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Abstract

Diesel vehicle emissions are the major source of genotoxic compounds in ambient air from urban areas. 
These pollutants are linked to risks of cardiovascular diseases, lung cancer, respiratory infections and 
adverse neurological effects. Biological events associated with exposure to some air pollutants are widely 
unknown but applying omics techniques may help to identify the molecular processes that link exposure 
to disease risk. Most data on health risks are related to long-term exposure, so the aim of this study is to 
investigate the impact of short-term exposure (two hours) to air pollutants on the blood transcriptome 
and microRNA expression levels.

We analyzed transcriptomics and microRNA expression using microarray technology on blood samples 
from volunteers participating in studies in London, the Oxford Street cohort, and, in Barcelona, the TAPAS 
cohort. Personal exposure levels measurements of particulate matter (PM10, PM2.5), ultrafine particles 
(UFPC), nitrogen oxides (NO2, NO and NOx), black carbon (BC) and carbon oxides (CO and CO2) were 
registered for each volunteer. Associations between air pollutant levels and gene/microRNA expression 
were evaluated using multivariate normal models (MVN).

MVN-models identified compound-specific expression of  blood cell genes and microRNAs  associated 
with air pollution despite the low exposure levels, the short exposure periods and the relatively small-
sized cohorts. Hsa-miR-197-3p, hsa-miR-29a-3p, hsa-miR-15a-5p, hsa-miR-16-5p and hsa-miR-92a-3p are 
found significantly expressed in association with exposures. These microRNAs target also  relevant 
transcripts, indicating their potential relevance in the research of omics-biomarkers responding to air 
pollution. Furthermore, these microRNAs are also known to be associated with diseases previously linked 
to air pollution exposure including several cancers such lung cancer and Alzheimer’s disease. In 
conclusion, we identified in this study promising compound-specific mRNA and microRNA biomarkers 
after two hours of exposure to low levels of air pollutants during two hours that suggest increased cancer 
risks. 
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Introduction

Vehicle emissions have become the principal source of air pollutants in urban areas close to roadways. 
Diesel engines emit lower levels of carbon monoxide and carbon dioxide than gasoline engines but they 
contribute the most to atmospheric particulate pollution [1]. About 90% of traffic-generated particulate 
matter in urban environments originates from diesel engine emissions [2]. In addition, exhaust from diesel 
vehicles is the major source of genotoxic carcinogens in ambient air in urban areas [3] and is classified as 
IARC Group 1 [4].

Epidemiological studies have shown that these pollutants may have a serious impact on human health. 
Next to increasing cancer risks [5, 6] air pollution may induce several other diseases and medical 
conditions such as cardiovascular disease [7-9], stroke [10, 11], respiratory infections [12, 13] and adverse 
neurological effects [14-16]. Long-term exposure to air pollution has been identified as a leading cause of 
global disease burden according to “The Global Burden of Diseases, Injuries, and Risk Factors Study 2015”, 
with a higher incidence in countries with low/middle-income [17]. In 2015, a total of 4.2 million deaths 
and 103.1 million lost years of healthy life was estimated as a consequence of long-term exposure to the 
particulate matter PM2.5 [17]. Previous studies have linked mortality to hourly peak particulate matter 
PM2.5 [18] and increased asthma risk and cardiovascular mortality to particulate matter PM2.5 and PM10 
[19,20]. Similar studies have monitored personal exposure measurement to ultrafine particles over time 
[21]. The impact of short-term exposure to particulate matter in human however is still uncertain and 
cannot be easily addressed using the classical epidemiological approaches. In order to study risks 
associated with short-term exposures we need rapidly responding biomarkers. For this, omics-based 
technologies may be considered as these allow the global and sensitive identification of molecular 
changes that can be relevant for monitoring the development of disease.

Air pollution exposure induces gene expression profiles identified through transcriptomics analysis 
[22,23], which can be used as biomarkers of exposure [24]. In addition, microRNAs can play a role in 
mediating transcriptomic responses to air pollution by controlling gene expression at the post-
transcriptional level [25]. Studying microRNAs expression as complementary to the transcriptomics 
analysis may therefore provide a better understanding of the gene expression regulatory mechanisms in 
response to exposure to ambient air pollutants.

Therefore, in this study, we aim to investigate the impact of short-term air pollution exposure on whole-
genome gene and microRNA expression, for the purpose of identifying potential biomarkers of short- term 
exposure response and exploring associated health risks. The transcriptomics and microRNA expressions 
were analyzed in blood samples of volunteers walking for 2 hr along traffic/dense streets in London, the 
Oxford Street cohort, and, in Barcelona, the TAPAS cohort. Personal exposure levels measurements were 
performed for each participant. Then, we used linear mixed models to correct for technical variables and 
multivariate normal models to find associations between the exposures and gene/microRNA expression 
while correcting for confounders. We examined each of the following exposures individually: NO2, NO, 
NOx, PM10, PM2.5, BC, UFPC, CO and CO2.
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Methods

- Study design of the Oxford Street study

The Oxford Street cohort was a randomized, crossover study, from the EXPOsOMICS project) (population 
characteristics in Table S1 from Supplementary Material). A total number of 59 volunteers spent two 
hours walking along Oxford Street (from 10:30 to 12:30), one of London’s busiest roads where only diesel-
powered buses and taxis are allowed to circulate. On a different day (separated by 3-8 weeks) the same 
volunteers walked again for two hours in Hyde Park, one of the largest parks in London. The individuals 
walked around 6km at each location, resting every 30 minutes for 15 minutes. The pollution levels 
(particulate matter, black carbon and nitrogen dioxide), together with records of physical activity and 
location, were monitored using a portable kit (backpack with air pollution sensors, batteries, smartphones 
with GPS and accelerometer).

For each volunteer in each exposure situation, a blood sample was taken as input for transcriptomics 
analysis. Volunteers were driven after the experiment by an electric-powered car from Oxford Street or 
Hyde Park to the Royal Brompton Hospital to donate the blood samples. In order to preserve gene 
expression for omics analysis, blood samples were mixed with RNAlater after collection and stored at -
80°C. Participants were randomly allocated to Oxford Street or Hyde Park as the first location. Age, sex 
and BMI were registered for each subject.

The 59 volunteers were non-smokers, comprising healthy individuals (20 participants) and subjects with 
heart or lung condition, more specifically Chronic Obstructive Pulmonary Disease (COPD) (20 participants) 
and Ischemic Heart Disease (IHD) (19 participants). We ran an unsupervised Principal Component Analysis 
(PCA) to assess potential differences in gene expression between groups. The PCA analysis does not 
cluster gene expression based on the disease groups (Figure S2 from Supplementary Material), so in order 
to ensure higher statistical power we did not stratify the population into subgroups but we added this 
variable as an additional confounder in the statistical model.

The study was approved by the ethics committee (Brompton Hospital, London) and written informed 
consent forms were provided by all subjects. 

- Study design of TAPAS

The TAPAS cohort was also a crossover study and it comprised four different scenarios. In addition to a 
low and high exposure location (Barceloneta and Ronda in Barcelona, Spain), the study design included 
rest and intermittent exercise (15 minutes cycling and 15 minutes break) within the two locations. The 
physical activity was modulated by cycling at such a pace that the heart rate of the participants fell within 
the range of 50-70% of their maximum rate. A total of 30 individuals (15 females and 15 males), completed 
one of the four different scenarios per day. The inclusion criteria for the subjects were healthy non-
smokers, in the age range of 18-60, not taking any medication and not suffering from any chronic disease. 
Age, sex and BMI were also registered for each participant.
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The subjects were exposed from 8:00 to 10:00 at one of the two locations (heavily polluted air due to the 
traffic rush hour and low levels of air pollution because of low dense traffic). Immediately after two hours 
of exposure, participants were transported by a van with cycle-ventilated and windows closed to a nearby 
clinic where blood samples were collected. The blood samples were stored at -80°C within two hours after 
collection.

The study was approved by the Ethic Review Committee of the Institut Municipal d'Investigatió Mèdica 
and all participants gave written informed consent.

- Exposures

Ambient concentrations of a mixture of air pollutants were measured throughout the experiment. In the 
Oxford Street study, these pollutants were: 1) particulate matter with diameters of 10 micrometers or 
smaller (PM10) and 2) 2.5 micrometers or smaller (PM2.5) measured using an air sampler (16 liters per 
minute), 3) ultrafine particles counts (UFPC) measured with a real-time condensation particle counter 
(Model 3007, TSI), 4) nitrogen dioxide (NO2) measured using C18Sep-Pak cartridges coated with potassium 
hydroxide and triethanolamine followed by ion chromatography and 5) black carbon (BC) measured 
according to the National Institute for Occupational Safety and Health guidelines (method 5040, Sunset 
Laboratory) [26].

In the TAPAS cohort more exposures were measured: PM10 and PM2.5 (DustTrack, DRX,Model 8534, TSI, 
Minnesota, USA), UFPC (condensation particle counter, CPC, Model 3007, TSI, Minnesota, USA), BC 
(portable aetholometer, Model AE-51, McAgee Scientific, California, USA) and additionally nitrogen oxide 
(NO), generic measurement for the nitrogen oxides (NOx=NO+NO2) (nitric oxide monitor, Model 410 Nitric 
Oxide Monitor, 2B Technologies, Colorado, USA, in combination with a nitrogen dioxide converter, Model 
401 NO2 Converter, 2B Technologies, Colorado, USA), carbon monoxide (CO) and carbon dioxide (CO2) 
[27].

The different personal exposure levels were compared for both locations (low versus high exposure level) 
and for each cohort using a paired t-test (R package “stats”, “t.test( )” function). Correlation among 
exposures was also performed (R package “stats”, “cor ()” function).

- RNA isolation and microarray analysis

The RiboPureTM-Blood kit (Ambion) was used to isolate total RNA from the blood samples (400 µl of 
whole blood and 1600 µl of RNA later) following the manufacturer’s instructions. The isolated RNA was 
hybridized on Agilent 8x60K Whole Human Genome microarrays for mRNA using 200ng of material and 
on Sureprint G3 Human V19 miRNA 8 x 60K microarrays for microRNA using 100ng of material. The Agilent 
Feature Extraction Software was used to extract raw data on pixel intensities. 

- Pre-processing of the gene and microRNA expression

The normalization of the whole-genome gene expression dataset was performed using an R pipeline 
based on Bioconductor (github.com/BiGCAT-UM/arrayQC_Module), where all Agilent probes were 
normalized using the quantile method. Afterwards, genes with less than 30% flagged bad spots were 
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selected and imputation by k-nearest neighbors (k-NN; k-value 15) was performed. The microRNA pre-
processing was performed using the AgiMicroRna pipeline with all Agilent probes as input [28].

Microarray analysis may be confounded by “batch effects” or systematic error introduced when samples 
are handled on different dates [29]. In order to allow for correction of such effects, identical biological 
samples were distributed across the different batches. By subtracting (since expression values are log2 
transformed) the median expression of the quality control samples from one batch to the median 
expression of all quality control samples from the dataset, a ratio comprising information of that individual 
batch effect was calculated. This ratio was then added to the expression values of the study samples from 
the same batch.

Due to missing exposure data and bad quality of the RNA isolation (samples with 260/280 ratio below 2 
and RNA Integrity Number below 6 were excluded) or microarray laboratory analysis, the final number of 
mRNA samples was reduced to 94 in the case of Oxford Street and 109 for TAPAS; for microRNA the 
numbers dropped to 90 for Oxford Street and 109 for TAPAS.

- Statistical analysis: LMM and MVN

The associations between exposure to air pollutants and gene or microRNA expression in the Oxford 
Street and TAPAS cohorts were analyzed independently. Residual technical noise introduced by 
microarray analysis was removed by applying linear mixed model analysis using the R package “lme4” 
(“lmer” function). The exposure covariate was used as variable of interest and the date of RNA isolation, 
microarray labelling and microarray hybridization as random variables. The parameters from the linear 
mixed model analysis such as residuals, intercept and estimated betas were used to calculate gene 
expression values without the random variables effect. A PCA of the de-noised gene expression data was 
performed in both cohorts, coloring the two locations differently (high exposure location in black and low 
exposure location in white).    

After de-noising the expression values, we ran a multivariate normal model (MVN) using the R package 
“nlme” (“gls” function) in order to find associations between personal exposure levels and 
gene/microRNA expressions. Multivariate normal models consider all OMIC profiles at once as 
multivariate outcome Y. The variance-covariance matrix is modelled flexibly, so the covariance depends 
both on the location and physical activity status and it allows different coefficients for each experimental 
condition. Thefore, the gene/microRNA expression (Y) from each individual, in each scenario (Oxford 
Street/Hyde Park or Ronda/Barceloneta and rest/activity) followed a multivariate normal distribution with 
a mean vector (μ) and a covariance matrix (Σ) Y ~ MVN(μ, Σ). The fully unstructured variance-covariance 
matrix was modelled using the IDs from the different subjects as a grouping factor. The variable of interest 
was the measured air pollution data collected during the experiment (2 hours). 

Levels of exposure to different pollutants were modelled in an independent MVN analysis. All models are 
adjusted for the confounders sex, age and BMI. In the case of Oxford Street, the health condition of the 
subjects (healthy, COPD or IHD) was used as an additional confounder. For TAPAS, since the experiment 
dates were not as distant in time as it was for Oxford Street, the order in which the four different scenarios 
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took place was used as an additional confounder. Afterwards, p-values were adjusted using the Bonferroni 
threshold at 5%.

Additionally, truncation at different levels (5%, 10% and 20%) of the gene expression distribution was 
performed as a stability analysis in order to assess the robustness of the results.

- Pathway analysis of the significant transcripts

The output from the MVN from the different cohorts for the different exposures was used as input for 
pathway analysis using the over-representation analysis tool from ConsensusPathDB [30] with the default 
settings (minimum overlap with input list: 2, p-value cutoff 0.01). A background list including the total list 
of genes from the pre-processed dataset was used.

- Integration microRNA/transcripts 

The microRNAs significantly associated with the different exposures from the MVN model were used to 
identify target genes. The links between microRNAs and their corresponding targets were investigated 
using the miRTarBase database, which only includes relationships from curated literature and after 
experimental validation [31]. From the list of targeted genes, only those included in the list of significant 
hits from the MVN models (Bonferroni threshold at 5%) were selected for further analysis. Genes and 
microRNAs significantly expressed in association with the exposures (NO2, NO, NOx, PM10, PM2.5, BC, UFPC, 
CO and CO2) and the interactions between them were displayed using the Cytoscape tool [32]. Information 
on the direction of the expression in association with exposure (regression coefficient from the statistical 
analysis) and direction of the correlation between transcripts and microRNAs (R package “stats”, “cor( )” 
function) was added to the figure.  

- Combined analysis of the Oxford Street and TAPAS studies

Further data integration was performed by combining the transcriptomics samples from the two 
population studies. The exposure data was transformed to z-scores in order to normalize the potential 
differences in measurement techniques and/or equipment, allowing establishing gene expression effects 
of integrated air quality parameters. Z-scores were calculated as: Z-Score(exposure) = (X − µ)/ σ (X 
representing the value of the exposure, µ the mean of the population and σ the standard deviation of the 
population). The models were adjusted for the confounders cohort, sex, age, BMI, health condition of the 
subjects (“healthy”, “COPD” or “IHD” for the subjects from the Oxford Street cohort and “healthy” for the 
subjects from the TAPAS cohort) and physical activity (“PA” for those samples corresponding to subjects 
cycling from the TAPAS cohort and “rest” from the remaining samples from the TAPAS cohort and the 
Oxford Street samples). Afterwards, p-values were adjusted using the Bonferroni threshold at 5%.

Results

- Exposures and PCA analysis of gene expression for the different locations

Table 1 shows the levels of exposure to ambient air pollutants for each location in each cohort. All the 
exposures levels are significantly different between the two locations within a cohort (paired t-test, p-
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value from 4.08E-03 to 2.20E-16). The exposure levels from the TAPAS cohort (Table 1B) are higher than 
the Oxford Street exposure levels (Table 1A) and they present larger differences between low and high 
exposure locations. However, although the differences of exposure levels among locations are significant, 
the unsupervised PCA shows no clustering of the gene expression according to the different locations 
(Figure S1 from Supplementary Material). The correlations among exposures levels is high for chemically 
related compounds such PM10 and PM2, and low correlation for others such PM10  and CO. (Table S2 from 
Supplementary Material).

Table 1. Exposure overview of the Oxford Street (A) and TAPAS (B) cohorts, comparing low and high 
exposure location.

A)

Hyde Park Oxford Street Paired t-test
Compounds

Mean ± SD Mean ± SD P-value

NO2 (ppb) 4.80 ± 3.60  8.58 ± 3.76 1.74E-07

PM10 (μg/m3) 21.76 ± 14.42 33.41 ± 14.85 6.15E-04

PM2.5 (μg/m3) 10.15 ± 11.12 21.31 ± 13.17 1.68E-05

BC (μg/m3) 1.71 ± 1.25 10.86 ± 3.15 2.20E-16

UFPC (particles/cm3) 6787.49 ±  3326.23 25210.68 ± 7833.51 2.20E-16

B)

Barceloneta Ronda Paired t-test
Compounds

Mean ± SD Mean ± SD P-value
NO (ppb) 77.83 ± 56.88  602.57 ± 197.68 2.20E-16
NOx (ppb) 101.75 ± 63.72 702.61 ± 207.43 2.20E-16

PM10 (μg/m3) 63.77 ± 42.70  121.11 ± 37.91 7.11E-10

PM2.5 (μg/m3) 39.31 ±  13.98  81.86 ± 16.06 2.20E-16

BC (μg/m3) 6.54 ± 4.73 23.67 ± 5.27 2.20E-16
UFPC (particles/cm3) 46481.24 ± 21027.97 166667.30 ± 28759.33 2.20E-16

CO (ppm)  1.16 ± 1.84 3.11 ± 4.56 4.08E-03
CO2 (ppm) 420.61 ± 42.09  498.72 ± 35.10 2.58E-15

- MVN hits from Oxford Street and TAPAS

Table 2 shows the number of Bonferroni significant hits associated with each exposure species using the 
MVN statistical model for the gene and microRNA expression data (Bonferroni threshold at 5%). The lists 
of transcripts and microRNAs significantly associated with PM10 and PM2.5 present the largest numbers in 
Oxford Street, while in the TAPAS cohort this is the case for PM10, PM2.5, CO, and CO2. The overlap for PM10 
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and PM2.5 in Oxford Street is quite substantial corresponding to around half of the hits (Figure S3 and S4 
from Supplementary Material). The overlap across cohorts for significant transcripts associated with the 
exposures to NO-NOx/NO2, PM10 and PM2.5 represents five genes significantly associated with particulate 
matter in common between subjects from the Oxford Street and TAPAS cohorts (Figure 1). These genes 
are XLOC_014512, MIS12, XLOC_014512, RAD51-AS1 and GOLGA8R.

Table 2. Number of hits significantly associated with the exposures of the Oxford Street (A) and TAPAS (B) 
cohorts.

A) Oxford street London UK. 

Exposure Hits mRNA Hits microRNA

NO2 11 1

PM10 229 9

PM25 227 9
BC 0 1

UFPC 0 0

B) TAPAS Barcelona Spain

Exposure Hits mRNA Hits microRNA
NO 32 3
NOx 13 1

PM10 140 30

PM2.5 59 10
BC 40 5

UFPC 34 3
CO 157 1
CO2 65 20



9

Figure 1. Comparison between Oxford Street and TAPAS using the genes significantly associated with the 
different exposures in both cohorts.

The stability analysis performed by truncation of the gene expression distribution revealed moderate 
robust signals in the associations between gene expression and personal exposure levels after applying 
the capping parameters (5, 10, 20%) in the case of TAPAS (Table S3 B from Supplementary Material). 
However, this was not the case for Oxford Street, where most of the signals identified significantly 
associated with air pollution exposure are arising only from the extreme expression levels (Table S3 A 
from Supplementary Material). Subjects from the Oxford Street cohort that had extreme high/low 
expression levels are driving the observed results, probably because these hits are found significantly 
associated with low exposure levels in relatively small sample size after short-term exposure. The 
observed associations are subtle even if they remain significant after Bonferroni correction. In the TAPAS 
cohort the signals are more stable, which can be indicative of stronger associations due to uncontrolled 
burden such less noise in the expression or exposure measured values, potential confounding effects such 
dietary habits, physical activity, etc.

- Pathway analysis

Over-representation analyses of transcripts significantly associated with air pollution exposure by using 
ConsensusPathDB return lists of relevant deregulated signaling pathways (Table S4 from Supplementary 
Material). Cancer-related pathways such as regulation of TP53 and TGF-beta receptor signaling pathways 
are identified in the Oxford Street analysis. In the TAPAS study, other cancer-related pathways are found, 
such as p75 in association with NO exposure, WNT-beta-catenin in association with PM10 exposure and 
nonsense mediated decay pathways in association with CO exposure. Deregulated pathways derived from 
transcripts associated with NO and NOx exposures in TAPAS demonstrate a high level of significance (range 
from 0.009 to 0.027) while for the other exposures the levels of significance are moderate (range from 
0.093 to 0.220).
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- Transcript/MicroRNA integration

The search of the miRTarBase database identified gene expressions that are targeted by significant 
microRNAs. In the Oxford Street study mRNA/microRNA integration analysis, the expression of 6 genes 
significantly associated with PM10 appeared to be targeted by 4 microRNAs also significantly expressed in 
association with PM10 exposure levels. In the TAPAS analysis this was the case for 18 significant transcripts 
and 8 significant microRNAs. Figure 2 presents the network of genes and microRNAs significantly 
associated with PM10 for both Oxford Street (A) and TAPAS (B). 

Figure 2. Cytoscape figure of hits significantly associated with PM10 from Oxford Street (A) and TAPAS 
(B).

A)
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B)

Similarly, the integrative analysis of omics responses in relation to PM2.5 exposure levels resulted in 5 gene 
expressions significantly associated with PM2.5 exposure and targeted by 2 significant microRNAs in the 
Oxford Street analysis, and 3 significant transcripts targeted by 3 significantly expressed microRNAs in the 
TAPAS cohort (Figure S5 from Supplementary Material). 

Finally, in the TAPAS cohort five genes significantly expressed in association with CO2 are found that are 
targeted by three microRNAs also significantly expressed in association with CO2 (Figure S6 from 
Supplementary Material). Integrative mRNA/microRNA analysis of the remaining exposures (NO2, NO, 
NOx, BC, UFPC and CO) did not yield further associations between significantly expressed microRNAs and 
their target genes.

A summary of the functions of these targeted genes in association with the different exposures is 
presented in Tables S5, S6 and S7 in the Supplementary Material. Predominantly, cancer-related and 
neurological disease-related processes have been identified.

- Combined analysis of the Oxford Street and TAPAS studies

The venn diagrams from Figure S7 in the Supplementary Material shows a high number of hits associated 
from the exposures from the combined analysis. However, the overlap of the genes significantly 
associated with the individual exposures from the combined analysis and the individual analyses from the 
Oxford Street and TAPAS cohorts is very limited. Overlap at the pathway level and not at the gene level is 
also very limited.

Discussion

In this study we assessed the transcriptome and microRNA responses from subjects exposed to different 
levels of air pollutants in order to identify potential biological mechanisms associated with such 
exposures. We identified transcripts and microRNAs for which the expressions were significantly 
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associated with exposure to NO2, NO, NOx, PM10, PM2.5, BC, UFPC, CO and CO2. Most of these biomarkers 
were found to be compound-specific.

We identified gene and microRNA expressions significantly associated with the different exposures for 
the two cohorts using the multivariate normal models (Table 2). We found little overlap between the two 
cohorts which might be a consequence of the substantial differences in exposure levels found in both 
populations. The overlapping genes are XLOC_014512 (non-annotated), MIS12 (involved in signaling by 
GPCR and cell cycle), XLOC_014512 (non-annotated), RAD51-AS1 (promotes proliferation, migration and 
invasion in ovarian cancer, and plays an important role in tumor progression) and GOLGA8R (non-
annotated). Remarkably, the subjects from the low exposed scenario in the TAPAS cohort show higher 
exposure values than the subjects from the high exposed scenario in the Oxford Street cohort, which 
makes the interpretation of the comparison among the two cohorts more complex. Furthermore, 
exposure to dietary factors and life-style may be different between the two countries (dietary exposure, 
life style, etc.). The PM10, PM2.5, CO and CO2 exposures appear to be the most significant ones in terms of 
number of hits (transcripts and microRNA) responding to exposure levels. The genes identified are 
involved in cancer-related pathways such as TP53, TGF-beta receptor signaling pathways, p75, WNT-beta-
catenin and nonsense mediated decay pathways (Table S4 from Supplementary Material).

The combined analysis of the Oxford Street and TAPAS studies was performed in view of the similar study 
designs of both cohorts, the possibility of using Z-scores for the air quality parameters (correcting for inter-
study differences in measurements) and the same outcome parameter. The high number of hits observed 
in the merged analysis can be the result of the increase in statistical power while the lack of consistency 
in the biological processes can be attributed to potential cohort-specific responses that disappear when 
you perform a cross-cohort analysis and correct for ‘cohort’. However, these results should be interpreted 
with caution in view of the potential noise that could be generated by merging the two cohorts.

MicroRNAs are known to play an important role in the regulation of oncogenes and tumor suppressors 
[33]. From the total list of genes and microRNAs significantly associated with air pollutants, we therefore 
focused on those significant microRNAs that target significant genes.

The literature shows that hsa-mir-20a-5p is down-regulated in chronic myeloid leukemia [34] and breast 
cancer [35]. On the other hand, it is found up-regulated in lung cancer [36,37], hepatocellular carcinoma 
[38], B-cell lymphoma [39], medulloblastoma [40], pulmonary hypertension [41] and Alzheimer’s [42]. In 
our study we found this miRNA down-regulated in association with PM10 exposure in the Oxford Street 
cohort whereas the rest of exposures did not show an effect. The significant genes targeted by hsa-mir-
20a-5p are HMG20A, MANEAL and KIAA1191, having the two first ones a positive correlation with the 
microRNA. All the targeted genes were found up-regulated in association with PM10 exposure. HMG20A 
plays a role in neural differentiation but HMG20A-knockdown cells have shown a high proportion of 
malignant cancer progression-related genes being deregulated [43].

Hsa-miR-197-3p is found up-regulated in follicular thyroid carcinoma [44] and lung cancer [45]. It is found 
down-regulated in narcolepsy patients compared to controls [46]. We also found it down-regulated in 
association with PM10 and PM2.5 exposures only in the Oxford Street cohort. The targeted gene is ADIPOR1, 
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which is up-regulated in association with PM10 exposure may be indicative of a favorable prognosis in non-
small cell lung carcinoma [47]. RPL13A, STRN and AK3 are targets found positively associated with PM2.5 
exposure and negatively correlated to hsa-mir-197-3p. AK3 is reported as apoptosis inducer in colon 
cancer cells [48].

Hsa-miR-29a-3p is found down-regulated in Alzheimer’s disease [49] and lung cancer [50, 51]. However, 
it is found up-regulated in association with PM10, PM2.5 and CO2 exposures only in the TAPAS cohort. The 
gene SYNCRIP is targeted by hsa-miR-29a-3p and it is down-regulated and positively correlated with the 
microRNA. It is reported in literature a down-regulation of SYNCRIP in macrophages in response to 
apoptotic cells [52].

Hsa-miR-15a-5p is down-regulated in chronic lymphocytic leukemia [53-55], pituitary adenoma [56], 
prostate cancer [57], non-small cell lung cancer [58], ovarian cancer [59] and chronic lymphocytic 
leukemia [60] and up-regulated in acute promyelocytic leukemia [61]. In the TAPAS cohort it is found up-
regulated only in association with PM10 exposure. MYBL1 and CENPJ are the targeted genes and are up-
regulated and positively correlated with hsa-miR-15a-5p. Combined MYB and MYBL1 expression 
correlates with poor outcome in adenoid cystic carcinoma patients [62]. Also, expression levels of MYBL1 
and MYBL2 are increased in late breast cancer development and are predictors of poor clinical outcome 
[63]. CENPJ is involved in brain growth [64] and CENPJ deficiency has consequences in the formation and 
function of the cerebral cortex in mice [65].

Hsa-miR-16-5p is found down-regulated in gastric cancer [66], chronic lymphocytic leukemia [67], non-
small cell lung cancer [58], prostate cancer [68] and ovarian cancer [59]. On the other hand, it is found up-
regulated in hepatocellular carcinoma [69]. In our study, it is found up-regulated in association with PM10 
and PM2.5 exposures in the TAPAS cohort. CENPJ, NOL11, CDC20, MYO19, MIS12 and VKORC1 are gene 
targets of hsa-miR-16-5p. CENPJ and NOL11 are up-regulated in association with PM10 exposure in TAPAS 
and positively correlated to the microRNA. MYO19, MIS12 and VKORC1 are also up-regulated but 
negatively correlated to the microRNA. The last target gene, CDC20, is down-regulated in association with 
the exposure and negatively correlated with the microRNA. Knockdown of NOL11 is linked to increased 
apoptosis and anomalous development of the craniofacial cartilages [70]. CDC20 is an oncogene that 
promotes the development and progression of human cancers [71].

Hsa-miR-92a-3p is found up-regulated in hepatocellular carcinoma [38] and medulloblastoma [40]. 
However, it is found down-regulated in association with PM10, PM2.5 and CO2 exposures in the TAPAS 
cohort. Hsa-miR-92a-3p targets the genes CDC20, CCAR1, CDK11A, POGZ, THBS1, HIST1H1E, MYO19, 
DDRGK1, CRBN and HSPH1. The last one, MYO19, is found up-regulated in association with PM10 exposure 
in TAPAS and positively correlated to the microRNA. CCAR1, CDK11A and POGZ are found up-regulated in 
association with PM10 exposure in TAPAS but negatively correlated to the microRNA. HIST1H1E is down-
regulated in association with the exposure and positively correlated with the microRNA. CDC20 and THBS1 
are down-regulated in association with the exposure and negatively correlated with the microRNA. CCAR1 
levels correlate with gastric cancer incidence [72], hepatocellular carcinoma poor prognosis [73] and 
growth of colon cancer cell lines [74]. CDK11A is upregulated in human ovarian cancer [75] and breast 
cancer tissues and cell lines [76]. POGZ disruption is linked to intellectual disability [77]. Mutations in 
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HIST1H1E are associated with adenoid cystic carcinoma [78]. Finally, THBS1 has been reported to promote 
invasion of oral squamous cell carcinoma [79], melanoma [80] and ovarian cancer [81]. Alternatively, high 
levels of THBS1 are related to better prognosis in non-small cell lung carcinoma [82]. DDRGK1 is up-
regulated in association with PM2.5 exposure in TAPAS and positively correlated to the microRNA. 
Depletion of DDRGK1 is found in literature to induce apoptosis [83, 84]. CRBN is also up-regulated in 
association with PM2.5 exposure in TAPAS but negatively correlated to the microRNA. High levels of CRBN 
are reported as low risk for multiple myeloma [85]. HSPH1 is down-regulated in association with PM2.5 
exposure in TAPAS and positively correlated to the microRNA. HSPH1 promotes B-cell non-Hodgkin 
lymphomas [86]. 

The fact that the expressions of microRNAs and targeted genes mentioned in the paragraphs above are 
found significantly associated with short-term exposure to moderate and low air pollution levels in two 
cohorts with relatively small size populations suggests their potential relevance in the research of omics 
biomarkers responding to exposures. The diversity in the direction of gene and microRNA expression 
towards disease indicates complex biological interactions between air pollution exposure and omics 
signals.  Some events reflect toxic risks while others may be indicative for adaptation and/or damage 
repair. The interpretation of changes in gene and microRNA expression in terms of disease risk remains a 
challenge since the identified intermediate biomarkers may originate from different tissues and because 
the signals may relate to processes that have not previously been linked to the disease or earlier stages 
during disease development. Furthermore, different diseases may show different directionalities for the 
same biomarkers. For instance, hsa-miR-29a-3p is reported down-regulated in Alzheimer’s disease [49] 
whereas it is up-regulated in patients with Huntington’s disease [87]. We found hsa-miR-15a-5p up-
regulated in our analysis, opposite as in a wide range of cancers, while high levels of this microRNA are 
associated with schizophrenia [88] and acute ischemic stroke [89]. The different directions in the 
regulation of genes/microRNAs in association with exposure levels might be a consequence of the wide 
nature of the disorders linked to air pollutants, such as cancer, cardiovascular illnesses and neurological-
related diseases. 

Conclusion

We identified in this study promising compound-specific biomarkers (gene transcripts and microRNAs) 
associated with short term exposure to air pollution, despite the low levels of the short-term exposure 
and the relatively small-sized cohorts. We built networks for each compound integrating gene and 
microRNA interactions together with information on the direction of the association with the exposure 
that provides insights on the biological mechanistic processes. Most of the significant signals point 
towards increased cancer risks in association with particulate matter exposure. In view of the complexity 
of diseases derived from environmental exposures, studies with a more dedicated design are required to 
assign biological significance to particular up-/down-regulation of genes /microRNAs in association with 
air pollutants.
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SUPPLEMENTARY MATERIAL

Table S1. Population characteristics from the Oxford Street and TAPAS cohorts

Oxford Street 
Variable N  Mean Std Dev

BMI 59 24.70 4.54
Age 59  65.43 6.43

Cumulative Cumulative
Sex : N %

Frequency Percent
Male 43 78 43 78

Female 16 12 59 100
TAPAS

Variable N  Mean Std Dev
BMI 30 24.34 3.82
Age 30  36.18 11.64

Cumulative Cumulative
Sex : N %

Frequency Percent
Male 15 50 15 50

Female 15 50 30 100

Figure S1. PCA plot of gene expression from the Oxford Street (A) and TAPAS (B) cohorts

A)



2

B)

Table S2. Exposure correlations from the Oxford Street (A) and TAPAS (B) cohorts

A)

Compounds NO2 PM10 PM25 BC UFPC

NO2 1 0.3623144 0.4552182 -0.05911848 0.04976456
PM10 0.36231444 1 0.9298075 0.48444264 0.41526547
PM25 0.45521824 0.9298075 1 0.41730369 0.39308259

BC -0.05911848 0.4844426 0.4173037 1 0.88437796
UFPC 0.04976456 0.4152655 0.3930826 0.88437796 1

B)

Compounds NO NOx PM10 PM2.5 BC UFPC CO CO2
NO 1 0.9930459 0.5552723 0.7855424 0.9460405 0.9789256 0.5495928 0.8417301
NOx 0.9930459 1 0.5418992 0.7741751 0.9202693 0.9701027 0.6317637 0.8362284

PM10 0.5552723 0.5418992 1 0.8990650 0.7145419 0.5934033 0.2035742 0.7979145
PM2.5 0.7855424 0.7741751 0.8990650 1 0.8789331 0.8244449 0.3178516 0.8970416

BC 0.9460405 0.9202693 0.7145419 0.8789331 1 0.9472066 0.3913952 0.9091338
UFPC 0.9789256 0.9701027 0.5934033 0.8244449 0.9472066 1 0.5045155 0.8618783

CO 0.5495928 0.6317637 0.2035742 0.3178516 0.3913952 0.5045155 1 0.4346168
CO2 0.8417301 0.8362284 0.7979145 0.8970416 0.9091338 0.8618783 0.4346168 1
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Figure S2. PCA plot of gene expression from the Oxford Street color by disease group.
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Figure S3. Overlap of hits significantly associated with NOX, PM10 and PM2.5 from the Oxford Street (A) 
and TAPAS (B) cohorts for transcriptomics.

A)

B)
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Figure S4. Overlap of hits significantly associated with NOX, PM10 and PM2.5 from the Oxford Street (A) 
and TAPAS (B) cohorts for microRNA.

A)

B)
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Table S3. Stability analysis of hits from gene expression from the Oxford Street (A) and TAPAS (B) 
cohorts

A)

All transcripts Capping 95%-5% Capping 90%-10% Capping 80%-20% Full vs 95%-5% Full vs 90%-10% Full vs 80%-20%
Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05

NO2 11 13 11 13 0 0 0
PM10 229 13 16 19 4 6 5
PM2.5 227 22 25 29 5 6 7

BC 0 4 4 6 0 0 0
UFPC 0 0 0 0 0 0 0

Exposure

B) 
All transcripts Capping 95%-5% Capping 90%-10% Capping 80%-20% Full vs 95%-5% Full vs 90%-10% Full vs 80%-20%

Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05 Bonf<0.05
NO 32 49 76 184 23 18 15
NOx 13 16 16 55 8 6 3
PM10 140 175 247 325 97 85 54
PM2.5 59 92 131 206 41 33 18

BC 40 56 75 190 23 19 17
UFPC 34 46 62 139 22 18 14

CO 157 67 70 81 53 41 27
CO2 65 85 115 178 39 31 24

Exposure

Table S4. Pathway analysis of the genes significantly associated with the different exposures from the 
Oxford Street (A) and TAPAS (B) cohorts

A)

Exposure q-value Pathways

PM10 0.09363881 Degradation of DVL

PM10 0.09363881 Asymmetric localization of PCP proteins

PM10 0.09363881 Assembly Of The HIV Virion

PM10 0.09363881 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha

PM10 0.09363881 Regulation of TP53 Activity through Methylation

PM10 0.09363881 PCP/CE pathway

PM10 0.09363881 Ubiquitin-dependent degradation of Cyclin D1

PM10 0.09363881 Regulation of Hypoxia-inducible Factor (HIF) by oxygen

PM10 0.09363881 Cellular response to hypoxia

PM10 0.09363881 CDK-mediated phosphorylation and removal of Cdc6

PM10 0.09363881 Gene Expression
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PM10 0.09363881 Autodegradation of the E3 ubiquitin ligase COP1

PM10 0.09363881 Vpu mediated degradation of CD4

PM10 0.09363881 Downregulation of ERBB4 signaling

PM10 0.09363881 InlA-mediated entry of Listeria monocytogenes into host cells

PM10 0.09363881 IKK complex recruitment mediated by RIP1

PM10 0.09363881 Antigen processing: Ubiquitination & Proteasome degradation

PM10 0.09363881 Attenuation phase

PM10 0.09363881 Regulation of TP53 Activity through Phosphorylation

PM10 0.09363881 Ubiquitin Mediated Degradation of Phosphorylated Cdc25A

PM10 0.09363881 p53-Independent DNA Damage Response

PM10 0.09363881 p53-Independent G1/S DNA damage checkpoint

PM10 0.09363881 Vif-mediated degradation of APOBEC3G

PM10 0.09363881 Reversible hydration of carbon dioxide

PM10 0.09730681 Late Phase of HIV Life Cycle

PM10 0.09730681 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1

PM10 0.09730681 Degradation of AXIN

PM10 0.09730681 HSF1 activation

PM10 0.09730681 Recognition of DNA damage by PCNA-containing replication complex

PM10 0.09730681 TGF-beta receptor signaling activates SMADs

PM10 0.09730681 Synthesis of active ubiquitin: roles of E1 and E2 enzymes

PM10 0.09730681 Fluoropyrimidine Activity

PM10 0.09730681 Ganglio Sphingolipid Metabolism

PM10 0.09730681 Stabilization of p53

PM10 0.09730681 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis

PM10 0.09730681 SCF-beta-TrCP mediated degradation of Emi1

PM10 0.09730681 Association of licensing factors with the pre-replicative complex

PM10 0.09740097 HSF1-dependent transactivation

PM10 0.09740097 MAPK6/MAPK4 signaling

PM10 0.09740097 HIV Life Cycle

PM10 0.09740097 Membrane binding and targetting of GAG proteins

PM10 0.09740097 Synthesis And Processing Of GAG

PM10 0.09740097 Josephin domain DUBs

PM10 0.09740097 Hh mutants that don

PM10 0.09740097 Hh mutants abrogate ligand secretion

PM25 0.219517381 Methionine De Novo and Salvage Pathway

PM25 0.219517381 Spermidine and Spermine Biosynthesis
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PM25 0.219517381 Betaine Metabolism

PM25 0.219517381 Reversible hydration of carbon dioxide

PM25 0.219517381 Trans-sulfuration pathway

PM25 0.219517381 Ganglio Sphingolipid Metabolism

PM25 0.219517381 Generic Transcription Pathway

PM25 0.219517381 sarcosine oncometabolite pathway 

B)

Exposure q-value Pathways
NO 0.022157 Regulation of RAC1 activity
NO 0.022157 GPCR downstream signaling
NO 0.022157 NRAGE signals death through JNK
NO 0.026749 Cell death signalling via NRAGE
NO 0.026749 G alpha (12/13) signalling events
NO 0.027347 p75 NTR receptor-mediated signalling
NO 0.027347 Mesodermal Commitment Pathway
NO 0.027347 Signaling by GPCR

NOx 0.009017 mRNA Splicing - Major Pathway

NOx 0.009017 mRNA Splicing

NOx 0.009731 Processing of Capped Intron-Containing Pre-mRNA

PM10 0.108216 Syndecan interactions

PM10 0.108216 Wnt-beta-catenin Signaling Pathway in Leukemia

PM10 0.108216 ECM-receptor interaction - Homo sapiens (human)

PM10 0.108216 O-glycosylation of TSR domain-containing proteins

PM10 0.108216 HS-GAG degradation

PM10 0.108216 Pancreatic secretion - Homo sapiens (human)

PM10 0.108216 O-linked glycosylation
BC 0.123427 Glycosaminoglycan metabolism
CO 0.14675 Arginine and proline metabolism - Homo sapiens (human)
CO 0.14675 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
CO 0.14675 Nonsense-Mediated Decay (NMD)
CO 0.14675 Translation
CO 0.14675 SRP-dependent cotranslational protein targeting to membrane
CO 0.14675 Synthesis of glycosylphosphatidylinositol (GPI)
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Table S5. Genes significantly associated with PM10 targeted by significant microRNAs from the Oxford 
Street (A) and TAPAS (B) cohorts.

A)

Gene Function
ENO2 Isoenzyme found in mature neurons and cells of neuronal origin. Among its related pathways are HIF-1 signaling pathway and Glucose metabolism.

HMG20A High Mobility Group 20A. Plays a role in neuronal differentiation as chromatin-associated protein.  Induces the activation of neuronal-specific genes.
KIAA1191 Potential NADPH-dependent oxidoreductase. May be involved in the regulation of neuronal survival, differentiation and axonal outgrowth.
MANEAL Mannosidase Endo-Alpha Like, hydrolase activity.
ADIPOR1 Receptor for adiponectin. It activates an AMP-activated kinase signaling pathway which affects levels of fatty acid oxidation and insulin sensitivity

OSBP Intracellular protein that is believed to transport sterols from lysosomes to the nucleus where the sterol down-regulates the genes for the LDL receptor, HMG-CoA reductase, and HMG synthetase.

B)

Gene Function
AXIN2 Important role in the regulation of the stability of beta-catenin in the Wnt signaling pathway. The deregulation of beta-catenin is an important event in the genesis of a number of malignancies
CCAR1 Cell Division Cycle And Apoptosis Regulator 1. May play an important role in the growth and tumorigenesis of prostate cancer cells 
CDC20 Regulatory protein interacting with several other proteins at multiple points in the cell cyclE

CDK11A Serine/threonine protein kinase family. Essential for eukaryotic cell cycle control. May play a role in cell apoptosis
CENPJ During cell division, this protein plays a structural role in the maintenance of centrosome integrity and normal spindle morphology

HIST1H1E Responsible for nucleosome structure of the chromosomal fiber. Among its related pathways are Cellular Senescence and Signaling events mediated by HDAC Class III
LGALS3BP Beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Found elevated in the serum of patients with cancer and in those infected by HIV

MIS12 Kinetochore Complex Component. Related pathways are Signaling by GPCR and Cell Cycle, Mitotic
MYBL1 MYB Proto-Oncogene Like 1. Diseases associated with MYBL1 include Burkitt Lymphoma. Among its related pathways are HTLV-I infection and Mitotic Prophase
MYO19 Myosin XIX, involved in mitochondrial motility
NOL11 Nucleolar Protein 11.  Among its related pathways are rRNA processing and Gene Expression
POGZ Zinc finger protein containing a transposase domain at the C-terminus. Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion
RCE1 Member of the metalloproteinase family. This enzyme is thought to function in the maintenance and processing of CAAX-type prenylated proteins

SUGP2 Arginine/serine-rich family of splicing factors, functions in mRNA processing
SYNCRIP Ribonucleoprotein. Role in mRNA maturation. Associated with several multiprotein complexes including the apoB RNA editing-complex and survival of motor neurons (SMN) complex.

THBS1 Adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions. Shown to play roles in platelet aggregation, angiogenesis, and tumorigenesis
VKORC1 Catalytic subunit of the vitamin K epoxide reductase complex, which is responsible for the reduction of inactive vitamin K 2,3-epoxide to active vitamin K
ZNF322 Zinc-finger transcription factor family and may regulate transcriptional activation in MAPK
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Figure S5. Cytoscape figure of hits significantly associated with PM2.5 from Oxford Street (A) and TAPAS 
(B).

A)
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B)

Table S6. Genes significantly associated with PM2.5 targeted by significant microRNAs from the Oxford 
Street (A) and TAPAS (B) cohorts.

A)

Gene Function
AK3 Involved in maintaining the homeostasis of cellular nucleotides. Among its related pathways are Factors involved in megakaryocyte development and platelet production and Purine metabolism
CUL2 Mediates ubiquitination of target proteins. Diseases associated are Renal Cell Carcinoma and Kidney Cancer. Among its related pathways are Hypoxic and oxygen homeostasis regulation of HIF-1-alpha and Immune System

DHCR24 Flavin adenine dinucleotide. Protects cells from oxidative stress  during apoptosis. Reduced expression found in the temporal cortex of Alzheimer disease patients and overexpression in adrenal gland cancer cells. 
RPL13A Mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Among its related pathways are Metabolism and Viral mRNA Translation.

STRN Calmodulin-binding protein.  Among its related pathways are Neurophysiological process Glutamate regulation of Dopamine D1A receptor signaling and Plasma membrane estrogen receptor signaling.

B)

Gene Function
DDRGK1 Interacts with components of the ubiquitin fold modifier 1 conjugation pathway and helps prevent apoptosis in ER-stressed secretory tissues
SRGAP2 Encodes a member of the SLIT-ROBO Rho GTPase activating protein family. Plays an important role in different aspects of neuronal morphogenesis and migration
ZNF322 Zinc-finger transcription factor family and may regulate transcriptional activation in MAPK

Figure S6. Cytoscape figure of hits significantly associated with CO2 from the TAPAS cohort.
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Table S7. Genes significantly associated with CO2 targeted by significant microRNAs from the TAPAS 
cohort.

Gene Function
CDC20 Regulatory protein interacting with several other proteins at multiple points in the cell cyclE
CRBN Mediates  ubiquitination of target proteins. May play a role in memory and learning by regulating the assembly and neuronal surface expression of potassium channels 

DDRGK1 Interacts with components of the ubiquitin fold modifier 1 conjugation pathway and helps prevent apoptosis in ER-stressed secretory tissues
HSPH1 Heat Shock Protein Family H. Among its related pathways are Vesicle-mediated transport and Cellular response to heat stress
RCE1 Classified as a member of the metalloproteinase family. Among its related pathways are G-protein signaling_Rap1B regulation pathway and Metabolism of proteins


