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Abstract

Scheduling the transmission of status updates over an error-prone communication channel is studied

in order to minimize the long-term average age of information at the destination under a constraint on

the average number of transmissions at the source node. After each transmission, the source receives an

instantaneous ACK/NACK feedback, and decides on the next update without prior knowledge on the

success of future transmissions. The optimal scheduling policy is first studied under different feedback

mechanisms when the channel statistics are known; in particular, the standard automatic repeat request

(ARQ) and hybrid ARQ (HARQ) protocols are considered. Structural results are derived for the optimal

policy under HARQ, while the optimal policy is determined analytically for ARQ. For the case of

unknown environments, an average-cost reinforcement learning algorithm is proposed that learns the

system parameters and the transmission policy in real time. The effectiveness of the proposed methods

is verified through numerical results.

Index Terms

Age of information, hybrid automatic repeat request (HARQ), constrained Markov decision process,

reinforcement learning

I. INTRODUCTION

Motivated by the growing interest in timely delivery of information in status update systems,

the age of information (AoI) has been introduced as a performance measure to quantify data

Part of this work was presented at the IEEE Wireless Communications and Networking Conference, Barcelona, Spain, April

2018 [1].
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staleness at the receiver [2]–[4]. Consider a source node that samples an underlying time-varying

process, and sends the sampled status of the process over an imperfect communication channel

that introduces delays. The AoI characterizes the data staleness (or tardiness) at the destination

node, and it is defined as the time that has elapsed since the most recent status update available at

the destination was generated. Different from classical performance measures, such as the delay

or throughput, AoI jointly captures the latency in transmitting updates and the rate at which they

are delivered.

Our goal in this paper is to minimize the average AoI at the destination taking into ac-

count retransmissions due to errors over the noisy communication channel. Retransmissions

are essential for providing reliability of status updates over error-prone channels, particularly in

wireless settings. Here, we analyze the AoI for both the standard ARQ and hybrid ARQ (HARQ)

protocols.

In the HARQ protocol, the receiver combines information from all previous transmission

attempts of the same packet in order to increase the success probability of decoding [5], [6],

[7]. The exact relationship between the probability of error and the number of retransmission

attempts varies depending on the channel conditions and the particular HARQ method employed

[5], [6], [7]. In general, the probability of successful decoding increases with each transmission,

but the AoI of the received packet also increases. Therefore, there is an inherent trade-off between

retransmitting previously failed status information with a lower error probability, or sending a

fresh status update with higher error probability. We address this trade-off between the success

probability and the freshness of the status update to be transmitted, and develop scheduling

policies to minimize the expected average AoI.

In the standard ARQ protocol, if a packet cannot be decoded, it is retransmitted until a

successful transmission happens. Note, however, that, when optimizing for the AoI, there is no

point of retransmitting the same packet, since a newer packet with more up-to-date information

is available at the sender at the time of retransmission. Thus, after the reception of a NACK

feedback, the actual packet is discarded, and the most recent status of the underlying process

is transmitted (the exact timing of the transmission may depend on the feedback, i.e., on the

success history of previous transmissions).

We develop scheduling policies for both the HARQ and the standard ARQ protocols to

minimize the expected average AoI under a constraint on the average number of transmissions,

which is motivated by the fact that sensors sending status updates have usually limited energy



3

supplies (e.g., are powered via energy harvesting [8]); and hence, they cannot afford to send an

unlimited number of updates, or increase the signal-to-noise-ratio in the transmission. First, we

assume that the success probability before each transmission attempt is known (which, in the

case of HARQ, depends on the number of previous unsuccessful transmission attempts); and

therefore, the source node can judiciously decide when to retransmit and when to discard a failed

packet and send a fresh update. Then, we consider transmitting status updates over an unknown

channel, in which case the success probabilities of transmission attempts are not known a priori,

and must be learned in an online fashion. This latter scenario can model sensors embedded in

unknown or time-varying environments. We employ reinforcement learning (RL) algorithms to

balance exploitation and exploration in an unknown environment, so that the source node can

quickly learn the environment based on the ACK/NACK feedback signals, and can adapt its

scheduling policy accordingly, exploiting its limited resources in an efficient manner.

The main contributions of this paper are outlined as follows:

• Average AoI is studied under a long-term average resource constraint imposed on the

transmitter, which limits the average number of transmissions.

• Both retransmissions and pre-emption following a failed transmission are considered, cor-

responding, respectively, to the HARQ and ARQ protocols.

• The optimal preemptive transmission policy for the standard ARQ protocol is shown to be

a threshold-type randomized policy, and is derived in closed-form.

• An average-cost RL algorithm; in particular, average-cost SARSA with softmax, is proposed

to learn the optimal scheduling decisions when the transmission success probabilities are

unknown.

• Extensive numerical simulations are conducted in order to show the effect of feedback,

resource constraint and ARQ or HARQ mechanisms on the data freshness.

A. Related Work

Most of the earlier work on AoI consider queue-based models, in which the status updates

arrive at the source node randomly following a memoryless Poisson process, and are stored in

a buffer before being transmitted to the destination [3], [4]. Instead, in the so-called generate-

at-will model, [2], [9]–[12], also adopted in this paper, the status of the underlying process can

be sampled at any time by the source node.
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A constant packet failure probability for a status update system is investigated for the first

time in [13], where status updates arrive according to a Poisson process, while the transmission

time for each packet is exponentially distributed. Packet loss and large queuing delay due to

old packets in the queue result in an increase in the AoI. Different scheduling decisions at

the source node are investigated; including the last-come-first-served (LCFS) principle, which

always transmits the most up-to-date packet, and retransmissions with preemptive priority, which

preempts the current packet in service when a new packet arrives.

Broadcasting of status updates to multiple receivers over an unreliable broadcast channel is

considered in [10]. A low complexity sub-optimal scheduling policy is proposed when the AoI

at each receiver and the transmission error probabilities to all the receivers are known. However,

only work-conserving policies are considered in [10], which update the information at every

time slot, since no constraint is imposed on the number of updates. Optimizing the scheduling

decisions with multiple receivers is also investigated in [11], focusing on a perfect transmission

medium, and an optimal scheduling algorithm for the MDP is shown to be threshold-type. To

the best of our knowledge, [11] is the only prior work in the literature which applies RL in

the AoI framework. However, their goal is to learn the data arrival statistics, and it does not

consider an unreliable communication link. Moreover, we employ an average-cost RL method,

which has significant advantages over discounted-cost methods, such as Q-learning [14].

The AoI in the presence of HARQ has been considered in [15], [16] and [17]. In [15] the

affect of design decisions, such as the length of the transmitted codewords, on the average AoI

is analyzed. The status update system is modeled as an M/G/1/1 queue in [16]; however, no

resource constraint is considered, and the status update arrivals are assumed to be memoryless

and random, in contrast to our work, which considers the generate-at-will model. Moreover, a

specific coding scheme is assumed in [16], namely MDS (maximum distance separable) coding,

which results in a particular formula for the successful decoding probabilities, whereas we allow

general functions for the decoding probabilities. From a queuing system perspective, our model

can be considered as a G/G/1/1 queue with optimization of packet arrivals and pre-emption. In

[17], HARQ is considered in a zero-wait system, where as soon as an update is delivered, a new

update goes into service, yet no resource constraint or pre-emption is taken into account.

In [2] and [18], the receiver can choose to update its status information by downloading

an update over one of the two available channels, an unreliable free channel, modeling a Wi-

Fi connection, and a reliable channel with a cost, modeling a cellular connection. They have
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Source Destination
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channel

Figure 1. System model of a status update system over an error-prone point-to-point link in the presence of ACK/NACK

feedback from the destination.

not considered the effect of retransmissions or any algorithm that learns the unknown system

parameters; however, the Lagrangian formulation of our constrained optimization problem for

the standard ARQ protocol is similar to the one considered in [2].

To the best of our knowledge, this is the first work in the literature that addresses a status

update system with HARQ and in the presence of resource constraints. In addition, no previous

work has studied the average AoI over a channel with unknown error probabilities, and employed

an average-cost RL algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted status update system over an error-prone communication link

(see Figure 1). The source monitors an underlying time-varying process, and can generate a

status update at each time slot; known as the generate-at-will model [12]. The status updates

are communicated from the source node to the destination over a time-varying channel. Each

transmission attempt of a status update takes constant time, which is assumed to be equal to the

duration of one time slot. We will normalize all the time durations by the duration of one time

slot.

We assume that the channel changes randomly from one time slot to the next in an independent

and identically distributed fashion, and the channel state information is available only at the

destination node. We further assume the availability of an error- and delay-free single-bit feedback

from the destination to the source node for each transmission attempt. Successful reception of

a status update is acknowledged by an ACK signal, while a NACK signal is sent in case of a

failure. In the classical ARQ protocol, a packet is retransmitted after each NACK feedback, until
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Figure 2. Illustration of the AoI in a slotted status update system with HARQ. (δt, rt) represents the state of the system and

the action is chosen based on the state (δt, rt) and denoted by at. Packets with decoding errors (represented by red squares)

are stored in the receiver and combined to decode the information successfully (represented by green squares).

it is successfully decoded (or, a maximum number of allowed retransmissions is reached), and

the received signal is discarded after each failed transmission attempt. Therefore, the probability

of error is the same for all retransmissions. Note, however, that, in the AoI framework with the

classical ARQ protocol, there is no point in retransmitting a failed out-of-date status packet if it

has the same error probability with a fresh update. Hence, we assume that, if the classical ARQ

protocol is adopted, the source always removes failed packets, and transmits a fresh status update.

On the other hand, in the HARQ protocol, the received signals from all previous transmission

attempts for the same packet are combined for decoding. Therefore, the probability of error

decreases with every retransmission. In general, the error probability of each retransmission

attempt depends on the particular combination technique used by the decoder, as well as on the

channel conditions [5].

The AoI measures the timeliness of the information at the receiver, and is defined as the

number of time slots elapsed since the generation time of the most up-to-date packet successfully

decoded at the receiver. Formally, denoting the generation time for any time slot t by U(t), the
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AoI, denoted by δt, is defined as

δt , t− U(t). (1)

We assume that a transmission decision is made at the beginning of each slot. The AoI increases

by one when the transmission fails, while it decreases to one in the case of ARQ, or to the

number of retransmissions in the case of HARQ, when a status update is successfully decoded.

The probability of error after r retransmissions, denoted by g(r), depends on r and the

particular HARQ scheme used for combining multiple transmission attempts (an empirical

method to estimate g(r) is presented in [6]). As in any reasonable HARQ strategy, we assume

that g(r) is non-increasing in the number of retransmissions r; that is, g(r1) ≥ g(r2) for all

r1 ≤ r2. Standard HARQ methods only allow a finite maximum number of retransmissions rmax

[19]; however, in some cases we will allow rmax to be ∞.

For any time slot t, let δt ∈ Z+ denote the AoI at the beginning of the time slot and rt ∈
{0, . . . , rmax} denote the number of previous transmission attempts of the same packet. Then

the state of the system can be described by st , (δt, rt). At each time slot, the source node

takes one of the three actions, denoted by a ∈ A, where A = {i, n, x}: (i) remain idle (a = i);

(ii) transmit a new status update (a = n); or (iii) retransmit the previously failed update (a = x).

The evolution of AoI for a slotted status update system is illustrated in Figure 2.

Note that if no resource constraint is imposed on the source, remaining idle is clearly sub-

optimal since it does not contribute to decreasing the AoI. However, continuous transmission

is typically not possible in practice due to energy or interference constraints. Accordingly, we

impose a constraint on the average number of transmissions, denoted by Cmax ∈ (0, 1].

This leads to the CMDP formulation, defined by the 5-tuple
(

S,A,P, c, d
)

[20]: The countable

set of states (δ, r) ∈ S and the finite action set A = {i, n, x} are already defined. P refers to

the transition function, where P(s′|s, a) = Pr(st+1 = s′ | st = s, at = a) is the probability

that action a in state s at time t will lead to state s′ at time t+ 1, which will be explicitly

defined in (4). The cost function c : S × A → R, is the AoI at the destination, and is defined

as c((δ, r), a) = δ for any (δ, r) ∈ S, a ∈ A, independent of action a. The transmission cost,

d : S × A → R is independent of the state and depends only on the action a, where d = 0 if

a = i, and d = 1, otherwise.

A policy is a sequence of decision rules πt : (S×A)t → [0, 1], which maps the past states and

actions and the current state to a distribution over the actions, i.e., after the state-action sequence
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s1, a1, . . . , st−1, at−1, in state st, action a is selected with probability πt(at|s1, a1, . . . , st−1, at−1, st).

We will use sπt = (δπt , r
π
t ) and aπt to denote the sequences of states and actions, respectively,

induced by policy π = {πt}. A policy π = {πt} is called stationary if the distribution of the

next action is independent of the past states and actions given the current state; that is, with a

slight abuse of notation, πt(at|s1, a1, . . . , st−1, at−1, st) = π(at|st) for all t and (si, ai) ∈ S ×A.

Finally, a policy is said to be deterministic if it chooses an action with probability one; with

a slight abuse of notation, we will use π(s) to denote the action taken with probability one in

state s by a stationary deterministic policy.

Let Jπ(s0) denote the infinite horizon average age, and Cπ(s0) denote the expected average

number of transmissions when policy π is employed with initial state s0. Then the CMDP

optimization problem can be stated as follows:

Problem 1.

Minimize Jπ(s0) , lim sup
T→∞

1

T
E

[

T
∑

t=1

δπt

∣

∣

∣
s0

]

, (2)

subject to Cπ(s0) , lim sup
T→∞

1

T
E

[

T
∑

t=1

1[aπt 6= i]
∣

∣

∣
s0

]

≤ Cmax. (3)

A policy π which is a solution of the above minimization problem is called optimal, and we

are interested in finding optimal policies. Without loss of generality, we assume that the sender

and the receiver are synchronized at the beginning of the problem, that is, s0 = (1, 0); and s0

will be omitted from the notation for simplicity.

Before formally defining the transition function P in our AoI problem, we present a simple

observation that allows to simplify P. It is easy to see that retransmitting a packet immediately

after a failed attempt is better than retransmitting it after waiting for some slots. This is obviously

true since waiting increases the age, without increasing the success probability. The difference

in the waiting time is illustrated in Figure 3 for a simple scenario, where the first transmission

of a status update results in a failure, while the retransmission is successful.

Proposition 1. For any policy π there exists another policy π′ (not necessarily distinct from

π) such that Jπ′

(s0) ≤ Jπ(s0), C
π′

(s0) ≤ Cπ(s0), and π′ takes a retransmission action only

following a failed transmission, that is, Pr(aπ
′

t+1 = x|aπ′

t = i) = 0.
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t

Figure 3. The difference of the AoI for policies without and with idle slots before retransmissions. The figure on the left shows

the evolution of age (height of the bars) when retransmission occurs immediately after an error in transmission whereas the

figure on the right represents the evolution of age when retransmission occurs after some idle slots.

The transition probabilities are given as follows (omitting the parenthesis from the state

variables (δ, r)):

P(δ + 1, 0|δ, r, i) = 1,

P(δ + 1, 1|δ, r, n) = g(0),

P(1, 0|δ, r, n) = 1− g(0),

P(δ + 1, r + 1|δ, r, x) = g(r),

P(r + 1, 0|δ, r, x) = 1− g(r),

(4)

and P(δ′, r′|δ, r, a) = 0 otherwise. Note that the above equations set the retransmission count

to 0 after each successful transmission, and it is not allowed to take a retransmission action in

states where the transmission count is 0. Also, the property in Proposition 1 is enforced by the

first equation in (4), that is, P(δ+1, 0|δ, r, i) = 1 (since retransmissions are not allowed in states

(δ, 0)).

III. LAGRANGIAN RELAXATION AND THE STRUCTURE OF THE OPTIMAL POLICY

In this section, we derive the structure of the optimal policy for Problem 1 based on [20], [21].

While there exists a stationary and deterministic optimal policy for countable-state finite-action

average-cost MDPs [22]–[24], this is not necessarily true for CMDPs [20], [21]. To solve the



10

CMDP, we start with rewriting the problem in its Lagrangian form. The average Lagrangian cost

of a policy π with Lagrange multiplier η ≥ 0 is defined as

Jπ
η = lim

T→∞

1

T
E

[

T
∑

t=1

δπt

]

− η

(

Cmax −
1

T
E

[

T
∑

t=1

1[aπt 6= i]

])

, (5)

and, for any η, the optimal achievable cost J∗
η is defined as J∗

η , minπ J
π
η . This formulation

is equivalent to an unconstrained countable-state average-cost MDP, in which the instantaneous

overall cost becomes δt + η1[aπt 6= i]. It is well-known that there exists an optimal stationary

deterministic policy for this problem. In particular, there exists a function hη(δ, r), called the

differential cost function, satisfying the following Bellman optimality equations for the countable-

state MDP [23], [24]:

hη(δ, r) + J∗
η = min

a∈{i,n,x}

(

δ + η · 1[a 6= i] + E [hη(δ
′, r′)]

)

, (6)

where (δ′, r′) is the next state obtained from (δ, r) after taking action a. Note that the function hη

satisfying (6) is unique up to an additive factor, and with selecting this additive factor properly,

it also satisfies

hη(δ, r) = E

[

∞
∑

t=0

(δt + η · 1[a 6= i]− J∗
η )
∣

∣δ0 = δ, r0 = r

]

,

in which case it is called the value function, and denoted by Vη. We also introduce the state-action

cost function:

Qη(δ, r, a) , δ + η · 1[a 6= i] + E [hη(δ
′, r′)] . (7)

Then the optimal policy, for any (δ, r) ∈ S, takes the action achieving the minimum in (6):

π∗
η(δ, r) ∈ argmin

a∈{i,n,x}

(

Qη(δ, r, a)
)

. (8)

Focusing on deterministic policies, it is possible to characterize optimal policies for our CMDP

problem: Combining Theorem 4.4 of [20] with Theorem 2.5 of [21] and its proof, we obtain

the following result:

Theorem 1. An optimal stationary policy for the CMDP in Problem 1, which randomizes in

at most one state, exists. Alternatively, an optimal stationary policy, which is a mixture of two

deterministic policies, exists; that is, there exist Lagrange multipliers η1, η2 ≥ 0, and a mixing

coefficient µ ∈ [0, 1], such that the mixture policy π∗
η1,η2,µ , µπ∗

η1 + (1 − µ)π∗
η2 is optimal for

Problem 1, and the constraint in (3) is satisfied with equality.
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In the theorem we use π∗
ηi

to denote the optimal policy for the unconstrained MDP with

Lagrange multiplier ηi. One can think of the optimal policy π∗
η1,η2,µ

for the CMDP as a random-

ized policy between two deterministic policies: in any state s = (δ, r), it chooses action π∗
η1
(s)

with probability µ and π∗
η2(s) with probability 1 − µ, independently at each time slot. While

Theorem 1 presents the general structure of the optimal policy, it does not provide any guidance

on how to select η1, η2 and µ, which will be provided next. Note that π∗
ηi

may not be unique

due to multiple reasons: we can have policies with a different balance between the AoI and the

transmission cost; or, different policies may yield the same performance. In what follows, we

define π∗
ηi

to be any Lagrangian-optimal policy for ηi with the minimum average AoI.

For any η, let Cη denote the average number of transmissions under the optimal policy π∗
η , and

J∗
η denote the average AoI for π∗

η . Note that by our definition of π∗
η , the definitions of J∗

η and Cη

are unambiguous (also note that Cη and J∗
η can be computed directly by finding the stationary

distribution of the chain, or estimated empirically by running the MDP with policy π∗
η). Since η

effectively represents the cost of a single transmission in (6) and (7), as η increases, the average

number of transmissions of the optimal policy cannot increase, and as a result, the AoI cannot

decrease; that is, Cη and J∗
η are monotone functions of η: if η1 < η2, we have Cη1 ≥ Cη2 and

J∗
η1
≤ J∗

η2
. Therefore, given the values of η1 and η2, one can find the optimal mixing coefficient µ

by solving µCη1 +(1−µ)Cη2 = Cmax, which has a solution for µ ∈ [0, 1] if Cη1 ≥ Cmax ≥ Cη2 .

Given the whole curve J C = {(Cη, J
∗
η ) : η ≥ 0} parametrized by η, the mixture policies defined

in Theorem 1 span the lower convex hull of J C. Thus, the optimal Lagrange multipliers η1 and

η2 can be found by identifying which two points of J C determine the lower convex hull at Cmax.

Let lch(J C) denote the set of η such that (Cη, J
∗
η ) belongs to the lower convex hull of J C. For

any η ∈ lch(J C), π∗
η is the optimal policy for the CMDP with constraint Cmax = Cη, and there

is no need to mix the two policies. For any other η, let η1, η2 ∈ lch(J C) be the two points on

the lower convex hull of J C, such that the segment connecting (Cη1 , J
∗
η1
) and (Cη2, J

∗
η2
) touches

the lower convex hull of J C with x-coordinate Cmax. Then the optimal mixing coefficient can

be obtained by setting the average number of transmissions, µCη1 + (1− µ)Cη2 of the mixture

to Cmax; that is,

µ =
Cmax − Cη2

Cη1 − Cη2

, (9)

and the optimal policy is

π∗
η1,η2,µ

= µπ∗
η1
+ (1− µ)π∗

η2
. (10)



12

Note that, the whole J C curve needs to be generated and its lower convex hull needs to be

determined in order to find the optimal choices of η1, η2 and µ, which is not suitable for practical

applications. In Section IV, a computationally efficient heuristic algorithm is proposed to find

these parameters.

IV. AN ITERATIVE ALGORITHM TO MINIMIZE THE AOI UNDER AN AVERAGE COST

CONSTRAINT

By the discussion at the end of the last section, we have to find two points on the lower convex

hull of J C, whose cost value is approximately Cmax. This problem is easy if we have a closed

form description of J C. Otherwise, we have to generate elements on J C (i.e., determine the

optimal policy and the associated cost for different values of η), and determine the aforementioned

two points based on these elements.

We remark that our state space is countably infinite, since the age can be arbitrarily large

(rmax may also be infinite). However, in practice we can approximate the countable state space

with a large but finite space by setting a maximum bound on the age (which will be denoted by

N), and by selecting a finite rmax (whenever the chain would leave this constrained state space,

we truncate the value of the age and/or the retransmission number to N and rmax, respectively);

this gives a finite state space approximation to the problem similarly to [2], [11]. Clearly, letting

N and rmax go to infinity, the optimal policy for the restricted state space will converge to that

of the original problem.

When we consider the finite state space approximation of our problem, we can employ the

relative value iteration (RVI) [23] algorithm to solve (6) for any given η; and hence, find the

optimal policy π∗
η . Note that the finite state space approximation is needed for the practical

implementation of the RVI algorithm since each iteration in the RVI requires the computation

of the value function for each state-action pair, which cannot be completed in finite time for an

infinite state space. The pseudo code of the RVI algorithm is given in Algorithm 1. To simplify

the notation, the dependence on η is suppressed in the algorithm for h, V and Q.

After presenting an algorithm that can compute the optimal policy π∗
η for any given η (more

precisely, an arbitrarily close approximation thereof), we need to find the values for the Lagrange

multipliers η1 and η2. In general, we would need to generate the whole J C curve to determine

its lower convex hull. This could be approximated by computing (Cη, J
∗
η ) for a fine grid of η

values, but this approach might be computationally demanding (note that generating each point



13

Algorithm 1: Relative value iteration (RVI) algorithm for a given η.

Input : Lagrange parameter η, error probability g(r)

1 (δref , rref ) /* choose an arbitrary but fixed reference state */

2 n← 0 /* iteration counter */

3 hN×rmax

0 ← 0 /* initialization */

4 while 1 /* until convergence */

5 do

6 for state s = (δ, r) ∈ [1, . . . , N ]× [1, . . . , rmax] do

7 for action a ∈ A do

8 Qn+1(δ, r, a)← δ + η · 1[aπ 6= i] + E [hn(δ
′, r′)]

9 end

10 Vn+1(δ, r)← mina(Qn+1(δ, r, a))

11 hn+1(δ, r)← Vn+1(δ, r)− Vn+1(δ
ref , rref )

12 end

13 if |hn+1 − hn| ≤ ǫ then

/* compute the optimal policy */

14 for (δ, r) ∈ [1, . . . , N ]× [1, . . . , rmax] do

15 π∗
η(δ, r)← argmina(Q(δ, r, a))

16 end

17 return π∗

18 else

19 increase the iteration counter: n← n+ 1

20 end

21 end

requires running an instance of the RVI). Instead, we can use the following heuristic: With the

aim of finding a single η value with Cη ≈ Cmax, we start with an initial parameter η0, and run

an iterative algorithm updating η as ηm+1 = ηm + αm(Cηm − Cmax) for a step size parameter

αm = 1/
√
m (note that for each step we need to run the RVI algorithm to be able to determine

Cηm). We continue this iteration until |Cηm − Cmax| becomes smaller than a given threshold,

and denote the resulting value as η∗. We can increase or decrease the η∗ value until η∗ and

its modification satisfy the conditions (note that in case of a finite state space, which is an

approximation we always use in computing an optimal policy numerically, πη , and consequently

Cη and J∗
η , are piecewise constant functions of η, and so η must be changed sufficiently to
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change the average transmission cost).

Next we approximate the values of η1 and η2 by η∗± ξ where ξ is a small perturbation, such

that Cη1 ≥ Cmax ≥ Cη2 . Then, the mixing coefficient can be chosen similarly to (9) in Section

III

µ =
Cmax − Cη∗+ξ

Cη∗−ξ − Cη∗+ξ
. (11)

Numerical results obtained by implementing the above heuristics in order to minimize the

average AoI with HARQ will be presented in Section VII. In the next section, we focus on the

simpler scenario with the classical ARQ protocol.

V. AOI WITH CLASSICAL ARQ PROTOCOL UNDER AN AVERAGE COST CONSTRAINT

In the classical ARQ protocol, failed transmissions are discarded at the destination and the

receiver tries to decode each retransmission as a new message. In the context of AoI, there is no

point in retransmitting an undecoded packet since the probability of a successful transmission is

the same for a retransmission and for the transmission of a new update. Hence, the state space

reduces to δ ∈ {1, 2, . . .} as rt = 0 for all t, and the action space reduces to A ∈ {n, i}, and

the probability of error p , g(0) is fixed for every transmission attempt. 1 State transitions in

(4), Bellman optimality equations [23], [24] for the countable-state MDP in (6), and the RVI

algorithm with the finite state approximation can all be simplified accordingly. We define

Qη(δ, i) , δ + hη(δ + 1), (12)

Qη(δ, n) , δ + η + phη(δ + 1) + (1− p)hη(1), (13)

where hη(δ) is the optimal differential value function satisfying the Bellman optimality equation

hη(δ) + J∗
η , min {Qη(δ, i), Qη(δ, n)}, ∀δ ∈ {1, 2, . . .}. (14)

Thanks to these simplifications, we are able to provide a closed-form solution to the correspond-

ing Bellman equations in (12), (13) and (14).

1This simplified model with classical ARQ protocol and Lagrangian relaxation is equivalent to the work in [2] when η is

considered to be the cost of a single transmission and the assumption of a perfect transmission channel in [2] is ignored.
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Lemma 1. The policy that satisfies the Bellman optimality equations for the standard ARQ

protocol is deterministic, and has a threshold structure:

π∗(δ) =











n if δ ≥ ∆η,

i if δ < ∆η.

for some integer ∆η that depends on η.

Proof. The proof is given in Appendix A.

The next lemma characterizes the possible values of the threshold defined in Lemma 1.

Lemma 2. Under the standard ARQ protocol, the optimal value of the threshold ∆η can be

found in closed-form:

∆∗
η ∈

{⌊

√

2η(1− p) + p− p

1− p

⌋

,

⌈

√

2η(1− p) + p− p

1− p

⌉}

.

Proof. The proof is given in Appendix B.

From the proof of the lemma one can easily deduce that the transmission cost (per time slot)

of the threshold policy for any integer threshold ∆ is given by

C∆ =
1

∆(1− p) + p
, (15)

and the corresponding AoI is

J∆ =
(∆(1− p) + p)2 + p

2(1− p)(∆(1− p) + p)
+

1

2
.

Expressing J∆ as a function of C∆, and relaxing the integrality constraint on ∆, one can see

that

J∆ =
1

2(1− p)C∆
+

1

2
+

pC∆

2(1− p)

is a convex function of C∆. Thus, for all positive integers ∆, the points (C∆, J∆) lie on the

lower convex hull of the graph J C = {(Cη, J
∗
η ), η ≥ 0}, and no other deterministic policy

achieves the lower convex hull (recall the discussion after Theorem 1). Therefore, by (10)), if

Cmax ∈ (C∆, C∆+1) for some ∆, then the optimal policy is a mixture of the threshold policies

with thresholds ∆ and ∆ + 1. These threshold values can be found by inverting (15), and

taking the closest integers to the resulting non-integer threshold value. In particular, defining

∆Cmax ,
1/Cmax−p

1−p
, ∆1 , ⌊∆Cmax⌋ and ∆2 , ⌈∆Cmax⌉, we obtain that the optimal policy is a

mixture of the threshold policies of Lemma 1 with thresholds ∆1 and ∆2 and mixture coefficient
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µ = Cmax−C∆2

C∆1−C∆2
. The resulting policy π∗

Cmax
can be written in closed form: if ∆Cmax is an integer

then π∗
Cmax

(δ) = n if δ ≥ ∆Cmax and i otherwise. If ∆Cmax is not an integer, then π∗
Cmax

(δ) = n

if δ ≥ ⌈∆Cmax⌉, π∗
Cmax

(δ) = i if δ < ⌊∆Cmax⌋, while π∗
Cmax

(n|δ) = 1 − µ and π∗
Cmax

(i|δ) = µ

for δ = ⌊∆Cmax⌋. This proves the following theorem:

Theorem 2. For any Cmax ∈ (0, 1], the stationary policy π∗
Cmax

defined above is an optimal

policy (i.e., a solution of Problem 1) under the ARQ protocol.

Numerical results obtained for the above algorithm will be presented and compared with those

from the HARQ protocol in Section VII.

VI. LEARNING TO MINIMIZE AOI IN AN UNKNOWN ENVIRONMENT

In the CMDP formulation presented in Sections IV and V, we have assumed that the channel

error probabilities for all retransmissions are known in advance. However, in most practical

scenarios, these error probabilities may not be known at the time of deployment, or may change

over time. Therefore, in this section, we assume that the source node does not have a priori

information about the decoding error probabilities, and has to learn them. We employ an online

learning algorithm to learn g(r) over time without degrading the performance significantly.

The literature for average-cost RL is quite limited compared to discounted cost problems [14],

[25]. SARSA [25] is a well-known RL algorithm, originally proposed for discounted MDPs, that

learns the optimal policy for an MDP based on the action performed by the current policy in a

recursive manner. For average AoI minimization in Problem 1, an average cost version of the

SARSA algorithm is employed with Boltzmann (softmax) exploration. The resulting algorithm

is called average-cost SARSA with softmax.

As indicated by (6) and (7) in Section III, Qη(sn, an) of the current state-action pair can be

represented in terms of the immediate cost of the current state-action pair and the differential

state-value function hη(sn+1) of the next state. Notice that, one can select the optimal actions

by only knowing Qη(s, a) and choosing the action that will give the minimum expected cost as

in (8). Thus, by only knowing Qη(s, a), one can find the optimal policy π∗ without knowing the

transition probabilities P characterized by g(r) in (4).

Similarly to SARSA, average-cost SARSA with softmax starts with an initial estimation of

Qη(s, a) and finds the optimal policy by estimating state-action values in a recursive manner. In

the nth time iteration, after taking action an, the source observes the next state sn+1, and the
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Algorithm 2: Average-cost SARSA with softmax

Input : Lagrange parameter η /* error probability g(r) is unknown */

1 n← 0 /* time iteration */

2 τ ← 1 /* softmax temperature parameter */

3 QN×M×3
η ← 0 /* initialization of Q */

4 Jη ← 0 /* initialization of the gain */

5 for n do

6 OBSERVE the current state sn

7 for a ∈ A do

/* since it is a minimization problem, use minus Q function in

softmax */

8 π(a|sn) = exp(−Qη(sn, a)/τ)
∑

a′∈A

exp(−Qη(sn, a
′)/τ)

9 end

10 SAMPLE an from π(a|Sn)

11 OBSERVE the next state sn+1 and cost cn = δn + η1{an=1,2}

12 for a ∈ A do

/* softmax is also used for the next state sn+1, so that it is

on-policy */

13 π(a|sn+1) =
exp(−Qη(sn+1, an+1)/τ)

∑

a′

n+1
∈A

exp(−Qη(sn+1, a
′
n+1)/τ)

14 end

15 SAMPLE an+1 from π(an+1|sn+1)

16 UPDATE

17 αn ← 1/
√
n /* update parameter */

18 Qη(sn, an)← Qη(sn, an) + αn[δ + η · 1[an 6= i]− Jη +Qη(sn+1, an+1)−Qη(sn, an)]

19 Jη ← Jη + 1/n[δ + η · 1[an 6= i]− Jη] /* update Jη at every step */

20 n← n+ 1 /* increase the iteration */

21 end

instantaneous cost value cn. Based on this, the estimate of Qη(s, a) is updated by weighing the

previous estimate and the estimated expected value of the current policy in the next state sn+1.

Also note that, in general, cn is not necessarily known before taking action an because it does

not know the next state sn+1 in advance. In our problem, the instantaneous cost cn is the sum
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of AoI at the destination and the cost of transmission, i.e. δn + η · 1[an 6= i]; hence, it is readily

known at the source node.

In each time slot, the learning algorithm

• observes the current state sn ∈ S,

• selects and performs an action an ∈ A,

• observes the next state sn+1 ∈ S and the instantaneous cost cn,

• updates its estimate of Qη(sn, an) using the current estimate of Jη by

Qη(sn, an)← Qη(sn, an) +αn[δ+ η · 1[an 6= i]− Jη +Qη(sn+1, an+1)−Qη(sn, an)], (16)

where αn is the update parameter (learning rate) in the nth iteration.

• updates its estimate of Jη based on empirical average.

The details of the algorithm are given in Algorithm 2. We update the gain Jη at every time slot

based on the empirical average, instead of updating it at non-explored time slots.

As we discussed earlier, with the accurate estimate of Qη(s, a) at hand the transmitter can

decide for the optimal actions for a given η as in (8). However, until the state-action cost function

is accurately estimated, the transmitter action selection method should balance the exploration of

new actions with the exploitation of actions known to perform well. In particular, the Boltzmann

action selection method, which chooses each action probabilistically relative to expected costs,

is used in this paper. The source assigns a probability to each action for a given state sn, denoted

by π(a|sn):
π(a|sn) ,

exp(−Qη(sn, a)/τ)
∑

a′∈A

exp(−Qη(sn, a
′)/τ)

, (17)

where τ is called the temperature parameter such that high τ corresponds to more uniform action

selection (exploration) whereas low τ is biased toward the best action (exploitation).

In addition, the constrained structure of the average AoI problem requires additional modi-

fications to the algorithm, which is achieved in this paper by updating the Lagrange multiplier

according to the empirical resource consumption. In each time slot, we keep track of a value η

resulting in a transmission cost close to Cmax, and then find and apply a policy that is optimal

(given the observations so far) for the MDP with Lagrangian cost as in Algorithm 2.

The performance of average-cost SARSA with softmax, and its comparison with the RVI

algorithm will be presented in the next section.
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VII. NUMERICAL RESULTS

In this section, we provide numerical results for all the proposed algorithms, and compare the

achieved average performances. For the simulations employing HARQ, motivated by previous

research on HARQ [5], [6], [7], we assume that decoding error reduces exponentially with the

number of retransmission, that is, g(r) , p0λ
r for some λ ∈ (0, 1), where p0 denotes the error

probability of the first transmission, and r is the retransmission count (set to 0 for the first

transmission). The exact value of the rate λ depends on the particular HARQ protocol and the

channel model. Note that ARQ corresponds to the case with λ = 1 and rmax = 0. Following

the IEEE 802.16 standard [19], the maximum number of retransmissions is set to rmax = 3;

however, we will present results for other rmax values as well. We note that we have also run

simulations for HARQ with relatively higher rmax values and rmax =∞, and the improvement

on the performance is not observable beyond rmax = 3. Numerical results for different p0, λ

and Cmax values, corresponding to different channel conditions and HARQ schemes, will also

be provided.

Figure 4 illustrates the deterministic policies obtained by RVI and the search for η∗ for given

Cmax and p0 values, while λ is set to 0.5. The final policies are generated by randomizing between

π∗
η∗−ξ and π∗

η∗+ξ; the approximate η∗ values found for the settings in Figures 4(a) and 4(b) are 5

and 19, respectively, and ξ is set to 0.2. As it can be seen from the figures, the resulting policy

transmits less as the average cost constraint becomes more limiting, i.e., as η increases. We also

note that, although the policies π∗
η∗−ξ and π∗

η∗+ξ are obtained for similar η∗ values, and hence,

have similar average number of transmissions, they may act quite differently especially for large

Cmax values.

Figure 5 illustrates the performance of the proposed randomized HARQ policy with respect

to Cmax for different p0 values when λ is set to 0.5. We also include the performance of the

optimal deterministic and randomized threshold policies with ARQ, derived in Section V, for

p0 = 0.5. For baseline, we use a simple no-feedback policy that periodically transmits a fresh

status update with a period of ⌈1/Cmax⌉, ensuring that the constraint on the average number

of transmissions holds. The effect of feedback on the performance can be seen immediately:

a single-bit ACK/NACK feedback, even with the ARQ protocol, decreases the average AoI

considerably, although receiving feedback might be costly for some status update systems. The

two curves for the ARQ policies demonstrate the effect of randomization: the curve corresponding
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Figure 4. Deterministic policies πη∗+ξ (top) and πη∗
−ξ (bottom) when λ = 0.5 and rmax = 9. (Blue circles, red stars, and

green diamonds represent actions πη(δ, r) = i, n and x, respectively.)
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Figure 5. Expected average AoI as a function of Cmax for ARQ and HARQ protocols for different p0 values. Time horizon

is set to T = 10000, and the results are averaged over 1000 runs.

to the randomized policy is the lower convex hull of the piecewise constant AoI curve for

deterministic policies. For the same p0 = 0.5, HARQ with λ = 0.5 improves only slightly over

ARQ. Smaller p0 results in a decrease in the average AoI as expected, and the gap between the

AoIs for different p0 values is almost constant for different Cmax values.

More significant gains can be achieved from HARQ when the error probability decreases

faster with retransmissions (i.e., small λ), or more retransmissions are allowed. This is shown

in Figure 6. On the other hand, the effect of retransmissions on the average AoI (with respect

to ARQ) is more pronounced when p0 is high and λ is low.

Figure 7 shows the average AoI achieved by the HARQ protocol with respect to different p0

and λ values for rmax = 3. Similarly to Figure 5, the gap between the average AoI values is

higher for unreliable environments with higher error probability, and the performance gap due

to different λ values are not observable for relatively reliable environments, for example, when
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Figure 6. Expected average AoI with respect to Cmax for ARQ and HARQ protocols for different p0 and rmax values. Time

horizon is set to T = 10000, and the results are averaged over 1000 runs.

p0 = 0.3. The performance difference for different λ values (with a fixed p0) is more pronounced

when the average number of transmissions, Cmax, is low, since then less resources are available

to correct an unsuccessful transmission.

Figure 8 shows the evolution of the average AoI over time when the average-cost SARSA

learning algorithm is employed. It can be observed that the average AoI achieved by Algorithm 2,

denoted by RL in the figure, converges to the one obtained from the RVI algorithm which has a

priori knowledge of g(r). We can observe from Figure 8 that the performance of SARSA achieves

that of RVI in about 10000 iterations. Figure 9 shows the performance of the two algorithms

(with again 10000 iterations in SARSA) as a function of Cmax in two different setups. We can

see that SARSA performs very close to RVI with a gap that is more or less constant for the

whole range of Cmax values. We can also observe that the variance of the average AoI achieved

by SARSA is much larger when the number of transmissions is limited, which also limits the
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r values corresponding to

different p0 and λ values with rmax = 3. The time horizon is set to T = 10000, and the results are averaged over 1000 runs.

algorithm’s learning capability.

VIII. CONCLUSIONS

We have considered a communication system transmitting time-sensitive data over an imperfect

channel with the average AoI as the performance measure, which quantifies the timeliness of

the data available at the receiver. Considering both the classical ARQ and the HARQ protocols,

preemptive scheduling policies have been proposed by taking into account retransmissions under

a resource constraint. In addition to identifying a randomized threshold structure for the optimal

policy when the error probabilities are known, an efficient RL algorithm is also presented for

practical applications when the system characteristics may not be known in advance. The effects

of feedback and the HARQ structure on the average AoI are demonstrated through numerical

simulations. The algorithms adopted in this paper are also relevant to different systems concerning

the timeliness of information, and the proposed methodology can be used in other CMDP
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Figure 8. Performance of the average-cost SARSA for rmax = 3, p0 = 0.5, λ = 0.5, Cmax = 0.4 and n = 10000, averaged

over 1000 runs (both the mean and the variance are shown).

problems. As future work, the problem will be extended to time-correlated channel statistics

in a multi-user setting.

APPENDIX

A. Proof of Lemma 1

We are going to show that the decision to transmit (a = n) is monotone with respect to the

age δ, that is if a∗(δ1) = n, then a∗(δ2) = n for all δ2 ≥ δ1. By (8), this holds if Qη(δ, a) has a

sub-modular structure [26]: that is, when the difference between the Q functions is monotone

with respect to the state-action pair (δ, a). We have

Qη(δ
1, n)−Qη(δ

1, i) ≥ Qη(δ
2, n)−Qη(δ

2, i), (18)

for any δ2 ≥ δ1. From (12) and (13), for any δ > 0, we have

Qη(δ, n)−Qη(δ, i) = η + (1− p)hη(1)− phη(δ + 1). (19)
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Figure 9. Performance of the proposed RL algorithm (average-cost SARSA) and its comparison with the RVI algorithm for

n = 10000 iterations, and values are averaged over 1000 runs for different p0 and rmax values when λ = 0.5 (both the mean

and the variance are shown).

We can see that (18) holds if and only if hη(δ) is a non-decreasing function of the age.

We compare the costs incurred by the systems starting in states δ1 and δ2 via coupling the

stochastic processes governing the behavior of the system; that is, we assume that the realization

of the channel behavior is the same for both systems over the time horizon (this is valid since

channel states/errors are independent of the ages and the actions). Assume a sequence of actions

{a2t}∞t=1 corresponds to the optimal policy starting from age δ2 for a particular realization of

channel errors, and let {δit} denote the sequence of states obtained after following actions {a2t}
starting from state δ1 = δi, i = 1, 2. Then, if δ1 ≤ δ2, clearly δ1t ≤ δt2 for all t. Furthermore, by
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the Bellman optimality equation (6),

hη(δ
1) ≤ δ11 + η · 1[a21 6= i]− J∗

η + E
[

hη(δ
1
2)
]

≤ δ11 + η · 1[a21 6= i]− J∗
η + E

[

δ12 + η · 1[a22 6= i]− J∗
η + E

[

hη(δ
1
3)
]]

...

≤ E

[

∞
∑

t=1

(δ1t + η · 1[a2t 6= i]− J∗
η )

∣

∣

∣

∣

δ11 = δ1

]

≤ E

[

∞
∑

t=1

(δ2t + η · 1[a2t 6= i]− J∗
η )

∣

∣

∣

∣

δ11 = δ2

]

= hη(δ
2) .

This completes the proof of the lemma.

B. Proof of Lemma 2

First we compute the steady state probabilities pδ of the age δ for a given integer threshold

∆, for all δ = 1, 2, . . . , N . We have

pδ =











p1 if 1 ≤ δ ≤ ∆

pδ−1p = p1p
δ−∆ if δ ≥ ∆+ 1 .

Since
∑∞

δ=1
pδ = 1, we can compute the pδ in closed form when N goes to infinity:

pδ =











1

∆+
p

1−p

if δ ≤ ∆;

pδ−∆

∆+
p

1−p

otherwise.
(20)

Then, the closed form of the expected Lagrangian cost function can be computed as:

Jη =
∞
∑

δ=1

pδ(δ + η1[δ ≥ ∆]) = p1

(

∆−1
∑

δ=1

δ +
∞
∑

δ=∆

pδ−∆(δ + η)

)

= p1

(

(∆− 1)∆

2
+

η +∆

1− p
+

p

(1− p)2

)

. (21)

Substituting p1 from (20) and minimizing over ∆ (by setting the derivative ∂Jη/∂∆ to zero)

yields that the optimal non-integer value of ∆ is given by

∆̂η =

√

2η(1− p) + p− p

1− p
.
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Using that Jη is a convex function of ∆ by (21), the optimal integer threshold ∆∗
η is either

⌊

√

2η(1− p) + p− p

1− p

⌋

or

⌈

√

2η(1− p) + p− p

1− p

⌉

.

Computing just the cost term from (21), we obtain the formula for C∆ for any integer threshold

∆.
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