesh
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Fig. 3. Schematic illustrating the diffuse interface of a single particle, £, in-
teracting with the diffuse interface of a non-interacting wall, €,,,;. The red
square, £21,q1max indicates the position of the maximum overlap of the re-
spective diffuse interfaces. The blue area, £,q, indicates the area where
Dirichlet boundary conditions are applied.

spacing and interface width were fixed at Ax = 0.5um and & = 5Ax
respectively for all the presented simulations. Further details of each set
of simulations are provided in the subsections that follow.

3.1. Single particle test

The first test case was a single particle pressing onto a non-inter-
acting diffuse interface wall. A 30 pm particle was initiated as a discrete
object with a sharp-interface boundary. The particle was then allowed
to develop a diffuse interface for a short finite amount of time, t;,;;, such
that the position of the middle of the diffuse interface at ¢ = 0.5,
n1 = 0.5 coincides with the position of its respective sharp interface. A
similar procedure was done with the wall. The wall was then in-
troduced to the particle as a constant #,,q; field only, with a null con-
centration field. A schematic of the setup is shown in Fig. 3. Thus, in
order to make the wall non-interacting, there was no time integration of
the Cahn-Hilliard or Allen-Cahn equations for #,,,; By initiating the
wall in this manner, it served only to provide an imaginary rigid surface
upon which the particle was pressed. A downward body force of 0.4 N
was exerted on the particle after t;,;; = 2.94 s and the simulation was
run for 260s. This force is typical of what a particle might experience
during the HPHT sintering of diamond.

Dirichlet boundary conditions for the particle were imposed at the
non-interacting diffuse wall such that there was a zero energy gradient
across the wall:

oF
dy

Qwalls (17)
Furthermore, the particle was allowed to advect to but not across
the wall boundary:
Vadv”ﬂwan* =0 (18)
In order to impose the boundary conditions above, a second-order
central finite-difference scheme and an explicit Euler scheme was used
as the discrete approximation of all spatial and time derivatives re-
spectively. The time-step for the single particle simulation was
0.00588s.

3.2. Two particle test

The effect of contact pressure on the sintering kinetics of two 40 um
particles with ON, 0.4N and 0.8 N uniaxial body forces was studied.
The total simulation time was 16 s. Since a uniform mobility field was
used for demonstration in this example, it was possible to solve the
phase field equations numerically using the semi-implicit Fourier
spectral method [32]. For simulations where a spatially variable mo-
bility is desired, a finite difference algorithm is typically employed
[33]. The timestep size used for the simulation was 0.0588s with
tinic = 2.94s.

177
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3.3. Multi-particle tests

For the multi-particle tests, it was necessary to employ the discrete
element method (DEM) to obtain the initial starting arrangement and
normal forces between the particles. This was achieved by using the
Granular package of the open-source DEM engine LAMMPS [34]. A
bimodal particle size distribution of 15 pm and 25 pm particles with a
number ratio of 1:1 was used. 50 particles were introduced randomly
and the simulation domain was gradually reduced in size until the
desired pressure on the domain walls was achieved. The DEM simula-
tion was performed in two dimensions with periodic boundaries in the x
and y directions. Particle interaction was done according to a friction-
less Hertzian formulation with zero tangential stiffness. The particle
positions, radii and pair-wise normal forces were then exported and
introduced into the phase-field model. Due to the large number of order
parameters, a bounding box algorithm [35] was used to improve
computational efficiency. As in the two particle case, the Cahn-Hilliard
equations were solved numerically using the semi-implicit Fourier
spectral method with ¢;,;; = 1s for a total simulation time of 10.65s
with a time-step of 0.0588s. A set of simulations at different external
pressures, from 1 to 8 GPa, were performed and compared with the
pressure-less case. Three sets at the respective pressures, each with
different random starting configurations, were used to gather statistics.
Average values and standard deviations between the three respective
sets were obtained. The density of the sintering particles was calculated
within a square region positioned inside the compacted specimen; to
reduce edge effects, the sides of the square region were positioned such
that their distance from the outermost particle edge of each side was a
distance of two times the radius of the largest particle.

4. Results and discussion

The classical Hertzian contact theory for two spherical bodies was
used to find contact pressure distributions from a geometrical con-
sideration of their elastic displacements within the contact patch be-
tween the two mating surfaces [36]. Similarly, within the proposed
diffuse interface formalism, the pressure distribution within the contact
is approximated by the geometric overlap of the order parameters of the
contacting bodies. Fig. 4 compares the contact function £;;/£2; ma for
two overlapping circular diffuse interfaces to the normalised pressure
distribution along the contact patch as calculated by the Hertzian stress
equations [37]. In reality, many ceramic powders, diamond included,
are not spheroidal. The particles possess an irregular and faceted
morphology and the contact points are likely to be angular with some
small degree of rounding at the tip due to plasticity. In a similar manner
to the spheres, the contact function is compared to the analytical so-
lution for the pressure distribution at the contact of a rounded-tip
square indenter [38] in Fig. 5. There is good agreement between the
diffuse contact function and the analytical formulations; deviations are
attributed to the discretisation of the solid particles. This significant
observation means that the proposed method is capable of calculating
the contact stresses of arbitrarily shaped bodies fairly accurately in a
very simple and efficient manner without the use of complicated ana-
lytical formulas. Furthermore, transient pressure distributions as the
particle changes shape over time are implicitly handled by the model.
This strengthens the advantages of using a diffuse interface approach by
eliminating the need for tracking of particle surfaces.

4.1. Single particle test

The extent of pressure solution deformation on the contour of a
single 30 pm particle experiencing a 0.4 N downward body force is
shown in Fig. 6. The contour of the particle was taken at the location in
the diffuse interface where ¢ = 0.5. Bulging of the particle around the
periphery of the contact was caused by diffusion of material from the
centre of the contact, where the elastic strain energy was highest, to the
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Fig. 4. (a) Considered geometry of two contacting spheres and (b) the normalised stress distribution along the contact patch as determined by Hertz equations [37]

(red points) and the contact function /£ mq. (blue line).

surrounding unstressed particle surface. The stressed particle experi-
enced 0.55 pm vertical displacement.

The bulk, c-gradient, y-gradient and elastic energies were calculated
during the simulations. The respective energy densities within the
contact as a function of time are plotted in Fig. 7(a) for the 0.4 Nsingle
particle simulation. The elastic energy within the contact dropped ex-
ponentially as the contact patch grew in size. Eventually an asymptote
was reached where the contribution of the elastic energy to the overall
energy state within the contact was dwarfed by the other energy terms.

A global energy analysis at the end of the single particle simulations
with O N and 0.4 N force was also performed. Since the phase field
method is used to describe an irreversible thermodynamic process, it is
expected that the overall total energy of the system decreases as the
system attempts to find a minimum energy configuration along the
space-energy hypersurface; this was found to be true. The difference in
respective energies between the O N and 0.4 N simulations is plotted in
Fig. 7(b). From the graph it is evident that the incorporation of elastic
energy resulted in a net positive difference in the bulk energy and a net
negative difference in the respective gradient energies. This is due to
the smearing action of the elastic energy and is attributed to the gen-
eration of new surface which is to be expected as the particle surface
changes shape.

Normalised stress distribution
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y-coordinate (;zm)
N
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Y
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10

20 25
x-coordinate (pm)
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Fig. 6. A comparison of the contours of a 30 um grain after 90 s with (red) and
without (blue) a 0.4 N downward body force.

P_ (Dinietal.)

-1 08 -06 -04 -02

0 02 04
Normalised radial coordinate

(b)

0.6

Fig. 5. (a) Considered geometry of rounded-tip square indenter, (b) the normalised stress distribution along the contact patch as determined by the analytical

solution [38] (red points) and the contact function £2;/£2; max (blue line).
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Fig. 7. The temporal evolution of (a) the different energetic terms within the
contact region for the 0.4 N simulation and (b) the global energy differences
between the ON and 0.4 N simulations.
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Fig. 8. A comparison of the contours for two 40 um particles sintering at var-
ious loads applied along the x-direction.

4.2. Two particle tests

A comparison of the resultant contour of two particles sintering at 0,
0.4 and 0.8 N uniaxial body force after 60s is shown in Fig. 8. The
calculated maximum Hertzian contact stress for these loads is 0, 64 and
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Table 2
Measured grain boundary lengths for the particles sintered at
various uniaxial body force.

Force (N) Grain boundary length (um)
0 11.9
0.4 12.7
0.8 16.0

102 GPa respectively which fall within the estimated range experienced
by the diamond grains during cold-compaction.

The lengths of the necks between the particles, X, at the end of each
of the simulations were measured. The results for each respective body
force is shown in Table 2. In theory, the neck size grows in time at a rate
proportional to the cube-root of sintering time ( té) [11]. At equili-
brium, the classical asymptotic limit for the neck size between two
sintering particles is determined by the particle diameters and the ratio
of the grain boundary to solid-liquid surface energies [1]. As a check,
extremely long simulations ensured the neck widths converged
asymptotically to their theoretical values.

Since the sintering of the particles in this study was performed
within a time frame much shorter than that required to achieve equi-
librium, the neck widths were considerably shorter than their equili-
brium values. Nevertheless, it is evident that the kinetics of neck growth
were significantly affected in the simulations. At a load of 0.8 N, a 34%
increase in grain boundary length was observed. The increased con-
nectivity in the two grains would result in increased strength between
the sintered particles.

4.3. Multi-particle tests

Obtaining the starting particle positions for a multi-particle simu-
lation is possible using standard packing algorithms. However, com-
puting the inter-particle forces for particles confined in a box, especially
for non-monomodal distributions, is not trivial. For this reason, it was
necessary to use the LAMMPS granular discrete-element solver. The
particle's position, radius and inter-particle normal forces were ex-
ported. The results were then post-processed to show the inter-particle
normal forces as connecting lines between their centres with the
thickness of the line proportional to the magnitude of the force. The
resulting force-chain for one of the particle packing arrangements is
shown in Fig. 9. From the figure it is evident that the compact possesses
a complicated force distribution. Most of the particles contribute to

— 025N = (05N

(.75 N

Fig. 9. The resulting force-chain distribution for particles confined under
pressure of 8 GPa. The thickness of the lines connecting the particle indicates
the magnitude of the normal force.
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Fig. 10. A comparison of the effect of pressure on the final microstructures for
50 particles with the same initial arrangement at (a) zero and (b) 8 GPa con-
fining pressures. Particle contours are indicated in blue and grain boundaries in
black.

supporting the confining pressure of the walls by the formation of a
particle skeleton. Due to zero gravitational forces, some of the particles
do not make contact with other particles and float about in free space
while others, although touching, experience no significant inter-particle
forces.

The effect of an 8 GPa confining pressure on the final microstructure
after 10.65s for the sintered particles is demonstrated in Fig. 10.
Qualitatively, the liquid pores appear fewer and smaller with thicker
necks between the particles for the high pressure simulation. An in-
crease in particle coordination from 3.26 to 3.42 for this simulation run
was also observed.

The total length of the grain boundaries at the end of each simu-
lation were measured. The relative difference in total grain boundary
length between the pressure-less case and each pressure is shown in
Fig. 11. The fit to the graph is a second order polynomial indicating a
square dependence of grain boundary length on pressure. Thicker necks
and increased densities have been shown to give sintered compacts
improved stiffness, hardness, fracture toughness and compressive
strength [39-41].

The starting the initial

solid density for three different
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Fig. 11. A plot of the relative increase in total grain boundary length between
the pressure-less case and each confining pressure. The error bars indicate the
standard deviation for measurements across the three different starting con-
figurations for the multi-particle simulations.
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Fig. 12. A plot of the mean change in solid density vs. time at the various
confining pressures. The error bars indicate the standard deviation for the va-
lues obtained from the three different starting configurations.

configurations ranged between 80-82%. The changes to the solid
density of the sintering compacts were computed as a function of time.
The densification curves for the typical diamond sintering pressures are
plotted in Fig. 12 as the difference in density between the high pressure
simulations and the pressure-less case. For the 8 GPa runs, the solid
density increased by around 4% for the duration of the run. The results
show that even in the absence of plastic deformation, elastic energy at
the inter-particle contacts is responsible for significant densification
observed during diamond sintering. The ever increasing error bars are
indicative of how small changes in the initial particle arrangement can
lead to different outcomes in the final microstructure.

Kingery [7] provided a theoretical model for the shrinkage occur-
ring during liquid phase sintering. Upon wetting of the particles, the
surface tension of the liquid, vy, results in a negative pressure acting on
each of the remaining gaseous pores. The pore pressure is equivalent to
placing the entire system under a hydrostatic pressure which in turn
results in appreciable forces acting on the particles. Derivation of the
equation was modified (see Appendix) to include the external pressure
as the driving force for densification rather than the surface tension of
the liquid:
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1
AL _ (4szpo 8.Co th)f

L, r3RT 19)

where AL is the change in length, L, is the original length and p, is the
externally applied pressure. Q is a measured geometric coefficient equal
to the relative difference in grain boundary length at the respective
pressure, which has been derived from fitting the data shown in Fig. 11
and k is the constant of proportionality as reported in the appendix and
was calculated to be 17.5, C the solubility of the solid in the liquid
phase, V,, is the molar volume, R the universal gas constant, T the
temperature and r the particle radius. To make the model correspond to
the phase field model, C was taken as 0.5, §; is the liquid film thickness
which was taken as the diffuse interface width and r was taken as the
mean starting grain size of 20 um. The analytical solution to Eq. (19) for
each of the respective pressures is included as the dashed line in Fig. 12.
Generally a good agreement in the shapes of the densification curves
between the phase field and theoretical model was observed. At the
beginning of the run, the theoretical model displays slightly increased
densification rates. This observed difference is likely due to the delay,
tinit, used in the phase field models that resulted in partial bonding and
larger contact patches initially. The delay, while unphysical, is neces-
sary as it not only allows the diffuse interfaces to develop adequately,
but also provides numerical stability for the model in the early stages of
sintering where point-like contacts result in enormous elastic energies.

In reality, scanning electron micrographs reveal that the starting
diamond particles are not spherical; grains are highly prismatic and
angular. While the proposed phase field model is intrinsically capable
of handling non-spherical particles, a more advanced discrete element
model would be required to calculate inter-particle forces for the irre-
gular surfaces. A complete model for the sintering of diamond would
also require the implementation of crystal plasticity and quantification
of plastic strain energy which is beyond the scope of this article. Further
developments in these areas of high pressure sintering models are
needed and more advancements will be presented in future contribu-
tions by the authors.

5. Conclusion
The implementation of an efficient contact mechanics algorithm

Appendix A
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into an elastic phase field sintering models is presented. Contact de-
tection and pressure distribution in the contact were approximated by
the overlap of the order parameter fields. Advection fields were used to
maintain contact between deforming surfaces. The model was demon-
strated by applying it to three different scenarios. The model showed
that significant contact flattening occurs when a single particle was
pressed onto a non-interacting rigid wall at loads typically experienced
during diamond sintering. An energy analysis for the single particle test
revealed that the stored elastic energy was transformed into the gen-
eration of new particle surface. Typical inter-particle contact pressures
for the LPS of diamond particles resulted in grain boundary lengths up
to 34% larger than the pressure-less case. Such microstructural changes
are expected to have significant changes in the mechanical properties of
a sintered compact. For the multi-particle simulations, the initial
packing configurations and inter-particle normal forces were obtained
through discrete element methods. Densification kinetics for the elastic
phase field model were in good agreement with theoretical predictions
of shrinkage during LPS. At a confining pressure of 8 GPa, a 4% increase
in solid density was experienced by the sintering compact for the
duration of the run. A new formula was derived based on mechanistic
considerations that, starting from equivalent theories developed for
low-pressure liquid phase sintering, include the effect of contact
stresses to estimate solid densification rates in multiparticle HPHT
sintering processes; it was shown to provide very good predictive
capabilities for the range of conditions and the system considered in
this study.
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Compressive stresses at the contact result in an increase in chemical potential, i, and activity, a, as follows:

- p, = RTIn-L = APV,
Qo

G _ APV
(1) RT

where AP is the compressive stress at the contact.

(20)

(21)

The increased activity in the contact results in a difference in solubility between the contact and surrounding particle surface such that the

diffusive flux, J, away from the contact points equals
J = 4nDAC.

The volume of material removed, V, is equal to:

(22)

(23)

where h is the inter-penetration strain of the grains. For continuity, the volume of material removed must be equal to the flux away from the contact

V = nrh?
point:
WV _ 57— axD(C - C).
dt
Combining Egs. (21) and (22) we arrive at the relation:
APViy
476, Co(e RT — 1) = ZKZIEdh.

(24)

(25)

By approximating the exponential with the first term in its series expansion and rearranging we obtain:
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hdh

_ 26,CoAPV,,dt
rRT '

Upon integration we arrive at:

h2

48, Co APV, t
rRT '

Since h/r = AL/L,, the shrinkage becomes:

aL
Lo

1
(45L COAPth)i
r*RT '

The contact pressure is related to the remote external pressure, po by:

AP =

szp() s
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(26)

(27)

(28)

29

where Q is the relative difference in contact path length as a function of external pressure and k is the constant of proportionality. The product kQ? is
thus a geometric factor that relates the contact pressure by the external pressure. Substitution of Eq. (29) into equation (28) yields the equation for
the shrinkage:

aL
Lo

1
_ (4kQZp05LCOth)E

r3RT
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