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Abstract   

This paper proposes a framework for airport taxi situation awareness to enhance the assessment 

of aircraft ground movements in complex airport surfaces. Through a macroscopic distribution 

network (MDN) of arrival and departure taxi processes in a spatial-temporal domain, we 

establish two sets of taxi situation indices (TSIs) from the perspectives of single aircraft and the 

whole network. These TSIs are characterized into five categories: taxi time indices, surface 

instantaneous flow indices, surface cumulative flow indices, aircraft queue length indices, and 

slot resource demand indices. The coverage of the TSIs system is discussed in detail based on 

the departure and arrival reference aircraft. A real-world case study of Shanghai Pudong airport 

demonstrates significant correlations among some of the proposed TSIs such as the aircraft taxi 

time indices (ATTIs), surface cumulative flow indices (SCFIs) and aircraft queue length indices 

(AQLIs). We identify the most crucial influencing factors of the taxi process and propose two 

new metrics to assess the taxi situation at the aircraft and network levels, by establishing taxi 

situation assessment models instead of using two systems of multiple TSIs. The findings can 

provide significant references to decision makers regarding airport ground movements for the 

purposes of air traffic scheduling and congestion control in complex airports. 
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Nomenclature 

ATM Air Traffic Management 
MDN Macroscopic Distribution Network 
TSI Taxi Situation Index 
ATTI Aircraft Taxi Time Index 

SIFI Surface instantaneous flow index 
SCFI Surface Cumulative Flow Index 
AQLI Aircraft Queue Length Index 

SRDI Slot Resource Demand Index 

1 Introduction 

With the tremendous growth of air transport industry over the past few decades, airport network 

structure, aircraft ground movement, and airport operational environment have become increasingly 

more complex. This is accompanied by a drastic increase in aircraft conflicts, airport congestion and 

flight delays. With the significant efforts undertaken to improve en-route operation, there has been a 

major shift of congestion from en-route airspaces to airport surface (Smeltink et al., 2003). This 

change has urged air navigation service providers, airports and airlines to improve, individually or 

collaboratively, the efficiency of their services or processes including taxi planning (Marín, 2006; 

Clare et al., 2009; Mori, 2013), arrival and departure scheduling (Bohme et al., 2007; Hesselink and 

Basjes, 1999) and turn-around management (Norin, 2008). Integration of all these processes is 

explored by Eurocontrol (2005) by issuing the implementation manual of airport collaborative 

decision making, which, since then, has become a mature guide and effectively enhanced the 

performance of hub airports.  

During the entire operational period of an aircraft, airport ground movement plays a critical role 

and contributes to airport congestion and delay. The taxiway network is the most significant 

component of airport capacity, and is central to the mitigation of congestion. Due to the significant 

complexity and uncertainties associated with aircraft movements in taxi network, the accurate 

awareness of airport taxi situation is, and continue to be, a critical issue for air transport decision 

makers to ensure the safe and efficient operation of Air Traffic Management (ATM) systems. 

Most literature on taxiway network management focuses on the optimization. The optimization of 

the taxi process encompasses both spatial and temporal dimensions. The spatial planning focuses 

primarily on taxi routing between the gates and the runways (Balakrishnan and Jung, 2007; Keith et 

al., 2008; Gerdes and Temme, 2012; Guépet et al., 2016). The temporal planning focuses on 

scheduling of taxi activities, which is used to assign time stamps to aircraft concerning when to 

reach certain point on the airport surface along its taxi route (Smeltink and Soomer, 2004; Rathinam 

et al., 2008; Montoya et al., 2010). Regarding the objective of these optimization problems, many of 

the previous studies focus on minimizing the total taxi time between the runway and the gate (Pesic, 
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et al., 2001; Deau et al., 2009; Ravizza et al., 2013), while others consider multi-objective 

optimization. For example, Marín and Codina (2008) solve the problem of taxi network design by 

adopting a weighted linear objective function to balance a list of conflicting performance measures, 

including airport throughput, aircraft taxi time, flight delays and operational costs. On the constraint 

side of airport surface operation, minimum aircraft separation constraints, taxiing speed constraints, 

arrival/departure time constraints and route priorities are synthetically considered based on the 

theory of conflict detection and resolution (Atkin et al., 2010; Smeltink et al., 2003). Finally, most of 

these optimization problems are solved with heuristic methods due to the complexity of the 

dynamics and constraints. For example, the genetic algorithm (Gotteland et al., 2001), A-star 

algorithm (Brinton et al., 2002), particle swarm optimization (Liu et al., 2011) and ant colony 

algorithm (Nogueira et al., 2014) are adopted to solve the taxi planning problems. Most of the 

literature reviewed above focuses on the spatial-temporal information of single aircraft, rather than 

the entire aircraft fleet in the taxiway system. Given that the efficient taxiway network management 

requires precise and reliable assessment of the entire traffic situation, we propose a macroscopic 

distribution network model to assess the airport taxi situation, aiming at providing precise 

information of airport taxi situation for airport managers and air navigation service providers. 

In the airport system, taxi time is one of the key performance indicators to analyze the airport taxi 

situation. Extended taxi-out time and taxi-in time, including large queuing times before entering the 

runway, are direct consequences of inefficient air traffic management, and are often associated with 

excessive operational and maintenance costs, increased risks, as well as negative environmental 

impacts. Regarding taxi time, many studies rely on statistical models that rely on probability 

distributions of flight delays and aircraft operation times, in order to predict aircraft taxi time 

(Shumsky, 1995; Signor and Levy, 2006). Idris et al. (2001) identify some factors that affect aircraft 

taxi time and establish a prediction model taking into account the most significant factors such as 

takeoff queue size. Clewlow et al. (2010) analyze the impact of arrivals on departure taxi operations 

at airports and find that the impact increases as interaction between departures and arrivals increases. 

Balakrishna et al. (2008, 2010), George and Khan (2015) define the number of arrivals that are 

taxiing on the surface as one of the elements of system state, and adopt reinforcement learning 

algorithm to estimate aircraft taxi time, followed by assessment of the accuracy of these models.  

Most of the aforementioned taxi situation prediction models focus on either the arrival taxi 

process or departure taxi process separately, where in reality these two processes are clearly coupled 

and interdependent on each other. Moreover, they exclusively focus on the aircraft taxi time without 

considering other relevant factors or performance indicators pertaining to airport taxi situation, such 

as taxi delay, pushback rate, runway queue length, traffic volume and the interactions between 

arrivals and departures. Although taxi time is a key performance indicator of airport ground 
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movements, it alone cannot sufficiently represent airport taxi situation in its entirety. 1 In additional, 

much attention of existing studies was focused on the situation of single aircraft while ignoring the 

analysis of taxi situation on the network level. For these and other reasons that will become clear 

when we present the results, it is necessary to identify all relevant performance indicators at the 

levels of aircraft and network, independent or correlated, in order to distinguish and identify the 

correct taxi situation, which is the focus of this paper. 

From the literature review, we conclude that there is a lack of systematic taxi situation awareness 

methods that rely on indicators beyond taxi time; nor is there a study on the complexity of airport 

taxi situation. Aiming at modelling, analyzing and assessing the taxi situation in complex airport 

systems with full consideration of the influencing factors of aircraft taxi process, this paper proposes 

a novel method for characterizing airport taxi situation based on a macroscopic distribution network 

(MDN) and a full list of TSIs. Specific contributions and findings are as follows. 

• This paper focuses on airport taxi situation awareness at the aggregate level, by establishing a 

MDN to analyze the spatial-temporal characteristics of aircraft taxi process. With a given 

reference aircraft, we divide all the departures and arrival aircraft into 8 categories with the 

consideration of airport traffic in its entirety. 

• Two sets of taxi situation indices (TSIs) are formulated, from the perspectives of a single 

aircraft (hereafter referred to as Level-1 indices) and network (hereafter referred to as Level-2 

indices). The TSIs at Level-1 and Level-2 include 5 categories and 19 indices based on the 

proposed MDN model. Then, we investigate the coverage of the TSIs system. 

• A three-step hierarchical framework is proposed to assess the airport taxi situation at both 

aircraft and network levels. This consists of data analysis (TS-1), situation indices refinement 

(TS-2) and multiple situation awareness (TS-3). In TS-3, we conduct a comprehensive 

correlation study for all the TSIs and identify the most key influencing factors of aircraft taxi 

time indices. The proposed framework can be used for taxi situation awareness at pre-tactical, 

tactical, and post operations in a complex airport system. 

• We propose two new metrics 𝐶𝑇𝑆𝑎 , 𝐶𝑇𝑆𝑛 to assess the taxi situation at Level-1 and Level-2 

respectively, instead of using two systems of multiple TSIs. A significant relationship is 

revealed between the taxi delay and 𝐶𝑇𝑆𝑎  at Level-1, and the taxi time and 𝐶𝑇𝑆𝑛 at Level-2, 

which provides strong reference to airport ground movements for control and management 

purposes. 

                                                 

1 For example, aircraft with a long taxi route has a relatively larger taxi time, even if there is no 

conflict or congestion involved. 
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The rest of this paper is organized as follows. Section 2 presents the macroscopic distribution 

network (MDN) of aircraft taxi process to describe the relationship between spatial and temporal 

resources. In Section 3 we define two systems of TSIs from the perspective of aircraft and network, 

and propose ways to compute them. Section 4 analyzes the coverage of the proposed TSIs system. In 

Section 5 we conduct a real-world case study of airport taxi situation awareness, and provide 

findings and insights by analyzing the correlation between different TSIs and complexity assessment 

results of airport taxi situation. Finally, some conclusion remarks are presented in Section 6. 

2 Macroscopic Distribution Network 

We propose a novel macroscopic distribution network (MDN) of airport ground movements in any 

spatial-temporal domain at any airport system shown in Figure 1. Note that the arrows in Figure 1 

represent the macrscopic resource flow at airport system, not the microscopic trajectory of individual 

aircraft. The arrivals (departures) are represented by the arrows pointing from the runways (gates) to 

the gates (runways), with relevant times marked in the figure. 
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Figure 1. Macroscopic distribution network of airport ground movements 

The MDN model covers all the types of air traffic with the reference aircraft 𝑎0 , 𝑑0 and reference 

interval [𝑡𝑠, 𝑡𝑒]  as the benchmarks for comparison, and provides a macroscopic and general 

description of the relationship between spatial and temporal resources. The notations in Figure 1 are 

explained as follows. 

𝑎𝑖: Arrival aircraft, 𝑖 = 1,… ,6 

𝑑𝑖: Departure aircraft, 𝑖 = 1, … ,6 

𝑎0 , 𝑑0: Reference arrival and departure aircraft, for the analysis of TSIs 
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𝑡𝑜𝑛: Landing time of arrival aircraft 𝑎0 

𝑡𝑜𝑓𝑓: Take-off time of departure aircraft 𝑑0 

𝑡𝑖𝑛: In-block time of arrival aircraft 𝑎0 

𝑡𝑜𝑢𝑡: Off-block time of departure aircraft 𝑑0 

𝑡𝑠 , 𝑡𝑒: Start and end time of a certain time-slice, for the analysis of TSIs 

𝛿: A pre-defined statistic threshold 

The departures 𝑑1 , … , 𝑑4 represent four different relationships between any departure aircraft with 

the reference departure aircraft 𝑑0: 

𝑑1~𝑑0: Off-block Before, Take-off Before (OBTB) 

𝑑2~𝑑0: Off-block Before, Take-off After (OBTA) 

𝑑3~𝑑0: Off-block After, Take-off Before (OATB) 

𝑑4~𝑑0: Off-block After, Take-off After (OATA) 

Moreover, the aircraft pushed back from the gate simultaneously with 𝑑0 is classified as “Off-

block Before” and the aircraft taking off from the runway simultaneously with 𝑑0 is classified into 

“Take-off Before”. Here, by ‘simultaneous’ we mean that the two events occur within the same time 

step or are not distinguishable by the time resolution selected for the model. It is clear that 𝑑1, … , 𝑑4 

cover all the possible relationships between any departure aircraft with the reference departure 

aircraft 𝑑0. Moreover, as far as 𝑑0 is concerned, 𝑑5 and 𝑑6 are irrelevant in the TSIs classification 

because there is no temporal overlap with the other departures, which means that they have no effect 

on the environment surrounding the departure aircraft 𝑑0. 

Similarly, the arrivals 𝑎1, … , 𝑎4 represent four different relationships between any arrival aircraft 

with the reference arrival aircraft 𝑎0: 

𝑎1~𝑎0: Land-on Before, In-block Before (LBIB) 

𝑎2~𝑎0: Land-on Before, In-block After (LBIA) 

𝑎3~𝑎0: Land-on After, In-block Before (LAIB) 

𝑎4~𝑎0: Land-on After, In-block After (LAIA) 

Moreover, the aircraft landing simultaneously with 𝑎0 is classified into “Land-on Before” and the 

aircraft in-block simultaneously with 𝑎0 is classified into “In-block Before”. In the same way, 𝑎5 

and 𝑎6 are also ignored in the TSIs classification of arrival aircraft. 

3 Taxi Situation Indices (TSIs) System 

TSIs can be divided into 5 categories and 19 indices, aircraft taxi time indices (ATTIs), surface 

instantaneous flow indices (SIFIs), surface cumulative flow indices (SCFIs), aircraft queue length 

indices (AQLIs) and slot resource demand indices (SRDIs). Each category of TSIs are calculated 
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from two perspectives including the single-aircraft (Level-1) and whole-network (Level-2). The 

aircraft perspective focuses the taxi situation of airport ground movements during the taxi process of 

each aircraft. The network perspective focuses the taxi situation of airport ground movements in the 

airport network during a certain period such as one time-slice, of which the range can be set to 15 

minutes, 30 minutes or 1 hour. Taking Figure 1 as an example, the following Sections 3.1-3.2 detail 

the definitions and calculation methods of these indices at Level-1 and Level-2. 

3.1 Level-1: Aircraft TSIs system 

Table 1 illustrates the quantities of aircraft TSIs system in Figure 1 at Level-1, with 𝑑0 and 𝑎0 being 

the reference departure and arrival aircraft respectively. 

Table 1. Illustration of Aircraft TSIs system at Level-1. 

TSIs Notation 
Taking 𝑑0 as the reference departure Taking 𝑎0 as the reference arrival 

Relevant aircraft Value of index Relevant aircraft Value of index 

ATTIs 𝜏𝑑/𝜏𝑎 {𝑑0}  𝜏𝑑 = 𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑢𝑡 {𝑎0} 𝜏𝑎 = 𝑡𝑖𝑛 − 𝑡𝑜𝑛 

SIFIs 
𝜕𝑑 {𝑑1, 𝑑2} 2 {𝑑0, 𝑑1, 𝑑2} 3 

𝜕𝑎 {𝑎1} 1 {𝑎1 , 𝑎2} 2 

SCFIs 
𝜎𝑑 {𝑑1, 𝑑2, 𝑑3, 𝑑4} 4 {𝑑0, 𝑑1, 𝑑2, 𝑑3, 𝑑4} 5 

𝜎𝑎 {𝑎0, 𝑎1, 𝑎2, 𝑎3 , 𝑎4} 5 {𝑎1 , 𝑎2 , 𝑎3 , 𝑎4} 4 

AQLIs 
𝜆𝑑 {𝑑1, 𝑑3} 2 {𝑑1 , 𝑑3} 2 

𝜆𝑎 {𝑎0 , 𝑎2 , 𝑎3, 𝑎4} 4 {𝑎3, 𝑎4} 2 

SRDIs 
𝜇𝑑 {𝑑2} 1 {𝑑0} 1 

𝜇𝑎 {𝑎0 , 𝑎2} 2 {𝑎2, 𝑎3} 2 

3.1.1. Aircraft taxi time indices (ATTIs) 

The ATTIs at Level-1 refers to the taxi time between the runway and the gate of the reference 

aircraft. Its definition is relatively straightforward, for any reference departure or arrival aircraft, the 

ATTIs include one TSI 𝜏𝑑 or 𝜏𝑎. The ATTIs related to the reference departure aircraft 𝑑0 is defined 

as follows: 

𝜏𝑑: Taxi-out time of the reference departure aircraft 𝑑0 

Similarly, the ATTIs related to the reference arrival aircraft 𝑎0 is defined as follows: 

𝜏𝑎: Taxi-in time of the reference arrival aircraft 𝑎0 

Note that the ATTIs is only concerned with the reference aircraft and not any other aircraft. 

3.1.2. Surface instantaneous flow indices (SIFIs) 
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The SIFIs at Level-1 refer to the number of taxiing aircraft when the reference aircraft is being 

pushed back from the gate or landing on the runway. For any reference departure or arrival aircraft, 

the SIFIs include two TSIs 𝜕𝑑 and 𝜕𝑎. The SIFIs related to the reference departure aircraft 𝑑0 are 

defined as follows: 

𝜕𝑑: Number of taxiing departures when 𝑑0 is being pushed back from the gate 

𝜕𝑎: Number of taxiing arrivals when 𝑑0 is being pushed back from the gate 

Similarly, the SIFIs related to the reference arrival aircraft 𝑎0 are defined as follows: 

𝜕𝑑: Number of taxiing departures when 𝑎0 is landing on the runway 

𝜕𝑎: Number of taxiing arrivals when 𝑎0 is landing on the runway 

3.1.3. Surface cumulative flow indices (SCFIs) 

The SCFIs at Level-1 refer to the number of aircraft that have taxied out or are taxiing on the surface 

during the entire taxi process of the reference aircraft. For any reference departure or arrival aircraft, 

the SCFIs include two TSIs 𝜎𝑑 and 𝜎𝑎. The SCFIs related to the reference departure aircraft 𝑑0 are 

defined as follows: 

𝜎𝑑: Number of departures whose taxiing period has overlap with the taxiing period of 𝑑0 

𝜎𝑎:  Number of arrivals whose taxiing period has overlap with the taxiing period of 𝑑0 

Similarly, the SCFIs related to the reference arrival aircraft 𝑎0 are defined as follows: 

𝜎𝑑: Number of departures whose taxiing period has overlap with the taxiing period of 𝑎0 

𝜎𝑎: Number of arrivals whose taxiing period has overlap with the taxiing period of 𝑎0 

3.1.4. Aircraft queue length indices (AQLIs) 

The AQLIs at Level-1 refer to the number of aircraft that take off from or land on the runway during 

the entire taxi process of the reference aircraft. For any reference departure or arrival aircraft, the 

AQLIs include two TSIs 𝜆𝑑 and 𝜆𝑎 . The AQLIs related to the reference departure aircraft 𝑑0 are 

defined as follows: 

𝜆𝑑: Number of departures that take off from the runway during the taxi process of 𝑑0 

𝜆𝑎: Number of arrivals that land on the runway during the taxi process of 𝑑0 

Similarly, the AQLIs related to the reference arrival aircraft 𝑎0 are defined as follows: 

𝜆𝑑: Number of departures that take off from the runway during the taxi process of 𝑎0 

𝜆𝑎: Number of arrivals that land on the runway during the taxi process of 𝑎0 

3.1.5. Slot resource demand indices (SRDIs) 

The SRDIs at Level-1 refer to the number of aircraft that is pushed back from the gate or land on the 
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runway in the time interval [𝑡0 − 𝛿, 𝑡0 + 𝛿] where 𝑡0 is the off-block time or the landing time of the 

reference aircraft, and 𝛿 is the statistic threshold coefficient introduced in Figure 1, whose value can 

be set dynamically and flexibly. In general, considering the normal departure and arrival taxi time of 

the aircraft, the statistic threshold 𝛿 can be set between 10 min and 30 min, or adjusted according the 

air traffic manager. For any reference departure or arrival aircraft, the SRDIs include two TSIs 𝜇𝑑 

and 𝜇𝑎. The SRDIs related to the reference departure aircraft 𝑑0 are defined as follows: 

𝜇𝑑: Number of departures that are pushed back during the statistic time interval of 𝑑0 

𝜇𝑎: Number of arrivals that land on the runway during the statistic time interval of 𝑑0 

Similarly, the AQLIs related to the reference arrival aircraft 𝑎0 are defined as follows: 

𝜇𝑑: The number of departures that are pushed back during the statistic time interval of 𝑎0 

𝜇𝑎: The number of arrivals that land on the runway during the statistic time interval of 𝑎0 

3.2 Level-2: Network TSIs system 

Besides the TSIs set {𝜏𝑑/𝜏𝑎  , 𝜕𝑑 , 𝜕𝑎 , 𝜎𝑑 , 𝜎𝑎 , 𝜆𝑑 , 𝜆𝑎, 𝜇𝑑 , 𝜇𝑎} related to the single-aircraft, we also 

establish a similar system of TSIs from the perspective of whole-network, which is similar with 

Section 3.1.1~3.1.5. Note that the values of ATTIs, SIFIs, SCFIs and AQLIs from the perspective of 

network are counted in each time-slice, not focused on the single-aircraft but the whole-network, just 

like the definition of SRDIs introduced in Section 3.1.5. The quantities of the network TSIs system 

of the reference time-slice [𝑡𝑠 , 𝑡𝑒] in Figure 1 at Level-2 are illustrated in Table 2. 

Table 2. Illustration of Network TSIs system at Level-2. 

TSIs Notation 
Taking the horizontal ordinate domain [𝑡𝑠, 𝑡𝑒] as the reference time-slice 

Relevant aircraft Value of index 

ATTIs 
𝜏̅𝑑 {𝑑0 , 𝑑1 , 𝑑2 , 𝑑3 , 𝑑4} 𝜏̅𝑑 = 𝐴𝑣𝑔(𝜏𝑑

𝑖 ), 𝑖 = 0,1,2,3,4 

𝜏̅𝑎 {𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4} 𝜏̅𝑎 = 𝐴𝑣𝑔(𝜏𝑎
𝑖 ), 𝑖 = 0,1,2,3,4 

SIFIs 
𝜕𝑠 {𝑑1 , 𝑑2 , 𝑎1} 3 

𝜕𝑒 {𝑑0, 𝑑2, 𝑑4, 𝑎0, 𝑎2, 𝑎4} 6 

SCFIs 
𝜎̃𝑑 {𝑑0 , 𝑑1 , 𝑑2 , 𝑑3 , 𝑑4} 5 

𝜎̃𝑎 {𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4} 5 

AQLIs 
𝜆̃𝑑 {𝑑1, 𝑑3} 2 

𝜆̃𝑎 {𝑎0 , 𝑎2 , 𝑎3 , 𝑎4} 4 

SRDIs 
𝜇𝑑 {𝑑0, 𝑑3, 𝑑4} 3 

𝜇𝑎 {𝑎0 , 𝑎2 , 𝑎3 , 𝑎4} 4 

3.2.1. Aircraft taxi time indices (ATTIs) 
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The ATTIs at Level-2 refer to the average taxi time in the reference time-slice at the whole airport 

network. For any reference time-slice [𝑡𝑠 , 𝑡𝑒], the ATTIs include two TSIs 𝜏̅𝑑  and 𝜏̅𝑎 . The ATTIs 

related to the departure measurement is defined as follows: 

𝜏̅𝑑: Average taxi-out time of all the departures in time-slice [𝑡𝑠 , 𝑡𝑒] 

Similarly, the ATTIs related to the arrival measurement is defined as follows: 

𝜏̅𝑎: Average taxi-in time of all the arrivals in time-slice [𝑡𝑠 , 𝑡𝑒] 

Note that the 𝜏𝑑
𝑖  and 𝜏𝑎

𝑖  in Table 2 are the taxi-out time of departure aircraft 𝑖 and the taxi-in time 

of arrival aircraft 𝑖 respectively. 

3.2.2. Surface instantaneous flow indices (SIFIs) 

The SIFIs at Level-2 refer to the number of taxiing aircraft at the start or end time of the reference 

time-slice at the whole airport network. For any reference time-slice [𝑡𝑠, 𝑡𝑒], the SIFIs include two 

TSIs 𝜕𝑠 and 𝜕𝑒. The SIFIs related to the measurement of start time is defined as follows: 

𝜕𝑠: Number of taxiing aircraft at the start time of time-slice [𝑡𝑠, 𝑡𝑒] 

Similarly, the SIFIs related to the measurement of end time is defined as follows: 

𝜕𝑒: Number of taxiing aircraft at the end time of time-slice [𝑡𝑠 , 𝑡𝑒] 

3.2.3. Surface cumulative flow indices (SCFIs) 

The SCFIs at Level-2 refer to the number of aircraft that have taxied out or are taxiing on the surface in 

the reference time-slice at the whole airport network. For any reference time-slice [𝑡𝑠, 𝑡𝑒], the SCFIs 

include two TSIs 𝜎̃𝑑 and 𝜎̃𝑎. The SCFIs related to the departure measurement is defined as follows: 

𝜎̃𝑑: Number of departures whose taxiing period has overlap with time-slice [𝑡𝑠 , 𝑡𝑒] 

Similarly, the SCFIs related to the arrival measurement is defined as follows: 

𝜎̃𝑎:  Number of arrivals whose taxiing period has overlap with time-slice [𝑡𝑠 , 𝑡𝑒] 

3.2.4. Aircraft queue length indices (AQLIs) 

The AQLIs at Level-2 refer to the number of aircraft that take off from or land on the runway in the 

reference time-slice at the whole airport network. For any reference time-slice [𝑡𝑠 , 𝑡𝑒], the AQLIs 

include two TSIs 𝜆̃𝑑 and 𝜆̃𝑎. The AQLIs related to the departure measurement is defined as follows: 

𝜆̃𝑑: Number of departures that take off from the runway in time-slice [𝑡𝑠 , 𝑡𝑒] 

Similarly, the AQLIs related to the arrival measurement is defined as follows: 

𝜆̃𝑎: Number of arrivals that land on the runway in time-slice [𝑡𝑠 , 𝑡𝑒] 

3.2.5. Slot resource demand indices (SRDIs) 
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The SRDIs at Level-2 refer to the number of aircraft that is pushed back from the gate or land on the 

runway in the reference time-slice at the whole airport network. For any reference time-slice [𝑡𝑠, 𝑡𝑒], 

the SRDIs include two TSIs 𝜇𝑑 and 𝜇𝑎. The SRDIs related to the departure measurement is defined 

as follows: 

𝜇𝑑: Number of departures that are pushed back in time-slice [𝑡𝑠, 𝑡𝑒] 

Similarly, the SRDIs related to the arrival measurement is defined as follows: 

𝜇𝑎: Number of arrivals that land on the runway in time-slice [𝑡𝑠 , 𝑡𝑒] 

4 Coverage analysis of the TSIs system 

The coverage of the proposed index system refers to its capability to cover all the individual aircraft 

to be analyzed, and that no aircraft is left unaccounted for in the formulation of these indices. This 

characteristic is very important since, otherwise, there would be aircraft that influences the taxi 

process in reality but are not reflected in any of the indices. Based on the 5 categories of TSIs 

proposed in Section 3, we establish in this section the mathematical relationship of TSIs 

𝜏𝑑 , 𝜕𝑑 , 𝜕𝑎 , 𝜎𝑑 , 𝜎𝑎 , 𝜆𝑑 , 𝜆𝑎 , 𝜇𝑑 , 𝜇𝑎 , and analyze the coverage of the TSIs system. The relationships 

among TSIs are quantitatively analyzed as follows. Note that the coverage analysis of the TSIs 

𝜏̅𝑑 , 𝜏̅𝑎 , 𝜕𝑠 , 𝜕𝑒 , 𝜎̃𝑑 , 𝜎̃𝑎 , 𝜆̃𝑑 , 𝜆̃𝑎 , 𝜇𝑑 , 𝜇𝑎  at Level-2 are generalized to that of the TSIs 

𝜏𝑑 , 𝜕𝑑 , 𝜕𝑎 , 𝜎𝑑 , 𝜎𝑎 , 𝜆𝑑 , 𝜆𝑎 , 𝜇𝑑 , 𝜇𝑎 at Level-1, but the only difference is that all the time-slices (not one 

time-slice just like [𝑡𝑠, 𝑡𝑒]) in the study period of airport should be discussed, which is similar with 

the analysis at Level-1 and not described in detail here. 

4.1 Coverage of departure measurement 

For any reference departure aircraft 𝑑0 , we denote the number of departure aircraft in the 

categories OBTB, OBTA, OATB and OATA (see Section 2) by 𝑁𝑑
1, 𝑁𝑑

2, 𝑁𝑑
3 and 𝑁𝑑

4, respectively. 

The SIFIs, SCFIs and AQLIs of 𝑑0 satisfy 

 𝜕𝑑 = 𝑁𝑑
1 + 𝑁𝑑

2 (1) 

 𝜎𝑑 = 𝑁𝑑
1 + 𝑁𝑑

2 + 𝑁𝑑
3 + 𝑁𝑑

4 (2) 

 𝜆𝑑 = 𝑁𝑑
1 + 𝑁𝑑

3 (3) 

We can see from (1)-(3) that there is a correlation between 𝜕𝑑  and 𝜎𝑑  because they share two 

additive variables 𝑁𝑑
1 and 𝑁𝑑

2, same goes for 𝜎𝑑  and 𝜆𝑑  for a similar reason. Considering the two 

TSIs 𝜕𝑑 and 𝜆𝑑 are correlated, we can find the relationships among 𝜕𝑑, 𝜎𝑑 and 𝜆𝑑 

 𝜎𝑑 = 𝜕𝑑 + 𝑁𝑑
3 + 𝑁𝑑

4 (4) 

 𝜆𝑑 = 𝜕𝑑 − 𝑁𝑑
2 + 𝑁𝑑

3 (5) 

Moreover, for the SRDIs, the relationship between 𝜇𝑑 and the other two TSIs 𝜕𝑑 and 𝜆𝑑 depends 
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on the statistic threshold coefficient 𝛿 . Therefore, for any departure aircraft 𝑑0 , the TSIs 

𝜕𝑑, 𝜎𝑑, 𝜆𝑑  and 𝜇𝑑 cover all the four departure cases OBTB, OBTA, OATB and OATA. Similarly, for 

any reference arrival aircraft 𝑎0, the TSIs 𝜕𝑑, 𝜎𝑑, 𝜆𝑑  and 𝜇𝑑 also cover all the four departure cases 

OBTB, OBTA, OATB and OATA. Based on the above discussion, we establish the coverage analysis 

of the TSIs system from the perspective of departure measurement. 

4.2 Coverage of arrival measurement 

Similarly, for any reference arrival aircraft 𝑎0 , we let the number of arrival aircraft in the 

categories LBIB, LBIA, LAIB and LAIA (see Section 2) be
 
𝑁𝑎

1, 𝑁𝑎
2, 𝑁𝑎

3and 𝑁𝑎
4 respectively, then 

SIFIs, SCFIs and AQLIs of 𝑎0 satisfy 

 𝜕𝑎 = 𝑁𝑎
1 + 𝑁𝑎

2 (6) 

 𝜎𝑎 = 𝑁𝑎
1 + 𝑁𝑎

2 + 𝑁𝑎
3 + 𝑁𝑎

4 (7) 

 𝜆𝑎 = 𝑁𝑎
3 + 𝑁𝑎

4 (8) 

We can see from (6)-(8) that there is a correlation between 𝜕𝑎  and 𝜎𝑎  because they have two 

shared additive factors 𝑁𝑎
1 and 𝑁𝑎

2. For similar reason, 𝜎𝑎 and 𝜆𝑎 are correlated. Variables 𝜕𝑎 and 𝜆𝑎 

are independent, as they share no common factors. Based on this, we can write 

 𝜎𝑎 = 𝜕𝑎 + 𝜆𝑎 (9) 

Furthermore, for the SRDIs, the relationship between 𝜇𝑎  and the other two TSIs 𝜕𝑎  and 𝜆𝑎 

depends on the statistic threshold coefficient 𝛿 . Therefore, for any arrival aircraft 𝑎0 , the TSIs 

𝜕𝑎, 𝜎𝑎, 𝜆𝑎 and 𝜇𝑎 cover all the four arrival cases LBIB, LBIA, LAIB and LAIA. Similarly, for any 

reference departure aircraft 𝑑0, the TSIs 𝜕𝑎, 𝜎𝑎, 𝜆𝑎  and 𝜇𝑎 also cover all the four arrival cases LBIB, 

LBIA, LAIB and LAIA. Based on the above discussion, we establish the coverage analysis of the 

TSIs system from the perspective of arrival measurement. 

5 Numerical results and analysis 

In this paper, we conduct a case study of airport taxi situation awareness in the Shanghai Pudong 

International Airport (PVG) to analyze the relationship among the TSIs and assess the taxi situation 

from the perspective of single-aircraft and whole-network at both Level-1 and Level-2, based on the 

proposed conceptual framework of airport taxi situation awareness. 

5.1 Conceptual framework 

The conceptual framework of airport taxi situation awareness has three hierarchies: data analysis 

(TS-1), situation indices refinement (TS-2) and multiple situation awareness (TS-3), which are 

shown in Figure 2. 
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Figure 2. Conceptual framework of airport taxi situation awareness 

The first hierarchy (TS-1) involves collecting historical, estimated or scheduled multi-source air 

traffic data from the operation centers of airport, airlines and air navigation service provider, and 

extracting some key events related to the process of aircraft ground movements. Note that the data 

set used to conduct the study of airport taxi situation awareness can be the historical data, such as the 

actual landing time and in-block time of arrivals, and the actual off-block time and take-off time of 

departures (ALDT, AIBT, AOBT, ATOT from ATFM system; or the OOOI data from ACARS), for 

the taxi situation awareness at the phase of post operations in complex airport systems. It can also be 

the estimated information, such as the estimated landing time and in-block time of arrivals, and the 

estimated off-block time and take-off time of departures (ELDT, EIBT, EOBT and ETOT from 

ATFM system; or the data calculated by some models, for example, the models proposed by 

Balakrishna et al. (2007), Atkin et al. (2011), Ravizza et al. (2013), George and Khan (2015)), for the 

taxi situation awareness at the phase of tactical operations in complex airport systems. Furthermore, 

it also can be the scheduled information, such as the scheduled in-block time and standard taxi-in 

time of arrivals, and the scheduled off-block time and standard taxi-out time of departures (SIBT, 

SOBT from flight schedule; taxi-in time and taxi-out time from the Standard Flight Performance 

Database (SFPD)), for the taxi situation awareness at the phase of pre-tactical or strategic operations 

in complex airport systems. 

The second hierarchy (TS-2) focuses on the refinement of TSIs system based on the macroscopic 

distribution network established in Section 2. In any MDN within a certain spatial-temporal domain, 

the relationship between any departure aircraft and the reference departure aircraft can be identified 
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as one of the following cases including OBTB, OBTA, OATB and OATA. Similar to the departures, 

the relationship among the arrivals can be identified as one of the following cases including LBIB, 

LBIA, LAIB and LAIA. Then we can establish the TSIs system from the perspective of aircraft or 

network, according to the needs of air transport decision makers such as the single-aircraft taxi 

situation (Level-1) and whole-network taxi situation (Level-2) of airport ground movements. 

The third hierarchy (TS-3) is directly related to taxi situation awareness under two systems of 

TSIs from different perspectives of aircraft and network. We analyze the correlation of different TSIs 

to identify the key influencing factors of airport taxi movements. Based on the correlation analysis, 

we apply the method of principal components analysis (PCA) to extract the most important 

information of the TSIs from the perspective of aircraft and network, then assess the taxi situation of 

airport ground movements during the taxi process of each single-aircraft at Level-1 and the taxi 

situation of airport ground movements at the whole-network during a certain period (For example, 

any 15-minutes time-slice) at Level-2. Finally, a comprehensive analysis of airport taxi situation 

from different perspectives are conducted to find the direct and key metrics reflecting the complexity 

of airport taxi situation by establishing the assessment functions, instead of using two systems of 

multiple TSIs. The findings can provide some significant references about airport ground 

movements for air transport decision makers on the aspects of air traffic management and airport 

congestion control. 

5.2 Data statistics of taxi sample 

The ground layout of Shanghai Pudong International Airport is shown in Figure 3-a, which contains 

3 runways numbered 16/34, 17L/35R, 17R/35L and 193 gates. There are 528 departure and 524 

arrival aircraft during the test period 00:00~16:00 on October 1, 2014. Figure 3-b shows the statistic 

distribution of taxi time of sample air traffic in PVG. The actual observation data is analyzed by 

frequency analysis, and the probability distribution is fitted according to the actual observation data. 

We find that the taxi time is not subject to the normal distribution, while it approximately follows the 

lognormal distribution after conducting the logarithmic transformation to the sample data. 
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Figure 3. Airport layout and taxi time distribution of PVG 

The TSIs are computed for each departure aircraft, and are summarized statistically in Table 3. 

Note that in this table, the superscript ‘1’ (or ‘2’) indicates that the input for calculating the index 

concerns with the departure (or arrival) aircraft.  

Table 3. Statistical summary of TSIs on the test site. 

Variable Minimum Maximum Average 
Standard 

deviation Variance 

ATTI (𝜏𝑑) (min)  7 89 27.25 11.37 129.31 

SIFI1 (𝜕𝑑) 0 27 15.79 4.78 22.84 

SIFI2 (𝜕𝑎) 0 16 9.04 3.72 13.82 

SCFI1 (𝜎𝑑) 12 76 30.99 9.75 95.10 

SCFI2 (𝜎𝑎) 1 66 24.34 10.11 102.25 

AQLI1 (𝜆𝑑) 0 54 15.58 7.26 52.76 

AQLI2 (𝜆𝑎) 1 53 15.83 8.32 69.19 

SRDI1 (𝜇𝑑) 7 35 18.91 5.13 26.35 

SRDI2 (𝜇𝑎) 3 48 32.98 9.09 82.60 

5.3 Correlation analysis of TSIs 

Considering the aircraft taxi time is a fundamental and essential metric to reflect the performance of 

taxi process, we firstly treat the ATTIs as the dependent variable, and SIFIs, SCFIs, AQLIs and 

SRDIs as the independent variables to analyze the correlation among the TSIs. First of all, we use 

scatter plots to preliminarily interpret their correlations. Then we calculate the Pearson correlation 

coefficient between any pair of TSIs, and execute quantitative correlation analysis and T test with a 

526 degrees of freedom. Finally, we also analyze the correlation of any pair of ATTIs, SIFIs, SCFIs, 

AQLIs and SRDIs by an overview of correlation matrix. 

5.3.1 Summary of the correlation analysis results 

Our correlation analysis consists of two main tests: the Pearson correlation analysis and the partial 

correlation analysis. The correlation tests are also corroborated by visual confirmation from scatter 

plots in Figure 4-Figure 11. The correlation results are summarized in Table 4. 
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Figure 4. Correlation analysis of ATTI (𝜏𝑑) and SIFI1 (𝜕𝑑) 

 

Figure 5. Correlation analysis of ATTI (𝜏𝑑) and SIFI2 (𝜕𝑎) 

 

 

Figure 6. Correlation analysis of ATTI (𝜏𝑑) and SCFI1 (𝜎𝑑) 

（a） （b）

（a） （b）

（a） （b）
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Figure 7. Correlation analysis of ATTI (𝜏𝑑) and SCFI2 (𝜎𝑎) 

 

Figure 8. Correlation analysis of ATTI (𝜏𝑑) and AQLI1 (𝜆𝑑) 

 

Figure 9. Correlation analysis of ATTI (𝜏𝑑) and AQLI2 (𝜆𝑎) 
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（a） （b）

（a） （b）



Page 18 

 

Figure 10. Correlation analysis of ATTI (𝜏𝑑) and SRDI1 (𝜇𝑑) 

 

Figure 11. Correlation analysis of ATTI (𝜏𝑑) and SRDI2 (𝜇𝑎) 

Table 4. Summary of the correlation between ATTIs and other TSIs. 

Pairs 

of TSIs 

Pearson correlation analysis Partial correlation analysis 
Visual 

confirmation Correlation coefficient p-value 
7th order 

coefficient p-value 

ATTI 

& 

SIFI1 
0.296 

0 

(<0.05) -0.442 
0  

(<0.05) Figure 4 Weak 

ATTI 

& 

SIFI2 
0.170 

0  

(<0.05) -0.074 
0 

(<0.05) Figure 5 Weak 

ATTI 

& 

SCFI1 
0.754 

0 

(<0.05) 0.140 
0.001  

(<0.05) Figure 6 Strong 

ATTI 

& 

SCFI2 
0.770 

0 

(<0.05) 0.175 
0 

(<0.05) Figure 7 Strong 

ATTI 

& 

AQLI1 
0.871 

0  

(<0.05) 0.694 
0 

(<0.05) Figure 8 Strong 

ATTI 

& 

AQLI2 
0.873 

0 

(<0.05) 0.021 
0.634  

(>0.05) Figure 9 Strong 

ATTI -0.079 0.071 -0.533 0  Figure 10 Weak 

（a） （b）

（a） （b）
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& 

SRDI1 

(>0.05) (<0.05) 

ATTI 

& 

SRDI2 
0.194 

0  

(<0.05) -0.527 
0 

(<0.05) Figure 11 Weak 

 

5.3.2 Interpretation of correlation analysis results 

As shown in Table 4 and Figure 4, there is no strong correlation between ATTI (𝜏𝑑) and SIFI1 (𝜕𝑑), 

with the reason that SIFI1 (𝜕𝑑 ) only reflects the instantaneous situation, while not sufficiently 

reflects the level of congestion encountered by the reference aircraft. Similar explanation can be 

applied to the weak correlation between ATTI (𝜏𝑑) and SIFI2 (𝜕𝑎) in Figure 5. Table 4 and Figure 6 

show that there is a strong linear correlation between ATTI (𝜏𝑑) and SCFI1 (𝜎𝑑). But SCFI1 (𝜎𝑑) has 

no significant effect on the departure aircraft taxi time ATTI (𝜏𝑑), because the Pearson correlation 

coefficient 0.754 is much larger than the partial correlation coefficient 0.140. Actually, the 

correlation between ATTI (𝜏𝑑) and SCFI1 (𝜎𝑑) is decided by the correlations between SCFI1 (𝜎𝑑) and 

SIFI1 (𝜕𝑑) / AQLI1 (𝜆𝑑) / AQLI2 (𝜆𝑎). Similar explanation can be applied to the strong but not 

significant correlation between ATTI (𝜏𝑑 ) and SCFI2 (𝜎𝑎 ) in Figure 7. Actually, the correlation 

between ATTI (𝜏𝑑) and SCFI2 (𝜎𝑎) is decided by the correlations between SCFI2 (𝜎𝑎) and SIFI2 (𝜕𝑎) 

/ AQLI2 (𝜆𝑎) / SRDI2 (𝜇𝑎). 

Table 4 and Figure 8 show that the linear correlation between ATTI (𝜏𝑑) and AQLI1 (𝜆𝑑) is strong, 

with the reason that AQLI1 (𝜆𝑑) is an indicator of the runway saturation level and hence the level of 

congestion at the taxiway. AQLI1 (𝜆𝑑) has a significantly positive and essential effect on ATTI (𝜏𝑑), 

because the difference between the Pearson correlation coefficient 0.871 and the partial correlation 

coefficient 0.694 is small. Thus the AQLI1 (𝜆𝑑) can be identified as a key influencing factor of the 

ATTI (𝜏𝑑). Similar explanation can be applied to the strong correlation between ATTI (𝜏𝑑) and 

AQLI2 (𝜆𝑎) in Figure 9, but the partial correlation analysis does not pass the significant test. The use 

of 𝜆𝑎 as the key factor of taxi situation depends on the application scenario. 

As shown in Table 4, Figure 10 and Figure 11, the linear correlation between ATTI (𝜏𝑑) and SRDI1 

(𝜇𝑑) or SRDI2 (𝜇𝑎) is very weak. Especially in the case for the half interval [𝑡0 − 𝛿, 𝑡0], there is no 

overlap whatsoever with the taxi process of the reference aircraft. 

In additional, correlation analysis has also been carried out for any pair of TSIs, and the results are 

shown in Figure 12 in the form of scatter plots. For each subgraph in Figure 12, the horizontal and 

vertical axes correspond to the independent and dependent variables respectively. For example, the 

subgraphs labeled 1~8 indicate that the ATTIs has significant linear correlations with SCFIs and 

AQLIs, and the subgraphs labeled 9~12 mean that the SCFIs and AQLIs have a significant linear 
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relationship with each other. 

 

Figure 12. Correlation analysis of all the TSIs 

To summarize this correlation study, we can get some key conclusions. There is a significant 

correlation between ATTI (𝜏𝑑) and other four TSIs including SCFI1 (𝜎𝑑), SCFI2 (𝜎𝑎), AQLI1 (𝜆𝑑) 

and AQLI2 (𝜆𝑎), which are the most important influencing factors of the taxi time. The correlation 

between SCFI1 (𝜎𝑑) and AQLI1 (𝜆𝑑) and the correlation between SCFI2 (𝜎𝑎) and AQLI2 (𝜆𝑎) are 

significant. The partial correlation analysis reveals that AQLI1 (𝜆𝑑) is the most essential and key 

influencing factor of ATTI (𝜏𝑑). 

5.4 Taxi situation awareness from multiple perspectives 

We adapt all the TSIs at Level-1 and Level-2 proposed in Section 3 to assess airport taxi situation 

from the perspectives of single-aircraft and whole-network. The aircraft perspective (Level-1) 

focuses on the taxi situation awareness when any departure aircraft in the test period is being pushed 
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back from the gate. The network perspective (Level-2) focuses on the taxi situation awareness in 

airport network during a certain period, in which the range of each time-slice is set to 15 minutes. 

5.4.1 Level-1: the aircraft perspective 

We use Z-Score regularization model to transform the initial aircraft TSIs 

{𝜏𝑑 , 𝜕𝑑 , 𝜕𝑎 , 𝜎𝑑 , 𝜎𝑎 , 𝜆𝑑 , 𝜆𝑎 , 𝜇𝑑 , 𝜇𝑎} to the normalized aircraft TSIs {𝜉𝑖|𝑖 = 1,2,… , 𝑝}, where 𝑝 = 9 is 

the number of aircraft TSIs. For any TSIs, the regularization model is 

 𝑇𝑟𝑎𝑛𝑠(𝑥𝑖) =
𝑥𝑖−

1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1

√
1

𝑛−1
∑ (𝑥𝑘−

1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1 )2𝑛

𝑘=1

  ,  𝑖 = 1,2,… , 𝑛 (10) 

where 𝑛 is the size of taxi sample and 𝑥𝑖( 𝑖 = 1,2,… , 𝑛) is the value of the objective TSIs. 

In order to simplify the taxi situation awareness, we apply the method of principal components 

analysis (PCA) to compress the size of normalized aircraft TSIs set through decomposing it into 

irrelevant linear-combined TSIs 𝐹𝑖(𝑖 = 1,2,… , 𝑝) with the same total variance. 

 𝐹𝑖 = ∑ 𝑎𝑘𝑖𝜉𝑘
= 𝒂𝒊

𝑇𝝃
𝑝
𝑘=1  (11) 

where 𝒂𝒊 = (𝑎1𝑖 , 𝑎2𝑖 , … , 𝑎𝑝𝑖)
𝑇  is the unit column vector and 𝝃 = (𝜉1, 𝜉2, … , 𝜉𝑝)

𝑇  is the column 

vector of normalized aircraft TSIs. 

The guideline of choosing the principal components is the cumulative contribution rate of 85%. 

The contribution rate of 𝐹𝑖 is 

 𝜃𝑖 =
𝛾𝑖

∑ 𝛾𝑝
𝑝
𝑗=1

 (12) 

where {𝛾𝑖|𝑖 = 1,2, … , 𝑝} are the eigenvalues of covariance matrix of 𝝃, and 𝛾1 ≥ 𝛾2 ≥ ⋯ ≥ 𝛾𝑝. 

We take 68 departure aircraft in the peak hours 06:00~08:00 of PVG airport as the sample at 

Level-1. After appling the PCA method, we select 𝐹1, 𝐹2 and 𝐹3 as the key principle componenets to 

assess airport taxi situation at Level-1. The assessment function and coefficient matrix are 

 𝐹 = ∑ ƙ𝑖𝒂𝒊
𝑇𝝃3

𝑖=1  (13) 

 𝒂 = (𝒂𝟏, 𝒂𝟐, 𝒂𝟑) =

[
 
 
 
 
 
 
 
 

0.416428
0.250511
0.199100

−0.084790
−0.295794
0.484140

−0.387990
0.543974
0.359358

0.367821
0.424373
0.404276

−0.346927
0.245310

−0.279613

−0.020730
−0.020730
−0.080950

0.435590
−0.000930
0.234620

0.091260
−0.430423
0.467320

−0.182640
0.508433
0.353435 ]

 
 
 
 
 
 
 
 

 (14) 

where ƙ𝑖 is the variance contribution rate of 𝐹𝑖, and ƙ1 = 0.50864, ƙ2 = 0.26518, ƙ3 = 0.11402. 

We can infer the complexity of taxi situation at Level-1 from 𝐹1 , 𝐹2 and 𝐹3  by comparing the 

elements of matrix 𝒂. The first assessment subfunction 𝐹1 includes the most important information 

from 𝜉1, 𝜉4, 𝜉5, 𝜉6, 𝜉7, which is related to 𝜏𝑑 , 𝜎𝑑 , 𝜎𝑎 , 𝜆𝑑 , 𝜆𝑎 and mainly reflects the complexity of taxi 

process of each departure aircraft (denoted by 𝐶𝑇𝑆𝑎
1 ). Similarly, 𝐹2  includes the most important 

information from 𝜉3 and 𝜉9, which is related to 𝜕𝑎 , 𝜇𝑎 and mainly reflects the complexity of taxiing 
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arrival movements when each departure aircraft is being pushed back (denoted by 𝐶𝑇𝑆𝑎
2). And 𝐹3 

includes the most important information from 𝜉2  and 𝜉8 , which is related to 𝜕𝑑 , 𝜇𝑑  and mainly 

reflects the complexity of taxiing departure movements when each departure aircraft is being pushed 

back (denoted by 𝐶𝑇𝑆𝑎
3). Based on the above discussion, we use 𝐶𝑇𝑆𝑎 , the sum of 𝐶𝑇𝑆𝑎

𝑖 (𝑖 = 1,2,3), 

to analyze the total complexity of taxi situation at Level-1. 

Figure 13-a shows the initial values of complexity 𝐶𝑇𝑆𝑎
1 , 𝐶𝑇𝑆𝑎

2 , 𝐶𝑇𝑆𝑎
3 and 𝐶𝑇𝑆𝑎  at Level-1. We 

can find that the change trend of 𝐶𝑇𝑆𝑎  is consistent with that of 𝐶𝑇𝑆𝑎
1, but obviously different with 

that of 𝐶𝑇𝑆𝑎
2 and 𝐶𝑇𝑆𝑎

3. The fact can be represented by the departure aircraft CES5629, CKK221, 

SIA831, CES518 and CSH9125 numbered 13, 16, 36, 47 and 56 respectively in the horizontal axis. 

Take the 36th aircraft SIA831 as an instance, the departure taxi time is 89 minutes which is higher 

than the average taxi time (33 minutes) of the total aircraft in the test period, then the initial values 

of complexity 𝐶𝑇𝑆𝑎
1 are larger than those of other aircraft.  

 

Figure 13. Initial and normalized complexity of taxi situation at Level-1 

It can be obviously seen that there are some negative values in Figure 13-a with the reason that the 

initial values are calculated by 𝐹1, 𝐹2  and 𝐹3  where 𝜉𝑖  may be negative after the Z-Score 

regularization. Considering the inconvenience of initial complexity in practice, we use the 

normalized model to transform the any initial value at Level-1 to a normalized quantity in interval 

[0,1] shown in Figure 13-b. 

 𝐶𝑖𝑗 =

𝛿𝑖𝑗− min
𝑖∈[1,𝑚]

𝑗∈[1,𝑛]

{𝛿𝑖𝑗}

max
𝑖∈[1,𝑚]

𝑗∈[1,𝑛]

{𝛿𝑖𝑗}− min
𝑖∈[1,𝑚]

𝑗∈[1,𝑛]

{𝛿𝑖𝑗}
 (15) 

where 𝛿𝑖𝑗 is the initial 𝐶𝑇𝑆𝑎
𝑗
 value of aircraft 𝑖, 𝑚 is the number of aircraft, 𝑛 = 3 is the number of 

complexity (𝐶𝑇𝑆𝑎
1 , 𝐶𝑇𝑆𝑎

2 and 𝐶𝑇𝑆𝑎
3) at Level-1, and 𝐶𝑖𝑗  is the transformed values of 𝛿𝑖𝑗. 

Considering taxi delay is a key representation of taxi situation complexity, we also conduct a 

study about the relationship between taxi delay and some aircraft TSIs, which is shown in Figure 14-

a. Here the taxi delay of aircraft is defined as the difference between the total taxi time and non-

conflict taxi time. Note that the non-conflict taxi time is a pre-set value sourced from the Standard 

Flight Performance Database (SFPD). Figure 14-a reveals the fact that the change trend of taxi delay 
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is consistent with SCFIs (𝜎𝑑 + 𝜎𝑎) and AQLIs (𝜆𝑑 + 𝜆𝑎), but obviously different from SIFIs (𝜕𝑑 +

 𝜕𝑎) and SRDIs (𝜇𝑑 + 𝜇𝑎). From the comprehensive analysis, we can see that the 𝐶𝑇𝑆𝑎  is a direct 

and key metric of aircraft taxi delay shown in Figure 14-b. 

 
Figure 14. Relationship between taxi delay and some TSIs, 𝐶𝑇𝑆𝑎 at Level-1 

Based on the results of Figure 13 and Figure 14, air transport decision makers can directly use a 

key metric 𝐶𝑇𝑆𝑎 , instead of a system of multiple aircraft TSIs {𝜏𝑑 , 𝜕𝑑 , 𝜕𝑎 , 𝜎𝑑 , 𝜎𝑎 , 𝜆𝑑 , 𝜆𝑎 , 𝜇𝑑 , 𝜇𝑎}, to 

assess the taxi situation at Level-1 and provide references to manage aircraft taxi movements. 

5.4.2 Level-2: the network perspective 

We also use the Z-Score regularization model in Equation 10 to transform the initial network TSIs 

set {𝜏̅𝑑 , 𝜏̅𝑎 , 𝜕𝑠 , 𝜕𝑒 , 𝜎̃𝑑 , 𝜎̃𝑎 , 𝜆̃𝑑 , 𝜆̃𝑎 , 𝜇𝑑 , 𝜇𝑎} to the normalized network TSIs set {𝜁𝑖|𝑖 = 1,2,… , 𝑞}, where 

𝑞 = 10 is the number of network TSIs. Then the set {𝜁𝑖|𝑖 = 1,2,… , 𝑞} is decomposed into 𝐻𝑖(𝑖 =

1,2, … , 𝑞). 

 𝐻𝑖 = ∑ 𝑏𝑘𝑖𝜁𝑘 = 𝒃𝒊
𝑇𝜻

𝑞
𝑘=1  (16) 

where 𝒃𝒊 = (𝑏1𝑖 , 𝑏2𝑖 , … , 𝑏𝑞𝑖) is the unit column vector and 𝜻 = (𝜁1, 𝜁2, … , 𝜁𝑞)
𝑇 is the column vector 

of normalized network TSIs. 

We take 64 time-slices in the test period 00:00~16:00 of PVG airport as the sample at Level-2, 

including 528 departure aircraft and 524 arrival aircraft. After applying the PCA method, we select 

𝐻1, 𝐻2, 𝐻3 and 𝐻4 as the key principle componenets to assess airport taxi situation at Level-2. The 

assessment function and coefficient matrix are 

 𝐻 = ∑ ƭ𝑖𝒃𝒊
𝑇𝜻4

𝑖=1  (17) 

 𝒃 = (𝒃𝟏, 𝒃𝟐 , 𝒃𝟑, 𝒃𝟒) =

[
 
 
 
 
 
 
 
 
 

0.322970 0.095648 −0.333105 0.356291
0.125406 −0.066822 0.654181 0.584604
0.438422 −0.014413 0.192461 −0.258004
0.435934 0.205053 −0.112886 0.215003
0.342875 0.456620 0.024983 −0.101359

0.381194 −0.391108 −0.045339 −0.084977
0.188606 0.332802 0.495956 −0.426935
0.348349
0.058722
0.272708

−0.275806
0.487411

−0.397004

−0.093454
−0.363640
−0.148047

0.241623
0.043001

−0.397244]
 
 
 
 
 
 
 
 
 

 (18) 

where ƭ𝑖  is the variance contribution rate of 𝐻𝑖 , and ƭ1 = 0.40379, ƭ2 = 0.23303, ƭ3 = 0.11682, 
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ƭ4 = 0.09543. 

Similar with Section 5.4.1, 𝐻1 includes the most important information from 𝜁3, 𝜁4, 𝜁6, 𝜁8, 𝜁10, which 

is related to 𝜕𝑠 , 𝜕𝑒 , 𝜎̃𝑎 , 𝜆̃𝑎 , 𝜇𝑎 and mainly reflects the complexity of arrival demand in each time-slice 

(denoted by 𝐶𝑇𝑆𝑛
1). 𝐻2 includes the most important information from 𝜁5 and 𝜁9, which is related to 

𝜎̃𝑑 , 𝜇𝑑  and mainly reflects the complexity of departure demand in each time-slice (denoted by 

𝐶𝑇𝑆𝑛
2). 𝐻3 includes the most important information from 𝜁2 and 𝜁7, which is related to 𝜏̅𝑎 , 𝜆̃𝑑  and 

mainly reflects the complexity of taxi-in process in each time-slice (denoted by 𝐶𝑇𝑆𝑛
3 ). And 𝐹4 

includes the most important information from 𝜁1 , which is related to 𝜏̅𝑑  and mainly reflects the 

complexity of taxi-out process in each time-slice (denoted by 𝐶𝑇𝑆𝑛
4). Then we use 𝐶𝑇𝑆𝑛, the sum of 

𝐶𝑇𝑆𝑛
𝑖 (𝑖 = 1,2,3,4), to analyze the total complexity of taxi situation at Level-2. 

Figure 15-a shows the initial values of complexity 𝐶𝑇𝑆𝑛
1 , 𝐶𝑇𝑆𝑛

2 , 𝐶𝑇𝑆𝑛
3 , 𝐶𝑇𝑆𝑛

4 and 𝐶𝑇𝑆𝑛 at Level-2. 

We can find that the change trend of 𝐶𝑇𝑆𝑛 is consistent with that of 𝐶𝑇𝑆𝑛
1, but a little different with 

that of 𝐶𝑇𝑆𝑛
2 , 𝐶𝑇𝑆𝑛

3  and 𝐶𝑇𝑆𝑛
4 . The fact can be represented by the time-slice 00:45~01:00, 

02:15~02:30, 06:15~06:30, 08:00~08:15, 13:00~13:15, 15:45~16:00 numbered 4, 10, 26, 33, 53 and 

64 respectively in the horizontal axis. Take the 26th time-slice 06:15~06:30 as an instance, the key 

elements 𝜕𝑠 = 30, 𝜕𝑒 = 33, 𝜎̃𝑎 = 26, 𝜆̃𝑎 = 13, 𝜇𝑎 = 13  are larger than the average value 

(24,24,17,8,8 respectively) in other time-slices, then the initial value of complexity 𝐶𝑇𝑆𝑛
1 is larger 

than those of other aircraft. Similar with Figure 13-b, the initial value of 𝐶𝑇𝑆𝑛
1 , 𝐶𝑇𝑆𝑛

2 , 𝐶𝑇𝑆𝑛
3 and 

𝐶𝑇𝑆𝑛
4 are transformed into the [0,1] interval  shown in Figure 15-b. 

 

Figure 15. Initial and normalized complexity of taxi situation at Level-2 

Considering taxi-out time and taxi-in time are key representations of taxi situation complexity, we 

also conduct a study about the relationship between taxi-out time, taxi-in time and some network 

TSIs, which is shown in Figure 16. Here the taxi time is the average operation time between runway 

and gate for departures and arrivals in each time-slice. Figure 16 shows that the change trend of taxi 

time is a comprehensive reflection of SIFIs (𝜕𝑠 + 𝜕𝑒), SCFIs (𝜎̃𝑑 + 𝜎̃𝑎), AQLIs (𝜆̃𝑑 + 𝜆̃𝑎) and 
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SRDIs (𝜇𝑑 + 𝜇𝑎 ), not strictly consistent with any single network TSIs. But there exists an 

approximately same changing relationship between the taxi time and SCFIs (𝜎̃𝑑 + 𝜎̃𝑎), AQLIs (𝜆̃𝑑 +

𝜆̃𝑎). Note that a special taxi time with the purple line in the first time-slice is 0 means that there is no 

aircraft taking off from or landing on the runway system in 00:00~00:15. 

 

Figure 16. Relationship between taxi time and some TSIs at Level-2 

We also study the relationship between taxi time and 𝐶𝑇𝑆𝑛 at Level-2 in Figure 17. Figure 17-a 

reveals the fact that the change trend of taxi time is consistent with 𝐶𝑇𝑆𝑛, which can be a direct and 

key metric to assess the network taxi situation. Furthermore, we divide the aircraft taxi time into two 

parts: taxi-out time and taxi-in time, of which the change trends are compared with 𝐶𝑇𝑆𝑛 in Figure 

17-b. Same with Figure 17-a, the taxi-in time is consistent with 𝐶𝑇𝑆𝑛, while of which the taxi-out 

time is not consistent with 𝐶𝑇𝑆𝑛. The result reveals the fact that the ground movements of arrival 

aircraft is a more important influencing factor of network taxi situation than that of departures. 

 

Figure 17. Relationship between taxi time and 𝐶𝑇𝑆𝑛 at Level-2 

Based on the results of Figure 15~Figure 17, air transport decision makers can directly use a key 

metric 𝐶𝑇𝑆𝑛, instead of a system of multiple network TSIs {𝜏̅𝑑 , 𝜏̅𝑎 , 𝜕𝑠 , 𝜕𝑒 , 𝜎̃𝑑 , 𝜎̃𝑎 , 𝜆̃𝑑 , 𝜆̃𝑎 , 𝜇𝑑 , 𝜇𝑎}, to 

assess the taxi situation at Level-2 and provide references to manage network taxi movements. 
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6 Conclusions 

We innovatively propose a macroscopic distribution network (MDN) to analyze the spatial-temporal 

characteristics of aircraft taxi process and model the macroscopic spatial-temporal movements at 

airport system. Based on the MDN model, we propose two TSIs systems including 5 categories and 

19 indices from the perspective of single-aircraft and whole-network at both Level-1and Level-2. 

The coverage of the TSIs system has been defined and proved to have the capability to cover all the 

arrival and departure aircraft to be analyzed. 

A three-hierarchy framework is designed to assess the airport taxi situation, which consists of data 

analysis (TS-1), situation indices refinement (TS-2) and multiple situation awareness (TS-3). The 

proposed framework can be implemented to analyze the taxi situation at the phase of post, tactical, 

pre-tactical and strategic operations at airport systems, with the use of multi-source historical, 

estimated and scheduled air traffic data. 

Comprehensive case study of PVG airport reveals the fact that there are significant correlations 

among some TSIs, especially the ATTIs, SCFIs and AQLIs. At Level-1, the change trend of taxi 

delay is consistent with SCFIs and AQLIs, but obviously different from SIFIs and SRDIs. At Level-

2, the change trend of taxi time is a comprehensive reflection of SIFIs, SCFIs, AQLIs and SRDIs, 

while not strictly consistent with any single network TSIs. We propose two key metrics 𝐶𝑇𝑆𝑎  and 

𝐶𝑇𝑆𝑛 to assess the taxi situation at Level-1 and Level-2 respectively, instead of using two systems of 

multiple TSIs {𝜏𝑑 , 𝜕𝑑 , 𝜕𝑎 , 𝜎𝑑 , 𝜎𝑎 , 𝜆𝑑 , 𝜆𝑎 , 𝜇𝑑 , 𝜇𝑎}  and {𝜏̅𝑑 , 𝜏̅𝑎 , 𝜕𝑠 , 𝜕𝑒 , 𝜎̃𝑑 , 𝜎̃𝑎 , 𝜆̃𝑑 , 𝜆̃𝑎 , 𝜇𝑑 , 𝜇𝑎} . The two 

metrics can provide references to manage taxi movements from the aircraft and network perspective. 

The significance of this paper is a macroscopic and statistical perspective of spatial-temporal 

modeling for managing airport ground movements, which brings significant benefits to the taxi 

situation awareness. The findings can provide some significant references about airport ground 

movements for air transport decision makers, such as the information of TSIs values, predicted taxi 

time, predicted taxi delay, taxi situation complexity. It has the potential to support decision making 

and enhance the efficiency, safety, and cost-effectiveness of airport surface operation. Air navigation 

service providers can predict the delay distribution and change based on the complexity of taxi 

situation, and optimize the activities of air traffic control, air traffic flow management and resource 

utilization, according to the results of taxi situation awareness. Airport operation manager can guide 

the ground movements of each arrival and departure aircraft more effectively, through analyzing the 

taxi situation when the reference aircraft is being pushed back from the gate or landing on the 

runway. Airlines operation controller can make full use of its various types of flight data to compare 

or integrate the TSIs with other indicators to manage aircraft operations at the stage of airport. 
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