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Abstract

This thesis is devoted to study the optimal liquidation strategies in a limit

order book for large-tick stocks. Two frameworks are proposed.

In the first framework, we formulate a stylised limit order book that admits

one-tick spread and fixed market depth cap, in which order flows arrive ac-

cording to point processes with stochastic intensities. We consider an agent

who wants to liquidate a position in this limit order book through market

orders and pegged displayed/non-displayed limit orders within a fixed time

horizon, and whose goal is to maximise the expected utility from the termi-

nal wealth. For this optimal liquidation problem, we derive the associated

Hamilton-Jacobi-Bellman quasi-variational inequality and prove a verifica-

tion theorem giving su�cient conditions for the HJBQVI solution to be the

value function. The optimal strategy is a combined stochastic and impulse

control, and is then solved numerically using finite di↵erent scheme.

In the second framework, we formulate a stylised level-I limit order book

whose spread is constantly one tick and whose dynamics are driven by the

queueing races at the best prices. Order book events occur according to in-

dependent Poisson processes, with parameters depending on the most recent

price move direction. Our goal is to maximise the expected terminal wealth

of an agent who needs to liquidate a position within a fixed time horizon. By

assuming that the agent trades through both limit and market orders only

when the price moves, we model her liquidation procedure as a semi-Markov

decision process, and compute the semi-Markov kernel using Laplace method

in the language of queueing theory. The optimal liquidation policy is then

solved by dynamic programming, and illustrated numerically.
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Notations

Sets and set operations

R: set of real numbers; R+ := (0,1); R+

0

:= R+ [ {0}; R� := R \ R+

0

.

Z: set of integer numbers.

N: the set of non-negative integers. N+ := N\{0};

C: set of imaginary numbers.

For m,n 2 N+, Mm⇥n(R) denotes the set of R-valued m ⇥ n matrices;

Mm(R) denotes the set of R-valued square matrices of order m, for m 2 N+.

Let S be a set, S̄ and @S denote the closure and boundary of set S.

Functions and functions spaces

x ^ y := min(x, y); x _ y := max(x, y).

For any set A, the indicator functions 1A(·) is defined by

1A :=

(

1 if x 2 A,

0 if x 62 A.

C1,2([0, T ) ⇥ O) is the space of R-valued functions f on [0, T ) ⇥ O whose

partial derivatives
@f

@t
,
@f

@xi

@2f

@xi@xj

, 1  i, j  n exist and are continuous

on [0, T ). O is an open set on Rn.

Cb(U) is the space of bounded and continuous functions on U .
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Abbreviations

AT: algorithmic trading

LOB: limit order book

NBBO: national best bid o↵er

HJBQVI: Hamilton-Jacobi-Bellman quasi-variational inequality

SDE: stochastic di↵erential equation

a.s.: almost surely

càdlàg: right continuous with left limits

s.t.: such that

resp. respectively
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1
Introduction

1.1 Background

Algorithmic trading (AT) refers to the use of mathematical models, comput-

ers, and telecommunications networks to automate the buying and selling

of financial securities [58]. Over the previous two decades, the emergence

and rise of AT has been vastly facilitated by the greater complexity of the

modern financial markets as well as the significant breakthroughs in quantita-

tive modelling and information technology. In particular, the predominance

of automated order-driven trading systems, the proliferation of the trading

venues, and the accelerating speed of information processing jointly promote

the popularity of AT.

Nowadays, most equity and derivative exchanges all over the world are at

least partially providing the order-driven trading mechanism: Australian Se-

curities Exchange, Euronext, Helsinki, Hong Kong, Shenzhen, Swiss, Tokyo,

Toronto, Vancouver Stock Exchanges are pure order-driven markets and New

York, London Stock Exchanges, Nasdaq are hybrid markets [39]. Di↵erent

from a quote-driven market, where large market makers centralise buy and

sell orders and provide liquidity to other market participants through setting

1



bid and ask quotes, an order-driven market is much more flexible, which al-

lows all market participants to send buy or sell orders specifying the price

and amount they want to trade into a limit order book (LOB). According

to the classical terminology [39, Section 2.2], orders leading to an immediate

execution upon submission based on the LOB’s trade-matching algorithm

are called market orders, while orders that do not result in an immediate

execution and therefore are stored in the LOB are called limit orders. The

highest (resp. lowest) price among all the active buy (resp. sell) limit orders

is called the best bid price (resp. best ask price). The average (resp. dif-

ference) of the best bid and ask price is called the mid price (resp. spread).

Figure 1.1 gives a schematic diagram of a LOB illustrating the above terms.

In addition to the displayed part of a LOB, virtually all exchanges now al-

Figure 1.1: a schematic diagram of a LOB (figure source: [39]).

low market participants to submit partially or entirely non-displayed limit

orders [10], also known as iceberg orders or hidden orders, resulting the LOB

having a non-displayed part.
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Broadly speaking, a LOB can be understood as a collection of active buy

and sell limit orders stored at di↵erent price levels, and these outstanding

limit orders can either get executed by subsequent counterpart market orders

based on a certain priority rule or be cancelled. In particular, a priority rule

regulates how active limit orders get executed. By far the most common

priority rule is ‘price-visibility-time’, that is,

• price: limit orders placed at a more competitive price, namely, a price

that is closer to the mid price, get higher execution priority;

• visibility: for limit orders placed at the same price, the displayed limit

orders take higher execution priority over the non-displayed ones;

• time: limit orders placed at the same price and with the same display

status follow the ‘first come first serve’ rule.

Throughout this thesis, we will work on LOBs that apply the ‘price-visibility-

time’ priority rule.

1.2 Classifications of Algorithmic Trading

According to [44], algorithms serve for di↵erent purposes and are therefore

classified into two categories: agency and proprietary.

1.2.1 Agency algorithms

Agency algorithms are normally used by the buy-side institutional investors

(and the brokers who serve them) in order to implement long-term posi-

tion changes, aiming at minimising the execution costs and market impact.

Generally speaking, an agency algorithm decomposes the acquisition or liq-

uidation process of a large parent order into three layers:

1. how to slice the parent order into child orders and schedule the child

orders over the entire trading horizon;

3



2. what is the price, order type, visibility and timing to execute each child

order within its scheduled trading horizon;

3. which venue(s) should each child order be routed to.

Literature on optimal liquidation/acquisition strategies is classified accord-

ingly based on the above three layers. Almgren and Chriss [6], Almgren [5],

Gatheral, Schied and Slynko [36] and Lorenz and Almgren [59] address the

optimal execution problems by solely considering the first layer, in which

case the direct interactions between the trader and the LOB are abstracted

away. Some studies take the first two layers into account simultaneously and

formulate the optimal strategies for executing a large position in a single

LOB market. For example, Obizhaeva and Wang [67] and Alfonsi, Fruth

and Schied [4] develop the optimal execution strategies entirely using mar-

ket orders, assuming that the liquidity replenishes gradually over time after

it is taken. Bayraktar and Ludkovski [8], Guéant, Lehalle and Fernandez-

Tapia [41] design the optimal liquidation strategy that posts limit orders only,

treating the liquidation process as a sequence of order fills and modelling it

by a point process. Cartea and Jaimungal [19] seek to execute a large order

employing both market and limit orders, and solve the optimal strategies un-

der di↵erent scenarios. Some researchers focus on the second layer and study

how to optimally execute a single child order for the purpose of incorporating

information on the LOB market microstructure into their trading strategies,

such as Stoikov and Waeber [76], Donnelly and Gan [32] and Gonzalez and

Schervish [38] for market-order-oriented, limit-order-oriented and hybrid op-

timal strategy, respectively. Besides, Cebiroğlu and Horst [21] formulate and

analyse the optimal submission strategy of an iceberg order, capturing the

trade-o↵ between the costs and benefits of order display. Finally, Cont and

Kukanov [27] combine the last two layers together and propose a strategy

that optimally distributes a child order across di↵erent order types and trad-

ing venues.
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1.2.2 Proprietary algorithms

In contrast to agency algorithms, proprietary algorithms are mainly adopted

by high frequency traders aiming to make profits from the trading process

itself. As stated in a white paper [73] by U.S. Securities & Exchange Com-

mission, high frequency traders are typically defined as professional traders

acting in a proprietary capacity that engage in strategies that generate a

large number of trades on daily basis. Key characteristics associated with

high frequency trading (HFT) include:

1. use of extraordinarily high-speed and sophisticated computer programs

for generating, routing, and executing orders;

2. use of co-location services and individual data feeds o↵ered by ex-

changes and others to minimise network and other types of latencies;

3. very short time-frames for establishing and liquidating positions;

4. the submission of numerous orders that are cancelled shortly after sub-

mission;

5. ending the trading day in as close to a flat position as possible (that

is, not carrying significant, unhedged positions overnight).

In fact, HFT is regarded as one of the most dominant components of the

market structure in recent years. Taking the U.S. equity market for exam-

ple, HFT activities accounted for only less than 10% of all trades at the

beginning of this century, but had grown significantly and represented ap-

proximately half of the trading volume by late 2012 [37]. Unsurprisingly, the

prevalence of HFT has led to considerable debates about its impact on mar-

ket quality, in particular after the ‘flash crash’ on May 6, 2010 [56]. There are

widely di↵erent views among regulators, in the financial media, and in the

rapidly growing academic literature on whether HFT is beneficial, neutral,

or detrimental. See [55, 62] for HFT surveys.

There is no doubt that HFT studies highly depend on the availability and

quality of the relevant market data, which is one of the toughest challenges
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facing any HFT researcher. In fact, as trading anonymity is preserved in

almost all modern equity markets, exchanges and regulators are the only

sources of data identifying whether orders and trades originate from an HFT

account, while public available data on order book activities normally do not

reveal the identities of market participants. Accordingly, HFT literature is

divided into the following two categories:

1. ones that analyse non-public datasets in which market activities have

been attributed to HFT/non-HFT accounts;

2. ones that use various measures calculable from publicly available mar-

ket data to proxy for HFT.

The U.S. Securities and Exchange Commission [74] provides an exhaustive

survey on the HFT literature of the first category. Particularly, the ‘Nasdaq

HFT dataset’ is the only data source available to academic researchers that

directly classify HFT activities in U.S. equities: firms are categorised as

HFT according to the Nasdaq’s knowledge of their customers together with

the analysis of their trading styles such as inventory position, order duration,

and order-to-trade ratio. See [14, 17, 48] for empirical literature employing

the Nasdaq HFT dataset.

HFT literature of the second category vary depending on the selections of

di↵erent HFT proxies. For instance, Hasbrouck and Saar [44] propose a

measure ‘strategic run’ of low-latency activities based on Nasdaq ITCH data

feed in order to approximate HFT activity. Brogaard, Hendershott and Ri-

ordan [15] use Canadian regulatory data with masked participant IDs that

track market activities and remain constant across days, securities and mar-

kets, and introduce a HFT identification criteria according to trading volume

and intraday inventory position. Cartea, Payne, Penalva and Tapia [20] build

a measure from Nasdaq ITCH data feed that captures the ultra-fast activities

in the market and study its relation with market quality.
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1.3 Large-tick stocks

When trading shares in a LOB, traders need to specify the order prices

according to the platform’s tick size, that is, the smallest allowable price

interval between di↵erent orders. Taking the Nasdaq platform for example,

each stock is traded in a separate LOB with tick size $0.01, which means all

orders must arrive at a price that is integer multiples of $0.01. Because of

the huge di↵erence in share prices between di↵erent stocks (from around $1

to above $1000), the relative tick size, which is defined by the ratio between

the stock price and the tick size, of di↵erent stocks also vary considerably. As

defined in [12, 30], large-tick stocks are stocks with large relative tick size, in

the sense that the spread is almost always equal to the tick size and traders

are averse to the order price variations of a single tick.

In this thesis, we restrict our attention to optimal liquidation problems for

large-tick stocks. This is mainly because the spread of large-tick stocks is

almost always equal to the tick size, so that in most cases traders cannot

undercut each other by submitting limit orders inside the spread and there-

fore have to wait in the queue to get executed. This feature may largely

simplify the LOB modelling. More importantly, market conditions and trad-

ing strategies for large-tick stocks are deemed to be di↵erent from those for

small-tick stocks [68]. Therefore, the trading strategies for these two cate-

gories of stocks should be studied separately. In Appendix A, we implement

some empirical studies on three representative and highly liquid large-tick

stocks: Microsoft (MSFT), Intel (INTC) and Yahoo (YHOO), based on the

LOBSTER datasets as introduced in the following.

1.4 LOBSTER dataset

The LOB datasets used in this thesis are provided by LOBSTER, which

is short for ‘Limit Order Book System - The E�cient Reconstructor’, and

works as an online system that gives researchers access to convenient and

high-quality LOB data.

7



1.4.1 Source and structure

The LOBSTER dataset is derived from the historical Nasdaq TotalView-

ITCH data feed, which is the real-time stream of order book events sent to

the market participants in the Nasdaq platform. For each Nasdaq traded

stock, LOBSTER is working as a translation module that extracts order flow

information from the data feed and reconstructs the LOB dynamics from

09:30 to 16:00 EST on each active trading day. In particular, the LOBSTER

dataset is limit order oriented, as it is entirely composed of limit order events,

i.e. limit order submissions, cancellations and executions, which are recorded

in chronological order. In the LOBSTER dataset, information associated

with each event includes: timestamp, event type, order ID, size, price and

buy/sell indicator, as well as the post-event limit order book state1 up to

the requested number of price levels. See [51] for more introductions to the

LOBSTER dataset.

1.4.2 Advantages and limitations

The LOBSTER dataset has several advantages over other limit order book

datasets. For example, the LOBSTER dataset reproduces the order flows

and LOB state evolutions directly from the Nasdaq servers. It therefore re-

tains greater information accuracy than the datasets that are recorded by

the third-party providers, and possesses higher storage e�ciency compared

with the datasets that capture snapshots of order book states [45, Chapter

3]. Besides, all events in the LOBSTER dataset are recorded at seconds after

midnight with decimal precision of nanoseconds, while most other limit order

book datasets are still up to millisecond-timestamped. This improvement in

timestamp granularity enables us to observe the extremely subtle dynamics in

the order books and analyse the traders’ ultra-fast and even intra-millisecond

behaviours. Moreover, as a particular feature for the LOBSTER dataset, ev-

ery visible limit order is assigned with an intraday-unique order ID upon

1A limit order book state is expressed through the occupied price levels and the asso-
ciated market depth. A post-event (resp. pre-event) order book state represents the order
book state immediately after (resp. before) that event.
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submission, in the sense that any subsequent cancellation or execution asso-

ciated with that limit order is labeled with the same order ID. Apparently,

this feature allows us to track the entire life of each (visible) limit order with-

out resorting to any further matching algorithm, which greatly facilitate the

analysis of trading behaviours and algorithmic strategies.

However, due to the complexity in modern equity markets and the regula-

tory requirements to ensure traders’ anonymity, the LOBSTER dataset is

not able to provide the complete market information, which will inevitably

impose some limitations and di�culties on LOB studies. For example, since

the LOBSTER dataset originates from the standard Nasdaq data feed, it

provides order book activities merely on the Nasdaq platform. Considering

the strongly fragmented market structure in recent years [70] and its close

relationship with the growth of high frequency trading [63], analyses and

studies based solely on the LOBSTER database can not reveal the impact

brought by the strategies that span multiple trading venues. Besides, infor-

mation associated with hidden order execution is censored in order to prevent

information leakage. In particular, since July 14, 2014, the information of

buy/sell indicator is not included in the messages of hidden order execution,

which brings enormous di�culties to the study of hidden order.

1.5 Organisation of this thesis

From the perspective of agency algorithms combining the first and the sec-

ond layer, we propose two frameworks in this thesis to study the optimal

liquidation strategy of a large-tick stock in the LOB.

In Chapter 2, we consider an agent who trades through sell market orders

and displayed/non-displayed sell limit orders pegged at the best ask price,

and aims to maximise her utility from the terminal wealth. We transfer the

agent’s optimal liquidation problem to a Hamilton-Jacobi-Bellman quasi-

variational inequality and the prove the verification theorem that gives suf-

ficient conditions for the HJBQVI solution being the value function. The

optimal strategy is in the form of a stochastic and impulse control, and is

solved numerically using finite di↵erence scheme.
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In Chapter 3, we consider an agent who aims at maximising her terminal

wealth, and trades through sell market and limit orders but only takes actions

when there is a price change. We formulate the agent’s liquidation process

as a semi-Markov decision process, with the semi-Markov kernel calculated

using the Laplace method. The optimal strategy is solved using dynamic

programming, and illustrated numerically.
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“Markets are constantly in a state of uncertainty

and flux and money is made by discounting the

obvious and betting on the unexpected.”

— George Soros

2
Optimal Liquidation Strategy

- Framework I

2.1 Introduction

In this chapter, we consider an agent (or her agency algorithm) who wants to

liquidate a fixed amount of a large-tick stock over a finite trading window in

a LOB that applies the price-visibility-time priority rule. Along the trading

window, the agent needs to slice the parent order into multiple child orders,

and select the timing, order type, order size and visibility status for each

child order. In terms of order type selection, the agent can submit sell market

orders for immediate execution at the best bid price, which is a less favourable

price; she can otherwise place sell limit orders that are continuously pegged

at the best ask price, but is inevitably subject to the execution risk, as her

sell limit orders are executed only when they match counterpart buy market

orders. Furthermore, the agent is able to keep any proportion of her sell

limit orders invisible to the general market participants1 in order to avoid

1In Chapter 2 and Chapter 3, the general market participants refer to all the market
participants in the LOB except the agent.

11



the exposure risk, but at the expense of facing even higher execution risk,

as the displayed limit orders always take higher execution priority over the

non-displayed ones at the same price level. We also introduce a termination

time of the agent’s liquidation activities, which arrives as soon as any of

the following events occur: (i) the trading window expires; (ii) the ask-side

LOB state exits a pre-specified domain; (iii) the agent’s remaining inventory

position reaches zero. At the termination time, the agent is required to

liquidate all the unexecuted inventory position (if any) through a sell market

order. The agent’s objective is to find an optimal liquidation strategy that

maximises her expected utility from the wealth at the termination time.

In order to solve the above problem, we develop a combined stochastic and

impulse control model that addresses the trade-o↵s among order prices, ex-

ecution probabilities and exposure risks throughout the agent’s liquidation

process. Specifically, we first construct a stylised underlying LOB model as

the agent’s trading environment, specifying the dynamics of the ask-side mar-

ket depth and order flows originated from the general market participants.

This framework follows [25, 26], in particular assuming that the spread is

constant, equal to the tick size and that the general market participants

admit a constant market depth cap at each price level. Under these assump-

tions, the evolution of the ask-side LOB state in the absence of the agent’s

participation is modelled by a jump di↵usion process, whereby the jumps oc-

cur according to three mutually independent point processes with stochastic

intensities, representing the arrivals of buy market orders, sell limit orders

and cancellations, respectively, originated from the general market partici-

pants; the jump sizes associated with the point processes are modelled by

independent and identically distributed random variables, representing the

sizes of the corresponding order book events; the di↵usion part is represented

by an arithmetic Brownian motion, indicating the noisy relation between the

evolution of the stylised and the actual LOB state. Next, we model the

agent’s limit order and market order strategy through a combined stochastic

and impulse control. The stochastic control continuously specifies the size

of a displayed and a non-displayed sell limit order pegged at the best ask

price. For modelling convenience, we assume that the agent’s displayed limit

12



orders always hold a fixed relative position in the best ask queue, so that the

execution of the agent’s limit orders can be explicitly captured based on the

price-visibility-time priority rule. We also model the intensities of the general

market participants’ order flows as deterministic functions of the displayed

market depth at the best ask price, reflecting the empirical observations that

traders in the market react to the changing of the LOB state. The impulse

control, on the other hand, consists of a sequence of decision times and order

sizes for sell market order submissions. In this context, we optimise the ex-

pected utility from the wealth at the termination time by optimally choosing

among sell market orders, displayed and non-displayed sell limit orders.

This chapter is organised as follows. In Section 2.2, we specify the underlying

LOB model as well as the agent’s set of admissible liquidation strategies and

trading objective. In Section 2.3, we formulate the agent’s optimal liquidation

problem and translate it into solving the associated Hamilton-Jacobi-Bellman

quasi-variational inequality (HJBQVI) based on the verification theorem. In

Section 2.4, we devote to the model’s parameter estimation and the numerical

scheme solving the HJBQVI.

2.2 Problem Formulation

Throughout this chapter, we fix a probability space (⌦,F ,P) equipped with a

filtration (Ft)t�0

satisfying the usual conditions, and assume that all random

variables and stochastic processes are defined on this stochastic basis.

2.2.1 Underlying LOB model

Consider a LOB that admits a constant tick size � > 0 (that is, all orders

must arrive at a price k�, for some k 2 N+) and R+-valued order sizes. In

order to formulate the agent’s trading environment, we build up a stylised

underlying LOB model specifying the market depth and the order flows orig-

inated from the general market participants. In particular, considering that

we are dealing with a liquidation problem for a large-tick stock, we focus on

modelling the LOB on the ask side.
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Market depth

Similar to [25, 26], we consider the following framework for the underlying

market depth originated from the general market participants at each price

level on the ask side of the LOB:

Assumption 2.1 (Market depth).

(a) the spread of the LOB is equal to the tick size �;

(b) the general market participants admit a constant market depth cap d̄ >

0, that is, the underlying market depth (in number of shares) takes values

in
�

0, d̄
⇤

at the best ask price, and is equal to d̄ at each price level above

the best ask price;

(c) buy market order arrivals and sell limit order cancellations from the

general market participants occur only at the best ask price: once the

underlying market depth declines to zero, both the best bid and ask price

will immediately increase by one tick (see Figure 2.1);

(d) sell limit order submissions from the general market participants occur

only at the best ask price: whenever the underlying market depth at

the best ask price reaches the cap d̄, any subsequent sell limit order will

arrive at the price one tick below, initiating the new best bid and ask

price (see Figure 2.2);

(e) the general market participants never place non-displayed limit orders.

Remark 2.2.

• Due to the fact that order submissions and cancellations are allowed at

any price level and the market depth at each price level has a non-trivial

distribution, the introduction of the market depth cap d̄ is actually

a quite strong assumption. However, this restrictive assumption is

essential to explicitly and conveniently express the instantaneous e↵ects

of all order book events. On top of that, the size of the market depth

cap is believed to be positively correlated with the relative tick size,
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Figure 2.1: examples of buy market order arrival or sell limit order cancellation.

The orange (resp. blue) blocks represent the removed (resp. remaining) underlying liquidity
upon the occurrence of a buy market order arrival or a sell limit order cancellation.
Immediately before that order book event, the best ask price is equal to 5�, while the
underlying market depth is equal to d̄/2 at the best ask price and d̄ at each price level above
the best ask price. The panel on the left (resp. right) describes the situation where an order
of size d̄/4 (resp. 3d̄/4) is removed from the underlying LOB. In the latter situation, the
underlying liquidity at the initial best ask price 5� is depleted, and a new best ask price 6� is
therefore initiated, at which the liquidity consumption or evacuation (of size d̄/4) continues.

reflecting traders’ trade-o↵ between the execution risk and the order

price. Due to the fact that traders consider the tick size for large-tick

stocks as non-negligible [30], the market depth cap for large-tick stocks

is believed to be larger than that for small-tick stocks: only when the

best ask queue becomes long enough, some sell-initiated traders would

rather undercut the best ask price by one tick than join in the best ask

queue with a unfavourable position.

• Assumption 2.1(d) presumes that the best bid queue becomes su�-

ciently short when the underlying market depth at the best ask price

approaches the cap d̄, so that any subsequent sell limit order submission

is able to initiate the new best ask price. In this case, we believe that

the buy-initiated traders in the market perceive strong selling pressure

when observing a long queue waiting at the best ask price, and thus

withdraw their buy limit orders at the best bid price in order to avoid

the risk of adverse selection.
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Figure 2.2: examples of sell limit order placement.

The yellow (resp. blue) blocks represent the newly added (resp. previously existing)
underlying liquidity upon the placement of a sell limit order. Immediately before that order
book event, the best ask price is equal to 5�, while the underlying market depth is d̄/2 at the
best ask price and d̄ at each price level above the best ask price. The panel on the left (resp.
right) describes the situation where an order of size d̄/4 (resp. d̄ ) is placed to the underlying
LOB. In the latter situation, the underlying market depth at the previous bast ask price 5�
reaches the market depth cap d̄, and the remaining part of that order (of size d̄/2) therefore
arrives at the new best ask price 4�.

Based on Assumption 2.1, we model the dynamics of the ask-side LOB

state in the absence of the agent’s participation as a càdlàg adapted pro-

cess (At, Dt)t�0

, valued in N+\{1} ⇥
�

0, d̄
⇤

, where At and Dt represent the

best ask price normalised by the tick size2 and the underlying market depth

at the best ask price, respectively, at time t. We further introduce a càdlàg

adapted process (Pt)t�0

, valued in [2,+1), by

Pt = At + 1�Dt/d̄ for all t � 0, almost surely. (2.1)

The processes P and (A,D) virtually carry the same information describing

the evolution of the ask-side LOB state since we have

At =
⌅

Pt

⇧

and Dt = d(Pt) for all t � 0, almost surely, (2.2)

2Since the best prices are strictly positive and the LOB admits a fixed tick size, the
lowest available best ask price is equal to 2� and the process A takes values in N\{1}.
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where the function d : [2,+1) !
�

0, d̄
⇤

is defined by

d(p) := (bpc+ 1� p) d̄.

Suppose that an order book event changes the aggregate underlying market

depth on the ask side of the LOB by v 2 R\{0} at time s > 0, the process P

then evolves as:

Ps = Ps� + v/d̄. (2.3)

Indeed, for v 2 R\{0}, let { := max{j 2 Z : Ds� + jd̄  v}, we immediately

have

(As, Ds) =
�

As�+ { + 1, ({ + 1)d̄+Ds�� v
�

, (2.4)

according to the structure of the stylised LOB in Assumption 2.1. Combin-

ing (2.4) with (2.1) yields (2.3).

Order flow

The order flows (that is, the order types, arrival times and sizes of the order

book events) originated from the general market participants are modelled

according to the ‘zero-intelligence’ approach [26, 28, 75], based on which

traders submit orders following rules governed by some specified stochastic

processes without strategic or rational considerations. We shall here consider

the following setting for the order flows.

Assumption 2.3 (Order flows).

(a) Buy market order arrivals, sell limit order submissions and cancellations

originated from the general market participants occur according to three

point processes, denoted by (Nm

t )t�0

,
�

N l

t

�

t�0

and (N c

t )t�0

, that admit

non-negative predictable intensities �mt , �
l

t and �
c

t , respectively
3. For$ 2

{m, l, c}, we further assume that the intensity �$t is in the form of

�$t = �$ (Dt�) , (2.5)

3For definition of point process with stochastic intensity, see [13, Chapter II. Defini-
tion D7].
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where �$ : R+ ! R+ is a continuous bounded deterministic function.

(b) For n 2 N+, let Mn, Ln and Cn denote the sizes of the n-th buy mar-

ket order, sell limit order and sell limit order cancellation, respectively,

originated from the general market participants. We further assume

that {⇧n, n 2 N+} is a sequence of independent and identically dis-

tributed F
0

-measurable random variables, with cumulative distribution

function F$, for ($,⇧) 2 {(m,M), (l, L), (c, C)}.

(c) (Nm

t )t,
�

N l

t

�

t
, (N c

t )t, {Mn}, {Ln}, {Cn} are mutually independent.

Remark 2.4.

• Assumption 2.3(a) is made based on the solid empirical evidence that

order flows depend on the LOB shape, which can be interpreted as

traders digesting and reacting to the changing market conditions [39,

Section 3.2]. Particularly, we introduce (2.5) according to [49, 79], in

which the intensities of the point processes governing the order flows

are modelled as deterministic functions of the (visible) best queue size.

• The time-rescaling theorem [16] indicates that any point process with

an integrable conditional intensity function can be simulated from a

Poisson process with unit rate by rescaling time with respect to the con-

ditional intensity function. In our model, the jump times {u$
1

, u$
2

, . . . }
of the processes N$, for $ 2 {m, l, c}, can be generated by the follow-

ing steps:

(a) Draw {⌧$i , i 2 N+}, for $ 2 {m, l, c}, three sequences of mutually

independent exponential random variables with mean one;

(b) For $ 2 {m, l, c},

(i) set u$
0

= 0 and k$ = 1;

(ii) set u$k$ = inf
n

t :
R t

u$
k$�1

�$z dz � ⌧$k$

o

;

(iii) k$ = k$ + 1 and go to step (ii).
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Here, u$1
i1

and u$2
i2

are independent for any i
1

, i
2

2 N+ and $
1

,$
2

2
{m, l, c} with $

1

6= $
2

, since for t
1

> 0 and t
2

> 0 we have

Pr
�

u$1
i1

 t
1

, u$2
i2

 t
2

�

= Pr

 

Z t1

0

�$1
z dz �

i1
X

j=1

⌧$1
j ,

Z t2

0

�$2
z dz �

i2
X

j=1

⌧$2
j

!

= Pr

 

Z t1

0

�$1
z dz �

i1
X

j=1

⌧$1
j

!

Pr

 

Z t2

0

�$2
z dz �

i2
X

j=1

⌧$2
j

!

= Pr
�

u$1
i1

 t
1

�

Pr
�

u$1
i2

 t
2

�

.

Based on (2.3) and Assumption 2.3, suppose that the process (Pt)t�0

in (2.1)

follows the dynamics:

dPt = �dWt +
1

d̄

h

MNm
t
dNm

t + CNc
t
dN c

t � LN l
t
dN l

t

i

, t � 0, (2.6)

where � � 0 is a constant and (Wt)t is a Brownian motion such that (Nm

t )t,
�

N l

t

�

t
, (N c

t )t, {Mn}, {Ln}, {Cn} and (Wt)t are mutually independent.

Remark 2.5.

• Similar to [25, Section 1.2], we introduce a di↵usion term �dWt in

order to capture the noisy relation between the changes of the ask-side

LOB shape and the net order flows at the best ask price for short time

intervals. We do so because the order book in reality has extremely

complex dynamics: order submissions and cancellations are allowed at

any price level, the market depth at each price level has a non-trivial

distribution and the market depth cap does not exist.

• The SDE (2.6) does not honour the constraint that P being in [2,1].

However, we assume that the stock price is far above zero at inception

and the trading window is short, so that the process P will not drop

below 2 before maturity. Besides, later in this chapter, we introduce a

stop loss price
¯
p � 2 to the agent’s liquidation problem, in the sense

that the agent stops trading as soon as the process P touches
¯
p.
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2.2.2 Liquidation strategy

We consider an agent who is allowed to trade via both sell market and limit

orders in the underlying LOB model introduced in Section 2.2.1, and thus

faces a trade-o↵ between the order price and the execution risk: submitting

a market order leads to immediate execution but the price is less favourable,

while placing a limit order may result in a better price but the execution

cannot be guaranteed. Similar to [42], we model the agent’s limit order and

market order strategies as continuous-time stochastic and impulse controls,

respectively.

Limit order strategy

Due to the flexibility of the order-driven trading mechanism, there are enor-

mous amounts of feasible limit order trading methods: the agent can place

displayed or non-displayed limit orders of any size at any price and time, and

is also free to fully or partially cancel them at any subsequent time, which

may result in her limit orders with di↵erent sizes, prices, queue positions

and visibility status being simultaneously active in the LOB. In this context,

it becomes quite di�cult to find an optimal strategy. Therefore, we make

the following assumptions in order to keep our modelling manageable and

tractable.

Assumption 2.6 (Limit order strategies).

(a) the agent’s sell limit orders are always pegged at the best ask price;

(b) the agent can shield any proportion of her limit orders from public view.

Remark 2.7.

• The reason we introduce Assumption 2.6(a) is twofold: (i) empirical

studies on large-tick stocks indicate that a single market order is barely

able to consume liquidity beyond the best price [18, 46], which means

that limit orders placed deeper than the best price are even more un-

likely to get executed; (ii) since the LOB is assumed to admit a con-

stant one-tick spread, the agent is unable to undercut the best ask price
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through placing limit orders inside the spread. (2) the LOB is assumed

to admit a constant one-tick spread, so the agent cannot undercut the

best ask price through posting limit orders inside the spread.

• Assumption 2.6(b) indicates that the agent continuously specifies the

size of a displayed and a non-displayed sell limit order pegged at the

best ask price and therefore faces a trade-o↵ between the exposure risk

and the execution risk: the agent’s displayed order always takes higher

priority of execution over the non-displayed one according to the price-

visibility-time priority rule, but su↵ers higher exposure risk since the

general market participants may adjust their order flows based on their

observations on the LOB shape (in particular, size of the visible best

queue), in which case the agent may incur higher adverse informational

impact.

From Assumption 2.6, together with the fact that limit order submissions

and cancellations are at no cost, the agent’s limit order strategy is modelled

by a continuous-time stochastic control, which is in the form of a predictable

process

↵lim

t := (Qt, Ht), t � 0, (2.7)

valued in E
1

:= [0, ē
1

]2. Here Qt (resp. Ht) represents the size of a dis-

played (resp. non-displayed) sell limit order pegged at the best ask price

at time t, and the constant ē
1

> 0 represents the maximum size of an ac-

tive displayed/non-displayed limit order that the agent is allowed to keep in

the LOB. Furthermore, we introduce a fixed relative queue position for the

agent’s displayed sell limit order in the best ask queue.

Assumption 2.8 (Relative queue position). Assume that the agent’s dis-

played sell limit order admits a constant relative queue position ✓ 2 [0, 1] in

the best ask queue, that is, a fraction ✓ (resp. (1�✓)) of the underlying mar-

ket depth at the best ask price has a higher (resp. lower) execution priority

than the agent’s displayed sell limit order.

Remark 2.9.
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• The introduction of the constant relative queue position for the agent’s

displayed limit order is to some extent for modelling convenience, since

it is notoriously intricate to track the complete dynamics of a cer-

tain limit order’s actual queue position. More importantly, the rela-

tive queue position in this model can be intuitively understood as the

agent’s competence to obtain superior queue positions against the gen-

eral market participants4, in particular when the agent’s pegged limit

orders automatically adjust their order prices upon the changes of the

best ask price. Figure 2.3 gives an example in which a sell limit order

submission originated from the general market participants initiates

a new best ask price and the agent manages to maintain the relative

queue position after the order pegging.

• The agent’s displayed limit orders are assumed to be small in the sense

that the restriction imposed by the market depth cap d̄ in Assump-

tion 2.1(b) does not apply to the agent (see the left panel of Figure 2.3

as an example, where the sum of the underlying market depth and the

size of the agent’s displayed limit order exceeds the cap d̄ ).

Market order strategies

On top of the limit order strategy described above, the agent is also allowed

to submit sell market orders for immediate execution at marginally lower

price levels. We model the agent’s market order strategy via an impulse

control, which is in the form of a double sequence

↵mar :=
�

(⌧j, ⇠j) : j 2 N+

 

. (2.8)

Here, {⌧j : j 2 N+} is an increasing sequence of stopping times, representing

the agent’s decision times to submit sell market orders, and ⇠j, for j 2 N+, is

an F⌧j -measurable random variable taking values in E
2

:= [0, ē
2

], representing

4As stated by Moallemi and Yuan [65], a good queue position is quite valuable as it
usually means less waiting time as well as lower adverse selection risk. Market participants
are therefore making every e↵ort to obtain good queue positions in the LOB.
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Figure 2.3: example of sell limit order placement in the LOB with the agent’s participation.

The blue (resp. cyan) blocks represent the previously existing (resp. newly added) underlying
liquidity, and the red (resp. yellow) blocks represent the agent’s displayed (resp.
non-displayed) sell limit orders. The execution priority of these blocks decreases from top to
bottom at each price level. Suppose that the agent adopts a static limit order strategy
(Qt, Ht) =

�

d̄/2, d̄/4
�

, and her displayed sell limit order admits a relative queue
position ✓ = 1/3. The panel on the left (resp. right) illustrates the ask-side LOB state
immediately before (resp. after) a sell limit order submission of size 3d̄/4 from the general
market participants. After this, both the agent’s displayed and non-displayed sell limit orders
join in the new best ask queue immediately, with the relative queue position ✓ and the lowest
execution priority being maintained, respectively.

the size of a sell market order that the agent decides to submit at ⌧j. The

constant ē
2

> 0 represents the maximum size of a sell market order that

the agent is allowed to submit. The agent’s overall liquidation strategy is

modelled by a combined control, denoted by

↵ :=
�

↵lim,↵mar

�

, (2.9)

with ↵lim in (2.7) and ↵mar in (2.8), and we let eA denote the set of all

combined controls.

2.2.3 State process

Suppose that the agent wants to liquidate a fixed amount of a large-tick

stock in the underlying LOB model introduced in Section 2.2.1 and applies

the liquidation strategy illustrated in Section 2.2.2. We introduce the state
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process, denoted by

Z(↵)
t :=

⇣

P (↵)
t , Y (↵)

t , X(↵)
t

⌘

, t � 0, (2.10)

to describe the dynamic system of the agent’s liquidation problem, where ↵ 2
eA is the combined control defined in (2.9) and P (↵), Y (↵), X(↵) are adapted

càdlàg processes tracing the evolution of the ask-side LOB state with the

agent’s participation5, the agent’s inventory position and cash amount, re-

spectively. We now illustrate the evolution of the state process in the follow-

ing assumption.

Assumption 2.10 (State Process). For a given ↵ 2 eA, the dynamics of the

state process Z(↵) is given by

dP (↵)
t = �dWt +

1

d̄

h

⌘
⇣

Qt, Ht, d
�

P (↵)
�

t� ,MNm
t

⌘

dNm

t + CNc
t
dN c

t � LN l
t
dN l

t

i

,

(2.11)

for t � 0;

dY (↵)
t = �

⇣

Qt, Ht, d
�

P (↵)
�

t� ,MNm
t

⌘

dNm

t , (2.12)

dX(↵)
t = r

⇣

⌅

P (↵)
⇧

t�

⌘


⇣

Qt, Ht, d
�

P (↵)
�

t� ,MNm
t

⌘

dNm

t , (2.13)

for ⌧j < t < ⌧j+1

, j 2 N+;

Y (↵)
⌧j

= Y̌ (↵)
⌧j� � ⇠j, (2.14)

X(↵)
⌧j

= X̌(↵)
⌧j� + g

⇣

P̌ (↵)
⌧j�

⌘

⇠j, (2.15)

for j 2 N+; where

• (N$
t )t�0

and {⇧n}n2N+ , for $ 2 {m, l, c} and ⇧ 2 {M,L,C}, are

defined as in Assumption 2.3, except that the intensity �$t of (N$
t )t�0

has the form

�$t = �$
⇣

D(↵)
t� +Qt

⌘

; (2.16)

5Similar to (2.1), the process P (↵) has an equivalent expression
�

A(↵), D(↵)
�

:=
�⌅

P (↵)
⇧

, d
�

P (↵)
��

, and inherits the property (2.3).
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• the functions ⌘ and  are defined on E
1

⇥
�

0, d̄
⇤

⇥ R+ by:

⌘(q, h, d,m) :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

m, if 0 < m  ✓d,

✓d, if ✓d < m  ✓d+ q,

m� q, if ✓d+ v < m  d+ q,

d, if d+ q < m  d+ q + h,

m� q � h, if m > d+ q + h;

(2.17)

(q, h, d,m) :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0, if 0 < m  ✓d,

m� ✓d, if ✓d < m  ✓d+ q,

q, if ✓d+ q < m  d+ q,

m� d, if d+ q < m  d+ q + h,

q + h, if m > d+ q + h;

(2.18)

• the function r is defined on N+\{1} by:

r(a) = �a+ ⇢, for some ⇢ � 0; (2.19)

• the function g is defined on [2,+1) by:

g(p) := �(bpc � 1)� ✏, for some ✏ 2 [0, �); (2.20)

• for j 2 N+, let Ž(↵)
⌧j� := Z(↵)

⌧j� + dNZ
(↵)
⌧j , where

dNZ
(↵)
t :=

0

B

B

@

dP (↵)
t ,

�
⇣

Qt, Ht, d
�

P (↵)
�

t� ,MNm
t

⌘

dNm

t ,

r
⇣

⌅

P (↵)
⇧

t�

⌘


⇣

Qt, Ht, d
�

P (↵)
�

t� ,MNm
t

⌘

dNm

t

1

C

C

A

0

,

(2.21)

for t � 0.

Remark 2.11.

• The function ⌘ in (2.17) (resp.  in (2.18)) is formulated based on

Assumption 2.8 together with the price-visibility-time priority rule:

for (q, h, d,m) 2 E
1

⇥
�

0, d̄
⇤

⇥R+, the value ⌘(q, h, d,m) (resp. (q, h, d,m))
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represents the decrement of the ask-side underlying market depth (resp.

the agent’s inventory position) upon the arrival of a buy market order

of size m, given the agent’s limit order strategy (q, h) and the under-

lying market depth d at the best ask price. For example, taking the

left panel of Figure 2.3 as the current LOB state, a buy market order

of size d̄/2 (resp. 11d̄/8) will consume the underlying market depth of

size d̄/4 (resp. 3d̄/4) and decrease the agent’s inventory position by size

of d̄/4 (resp. 5d̄/8).

• The function r in (2.19) maps the best ask price in tick size to the

cash increment from the execution of one unit of the agent’s sell limit

order, which is equal to the sum of the best ask price and the (per-unit)

rebate ⇢ for providing liquidity to the market.

• The function g in (2.20) maps the underlying liquidity state to the

agent’s cash increment from her submission of one unit of sell market

order, which is equal to the best bid price minus the (per-unit) fee ✏

for consuming liquidity from the market. Here the agent’s sell market

orders are assumed to be small in the sense that they never penetrate

the entire best bid queue.

• The term dNZ
(↵)
t defined in (2.21) represents the jump of the state pro-

cess Z(↵) that stems only from the general market participants (namely,

the processes N$ for $ 2 {m, l, c}) at t � 0.

2.2.4 Trading objective

For some
¯
p � 2 and T > 0, define the solvency region S and the trading

window T by

S :=
�

¯
p,+1

�

⇥ R+ ⇥ R+

0

and T := [0, T ].

Here
¯
p is interpreted as a stop loss price. For a given initial state z

0

:=

(p
0

, y
0

, x
0

) 2 S and a combined control ↵ 2 eA, let the state process Z(↵)

in (2.10) start with Z(↵)
0� = z

0

. Without loss of generality, we assume
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that x
0

= 0. We further introduce the termination time ⌧ of the agent’s

liquidation strategy ↵ 2 eA by

⌧ := inf
n

t > 0 :
⇣

P (↵)
t , Y (↵)

t , X(↵)
t

⌘

62 S
o

^ T, (2.22)

at which point the agent is required to liquidate all the unexecuted inventory

position (if any) through a sell market order.

Remark 2.12. We introduce the termination time ⌧ to the agent’s liquida-

tion problem in the sense that we are only interested in the dynamic system

up to any of the following events:

• the trading window T expires;

• the ask-size LOB state P (↵) declines to
¯
p, that is, the best ask price

declines to
⌅

¯
p
⇧

� with the best ask queue size accumulates to d
�

¯
p
�

;

• the remaining inventory position Y (↵) reduces to zero.

The agent’s objective is to maximise the expected utility from the wealth at

the termination time:

sup
↵2A

E
⇥

u
�

X(↵)
⌧ + �(⌧)g

�

P (↵)
⌧

�

Y (↵)
⌧

�⇤

, (2.23)

where

• the set A of admissible combined controls, assumed non-empty, is de-

fined by

A :=
n

↵ = ((Qt, Ht)t�0

, {(⌧j, ⇠j)}j2N+) 2 eA :

Qt +Ht  Y (↵)
t� for t 2 [0, ⌧ ] and (Qt, Ht) = (0, 0) for t > ⌧ ;

⇠j  Y̌ (↵)
⌧j� for j 2 N+ and lim

j"1
⌧j = ⌧, a.s.;

there exists a unique strong solution to (2.11)-(2.15)
o

, (2.24)

in the sense that neither short selling nor trading after the termination

time is allowed;
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• for ↵ 2 A, Z(↵) is the unique strong solution to (2.11)-(2.15) starting

from Z
0� = z

0

;

• the exponential utility function u : R+

0

! [0, 1) is given by

u(x) := �e��x (2.25)

for some constant � > 0;

• the function � : T ! {b, 1}, which imposes a penalty for the unexecuted

inventory at T , is given by

�(t) :=

(

1, if t 2 [0, T ),

b, if t = T,
for some constant b 2 (0, 1).

2.3 Optimal liquidation strategy

2.3.1 Value function

Definition 2.13. Given an initial condition (t, z) := (t, p, y, x) 2 T⇥ S and

an admissible combined control ↵ 2 A, let

Zt,z,(↵) =
�

P t,z,(↵), Y t,z,(↵), X t,z,(↵)
�

denote the unique strong solution to (2.11)-(2.15) starting from Zt� = z.

The gain function for the agent’s liquidation problem in (2.23) is defined by

J(t, z,↵) := E
⇥

u
�

X t,x,(↵)
⌧ + �(⌧)g

�

P t,p,(↵)
⌧

�

Y t,y,(↵)
⌧

�⇤

, (2.26)

with associated value function

v(t, z) := sup
↵2A

J(t, z,↵), (2.27)

and we say that ↵⇤ 2 A is the optimal admissible combined control if

v(·, ·) = J(·, ·,↵⇤).
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2.3.2 Dynamic programming equation

Using combined stochastic control and impulse control theory for jump di↵u-

sions [71, Chapter 8], we expect that the value function v in (2.27) identifies

with a function w : T ⇥ S ! R, where S =
⇥

¯
p,+1

�

⇥ R+

0

⇥ R+

0

, that

satisfies the dynamic programming equation associated with the optimal liq-

uidation problem (2.23), which is in the form of a Hamilton-Jacobi-Bellman

quasi-variational inequality (HJBQVI)

min

(

� @w(t, z)

@t
� �2

2

@2w(t, z)

@p2
� sup

(q,h)2E1
s.t. q+hy

Lq,hw(t, z),

w(t, z)� sup
e2E2\[0,y]

Mew(t, z)

)

= 0, (2.28)

for (t, z) := (t, p, y, x) 2 [0, T )⇥S, together with the boundary and terminal

condition

w(t, z) = u(x+ �(t)g(p)y), (2.29)

for (t, z) 2 B, where

B :=
�

{T}⇥
⇥

¯
p,+1

�

⇥ R+

0

⇥ R+

0

 

[

�

T⇥
�

¯
p
 

⇥ R+

0

⇥ R+

0

 

[

�

T⇥
⇥

¯
p,+1

�

⇥ {0}⇥ R+

0

 

(2.30)

Here the stochastic control operator Lq,h is defined with (q, h) 2 E
1

such

that q + h  y by

Lq,hw(t, z) :=



Z

R+

w (t,�(q, h, z, �)) dFm(�)� w(t, z)

�

�m(d(p) + q)

+



Z

R+

w(t, p� �/d̄, y, x)dF l(�)� w(t, z)

�

�l(d(p) + q)

+



Z

R+

w(t, p+ �/d̄, y, x)dF c(�)� w(t, z)

�

�c(d(p) + q),

for (t, z) 2 [0, T )⇥ S, where the functions � is defined from E
1

⇥ S ⇥R+ by

�(q, h, z, �) :=
�

p+ ⌘(q, h, d(p), �)/d̄, y � (q, h, d(p), �), x+ r(bpc)(q, h, d(p), �)
�

.
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The impulse control operator Me is defined with e 2 E
2

\ [0, y] by

Mew(t, z) = w(t, p, y � e, x+ g(p)e), (2.31)

for (t, z) 2 [0, T )⇥ S.

2.3.3 Verification theorem

We now give the verification theorem for the value function, proved in Ap-

pendix B.1.

Theorem 2.14 (Verification Theorem). Suppose we can find w : T⇥S ! R
such that w 2 C1,2 ([0, T )⇥ S) \ Cb(T⇥ S) and

lim
s"⌧�

w
�

s, Zt,z,(↵)
s

�

= w
�

⌧, Zt,z,(↵)
⌧

�

, almost surely, (2.32)

for all (t, z) 2 [0, T )⇥ S and ↵ 2 A.

(a) Suppose that

min

 

� @w(t, z)

@t
� �2

2

@2w(t, z)

@p2
� sup

(q,h)2E1
s.t. q+hy

Lq,hw(t, z),

w(t, z)� sup
e2E2\[0,y]

Mew(t, z)

!

� 0, (2.33)

for (t, z) 2 [0, T )⇥ S, and

w(t, z) � u(x+ �(t)g(p)y), (2.34)

for (t, z) 2 B, then w(t, z) � v(t, z) on T⇥ S.

(b) Suppose that

w(t, z) = u(x+ �(t)g(p)y), (2.35)

for (t, z) 2 B, and that there exists a measurable function

b' : [0, T )⇥ S 3 (t, z) 7! (q, h) 2 E
1

with q + h  y
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satisfying

� @w(t, z)

@t
� �2

2

@2w(t, z)

@p2
� Lb'(t,z)w(t, z) = 0, (2.36)

for all (t, z) 2 D, where

D :=

(

(t, z) 2 [0, T )⇥ S : w(t, z)� sup
e2E2\[0,y]

Mew(t, z) > 0

)

.

Furthermore, suppose that

b⇣(t, z) 2 argmax
e2E2\[0,y]

Mew(t, z)

exists for all (t, z) 2 [0, T )⇥S and b⇣(·, ·) is a Borel measurable selection.

Set b⌧
0

= 0 and define an impulse control
n

b⌧j, b⇠j
o

j2N+
inductively by

b⌧k+1

:= inf
�

s > b⌧k : Z
(b↵k)
s 62 D

 

^ ⌧, (2.37)

b⇠k+1

:= b⇣
⇣

b⌧k+1

, Ž(b↵k)

b⌧k+1�

⌘

, (2.38)

for k 2 N, where b↵k 2 eA is a combined control that is in the form of

b↵k :=
⇣

�

b'(s, Z(b↵k)
s )

�

s�0

,
n

(b⌧j, b⇠j) : j = 1, . . . , k
o⌘

.

Suppose that b↵ := limk"1 b↵k 2 A, then

w(t, z) = v(t, z), for (t, z) 2 T⇥ S,

and b↵ is an optimal admissible combined control.

2.4 Parameter estimations and computational results

Our empirical calculations are based on the LOBSTER data of the top two

price levels for a large-tick stock, Yahoo (YHOO), traded on the NASDAQ

platform from April 4 to April 22, 2016, recording all market order arrivals,
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limit order submissions and cancellations at the first and second best prices

between 9.30am and 4pm. This stock is selected based on price, trading

volume and market share considerations as in [12, Section 4]. In order to

avoid the abnormal trading behaviours shortly after market opening and

shortly before market close, we exclude all order book activities during the

first and the last twenty minutes of each trading day. We also exclude all

hidden order executions, which account for around 12% of the total trading

volume. In the following, we first (Section 2.4.1) provide the estimation

methods and results for the market depth cap in Assumption 2.1(b), the

order size distributions in Assumption 2.3(b) and the order flow intensity

functions in (2.16), respectively. We then (Section 2.4.2) give a numerical

scheme that solves the HJBQVI in (2.28)-(2.29). We finally (Section 2.4.3)

visualise the optimal liquidation strategy under di↵erent market conditions.

2.4.1 Parameter estimations

Market depth cap

Based on Assumption 2.1, the market depth cap d̄ is estimated as in [18,

Section 2.2] by averaging the best ask queue sizes (in number of shares) right

before the best ask price decreases and those right after the best ask price

increases. The estimation result is given in Figure 2.4.

Order size

Let Om, Ol and Oc represent the sets of the sizes (in number of shares) of

the buy market orders, sell limit orders and cancellations occurring at the

best ask price, respectively. Figure 2.5 displays the empirical distributions

of the order sizes in Ol and Oc, respectively, which are almost the same.

Similar to [22], we observe that the order sizes in Ol and Oc are strongly

clustering at integer multiples of 100, in particular at 100 and 200, which

account for nearly 60% and around 15% of the entire sample, respectively.

Besides, we observe that only about 7% of the order sizes in Ol and Oc are

larger than 600 or less than 100.
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Figure 2.4: histogram of the best ask queue sizes (in number of shares) right before the
best ask price decreases and those right after the best ask price increases.

Figure 2.5: YHOO: histograms of order sizes of sell limit order submissions (left) and sell
limit order cancellations (right) at the best ask price.

Based on the above empirical findings, let L
1

(resp. C
1

) in Assumption 2.3(b)

be a discrete random variable defined on N := {100, 200, . . . , 600} with prob-

ability mass function f l (resp. f c). In Table 2.1, we list the values of f l

(resp. f c) on N , which are approximated by the empirical probabilities de-

rived from the truncated sample obtained by rounding the order sizes in Ol

(resp. Oc) to the nearest integer multiples of 100, and discard the results
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that are outside N . In Figure 2.6, we exhibit the histogram of the order

Table 2.1: probability mass functions f l and f c on N .

x 100 200 300 400 500 600

f l(x) 0.64 0.17 0.06 0.07 0.05 0.01
f c(x) 0.65 0.19 0.05 0.05 0.05 0.01

sizes in Om. The order sizes in Om also display a tendency to cluster at

integer multiples of 100 (particularly, nearly 35% of the order sizes are equal

to 100), but not as strong as that shown in Ol and Oc. Besides, around 17%

of the order sizes in Om are less than 100, compared with 3% to 4% in Ol

and Oc. In Figure 2.7, we exhibit the empirical complementary cumulative

Figure 2.6: histogram of the sizes of buy market order arrivals.

distribution function of the order sizes in Om (line of red circles) on a doubly

logarithmic plot. Accordingly, we impose the following assumption on the

probability distribution of the random variable M
1

, which is introduced in

Assumption 2.3(b) representing the size of a buy market order.

Assumption 2.15 (Distribution of M
1

).

Let M
1

be a mixed-type random variable valued in R+, and assume that:

(a) M
1

has a positive mass at x but is continuous elsewhere on R+;
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(b) M
1

follows uniform distribution given that 0 < M
1

< x;

(c) M
1

follows exponential distribution with parameter # given that x <

M
1

< x;

(d) M
1

follows power-law distribution with scaling parameter a and lower

bound x given that M
1

� x.

The cumulative distribution function Fm of M
1

is then written by

Fm(x) :=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

µ
1

x

x
, if 0 < x < x,

µ
1

+ µ
2

, x = x,

µ
1

+ µ
2

+ µ
3

e�#x � e�#x

e�#x � e�#x
, if x < x < x,

1� µ
4

⇣ x

x

⌘�a+1

, if x � x,

(2.39)

where

• x = 100 reflects the fact that the order sizes in Om are clustering at 100

shares;

• (µ
1

, µ
2

, µ
3

, µ
4

) = (0.170, 0.338, 0.471, 0.021) are the empirical probabil-

ities of the order sizes in Om being less than x, equal to x, greater

than x and less than x, greater than or equal to x, respectively;

• (#, a, x̄) = (0.00248, 3.909, 1850) are estimated using maximum likeli-

hood method as in [61, 24].

Intensity functions

The intensity functions �$(·) for $ 2 {m, l, c} in (2.16) are formulated as

follows. We first round the best ask queue sizes (in number of shares) in our

sample data to the nearest integer multiples of 100, and call them the rounded

best ask queue sizes. We then estimate the intensities by the maximum
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Figure 2.7: YHOO: empirical (line of circles) and the fitted (solid line) complementary
cumulative distribution function of buy market order size M1 on a doubly logarithmic plot.

likelihood method as in [49]:

�̂$(d) =
N$(d)

T (d)
, for $ 2 {m, l, c} and d 2 {100n : n = 0, 1, . . . , 50},

where

• N$(d),$ 2 {m, l, c} represents the total number of buy market order

arrivals, sell limit order submissions and cancellations, respectively, at

the best ask price when the pre-event rounded best ask queue size is

equal to d and the pre-event spread is equal to the tick size �;

• T (d) represents the total time (in number of seconds) during which the

rounded best ask queue size is equal to d and the spread is equal to the

tick size �.

The estimated intensities are presented in the left panel of Figure 2.8, with

the following comments.
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Remark 2.16.

• The rate of buy market order arrivals decreases exponentially as the

rounded best ask queue size increases, which can be interpreted as

traders in the market rushing for liquidity when liquidity becomes

scarce while waiting for better price when liquidity is adequate.

• As a function of the rounded best ask queue size, the rate of sell limit

order submissions takes its minimum value at 0 (corresponding to the

actual best ask queue size being below 50 shares), sees a moderate jump

at 100, and declines rapidly until it rebounds at 800 and then increases

exponentially. The interpretation of this result is threefold: (i) when

the best queue size is below the lot size 100 as a result of the odd-

lot trades, most likely initiated by the high frequency or algorithmic

traders [69], market participants are reluctant to place limit orders at

the best price in order to avoid the risk of adverse selection; (ii) when

the best queue size takes values between 100 and 800, the market par-

ticipants are more motivated to place limit orders at the best price since

they can obtain relatively favourable queue positions but avoid being

alone in the queue; (iii) when the best queue size exceeds 800, we ob-

serve a widespread low-latency market activity at the best price: limit

orders are placed and then cancelled almost immediately (within 10�4

to 10�3 second). This low-latency activity occurs more frequently as

the best queue size increases.

• When the best queue size is below 800, the rate of sell limit order

cancellations remains a stable and low level, indicating the market par-

ticipants’ reluctance to give up their favourable queue positions. When

the best queue size exceeds 800, the rate of sell limit order cancellations

increases exponentially at almost the same pace with that of sell limit

order submissions, reflecting the prevalence of the low-latency activity

mentioned above.

Similar to [79], we propose that the intensity function �$(·) in (2.16) is in

the form of

�$(d) = exp
�

�$
0

+ �$
1

d+ �$
2

d2
�

, d 2 R+,
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Figure 2.8: left panel: the scatter plot of the set
⇣

100d, �̂$(100d)
⌘

d=0,1,...,50
for $ 2

{m, l, c}; right panel: the fitted line y = exp
⇣

�̂$
0 + �̂$

1 x+ �̂$
2 x2

⌘

for $ 2 {m, l, c}.

for $ 2 {m, l, c}. We then fit a linear regression line

y = �$
0

+ �$
1

x+ �$
2

x2, (2.40)

to the set
⇣

100d, log
⇣

�̂$(100d)
⌘⌘

d=0,1,...,50
, for each $ 2 {m, l, c}. The esti-

mated coe�cients �̂$i for$ 2 {m, l, c} and i 2 {0, 1, 2} are given in Table 2.2.

The fitted curves (2.40) are illustrated in the right panel of Figure 2.8.

Table 2.2: estimated coe�cients for the linear regression in (2.40).

Est. Coe�cients Est. Value Std. Error t-value P-value

�̂m

0

2.74e+00 1.41e-01 1.95e+01 1.95e-24
�̂m

1

-2.43e-03 1.30e-04 -1.86e+01 1.29e-23
�̂m

2

3.90e-07 2.52e-08 1.55e+01 2.85e-20

�̂l

0

3.72e+00 7.49e-02 4.96e+01 6.66e-43
�̂l

1

-1.50e-04 6.93e-05 -2.17e+00 3.53e-02
�̂l

2

7.74e-08 1.34e-08 5.77e+00 5.54e-07

�̂c

0

3.34e+00 4.55e-02 7.34e+01 5.87e-51
�̂c

1

6.92e-05 4.20e-05 1.65e+00 1.06e-01
�̂c

2

4.88e-08 8.13e-09 6.00e+00 2.54e-07
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2.4.2 Numerical scheme

In the case of adopting the exponential utility criterion (2.25) in (2.23), the

value function v in (2.27) reduces to the form

v(t, z) = v(t, p, y, x) = �u(x)�(t, p, y),

for (t, z) 2 T⇥ S. The HJBQVI associated with � then reads

min

 

� @�(t, p, y)

@t
� �2

2

@2�(t, p, y)

@p2
� sup

(q,h)2E1
s.t. q+hy

Lq,h�(t, p, y),

�(t, p, y)� sup
e2E2\[0,y]

M e�(t, p, y)

!

= 0, (2.41)

for (t, p, y) 2 [0, T )⇥S
0

, together with the boundary and terminal condition

�(t, p, y) = u(�(t)g(p)y), (2.42)

for (t, p, y) 2 B
0

, where

S
0

:=
�

¯
p,+1

�

⇥ R+,

B
0

:=
�

{T}⇥
⇥

¯
p,+1

�

⇥ R+

0

 

[

�

T⇥
�

¯
p
 

⇥ R+

0

 

[

�

T⇥
⇥

¯
p,+1

�

⇥ {0}
 

.

The operator Lq,h is defined with (q, h) 2 E
1

such that q + h  y by

Lq,h�(t, p, y)

:=



Z

R+

c(q, h, p, �)� (t,⌅(q, h, p, y, �)) dFm(�)� �(t, p, y)

�

�m(d(p) + q)

+

"

X

�2N

�
�

t, p� �/d̄, y
�

f l(�)� �(t, p, y)

#

�l (d(p) + q)

+

"

X

�2N

�
�

t, p+ �/d̄, y
�

f c(�)� �(t, p, y)

#

�c (d(p) + q) ,

(2.43)
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for (t, p, y) 2 [0, T )⇥ S
0

, where

• the function c is defined on E
1

⇥ S
0

by

c(q, h, p, �) := �u (r (bpc)(q, h, d(p), �)) ;

• the function ⌅ is defined on E
1

⇥ S
0

⇥ R+ such that q + h  y by

⌅(q, h, p, y, �) :=

✓

p+
⌘(q, h, d(p), �)

d̄
, y � (q, h, d(p), �)

◆

;

• the operator M e is defined with e 2 E
2

\ [0, y] by

M e�(t, p, y) = �u(g(p)e)�(t, p, y � e),

for (t, p, y) 2 [0, T )⇥ S
0

.

We solve the HJBQVI (2.41)-(2.42) numerically using an implicit finite dif-

ference scheme as in [52]. We first localise S
0

to a bounded domain

S
loc

:= [
¯
p, p̄ ]⇥ [0, ȳ],

for fixed p̄ >
¯
p and ȳ > 0. The associated localisation error is studied in [29].

We then introduce a regular grid on T⇥ S
loc

with uniform spacing:

oij,k :=
�

i�T ,
¯
p+ j�P , k�Y

�

, �i
j,k := �

�

oij,k
�

,

�T :=
T

l
, �P :=

p̄�
¯
p

m
, �Y :=

ȳ

n
,

for (i, j, k) 2 L ⇥M ⇥N, with L := {0, 1, . . . , l}, M := {0, 1, . . . ,m}, N :=

{0, 1, . . . , n} and l,m, n 2 N+. We further assume that there exists ⌫
1

2 N+

(resp. ⌫
2

2 N+) such that ē
1

= ⌫
1

�Y (resp. ē
2

= ⌫
2

�Y ), and construct the

regular grids on E
1

= [0, ē
1

]2 (resp. E
2

= [0, ē
2

]) with uniform spacing �Y :

aq,h := (q�Y , h�Y ) (resp. be := e�Y ),
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for (q, h) 2 A
1

(resp. e 2 A
2

), where A
1

:= {0, 1, . . . , ⌫
1

}2 (resp. A
2

:=

{0, 1, . . . , ⌫
2

}). Next, in order to approximate the Riemann-Stieltjes integral

term in (2.43), we truncate the the region of integration R+ to a bounded

interval [0, U b], partition the interval into N equally spaced subintervals, and

apply the trapezoidal rule [33] to each subinterval, that is

Z

R+

I(�) dFm(�) ⇡
N�1

X

◆=0

I(◆��) + I((◆+ 1)��)

2
[Fm((◆+ 1)��)� Fm(◆��)] ,

where I(·) represents the integrand, U b 2 R+, N 2 N+ are properly chosen,

and �� := U b/N . Furthermore, for notational convenience, we denote �i
j,k

the value of �(i�T , j�P , k�Y ) when (i, j, k) 2 L⇥{R\M}⇥{(�1, n]\N}, and
make the following approximations and assumptions:

• for i 2 L, j 2 [0,m]\M and k 2 [0, n]\N, �i
j,k is approximated

by the bilinear interpolation of the values of function � at the grid

points oi,
¯

J(j),
¯

K(k), oi,
¯

J(j), ¯K(k), oi, ¯J(j),
¯

K(k) and oi, ¯J(j), ¯K(k), that is,

�i
j,k =

⇣

J̄(j)� j j �
¯
J(j)

⌘

 

�i

¯

J(j),
¯

K(k) �i

¯

J(j), ¯K(k)

�i
¯J(j),

¯

K(k)
�i

¯J(j), ¯K(k)

! 

K̄(k)� k

k �
¯
K(k)

!

,

where the functions
¯
J, J̄,

¯
K and K̄ are defined from R by

¯
J(j) := max{j0 2 M : j0 < j}, J̄(j) := min{j0 2 M : j < j0},

¯
K(k) := max{k0 2 N : k0 < k}, K̄(k) := min{k0 2 N : k < k0};

• for i 2 L and k 2 [0, n], assume that

�i
j,k = u

�

k�Y �(i�T )g(
¯
p+m�P )

�

, for j > m,

�i
j,k = u

�

k�Y �(i�T )g(
¯
p)
�

, for j < 0;

• for (i, j) 2 L⇥M, assume that �i
j,k = u(0) for k < 0.
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Accordingly, the discretised HJBQVI is written by:

max

 

�i+1

j,k � �i
j,k

�T
+
�2

2

�i
j+1,k � 2�i

j,k + �i
j�1,k

�2P

+ sup
(q,h)2A1

n

Lq,h
� �i+1

j,k � % [max(0, q+ h� k)]2
o

,

sup
e2A2

�

M e
��

i
j,k � % [max(0, e� k)]2

 

� �i
j,k

!

= 0, (2.44)

when (i, j, k) 2 {L\{l}}⇥ {M\{0}}⇥ {N\{0}}, together with the boundary

and terminal condition

�i
j,k = u

�

k�Y �(i�T )g
�

¯
p+ j�P

��

, (2.45)

when (i, j, k) 2 {{l}⇥M⇥N}
S

{L⇥ {0}⇥N}
S

{L⇥M⇥ {0}}. Here

the constrained maximisers in (2.41) are replaced by the unconstrained ones

using the penalty function method [81], where the constant % > 0 represents

the penalty coe�cient; the operator Lq,h
� is defined with (q, h) 2 A

1

by

Lq,h
� �i

j,k := �m(j, q)⇥
2

4

1

2

N�1

X

◆=0

Fm(◆)
�

c(q, h, j, ◆)�i
⌅�(q,h,j,k,◆)

+ c(q, h, j, ◆+ 1)�i
⌅�(q,h,j,k,◆+1)

�

� �i
j,k

3

5

+ �l (j, q)

"

X

�2N

f l(�)�i
j� �

d̄�P
,k � �i

j,k

#

+ �c (j, q)

"

X

�2N

f c(�)�i
j+ �

d̄�P
,k � �i

j,k

#

,

where

• the function ⌅� is defined from A
1

⇥M⇥N⇥ N by

⌅�(q, h, j, k, ◆) := (j +�p(q, h, j, ◆), k ��y(q, h, j, ◆)) ,
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with

�p(q, h, j, ◆) :=
⌘
�

q�Y , h�Y , d
�

¯
p+ j�P

�

, ◆��
�

d̄�P
,

�y(q, h, j, ◆) :=

�

q�Y , h�Y , d
�

¯
p+ j�P

�

, ◆��
�

�Y
;

• the function �$, for $ 2 {m, l, c}, is defined from M⇥ {0, . . . , ⌫
1

} by

�$(j, q) := �$
�

d(
¯
p+ j�P ) + q�Y

�

;

• the function c is defined from A
1

⇥M⇥ N by

c(q, h, j, ◆) := c
�

q�Y , h�Y ,
¯
p+ j�P , ◆��

�

;

• the function Fm is defined from N by

Fm(◆) := Fm ((◆+ 1)��)� Fm (◆��) ;

• the operator M e
� is defined with e 2 A

2

by

M e
��

i
j,k := �u

�

e�Y g
�

¯
p+ j�P

��

�i
j,k�e.

Before proceeding to the next step, we introduce the following notations:

• for d 2 N+, let Id denote the d-dimensional identity matrix; for d
1

, d
2

2
N+, let Jd1⇥d2 denote the d

1

⇥ d
2

all-one matrix;

• for d 2 N+\{1} and b 2 N+ [ [1, d ], let e

b
d denote the d-dimensional

column vector with the b-th element being 1 and the others being 0;

• let  
1

(resp.  
2

) denote the space of functions  : N ! N (resp. N !
R);
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• introduce the operators Æ
+

,Æ� : N+ ⇥ 
1

3 (d, (·)) 7! Md+1

(R) by

Æ
+

(d, (·)) :=
h

e

(1+ (0))^(d+1)

d+1

e

(2+ (1))^(d+1)

d+1

. . . e

(d+1+ (d))^(d+1)

d+1

i

,

Æ�(d, (·)) :=
h

e

(1� (0))_1
d+1

e

(2� (1))_1
d+1

. . . e

(d+1� (d))_1
d+1

i

;

• introduce the operator Œ : N+ ⇥ 
2

3 (d, (·)) 7! Md+1

(R) by

Œ(d, (·)) := Diag ( (0), . . . , (d)) .

We now write the matrix form of the discretised HJBQVI (2.44) by

max

 

�

i+1 ��i

�T
+⌥�i + sup

(q,h)2A1

L q,h
�

i+1, sup
e2A2

M e
�

i ��i

!

= 0,

(2.46)

where

• the matrix �i 2 M
(m+1)⇥(n+1)

(R) is in the form of

�

i :=

0

B

B

B

B

@

�i
0,0 �i

0,1 · · · �i
0,n

�i
1,0 �i

1,1 · · · �i
1,n

...
...

. . .
...

�i
m,0 �i

m,1 · · · �i
m,n

1

C

C

C

C

A

, for i 2 L,

with its elements satisfying the boundary and terminal condition (2.45);

• the matrix ⌥ 2 Mm+1

(R) is defined by

⌥ :=
�2

2�2P

�

ÆT
+

(m, 1)� 2Im+1

+ÆT
�(m, 1)

�

;
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• the operator L q,h is defined with (q, h) 2 A
1

by

L q,h
�

i = Œ(m, �m(·, q))
"

1

2

N�1

X

◆=0

Fm(◆)
�

C q,h,◆
�

i + C q,h,◆+1

�

i
�

��i

#

+Œ
�

l, �l (·, q)
�

"

X

�2N

f l(�)D�
��

i ��i

#

+Œ(c, �c (·, q))
"

X

�2N

f c(�)D�
+

�

i ��i

#

� J

(m+1)⇥(n+1)

Œ
�

n, % [max(0, q+ h� ·)]2
�

;

with the operator C q,h,◆ being defined with (q, h, ◆) 2 A
1

⇥ N by

C q,h,◆
�

i = Œ(m, c(q, h, ·, ◆))
"

Œ(m, 1 + b�p(·)c ��p(·))
Œ(m,�p(·)� b�p(·)c)

#T

⇥
2

6

4

ÆT
+

(m, b�p(·)c)�iÆ�(n, d�y(·)e) ÆT
+

(m, b�p(·)c)�iÆ�(n, b�y(·)c)

ÆT
+

(m, d�p(·)e)�iÆ�(n, d�y(·)e) ÆT
+

(m, d�p(·)e)�iÆ�(n, b�y(·)c)

3

7

5

⇥
"

Œ(n,�y(·)� b�y(·)c)
Œ(n, 1 + b�y(·)c ��y(·))

#

,

• the operators D�
± is defined with � 2 R+ by

D�
±�

i =

✓

�

d̄�P
�
�

�

d̄�P

⌫◆

ÆT
±

✓

m,

⇠

�

d̄�P

⇡◆

�

i

+

✓

1� �

d̄�P
+

�

�

d̄�P

⌫◆

ÆT
±

✓

m,

�

�

d̄�P

⌫◆

�

i;

• the operator M e is defined with e 2 A
2

by

M e
�

i = Œ
�

m,�u
�

e�Y g(
¯
p+ · �P )

��

�

iÆ�(n, e)

� J

(m+1)⇥(n+1)

Œ
�

n, % [max(0, e� ·)]2
�

.
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According to [29, 52], the discretised HJBQVI in the matrix from in (2.46)

is unconditionally stable and can be converted into the fixed point problem:

�

i = max

 

⌥&�
i + sup

(q,h)2A1

L q,h
& �

i+1, sup
e2A2

M e
�

i

!

, (2.47)

together with the boundary and terminal condition (2.45), where

⌥& :=
�T

�T + &
(Im+1

+ &⌥) ,

L q,h
& �

i+1 :=
&

�T + &

�

Im+1

+ �TL q,h
�

�

i+1,

for i 2 L\{l} and & > 0. For a given tolerance level tol > 0, the implicit finite

di↵erence scheme solving the HJBQVI (2.41)-(2.42) is illustrated as follows:

Step 1. let �l
j,k = u

�

kb�Y g
�

¯
p+ j�P

��

, for (j, k) 2 M⇥N;

Step 2. suppose that �i+1, for i 2 L\{l} is already known:

Step 2.1. choose arbitrary  2 M
(m+1)⇥(n+1)

(R);

Step 2.2. calculate

 

0 :=
�

 0
j,k

�

= max

 

⌥& + sup
(q,h)2A1

L q,h
& �

i+1, sup
e2A2

M e
 

!

;

Step 2.3. let  0
j,k = u

�

k�Y g
�

¯
p+ j�P

��

for (j, k) 2 {M⇥ {0}}[{{0}⇥N};

Step 2.4. if k 0 � k < tol, go to Step 3; otherwise, set  =  0 and go

to Step 2.2;

Step 3. set �i =  0; if i = 0, the scheme is over; otherwise, set i = i� 1 and

go to Step 2.

Suppose that we have obtained �i, for all i 2 L based on the above numeri-

cal scheme. Now, for i 2 L\{l} (i.e. at time i�T ), j 2 M\{0,m} (i.e. when

the liquidity state is equal to j�P ) and k 2 N\{0, n} (i.e. when the remain-

ing inventory position is equal to k�Y ), the corresponding optimal strategy,
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denoted by OS(i, j, k), is given by:

OS(i, j, k) =

8

>

>

>

<

>

>

>

:

argmax
(q,h)2A1

L q,h
& �

i, if (j, k) 62 C,

argmax
e2A2

M e
�

i, if (j, k) 2 C,

(2.48)

where

C :=
n

(j, k) 2 M\{0,m}⇥N\{0, n} :

⌥&�
i(j, k) + sup

(q,h)2A1

L q,h
& �

i(j, k) < sup
e2A2

M e
�

i(j, k)
o

.

2.4.3 Optimal Strategy

In this section, we provide the optimal strategy computed through the finite

di↵erence scheme illustrated in Section 2.4.2. The parameters used are shown

in Table 2.3.

In Figure 2.9, we visualise the map OS(·, ·, ·) in (2.48), illustrating how dif-

ferent market conditions (namely, time to maturity, best ask queue size and

remaining inventory position) can a↵ect the agent’s optimal action. We ob-

serve the following:

• The optimal strategy is more aggressive when there is less time to

maturity. In such case, the agent will place limit orders only when both

the best ask queue size and the remaining inventory position are small.

This is mainly because the execution risk of limit orders decreases as

the time to maturity increases and the best ask queue size and the

remaining inventory position decreases.

• Compared with placing displayed limit orders, placing non-displayed

ones is more profitable when the best ask queue size is smaller. This

is mainly because the execution risk of non-displayed limit orders de-

creases as the best ask queue size decreases.
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Table 2.3: parameter settings.

Parameter Description Value
Market

� tick size (¢) 1
d̄ market depth cap (share) 2200
⇢ per share rebate for limit order execution (¢) 0.27
✏ per share fee for market order execution (¢) 0.27

Agent
T length of trading window (second) 100
ē
1

upper bound of limit order (share) 300
ē
2

upper bound of market order (share) 300
✓ relative queue position 0.5
� exponential utility parameter 1e-5
b terminal penalty paramenter 0.95

Localisation
ȳ upper bound of inventory (share) 1000

¯
p lower bound of liquidity (cent) 3500
p̄ upper bound of liquidity state 3501
U b upper bound of integration 10000

Discretisation
�T step size of time (second) 0.1
�Y step size of inventory (share) 100
�Y step size of liquidity 1/22
�� step size when approximating integral 50
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Figure 2.9: optimal strategy (q⇤, h⇤, e⇤), namely, the optimal size of displayed limit order,
non-displayed limit order and market order, as a function QS(·, ·, ·) of the best ask queue
size (x-axis: j = 1, 2 . . . , 20, corresponding to 2100, 2000, . . . , 200 shares), the remaining
inventory position (y-axis: k = 1, 2, . . . , 10, corresponding to 100, 200, . . . , 1000 shares) and
the time to maturity (panels on the left (resp. right): i = 500 (resp. 50), corresponding
to 500 (resp. 50) seconds.)
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“Rule No. 1: Never lose money.

Rule No. 2: Never forget rule No.1.”

— Warren Bu↵ett

3
Optimal Liquidation Strategy

- Framework II

3.1 Introduction

In this chapter, we consider an agent (or her agency algorithm) who wants

to sell an order of a pre-specified (small) quantity over a fixed (short) trad-

ing window in a LOB for a large-tick stock, where the price-time priority

mechanism1 is applied. Following [26, Section 2.1], information available to

this agent contains historical order flows and depths at the best prices of this

LOB (‘Level-I’ data). In particular, we are mostly interested in how di↵erent

trading conditions (i.e. LOB state, inventory position, time to maturity)

a↵ect the agent’s trading decisions when liquidating the order. In order to

achieve this, we first build up a ‘Level-I’ LOB model describing the trading

environment whose dynamics are driven by the general market participants’

order flows and exogenous information. Realistic simplifying assumptions for

this LOB follow those in [26, 28], including unit order size, constant one-tick

1In this chapter, we are only interested in the displayed part of the LOB and do not
consider the activities of the non-displayed limit orders.
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spread, Poisson order flows, depletion of the best bid (resp. ask) queue mov-

ing the price one tick downward (resp. upward) and volumes at best prices

after a price move being regarded as stationary variables drawn from a joint

distribution. We further develop this model by allowing the Poisson rates of

the order flows and the joint distribution determining the depths at the best

prices after a price move to depend on the most recent price move direction.

Under these assumptions, the evolution of this LOB can be modelled as a

Markov renewal process as in [34], whose transition mechanism is intuitively

described as a queueing race between the volumes at the best prices. We

then assume the agent to be risk-neutral, trying to maximise her expected

terminal wealth by selling a fixed-amount of order within a fixed finite time

horizon in this LOB. In order to model the price-time priority rule and cap-

ture the execution of the agent’s limit orders, we assume that the agent is

slow and only reacts immediately after the price moves using both limit and

market orders: at each price-change time, the agent can chose to post a

limit order at the best ask price with the least time priority and/or submit

a market order that never consumes up the entire volumes at the best bid

price. Through combining the assumptions for the LOB and the liquidation

strategy, the agent’s trading process is then formulated by a (stationary)

semi-Markov decision process within a finite horizon [50], among a certain

class of horizon-related Markov deterministic policies. In general, at each

price-change time, the optimal policy is a deterministic function which tells

the agent the size of the market and limit order to trade based on the current

LOB state (i.e. price move direction, depths at the best prices), the agent’s

inventory position and time to maturity in order to achieve terminal wealth

maximisation.

This chapter is organised as follows. In Section 3.2, we set the basic assump-

tions for the LOB model, illustrate the evolutional dynamics of a ‘Level-I’

LOB and define the objective together with the admissible trading strat-

egy set for the agent. In Section 3.3, a semi-Markov decision process with

a horizon-related Markov deterministic policy is introduced to model the

agent’s trading process and an optimal policy is defined. In Section 3.4,

we provide an expression for the semi-Markov kernel, which works as the
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transition mechanism of the semi-Markov decision process. Existence of a

stationary optimal policy is proved in Section 3.5, and empirical studies show

our numerical results in Section 3.6.

3.2 LOB and Trading Strategy

3.2.1 ‘Level-I’ LOB model

We consider a limit order book characterised by two resolution parameters

as in [39, Section 2.1]: the tick size � > 0 represents the smallest interval

(assumed constant) between price levels, and the lot size, � > 0, specifies the

smallest amount of the asset that can be traded. All buy and sell orders thus

must arrive at a price k
1

� and with a size k
2

�, for some k
1

, k
2

2 N+. Through-

out this chapter we shall work with the following modelling assumptions for

the LOB:

Assumption 3.1 (Order book settings).

(a) orders from general market participants are of lot size �;

(b) the spread of the LOB is equal to the tick size �.

The LOB model is formulated based on a ‘Level-I’ data, that is, the order

flows and depths at the best bid and ask prices. As illustrated in [26, Sec-

tion 2.1], this reduced-form modelling approach is motivated by the empirical

findings showing that large amounts of order flows occur at the best price lev-

els for large-tick stocks [35], the imbalance between the order flows at the best

prices is shown to be a good predictor of the order book dynamics [18, 25],

together with the fact that data at the best prices are more obtainable than

the ‘Level-II’ market data. In the following, we impose the assumption for

the evolution of the LOB:

Assumption 3.2 (Evolution of the LOB).

(a) whenever the depths at the best bid (resp. ask) price are depleted, both

the best bid and ask prices decrease (resp. increase) by one tick;
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(b) immediately after each price increase (resp. decrease), volumes at the

best price levels are treated as random variables with joint distribution

f
+1

(resp. f�1

) : (N+)2 ! [0, 1]; for any vb, va 2 N+, f
+1

(vb, va) (resp.

f�1

(vb, va)) represents the probability that the best bid and ask queue

contain vb and va unit limit orders (of actual size vb� and va�), right

after a price increase (resp. decrease).

Remark 3.3. Assumption 3.2(a) presumes that the LOB contains no empty

level near the mid price so that price changes are restricted to one tick.

Assumption 3.2(b) presumes that price changes are entirely due to exogenous

information, in which case market participants swiftly readjust their order

flows at the new best prices, as if a new state of the LOB is drawn from an

invariant distribution [49]. In other words, we rule out the possibility that

depletion of the best bid (resp. ask) queue is followed by the insertion of a

buy (resp. sell) limit order inside the spread, keeping the best bid and ask

prices unchanged. See Section 3.6.1 for some related empirical analysis.

Order flows from the general market participants are modelled according

to the ‘zero-intelligence’ approach. See [26, 28, 75] for related literature.

Generally speaking, the ‘zero-intelligence’ approach introduces some specific

stochastic processes, with rate parameters depending on variables such as the

LOB state, to describe the aggregated order flows, making the assumption

that general market participants blindly follow a set of rules without strategic

considerations [39, Section 3.1].

Assumption 3.4 (Poisson order flows).

Order book events (i.e. market orders, limit orders and cancellations) from

the general market participants occur according to independent Poisson pro-

cesses, with parameters depending on the most recent price move direction.

To be more specific, taking order flows at the best ask price for example,

during any period between a price increase (resp. decrease) and the next

price change, the following mutually independent events happen:

(a) buy market orders arrive at independent, exponential times with rate

µa
+1

> 0 (resp. µa
�1

> 0);
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(b) sell limit orders arrive at independent, exponential times with rate a
+1

>

0 (resp. a�1

> 0);

(c) cancellations of limit orders occur at independent, exponential times with

rate ✓a
+1

> 0 (resp. ✓a�1

> 0) multiplied by the amount (in unit size) of

the outstanding sell limit orders.

Furthermore, we assume an analogous framework for the order flows at the

best bid price, with parameters µb
+1

, µb
�1

,b
+1

,b�1

, ✓b
+1

, ✓b�1

> 0.

Remark 3.5.

• Despite the fact that the ‘zero-intelligence’ model is not exactly compat-

ible with empirical observations [82], it still retains the major statistical

features of LOBs while remaining computationally manageable [75].

Under the ‘zero-intelligence’ hypothesis, the agent can easily charac-

terise the dynamical properties of the LOB from historical data without

assuming behavioural assumptions for other market participants or re-

sorting to auxiliary assumptions to quantify unobservable parameters.

• Assumption 3.4(c) means that if there are v limit orders at the best ask

(resp. bid) price, each of which can be cancelled at an exponential time

with rate ✓a (resp. ✓b) independently, and the overall cancellation rate

is then ✓av (resp. ✓bv). Here, this linear cancellation rate assumption,

as proposed in [28], is made for modelling convenience, but it is virtu-

ally in contradiction with empirical data. For example, Huang, Lehalle

and Rosenbaum [49] find that the cancellation rate at the best prices is

an increasing concave function for small best queue sizes, and becomes

flat or even slightly decreasing for large best queue sizes. Such obser-

vation is interpreted by the fact that the priority value increases as the

queue size increases and orders with higher priority value are less likely

to be cancelled.

54



3.2.2 Objective and admissible trading strategies

In the LOB model introduced in Section 3.2.1, we assume that the agent

is risk-neutral and her goal is to maximise the expected wealth obtained

through selling an order of � 2 N+ unit size (�� actual size) within the

trading horizon T := [0, T ], where T > 0 is a fixed finite terminal time. The

following assumption describes the set of admissible trading strategies:

Assumption 3.6 (Admissible trading strategies).

(a) the agent can only take actions immediately after a price change; let ⌧n
denote her n-th decision epoch, namely the time of the n-th price change;

⌧
0

= 0 and the last decision epoch before or at maturity is ⌧n, where n :=

sup{n 2 N : ⌧n  T};

(b) at maturity T , the agent is required to sell all the unexecuted stocks

through a market order;

(c) at each decision epoch ⌧n, the agent observes the bid and ask queues,

with volumes of vb and va unit size; she can then post a sell limit order

of l unit size at the best ask price and submit a sell market order of m

unit size at the best bid price; we assume that the best bid queue is never

depleted by the agent, and that the agent is slow, meaning that her limit

order (of l unit size) has less time priority upon submission than the limit

orders from other market participants (of va unit size);

(d) the agent follows a ‘no cancellation’ rule: she will not cancel her limit

order unless the price goes down;

(e) short selling is not allowed.

Remark 3.7.

• Restricting the agent’s trading actions at price changes (Assumption 3.6(a))

might sound relatively strong, but is necessary to capture the time-

priority rule and the executions of the agent’s limit orders.
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• The ‘no cancellation’ rule (Assumption 3.6(d)) is introduced mainly for

modelling convenience, and it can be interpreted as the agent apply-

ing a strategy with limit orders continuously pegged to the best ask

price after being placed. For literature that study optimal liquidation

strategy considering both order placement and cancellation, See [32]

for example.

3.3 Trading process modelled by semi-Markov decision pro-

cesses

A semi-Markov decision model [78, Chapter 7] is a dynamic system whose

states are observed at random epochs, each of when an action is taken and a

payo↵ incurs (either as a lump sum at that epoch or at a rate continuously

until the next epoch) as a result of the action. It satisfies the following two

Markovian properties:

(M1) given the current state and the action at a given epoch, the time until

the next epoch and the next state only depend on the current state and

action;

(M2) the payo↵ incurred at any epoch depends only on the state and the

action at that epoch.

The semi-Markov decision model well describes the agent’s liquidation prob-

lem within our stylised LOB: the LOB with the agent’s participation is a dy-

namic system, and the agent’s selling action at each decision epoch may lead

to a payo↵. Indeed, Assumption 3.6(a) enables us to track the state of this

system merely at the decision epochs, and Assumptions 3.2, 3.4 and 3.6(c)

ensure that the transition mechanism of the system is stationary and satis-

fies (M1)-(M2). Moreover, according to Assumption 3.10, each payo↵ from

the agent’s matched limit order is allocated to the nearest incoming decision

epoch in order to make the payo↵ as a lump sum. In Section 3.3.1, we de-

fine a (stationary) semi-Markov decision model with lump-sum payo↵s for

the agent’s liquidation process. In Section 3.3.2, we define a horizon-related
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Markov deterministic policy and illustrate the evolution of the semi-Markov

decision process. In Section 3.3.3, we give the definition of the expected

reward function, the value function and the optimal policy for the agent’s

liquidation problem.

3.3.1 Semi-Markov decision model

The semi-Markov decision model with lump-sum payo↵s and the finite-horizon

constraint is defined as a six-tuple {E , (A(e))e2E , Q(·, ·|·), P (·|·), r(·, ·), w(·, ·)},
where each element is defined below.

State space

Fix N 2 N+ large enough. The state space E := {�1,+1} ⇥ {1, . . . , N}3 ⇥
{0, . . . , N}2 is the set of all pre-decision conditions of the system (i.e. the

LOB with the agent’s participation) observed at each decision epoch. Specif-

ically, the system being in state e := (j, vb, va, p, z, y) 2 E means that:

• the ask/bid price change is equal to j tick;

• the best bid (resp. ask) queue contains vb (resp. va) unit orders;

• the ask price2 is equal to p�;

• the executed part of the limit order posted by the agent at the previous

decision epoch is of z unit size;

• the agent’s remaining inventory position is of y unit size.

Action space

The action space A := {0, . . . ,m} ⇥ {0, . . . , l}, with m, l 2 N+, represents

the set of trading strategies, that is, the amount (in unit size) of the market

2The stylised LOB model does not implement a positive restriction on the stock price.
But we assume that the stock price is far above zero at inception and the liquidation
horizon T is short, so that the stock price will never become negative.

57



and limit order that the agent chooses to submit and post at the best bid

and ask price respectively. The constant m (resp. l) represents the maximum

amount (in unit size) of a single market (resp. limit) order that the agent is

allowed to trade. From Assumption 3.6(c)(e), the agent’s admissible action

space in state e 2 E is defined by

A(e) :=
�

(m, l) 2 A : m < vb,m+ l  y
 

, (3.1)

so that the agent will never consume up the entire best bid queue nor short

sell. The set of all feasible state-action pairs is denoted by K := {(e,↵)|e 2
E ,↵ 2 A(e)}.

Semi-Markov kernel

Before introducing our next concept, recall the following definition.

Definition 3.8 (sub-/semi-Markov kernel). Let (⌦
1

,F
1

) and (⌦
2

,F
2

) be real

measurable spaces. A map p(·|·) : F
2

⇥ ⌦
1

! [0, 1] is called a sub-Markov

kernel on ⌦
2

given ⌦
1

if:

• for any !
1

2 ⌦
1

, p(·|!
1

) is a measure on (⌦
2

,F
2

) with p(⌦
2

|!
1

)  1;

• for any F
2

2 F
2

, p(F
2

|·) is a Borel measurable function.

In particular, if p(⌦
2

|!
1

) = 1 for all !
1

2 ⌦
1

, then p(·|·) is a Markov kernel

on ⌦
2

given ⌦
1

. Furthermore, a map q(·, ·|·) : R+

0

⇥ F
2

⇥ ⌦
1

! [0, 1] is a

semi-Markov kernel on R+

0

⇥ ⌦
2

given ⌦
1

if:

• for (F
2

,!
1

) 2 F
2

⇥ ⌦
1

, q(·, F
2

|!
1

) is non-decreasing, right-continuous

and q(0, F
2

|!
1

) = 0;

• for t � 0, q(t, ·|·) is a sub-Markov kernel on ⌦
2

given ⌦
1

;

• the limit lim
t"1

q(t, ·|·) is a Markov kernel on ⌦
2

given ⌦
1

.

In our model, let Q(·, ·|·) be a semi-Markov kernel on R+

0

⇥E given K, deter-

mining the (stationary) transition mechanism of the semi-Markov decision
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process: for any t � 0 and ẽ 2 E , given the state-action pair (e,↵) 2 K at

some decision epoch, the quantity3 Q(t, ẽ|(e,↵)) represents the (joint) proba-
bility that the time until the next decision epoch is less than or equal to t and

the next system state is ẽ. Detailed computations are given in Section 3.4.

Terminal kernel

The terminal kernel P (·|·) is a sub-Markov kernel on N givenK⇥T�, where we

introduce T� := R�[T. Specifically, P (·|·) describes the execution dynamics

between the last decision epoch and the maturity: for any z 2 N, given

the state-action pair (e,↵) 2 K and the time to maturity � 2 T� at some

decision epoch4, the quantity5 P (z|(e,↵),�) represents the (joint) probability
that the time until the next decision epoch is strictly larger than � and the

executed part of the limit order up to the maturity is of z unit size. Detailed

computations are given in Section 3.4.

Remark 3.9. According to our modelling framework, the terminal kernel

satisfies the following properties:

• P (0|(e,↵),�) = 1 when �  0;

•
P

z�0

P (z|(e,↵),�) = 1�Q(�, E|(e,↵)) when � > 0;

• P (z|(e,↵),�) = 0 when z > l;

for any (e,↵) 2 K.

Periodical reward function

The periodical reward function r : K ! R+

0

is defined as

r(e,↵) := ⇢ [m (p� 1) + z (p� j)] , (3.2)

3By abuse of language, we write Q(t, {ẽ}|(e,↵)) as Q(t, ẽ|(e,↵)).
4A decision epoch with time to maturity � < 0 means that it happens a period of

time |�| after the maturity.
5By abuse of language, we write P ({z}|((e,↵),�)) as P (z|(e,↵),�).
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for all (e,↵) 2 K, where ⇢ := ��, and represents the lump-sum payo↵ asso-

ciated with a decision epoch given the state-action pair (e,↵). Specifically,

the definition (3.2) is given based on the following assumption that assigns

the payo↵ from the matched part of the agent’s limit order to the nearest

incoming decision epoch.

Assumption 3.10 (Periodic reward function).

For n 2 N+, the payo↵ from any limit order that is executed within the

interval [⌧n�1

, ⌧n) is allocated at ⌧n.

Suppose that the system is in state e 2 E and the agent takes action ↵ 2 A(e)

at some decision epoch. She then earns an immediate payo↵ worth m(p�1)⇢

from submitting the market order of m unit size at the best bid price (p�1)�.

On top of that, the matched limit order of z unit size at the previous best

ask price (p� j)� entails a payo↵ worth z(p� j)⇢, which is allocated at the

current decision epoch according to Assumption 3.10.

Terminal reward function

The terminal reward function w : K ⇥ N ! R+

0

is defined by

w(e,↵, z) := ⇢ [(p� 1) (y �m) + z]� g (y �m� z) , (3.3)

for all (e,↵) 2 K and z 2 N, where the market impact function g : N ! R+

0

is in the form of

g(x) := ⇢
x

v
, (3.4)

for a constant v 2 N+. For any (e,↵) 2 K and z 2 N, the quantity w(e,↵, z)

represents the lump-sum payo↵ associated with the maturity T , given the

state-action pair (e,↵) at the last decision epoch, and the matched part of

the agent’s limit order between the last decision epoch and the maturity

being of z unit size. Particularly, the identity (3.3) is given based on the

following assumption:

Assumption 3.11 (Terminal reward function).

60



(a) the payo↵ from the matched limit order obtained within the interval [⌧n, T )

is allocated at T ;

(b) when depicting the market impact brought by the market order at matu-

rity, we assume that the impact is linear with v representing the average

depth (in unit size) on the bid side of the LOB;

(c) the unexecuted shares at maturity cannot sweep all the liquidity on the

bid side of the LOB, so that the terminal reward function is R+

0

-valued.

Assumption 3.11(b) yields the market impact function g in Formula (3.4).

Furthermore, based on Assumption 3.11(a)(b), the terminal reward w(e,↵, z)

consists of the payo↵ from the matched limit order (of amount ⇢pz) and the

market order at maturity (of amount ⇢(p� 1)(y �m� z)), deducted by the

corresponding market impact (of amount g(y �m� z)).

3.3.2 Dynamics of the finite-horizon semi-Markov decision pro-

cess

Assume that the agent applies a horizon-related Markov deterministic policy

defined below, specifying a decision rule for her action at each epoch based

on the current state and time to maturity.

Definition 3.12. A decision rule is a measurable function

� : E ⇥ T� 3 (e,�) 7! ↵ 2 A(e),

such that �(e,�) = (0, 0) for any (e,�) 2 E ⇥R�. Let � represent the set of

decision rules. A horizon-related Markov deterministic policy is a sequence

of decision rules

⇡ := {�
0

,�
1

,�
2

, . . . }, (3.5)

with �n 2 � for any n 2 N. We denote by ⇧ the set of horizon-related

Markov deterministic policies. A policy ⇡ 2 ⇧ is said to be stationary if there

exists � 2 � such that �n = � for any n 2 N and we write ⇡ = {�,�, . . . } :=

⇡�. We denote ⇧S the set of stationary horizon-related Markov deterministic

policies.
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Remark 3.13. At the n-th decision epoch with system state en and time

to maturity �n := T � ⌧n, an action an = �n(en,�n) is given by the decision

rule �n when the policy ⇡ 2 ⇧ in (3.5) is applied. In particular, the agent

stops trading at any decision epoch ⌧n with n > n (namely �n < 0) as ↵n =

(0, 0) by Definition 3.12, fulfilling Assumption 3.6(b).

Table 3.1 summarises the evolution of the semi-Markov decision model when

implementing a policy ⇡ 2 ⇧. Suppose that the system is in state e
0

at in-

ception ⌧
0

, and the agent has a planned trading horizon �
0

. According to the

policy ⇡, she chooses the action ↵
0

= �
0

(e
0

,�
0

) at the initial decision epoch.

It then takes a period of time t
1

to reach the next decision epoch ⌧
1

= ⌧
0

+ t
1

,

at which point the system state changes to e
1

and the time to maturity for

the agent becomes �
1

= �
0

� t
1

. She then chooses the action ↵
1

= �
1

(e
1

,�
1

),

and so on. At the n-th decision epoch, a periodic payo↵ of amount r(en,↵n)

incurs. At maturity T , a terminal payo↵ w(en,↵n, z) is obtained. In par-

ticular, the agent takes no action after T according to Remark 3.13, and

correspondingly no payo↵ is paid.

Table 3.1: evolution of the semi-Markov decision process under a horizon-related Markov
deterministic policy ⇡ 2 ⇧.

Index Time State Time to Maturity Action Payo↵

Initial ⌧
0

e
0

�
0

� 0 ↵
0

= �
0

(e
0

,�
0

) r(e
0

,↵
0

)
1st ⌧

1

= ⌧
0

+ t
1

e
1

�
1

= �
0

� t
1

� 0 ↵
1

= �
1

(e
1

,�
1

) r(e
1

,↵
1

)
2nd ⌧

2

= ⌧
1

+ t
2

e
2

�
2

= �
1

� t
2

� 0 ↵
2

= �
2

(e
2

,�
2

) r(e
2

,↵
2

)
...

...
...

...
...

...
(n� 1)-th ⌧n�1

= ⌧n�2

+ tn�1

en�1

�n�1

= �n�2

� tn�1

� 0 ↵n�1

= �n�1

(en�1

,�n�1

) r(en�1

,↵n�1

)
n-th ⌧n = ⌧n�1

+ tn en �n = �n�1

� tn � 0 ↵n = �n(en,�n) r(en,↵n)
Terminal T w(en,↵n, z)

(n+ 1)-th ⌧n+1

= ⌧n + tn+1

en+1

�n+1

= �n � tn+1

< 0 ↵n+1

= (0, 0) 0
...

...
...

...
...

...

In the following, we construct the semi-Markov decision process in a proba-

bility space based on the Ionescu Tulcea’s Theorem.

Definition 3.14. Let (⌦,F) be a measurable space consisting of the sample

space ⌦, defined by

⌦ :=
n

n 2 N, z 2 N,
�

{tn, en,�n,↵n} 2 R+

0

⇥ E ⇥ T� ⇥A(en)
�

n2N

o

,
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and the corresponding Borel �-algebra F . Define the random variables N,

Z, Xn, En, ⇤n, An on (⌦,F) as:

N(!) = n, Z(!) = z,

Xn(!) = tn, En(!) :=
�

Jn, V b
n , V

a
n , Pn, Zn, Yn

�

(!) = en,

⇤n(!) = �n, An(!) := (Mn, Ln) (!) = ↵n,

for any ! 2 ⌦ and n 2 N, where

• Xn is the time between the (n � 1)-th and the n-th decision epoch

(X
0

= 0 almost surely);

• En,⇤n, An represent the system state, time to maturity and agent’s

action at the n-th decision epoch;

• N is the index of the last decision epoch;

• Z is the amount (in unit size) of the agent’s limit order executed be-

tween the N-th decision epoch and the maturity.

Remark 3.15. Based on this modelling framework, the following properties

hold almost surely for n 2 N

• ⇤n+1

= ⇤n �Xn+1

: evolution of the time to maturity;

• Pn+1

= Pn + Jn+1

: evolution of the ask price (in tick size);

• Yn+1

= Yn � Mn � Zn+1

: evolution of the inventory position (in unit

size);

• Zn+1

 Ln: the amount of the matched limit order cannot exceed that

of the limit order posted by the agent in each queueing race;

• N = sup{n 2 N : ⇤n � 0}: index of the last decision epoch;

• Z  ZN+1

: the amount of the matched limit order between the last

decision epoch and the maturity cannot exceed that of limit order ex-

ecuted when there is no finite-horizon restriction.
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Theorem 3.16. [Ionescu Tulcea’s Theorem [7, Section 2.7.2]] For any (e,�) 2
E ⇥ T and ⇡ 2 ⇧, there exists a unique probability measure P⇡

(e,�) on (⌦,F)

such that, for any t � 0, ẽ 2 E, ↵ 2 A, z 2 N and n 2 N,

P⇡
(e,�)(X0

= 0, E
0

= e,⇤
0

= �) = 1,

P⇡
(e,�)(An = ↵|Hn = hn) = 1{�n(en,�n)=↵},

P⇡
(e,�)(Xn+1

 t, En+1

= ẽ|Hn = hn, An = ↵n) = Q(t, ẽ|(en,↵n)),

P⇡
(e,�)(Xn+1

> �n,Z = z|Hn = hn, An = ↵n) = P (z|(en,↵n),�n),

where

Hn :=

(

({X
0

, E
0

,⇤
0

}), if n = 0,
�

{Xi, Ei,⇤i, Ai}i=0,...,n�1

, {Xn, En,⇤n}
�

, if n 2 N+,

is the sequence of random variables describing the history up to the n-th deci-

sion epoch. In particular, realisations of the random variables (or sequences

of random variables) are denoted by the corresponding lower case letters.

3.3.3 Value function and optimal policy

Consider an agent with the objective and trading strategies as described in

Section 3.2.2, introduce the following definition.

Definition 3.17. Define the finite-horizon expected reward function under

a policy ⇡ 2 ⇧ by

V ⇡(e,�) := E⇡
(e,�)

 

N
X

n=0

r(En, An) + w(EN, AN,Z)

!

, for any (e,�) 2 E ⇥ T,

(3.6)

as well as the value function

V ⇤(e,�) := sup {V ⇡(e,�), ⇡ 2 ⇧} . (3.7)

A policy ⇡⇤ 2 ⇧ is called T-optimal if the equality

V ⇡⇤
(e,�) = V ⇤(e,�) (3.8)
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holds for all (e,�) 2 E ⇥ T.

Remark 3.18. For any (e,�) 2 E ⇥T, we can rewrite the quantity V ⇡(e,�)

in (3.6) as

V ⇡(e,�) = E⇡
(e,�)

 1
X

n=0

�

r(En, An)1{N�n}
�

+ w(En, An,Z)1{N=n}

!

= E⇡
(e,�)

 1
X

n=0

�

r(En, An)1{⇤n�0} + w(En, An,Z)1{0⇤n<Xn+1}
�

!

=
1
X

n=0

E⇡
(e,�)

⇣

r(En, An)1{⇤n�0} + w(En, An,Z)1{0⇤n<Xn+1}

⌘

,

where the second equality follows by writing

{N � n} = {⇤
0

� 0, . . . ,⇤n � 0} = {⇤n � 0}, and

{N = n} = {⇤
0

� 0, . . . ,⇤n � 0,⇤n+1

< 0} = {⇤n � 0,⇤n+1

< 0} = {0  ⇤n < Xn+1

},

since the sequence {⇤n}n2N is non-increasing, and the third equality is due to

the non-negativity of the periodic/terminal reward function and the mono-

tone convergence theorem.

3.4 Semi-Markov kernel

We now provide the expressions for the semi-Markov kernel Q(·, ·|·) and the

terminal kernel P (·|·) defined in Section 3.3.1 using the language of queueing

theory. We first (Section 3.4.1) model the dynamics of the best queues with

the agent’s participation as generalised birth-death processes, and derive the

closed-form expressions for the semi-Markov kernel and the terminal kernel

in all possible scenarios in terms of the distributions of the first-passage time

of the generalised birth-death processes to zero. We then (Section 3.4.2)

compute these distributions by using Laplace method.
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3.4.1 Closed-form expressions

For notational convenience, we shall fix an element (e, �) in E ⇥ T together

with a Markov deterministic policy ⇡ 2 ⇧ and denote P⇡
(e,�) by P throughout

this section.

Semi-Markov kernel

According to Theorem 3.16 and the Markovian property (M1), we can ex-

press the semi-Markov kernel as a (stationary) distribution of the duration

and outcome of a queueing race given its initial condition and the agent’s

action:

Q (t, ẽ|(e,↵)) = P (Xn+1

 t, En+1

= ẽ|En = e, An = ↵) , (3.9)

for any t � 0, ẽ 2 E , (e,↵) 2 K, n 2 N. In order to simplify further calcula-

tions, we now factorise the conditional probability in (3.9).

Proposition 3.19. For any ẽ :=
�

j̃, ṽb, ṽa, p̃, z̃, ỹ
�

2 E, e := (j, vb, va, p, z, y),

↵ := (m, l), s.t. (e, a) 2 K, we have

Q(t, ẽ|(e,↵)) = Qj,v,↵

�

t, j̃, z̃
�

f
˜j

�

ṽb, ṽa
�

1{p̃=p+˜j}1{ỹ=y�m�z̃}, (3.10)

for all t � 0, where6 for any n 2 N,

Qj,v,↵

�

t, j̃, z̃
�

:= P
⇣

Xn+1

 t, Jn+1

= j̃, Zn+1

= z̃
�

�

�

Jn = j, (V b
n , V

a
n ) = (vb, va), An = ↵

⌘

.

6 P (short for P⇡
(e,�) in this section) is the probability measure introduced in Theo-

rem 3.16, and we use the short-hand notation P
⇣

Xn+1  t, Jn+1 = j̃, Zn+1 = z̃,
�

�

�

· · ·
⌘

=

P
⇣

Xn+1  t, Jn+1 = j̃, Zn+1 = z̃, V b
n+1 2 N+, V a

n+1 2 N+, Pn+1 2 N+, Yn+1 2 N
�

�

�

· · ·
⌘
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Proof. According to Assumption 3.2 and Remark 3.15, we can write

Q(t, ẽ|(e,↵)) = P
�

Xn+1

 t, Jn+1

= j̃, Zn+1

= z̃|En = e, An = ↵
�

⇥ P
�

(V b
n+1

, V a
n+1

) = (ṽb, ṽa), Pn+1

= p̃, Yn+1

= ỹ
�

�

Xn+1

 t, Jn+1

= j̃, Zn+1

= z̃, En = e, An = ↵
�

= Qj,v,↵

�

t, j̃, z̃
�

P
�

(V b
n+1

, V a
n+1

) = (ṽb, ṽa)|Jn+1

= j̃
�

⇥
P
�

Pn+1

= p̃|Jn+1

= j̃, Pn = p
�

P (Yn+1

= ỹ|Yn = y,Mn = m,Zn+1

= z̃)

= Qj,v,↵

�

t, j̃, z̃
�

f
˜j

�

ṽb, ṽa
�

1{p̃=p+˜j}1{ỹ=y�m�z̃}.

Remark 3.20. The function Q is a semi-Markov kernel on R+

0

⇥E 0 given K0,

where

E 0 := {�1,+1}⇥ {0, 1, . . . , N};
K0 :=

�

(j, vb, va,↵) : j 2 {+1,�1}, (vb, va) 2 {1, . . . , N}2,↵ 2 A,m < vb
 

.

Indeed, for any (j, vb, va,↵) 2 K0, the probabilityQj,v,↵ (t, {+1,�1}, {0, . . . , l})
converges to 1 for large t, indicating the amount of the matched limit order

cannot exceed that of the limit order posted by the agent.

According to Assumptions 3.2, 3.4 and 3.6, the semi-Markov kernel Q de-

scribes the dynamical mechanism of a queueing race between the volumes

sitting at the best bid and ask prices. Intuitively, fix
�

j, vb, va,↵
�

2 K0, and

consider a queueing race starting with vb and va units limit orders (from

the general market participants) at the best bid and ask prices at a certain

decision epoch. The agent subsequently submits a sell market order of m

unit size, which decreases the best bid volume to (vb � m) unit size, and

posts a sell limit order of l unit size, which has less time priority than the

pre-existing va units limit orders at the best ask price. After the agent’s ac-

tion, mutually independent order book events happen at exponential times

with the rates depending on the price move direction j and therefore change

the volumes of the best bid and ask queues. The queueing race terminates

whenever the volume of either the best bid or ask queue reaches zero, and we

denote the result of a queueing race by +1 (resp. �1) if the best ask (resp.
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bid) queue is depleted first. For (t, j̃, z̃) 2 R+

0

⇥E 0, the quantity Qj,v,↵(t, j̃, z̃)

is the probability that the duration of the race is less than or equal to t, the

result is j̃, and z̃ unit size of the agent’s limit order gets executed. In the

following, we model the dynamics of the volumes at the best bid and ask

prices as generalised birth-death processes, and therefore build a connection

between the semi-Markov kernel and the queueing theory.

Before proceeding to the next definition, we introduce the following nota-

tions: for any continuous-time process (Ls)s�0

, denote by ⌧L its first passage

time to the origin, and fL (resp. FL) the probability density function (resp.

cumulative distribution function) of ⌧L.

Definition 3.21. Let (⌦,F ,P) be a new filtered probability space. For v 2
N+, l 2 N and , µ, ✓, ⌘ > 0, define the following processes on this space:

• (B[v,, µ, ✓]s)s�0

is a birth and death process with state space N and

absorbing state 0, given the initial state v;  is the birth rate and µ+ i✓

the death rate when in state i 2 N+;

• (C[v, l, µ, ✓]s)s�0

is a pure death process with state space N and ab-

sorbing state 0 given initial state l + v; the death rate equals to µ +

max(0, i� l)✓ when in state i 2 N+;

• (G[, µ, ✓, ⌘]s)s�0

is a process with state space N given initial state 0.

Strictly before time ⌘, it is a birth and death process with birth rate 

and death rate i✓ when in state i 2 N. After ⌘, the birth and death

rate of this process change to  and µ+ i✓ when in state i 2 N+ and 0

becomes the absorbing state.

• (A[v, l,, µ, ✓]s)s�0

is a process with state space N2 defined by

A[v, l,, µ, ✓]s :=
�

C[v, l, µ, ✓]s, G[, µ, ✓, ⌧C[v,l,µ,✓]]s
�

, for s � 0.

Lemma 3.22. [28, Lemma 3] Fix
�

j, vb, va,↵
�

2 K0. Suppose that, at the n-

th decision epoch, the queueing race starts with vb and va units limit orders

at the best bid and ask prices after the price moves by j tick, and the agent

takes an action ↵ = (m, l). On [⌧n, ⌧n+1

), define the following processes:
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• eB: size of the orders sitting at the best bid price;

• eC: size of the agent’s limit order together with the orders with higher

time priority at the best ask price;

• eG: size of the orders with lower time priority than the agent’s limit

order at the best ask price.

Then there exist two independent processes B[vb�m,bj, µ
b
j, ✓

b
j ], A[v

a, l,aj , µ
a
j , ✓

a
j ]

such that

B[vb�m,bj, µ
b
j, ✓

b
j ]s = eBs+⌧n and A[va, l,aj , µ

a
j , ✓

a
j ]s = ( eCs+⌧n , eGs+⌧n),

for all s 2 [0, ⌧n+1

� ⌧n). According to Lemma 3.22, we provide an expression

for Q in the following, and defer its proof to Appendix C.1.

Proposition 3.23. Fix (j, vb, va,↵) 2 K0, introduce the following short-hand

notations:

Bb := B[vb �m,bj, µ
b
j, ✓

b
j ], Ba := B[va,aj , µ

a
j , ✓

a
j ],

Al := A[va, l,aj , µ
a
j , ✓

a
j ], C l := C[va, l, µa

j , ✓
a
j ],

as well as the scenarios:

S1 S2± S3 S4 S5 S6
l � 1 l = 0 l � 1 l = 1 l > 1 l > 1
j̃ = +1 j̃ = ±1 j̃ = �1 j̃ = �1 j̃ = �1 j̃ = �1

z̃ = 0 z̃ = 1 z̃ 2 {1, . . . , l � 1} z̃ = l
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Then the following holds for (t, j̃, z̃) 2 R+

0

⇥ E 0:

Qj,v,↵

�

t, j̃, z̃
�

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:



FAl(t)�
Z t

0

fAl(u)FBb(u)du

�

1{z̃=l}, [S1],


FBa(t)�
Z t

0

fBa(u)FBb(u)du

�

1{z̃=0}, [S2+],


FBb(t)�
Z t

0

fBb(u)FBa(u)du

�

1{z̃=0}, [S2�],

FBb(t)�
Z t

0

fBb(u)FC1(u)du, [S3],
Z t

0

fBb(u) [FC1(u)� FA1(u)] du, [S4],
Z t

0

f ⇤
Bb(✏)

Z ✏

0

f ⇤
C z̃(u)du d✏, [S5],

Z t

0

fBb(u) [FC1(u)� FAl(u)] du

�
l�1

X

z=1

Z t

0

f ⇤
Bb(✏)

Z ✏

0

f ⇤
Cz(u)du d✏, [S6],

0, otherwise,

where f ⇤
Cz(⇠) := eµ

a
j ⇠fCz(⇠) and f ⇤

Bb(⇠) := e�µa
j ⇠fBb(⇠) for ⇠ � 0 and z 2 N+.

Terminal kernel

According to Theorem 3.16 and the Markovian property (M1), we can ex-

press the terminal kernel as

P (z|(e,↵),�) = P(Xn+1

> �,Z = z|En = e, An = ↵), (3.11)

for any (e,↵) 2 K, � 2 R, z 2 N. Remark 3.9 implies that only the

cases when � > 0 and z 2 {0, . . . , l} need to be considered. According to

Lemma 3.22, we now provide an expression for Q, proved in Appendix C.2.

Proposition 3.24. For any � > 0, (e, �) 2 K (with corresponding (j, vb, va,m, l) 2
K0)), introduce the processes Bb, Ba, Al, C l as in Proposition 3.23. Then the
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following equality holds:

P (z|(e, �),�) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

FBb(�)FBa(�), if l = 0, z = 0,

FBb(�)FC1(�), if l � 1, z = 0,

FBb(�) [FCz(�)� (FCz ⇤ F
⌅

) (�)] , if l > 1, z 2 {1, . . . , l � 1},
FBb(�) [FCl(�)� FAl(�)] , if l � 1, z = l,

0, otherwise,

where ⌅ is an exponentially distributed random variable with parameter µa
j ,

⇤ is the convolution operator and FL := 1� FL.

3.4.2 Laplace method

Not surprisingly, the distributions of the first-passage time of the generalised

birth-death processes A,B,C in Definition 3.21 do not admit closed-form

expressions. To compute them, we first determine their Laplace transforms,

and invert them numerically. We keep here the notations of Proposition 3.23.

Definition 3.25. Let f : R+

0

! R be a function absolutely integrable

on [0,!] for any ! > 0. Its (one-sided) Laplace transform is defined by

f̂(s) := lim
!"1

Z !

0

e�stf(t)dt,

for all s 2 C such that the right-hand side converges.

The standard (albeit simplified) inversion formula for the Laplace transform

is the Bromwich contour integral, or Mellin inversion [1, Chapter 1]: for an

absolutely integrable continuous function f , the identity

f(t) =
1

2⇡i

Z x+i1

x�i1
etsf̂(s)ds

holds for any x > 0, and, by symmetry arguments, can be simplified to

f(t) =
2ext

⇡

Z 1

0

<
h

f̂(x+ iu)
i

cos(ut)du, for all t > 0. (3.12)
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We then apply the Euler algorithm in [3, Section 1] that exploits the specific

structure of the integrand in (3.12). We now consider the general case of a

birth-death process Xb with initial state b 2 N+, and with birth rate �n � 0

and death rate µn > 0 in state n 2 N+. The following lemma, derived in [28,

Equation (14)] following Abate-Whitt methodology [2, Section 4], expresses

the Laplace transforms of the density and cumulative distribution function

of ⌧Xb .

Lemma 3.26. The equality F̂Xb(s) = s�1f̂Xb(s) holds on {s 2 C : <(s) > 0},
and

f̂Xb(s) =
b
Y

n=1

"

� 1

�n�1

�
k�0

✓

��k+n�1

µk+n

�k+n + µk+n + s

◆

#

, for all s 2 C s.t. <(s) > 0,

(3.13)

where�
k�0

ak
bk

:= lim
k"1

t
0

� t
1

� · · · � tk(0) and tk(u) :=
ak

bk + u
for u � 0.

Proposition 3.27. Fix v 2 N+, l 2 N and , µ, ✓ > 0, and denote the

processes A[v, l,, µ, ✓], B[v,, µ, ✓], C[v, l, µ, ✓] (as in Definition 3.21) by A,

B and C, respectively. In particular, we denote the process B[j,, µ, ✓] by Bj

for any j 2 N+. Assume that fA, fB and fC are continuous on R+. Then

f̂B(s) =
1

(�)v
v
Y

n=1

�
k�0



�µ� (k + n)✓

+ µ+ (k + n)✓ + s

�

, and

f̂C(s) =

✓

µ

µ+ s

◆l l+v
Y

n=l+1

µ+ (n� l)✓

µ+ (n� l)✓ + s
, for all <(s) > 0.

Besides, given Rj(u) :=
1

j!
exp

⇣

�
✓

�

1� e�✓u
�

⌘ h

✓

�

1� e�✓u
�

ij

for u � 0,

j 2 N, we have

fA(t) = fC(t)R0

(t) +

Z t

0

1
X

j=1

fBj(t� u)fC(u)Rj(u)du. (3.14)

Proof. The formulae for f̂B and f̂C are derived directly from Lemma 3.26,

and we therefore focus on (3.14). Let ⌧
�

:= ⌧A � ⌧C . Before time ⌧C , the

process (Gu) := (G[, µ, ✓, ⌧C ]u) can be regarded as an initial emptyM/M/1
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queue with arrival rate  and service rate ✓. Let Rj(u) denote the probability

of Gu being in state j 2 N when u < ⌧C . Then, by [77, p. 160], we have

Rj(u) = P
⇣

Gu = j
�

�

�

⌧C = u
⌘

=
1

j!
exp

n

�
✓

�

1� e�✓u
�

o h

✓

�

1� e�✓u
�

ij

.

Given ⌧C = u,Gu = j 2 N+, the probability density function of ⌧
�

is fBj .

Indeed, in the case when ⌧C = u and Gu = G⌧C = j, the time spent on

depleting the agent’s order and the orders with higher time priority is u and at

that time the volume remaining in the queue is of j unit size. The remaining

queue can be described by the process Bj, and the depletion time ⌧
�

is

thus ⌧Bj (with density fBj). And given ⌧C = u,Gu = 0, we have ⌧
�

= 0

almost surely. Therefore, the mixture density �(·)R
0

(u) +
1
X

j=1

fBj(·)Rj(u),

with �(·) being the Dirac mass, provides the density of ⌧
�

given ⌧C = u.

Furthermore, the function �(·� u)R
0

(u) +
1
X

j=1

fBj(·� u)Rj(u) is the density

of ⌧A = ⌧
�

+ ⌧C given ⌧C = u. Consequently, we obtain (3.14).

3.5 Existence of Optimal Policy

We now illustrate our main result, namely the existence and uniqueness of

the value function, and the existence of a stationary optimal policy, as in the

following theorem.

Theorem 3.28. The value function V ⇤ in (3.7) exists and is unique, and

there exists a stationary T-optimal policy ⇡�
⇤
:= {�⇤,�⇤, . . . } 2 ⇧S in (3.8),

with

�⇤(e,�) = argmax
↵2A(e)

(

r(e,↵) +
1
X

z=0

w(e,↵, z)P (z|(e,↵),�)

+
X

ẽ2E

Z �

0

V ⇤(ẽ,�� t)Q(dt, ẽ|(e,↵))
)

, (3.15)

for any (e,�) 2 E ⇥ T.
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The proof of Theorem 3.28 relies on several ingredients. In the first place, to

make a finite-horizon semi-Markov decision model sensible, it is essential to

have a (almost surely) finite number of decision epochs before maturity. In

our setting, this is equivalent to the following lemma.

Lemma 3.29. For any (e, �) 2 E⇥T, ⇡ 2 ⇧, the limit lim
n"1

P⇡
(e,�)(N < n) = 1

holds for N as in Definition 3.14.

Proof. According to [50, Proposition 2.1], it su�ces to prove that there exist

⇣, � > 0 such that

Q(⇣, E|(e,↵))  1� �, (3.16)

for any (e,↵) 2 K. According to (3.9) and Lemma 3.22, we can write, for

any ⇣ > 0 and (e,↵) 2 K,

Q(⇣, E|(e,↵)) = P⇡
(e,�)(Xn+1

 ⇣|En = e, An = ↵)

= P (⌧Bb ^ ⌧Al  ⇣) = 1� P (⌧Bb > ⇣)P (⌧Al > ⇣) .

By Assumption 3.6(c), the agent never consumes up all the volumes at the

best bid price through submitting market orders, so that there is at least

one unit size order left at the best bid and ask price after the agent’s action.

Then according to stochastic ordering for the birth and death processes [53,

Section 3], the inequalities

P (⌧Bb > ⇣) � P
⇣

⌧B[1,0,µb
j ,✓

b
j ]
> ⇣

⌘

� e�◆⇣ ,

and

P (⌧Al > ⇣) � P (⌧Cl > ⇣) � P
⇣

⌧C[1,0,µa
j ,✓

a
j ]
> ⇣

⌘

� e�◆⇣ ,

hold with ◆ := max
�

µs
j + ✓sj : (s, j) 2 {a, b}⇥ {+1,�1}

 

, and (3.16) there-

fore holds for ⇣ > 0 and � = e�2◆⇣ .

Next, let U denote the Banach space of non-negative valued functions on E⇥T
with a finite supremum norm:

U :=

(

u : E ⇥ T ! R+

0

�

�

�

�

�

kuk := sup
(e,�)2E⇥T

|u(e,�)| < 1
)

.
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and, for any decision rule � 2 �, introduce the dynamic programming oper-

ator T � acting on U as

T �u(e,�) := r(e,�(e,�)) +
1
X

z=0

w(e,�(e,�), z)P (z|(e,�(e,�)),�)

+
X

ẽ2E

Z �

0

u(ẽ,�� t)Q
�

dt, ẽ|(e,�(e,�))
�

,

for any u 2 U and (e,�) 2 E ⇥ T. The following proposition, as proved in

Appendix C.3, gives properties of T �.

Proposition 3.30. For any � 2 � and ⇡ := {�
0

,�
1

,�
2

, . . . } 2 ⇧, we have

(a) T � is a monotone contraction on U with codomain U ;

(b) the identity V ⇡ = T �0V ⇡� holds on E⇥T, where ⇡� := {�
1

,�
2

, . . . } 2 ⇧.

By Proposition 3.30(b), the identity V ⇡�
= T �V ⇡�

holds for any � 2 � and

the corresponding stationary policy ⇡� := {�,�, . . . } 2 ⇧S. For any ⇡ 2
⇧, the finiteness of the state space and the action space together with

Lemma 3.29 yield that V ⇡ 2 U . Therefore, the Banach Fixed-Point’s The-

orem [40], together with Proposition 3.30(a), guarantees the existence and

uniqueness of V ⇡�
and yields that

lim
n"1

�

T �
�n

u = V ⇡�
, for any u 2 U . (3.17)

Introduce now the iteration operator V acting on U as, for any u 2 U ,
(e,�) 2 E ⇥ T,

Vu(e,�) := sup
↵2A(e)

(

r(e,↵) +
1
X

z=0

w(e,↵, z)P (z|(e,↵),�)

+
X

ẽ2E

Z �

0

u(ẽ,�� t)Q(dt, ẽ|(e,↵))
)

, (3.18)

which is also a contraction with codomain U . Indeed, V(U) ⇢ U is immediate

since the action space is finite, and the contraction property is inherited from
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that of T � by [31, Theorem 2]. The Banach Fixed-Point’s Theorem [40] then

ensures that Vu = u has a unique solution, denoted by u⇤. By [60, Section

1], the fixed point u⇤ admits a maximiser �⇤ such that u⇤ = T �⇤u⇤, with

�⇤(e,�) := argmax
↵2A(e)

(

r(e,↵) +
1
X

z=0

w(e,↵, z)P (z|(e,↵),�)

+
X

ẽ2E

Z �

0

u⇤(ẽ,�� t)Q(dt, ẽ|(e,↵))
)

, (3.19)

for any (e,�) 2 E ⇥ T.

Finally, Theorem 3.28 follows by proving V ⇤ = u⇤ = V ⇡�⇤
. Suppose that

a policy ⇡⇤ := {�⇤
0

,�⇤
1

,�⇤
2

, . . . } 2 ⇧ is T-optimal in (3.8). Proposition 3.30,

together with (3.17), yields that

V ⇤ = V ⇡⇤
= T �⇤0V ⇡⇤

�  T �⇤0V ⇡⇤  lim
n"1

�

T �⇤0
�n

V ⇡⇤
= V ⇡�⇤0 . (3.20)

Combining this with V ⇡�⇤0  V ⇤ by Definition 3.17 indicates that the station-

ary policy ⇡�
⇤
0 := {�⇤

0

,�⇤
0

, . . . } 2 ⇧S is also T-optimal. Since u⇤ = T �⇤u⇤ �
T �⇤0u⇤, applying Proposition 3.30 and (3.17) we obtain

V ⇤ = V ⇡�⇤0 = lim
n"1

�

T �⇤0
�n

u⇤  T �⇤0u⇤  u⇤ = T �⇤u⇤ = lim
n"1

�

T �⇤
�n

u⇤ = V ⇡�⇤  V ⇤,

Theorem 3.28 therefore follows.

3.6 Empirical studies and computational results

Our empirical calculations are based on the ‘Level-I’ LOBSTER data for

three large-tick stocks: Microsoft (MSFT), Intel (INTC) and Yahoo (YHOO),

that are traded on the Nasdaq platform from 11 April 2016 to 15 April 2016,

recording all market order arrivals, limit order arrivals and cancellations at

the best prices between 9:30 am and 4 pm. These three large-tick stocks

are selected due to price, trading volume and market share considerations as

in [12, Section 4]. In order to avoid the impact from the abnormal trading
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behaviours shortly after market opening or shortly before market closing,

we exclude market activities during the first and the last twenty minutes of

each trading day. We also exclude all the executions of hidden orders which

account for around 12% of the entire trading volume. In the following, we

first (Section 3.6.1) show some descriptive statistics for the selected large-

ticks stocks. We then (Section 3.6.2) illustrate the estimation methodology

of the Poisson parameters in Assumption 3.4, as well as the joint distribu-

tion of the best volumes after a price change in Assumption 3.2(b). We

next (Section 3.6.3) give a numerical scheme that approximates the value

function (3.7). We finally (Section 3.6.4) visualise the optimal decision rule

in (3.15) for liquidating the stock YHOO under di↵erent trading conditions.

3.6.1 Descriptive statistics

Table 3.2 presents the percentage of time during which the LOB is with a

given spread. For the three selected stocks, the spread is equal to one tick

for around 98% of time and is barely over two ticks. Next, we introduce

Table 3.2: percentage of time with a given spread

Spread 1 tick 2 ticks > 2 ticks
MSFT 98.14 1.86 0.00
INTC 98.33 1.67 0.00
YHOO 97.70 2.30 0.00

the definitions of forward and backward insertion. Suppose that the spread

is equal to one tick in the initial stage and then becomes two ticks when

either of the best bid or ask queue is depleted. Once the spread increases

to two ticks, a new limit order is quickly placed inside the spread, driving

the spread back to one tick. If the mid price after the insertion of that limit

order is the same as (resp. one tick higher or lower than) the mid price in

the initial stage, we call the insertion a backward (resp. forward) insertion.

Table 3.3 gives the probability of backward insertions being around 25% and

Figure 3.1 shows that the distribution of the queueing race duration after a

backward insertion is bimodal, with nearly 30% of the queueing races being

shorter than one millisecond, indicating the instability of the LOB state after
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a backward insertion. In sum, the above empirical observations enable us to

make Assumption 3.1(b) that omits the time when the spread is over one tick

and Assumption 3.2(a) that excludes the possibility of backward insertions.

Table 3.3: percentage of forward and backward insertions.

Insertion Forward Backward
MSFT 77.54 22.46
INTC 76.76 23.24
YHOO 73.95 26.05

Figure 3.1: YHOO: histogram of the queueing race duration after a backward Insertion (left
panel) and a forward insertion (right panel).

3.6.2 Parameter estimation

Poisson parameters

As in Assumption 3.1(a), orders from the general market participants are of

unit size. We first compute the average size of the limit orders, market orders

and cancellations at the best prices, denoted by Sl, Sm and Sc respectively,

and choose the unit size to be Sl. Estimation results are given in Table 3.4.

We then estimate the Poisson parameters as follows. From our sample data,

we formulate a set Q
+1

(resp. Q�1

) consisting of the queueing races hap-

pening immediately after a price increase (resp. decrease): if the spread
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Table 3.4: average order size (in shares).

MSFT INTC YHOO
Sl 176 317 209
Sm 332 565 334
Sc 163 309 201

is currently one tick, a queueing race q
+1

2 Q
+1

(resp. q�1

2 Q�1

) starts

when the best bid (resp. ask) price increases (resp. decreases) by one tick

after the best ask (resp. bid) queue depletes, and ends whenever either the

new best ask or bid queue depletes. By maximum likelihood estimation (see

Appendix C.5), we have

µ̂s
j =

Nm
s,j

Dj

Sm

Sl
, ̂sj =

N l
s,j

Dj

, ✓̂sj =
N c

s,j

Vs,j

Sc

Sl
, (3.21)

for s 2 {a, b} and j 2 {+1,�1}, where

• Nm
s,j, N

l
s,j and N c

s,j represent the total number of market orders, limit

orders and cancellations at s price7 for the queueing races in set Qj;

• Dj represents the sum of the length of the queueing races in Qj;

• Vs,j :=

#Qj
X

i=1

Z

Ti

Volsi(t)dt, where Volsi(t) (resp. Ti) denotes the volume

in unit size at s price at time t (resp. the time interval) of the i-th

queuing race in Qj.

Table 3.5 gives the Poisson parameter estimation where the agent’s action at

each decision epoch has no latency. For the three stocks, we find that:

• the rates of market order arrivals are indi↵erent to the side of the best

price and the price move direction;

• immediately after a price increase (resp. decrease), there is a surge of

limit order arrivals and cancellations at the best bid (resp. ask) price;

7By abuse of language, ‘at a (resp, b price)’ means ‘at the best ask (resp. bid) price’.
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• from an estimation (of the Poisson parameters) point of view, an in-

crease of the price on the bid (resp. ask) side is symmetric to a decrease

of price on the ask (resp. bid) side.

Table 3.6 gives the Poisson parameter estimation where the agent’s action

at each decision epoch has a one-millisecond latency8. By comparing it with

Table 3.5, we observe that:

• the rates of market order arrivals barely change;

• the rates of limit order arrivals and cancellations see a decrease, espe-

cially on the bid side after a price increase and on the ask side after a

price decrease;

• the symmetry remains una↵ected.

Table 3.5: Poisson parameter estimation with no latency.

MSFT INTC YHOO
s j µ  ✓ µ  ✓ µ  ✓
a +1 0.32 3.07 0.31 0.16 2.45 0.16 0.14 1.97 0.26
b +1 0.34 5.97 0.50 0.17 3.59 0.21 0.17 3.54 0.32
a -1 0.35 5.97 0.51 0.18 3.87 0.22 0.15 3.29 0.33
b -1 0.34 3.06 0.32 0.18 2.22 0.16 0.15 1.92 0.21

Table 3.6: Poisson parameter estimation with 1ms latency.

MSFT INTC YHOO
s j µ  ✓ µ  ✓ µ  ✓
a +1 0.31 2.89 0.27 0.15 2.36 0.15 0.13 1.87 0.23
b +1 0.33 3.31 0.40 0.19 2.46 0.17 0.16 2.07 0.26
a -1 0.34 3.22 0.41 0.18 2.49 0.18 0.14 2.02 0.27
b -1 0.34 2.87 0.27 0.19 2.36 0.17 0.15 1.83 0.18

8When estimating the Poisson parameters in this case, market activities at the first
one millisecond of each queueing race are excluded, and the queueing races with duration
shorter than one millisecond are excluded.
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Volume distribution after a price change

The best volumes in unit size are approximated by rounding the division of

the volume in shares by Sl up to the nearest integer. Figure 3.2 compares

the volume distribution immediately after a price change and one millisecond

later for YHOO9. We observe that:

• the volume at the best bid (resp. ask) price is quite thin immediately

after a price increase (decrease), but see a dramatic increase one mil-

lisecond later;

• the volume at the best ask (resp. bid) price keeps the distribution al-

most unchanged within the first millisecond of the queueing race start-

ing with a price increase (resp. decrease).

We believe that this observation is mainly due to the existence of National

Best Bid O↵er (NBBO) pegged orders: whenever a limit order initiates a

new price inside the spread and is not cancelled immediately, all the limit

orders pegged to the NBBO price will move in less than a millisecond to the

new price level correspondingly [26].

3.6.3 Numerical scheme

Dynamic programming techniques usually su↵er from the ‘curse of dimen-

sionality’ [72] to compute the value function through the iteration operator A
in (3.18). The next proposition, proved in Appendix C.4, allows us to reduce

the dimension of the problem, and hence to accelerate the implementation.

Proposition 3.31. Given e := (j, vb, va, p, z, y) 2 E , e := (j, vb, va, p, z, y) 2
E and � 2 T, we have

V ⇤(e,�) = V ⇤(e,�) + ⇢(p� p)(y + z) + ⇢(z � z)(p� j).
9In order to implement the numerical calculations later, we introduce the truncation

by assuming f±1(vb, va) = 0 for any vb, va > 25 since
25
X

vb=1

25
X

va=1

f±1(v
b, va) � 95% holds

right after a price change and one millisecond later for YHOO.
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Figure 3.2: YHOO: f+1 (left) and f�1 (right) with no latency (top) and with one-
millisecond latency (bottom).

Besides, the value function V ⇤ is monotone with respect to time to maturity.

Indeed, let ⇡⇤ := {�⇤,�⇤, . . . } be T-optimal and construct a policy ⇡" :=

{�",�", . . . }, for fixed " 2 (0, T ), as

�"(e,�) :=

(

�⇤(e,�� "), if "  �  T,

(0, 0), if 0  � < ".

Definition 3.17 immediately implies that V ⇡"
(e,�)  V ⇤(e,�) for any (e,�) 2

E⇥T and V ⇡"
(e,�) = V ⇤(e,��") for any (e,�) 2 E⇥[", T ]. The monotonicity

in time to maturity therefore follows since " is arbitrary. As in [54, 66], we

can take advantage of the monotonicity of the value function to get a faster
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convergence rate. The implementation procedure proceeds as follows, for a

given tolerance level tol:

Step 1. (initialization): let n = 0 and V
0

(e,�) = ⇢(p � 1)y + �⇢y/T for

every (e,�) 2 E ⇥ T;

Step 2. (iteration): choose a random pair (en,�n) 2 E⇥T and compute bVn :=

AVn(en,�n);

Step 3. (correction): with bUn := � bVn+(1��)Vn(en,�n) for � 2 (0, 1), define

the monotonicity projection as:

Vn+1

(e,�) =

8

>

>

>

<

>

>

>

:

bUn, if e = en,� = �n,
bUn _ Vn(e,�), if e = en,� > �n,
bUn ^ Vn(e,�), if e = en,� < �n,

Vn(e,�), if e 6= en;

Step 4. (accuracy control): if kVn+1

� Vnk tol, end the scheme; otherwise

go to Step 2 incrementing n to n+ 1.

3.6.4 Optimal strategy

In this section, we visualise the results of the optimal decision rule computed

in (3.15) in which the value function is approximated through the numerical

scheme in Section 3.6.3. To begin with, we set the size of the order � = 2

and the maturity T = 10 (throughout this section, order size is measured

in numbers of unit size and time is measured in seconds), both of which are

relatively small. Furthermore, we apply the parameters for the stylised LOB

model estimated in Section 3.6.2 together with the market parameters ⇢ = 1

and v = 9 (see (3.2) and (3.4) for the definitions) and the tolerance level tol =

0.001 in the numerical scheme. Indeed, Proposition 3.31 together with (3.15)

indicates that the optimal decision rule depends on the price move direction j,

the volumes at the best prices vb and va, remaining inventory y and time to

maturity �, and is irrelevant to the ask price in tick size p and the executed

limit order volume in the previous queueing race z. Moreover, the parameter
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estimation results in Table 3.5 and 3.6, together with those in Figure 3.2,

indicate that the agent’s latency (denoted by lat) also a↵ect her optimal

trading strategy.

Figure 3.3 illustrates the optimal decision rule as a function of vb, va, j

and lat when fixing y = 2 and � = 10, where the agent’s admissible trading

strategies are give by (3.1) as:

(m, l) 2
(

{(2, 0), (1, 0), (1, 1), (0, 0), (0, 1), (0, 2)} , if vb > 1,

{(0, 0), (0, 1), (0, 2)} , if vb = 1.

Comparing the subfigures horizontally and vertically, we observe the follow-

ing:

• The trading strategy that executes part of the order, either through

placing a limit order (m, l) = (0, 1) or submitting a market order (m, l) =

(1, 0), or doing nothing (m, l) = (0, 0) is never optimal in all scenarios.

Generally speaking, in the situations where the best ask volume is low

and the best bid volume is high (corresponding to the top-left part of

the subfigures), it it expected that the price will soon increase and the

agent will choose to wait or to trade partially as her best choice. How-

ever, since the trading horizon is quite short and the intensity rate for

the incoming market orders is relatively low, it seems that the agent

would rather post limit orders in order to increase the execution prob-

ability than wait for better opportunities. On top of that, this model

does not consider the risk of adverse selection, so that posing limit

orders is basically at no additional cost.

• The queue imbalance of the best prices, defined as I := (vb� va)/(vb+

va), is regarded as a powerful and e↵ective predictor of the short-term

price movements [11, 80] and is incorporated into the optimal market

making strategy [18]. However, we observe no clear relationship be-

tween the queue imbalance and the choice of the optimal strategy in

all scenarios, which may imply that queue imbalance should not be the

only consideration in building the optimal execution strategy. Reason
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for this result may come from Assumption 3.6(d) that the agent sticks

to a ‘no cancellation’ rule, so that the best bid and ask queue follow

di↵erent dynamics. On the contrary, the volume at the best ask price

individually plays the most decisive part in the selection of the optimal

strategy: the larger the best ask volume, the more aggressive trading

strategy the agent will employ. In particular, when the best ask vol-

ume va  6, the optimal strategy is always (m, l) = (0, 2), indicating

the value of queue position for limit orders [65]. Besides, volume at the

best bid price also contributes to determining the optimal strategy, in

particular when the best ask volume is high and the best bid volume is

low (corresponding to the bottom-right part of the subfigures). In such

situations, the optimal decision rule normally chooses to take all the

available liquidity through market orders in case the price soon moves

against the agent’s favour. However, when the best bid volume vb � 10,

the pattern of the optimal strategy is unchanged in all scenarios.

• The optimal strategy is no more aggressive after a price decline than

after a price increase. This is mainly because the cancellation rate of

each limit order from the general market participants is lower at the

best ask price after a price increase, which increases the execution risk

of the agent’s limit order, so the the agent prefers to use a market order

in this case.

• The optimal policy is no more aggressive when the agent has no latency

than one-millisecond latency. On the one hand, this result comes as

the cancellation rate of each limit order from the general market par-

ticipants is higher at the best ask price when there is no latency, which

increases the execution probability of the agent’s limit order. On the

other hand, suppose the liquidation process enters into the next round

of queueing race, in which the volumes at the best prices change dra-

matically within the first one millisecond, an agent with zero latency

can take most advantage of the speed to occupy a good queue position

in the new queueing race. By contrast, an agent with one-millisecond

latency is less likely to get a high time priority in the new queue, and

therefore prefers to react more aggressively in order to terminate the
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trade as soon as possible.

Figure 3.3: optimal policy as a function of best ask volume (x-axis: va = 1, . . . , 25), best
bid volume (y-axis: vb = 1, . . . , 25), latency (top: lat = 0ms; bottom: lat = 1ms) and
price move direction (left: j = �1; right: j = 1) when fixing inventory y = 2 and time to
maturity � = 10.

Figure 3.4 shows the optimal decision rule as a function of vb, va, j and �

(valued in 3 and 10 seconds) by fixing y = 1 and lat = 1ms, where the agent’s

admissible trading strategies are given by

(m, l) 2
(

{(1, 0), (0, 0), (0, 1)} , if vb > 1,

{(0, 0), (0, 1)} , if vb = 1.
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In addition to the previous results, we find the agent to be more aggressive

when there is less time to maturity.

Figure 3.4: optimal policy as a function of best ask volume (x-axis: va = 1, . . . , 25), best
bid volume (y-axis: vb = 1, . . . , 25), time to maturity (top: � = 3; bottom: � = 10)
and price move direction (left: j = �1; right: j = 1) when fixing inventory y = 1 and
latency lat = 1ms.
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A
Empirical studies for

large-tick stocks

In this section, we conduct some empirical studies based on the LOBSTER

dataset (introduced in Section 1.4) for three highly liquid large-tick stocks:

Microsoft (MSFT), Intel (INTC) and Yahoo (YHOO), that are traded on

the Nasdaq platform in 2016 (corresponds to 252 trading days). These three

large-tick stocks are selected according to price, trading volume and market

share considerations, see [12, Section 4] for the detailed selection rule. On top

of that, the sample data we request contain information up to the second best

price level on both sides of the market. Our focus on the top two price levels

is motivated by the empirical findings indicating that orders placed deeper

into the order book virtually have no price impact on the market [47]. We

also exclude events that occur during the first and last ten minutes of each

active trading day in order to avoid the erratic e↵ects shortly after market

opening and shortly before market closure.
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A.1 Concurrency

A key feature of a LOB dataset is its timestamp granularity, that is, the

smallest time interval between di↵erent event timestamps. Currently, almost

all LOB literatures are based on datasets with timestamp granularity up to

one millisecond, which means, events that arrive within the same millisecond

are displayed at the same timestamp in such dataset. However, empirical

evidence shows that sub-millisecond algorithmic trading behaviours indeed

exist. For example, Menkveld [64] shows that twenty percent of the trades

occur within the same millisecond and proposes that these clustered mar-

ket order arrivals increase the adverse selection cost for non-HFT traders.

Thanks to the nanosecond granularity provided in the LOBSTER dataset,

we are able to observe the most subtle LOB dynamics and study the ultra-fast

activities in the market.

For each of the selected stocks over the entire sample period, we categorise the

timestamps in the raw dataset into three categories based on the number of

order book events being recorded at that timestamp, namely, one event, two

events and more than two events. To be more specific, if exactly one event

is recored at a timestamp, we call it an isolated event; if exactly two (resp.

more than two) events are recorded at a timestamp, we treat these events as

a whole and call it an event pair (resp. event bundle). In particular, events

recorded at the same timestamp are listed in a logical sequence reflecting

the price-visibility-time priority. Table A.1 presents the descriptive statistics

on the isolated events, event pairs and event bundles, respectively. We are

particularly interested in the composition and structure of the event pairs

and event bundles.

In general, we observe that the timestamps and the associated events in the

datasets of the three selected stocks have similar characteristics, which are

summarised in the following:

• over 93% of the timestamps have only one event being recorded: slightly

more than half (resp. nearly half) of these isolated events are of type

submission (resp. cancellation), while only around 1% of the isolated

89



Table A.1: descriptive statistics on timestamps and recorded events in 2016.

Panel A gives the total number of timestamps (# Timestamp) and the percentage of
timestamps at which an isolated event (1 Event %), an event pair (2 Events %) and an event
bundle (> 2 Event %) is recorded.
Panel B gives the percentage of isolated events belonging to event type
submission (SUB %), full cancellation (Full CAN %), partial cancellation (Partial CAN %)
and execution (EXE %).
Panel C gives the percentage of event pairs being in the form of a full cancellation followed
by a submission of the same size and on the same side (CAN-SUB %), two executions on the
same side (TWO-EXE %) and other paired combinations (Others %).
Panel D gives the percentage of event bundles being in the form of all executions on the
same side (All-EXE %) and other serial combinations (Other %).
Particularly, all means and standard deviations (displayed in the brackets) in this table are
reported across trading days.

Panel A: Overall

Ticker # Timestamp 1 Event % 2 Events % > 2 Events %

MSFT 684,000 (315,721) 93.11 (2.31) 6.39 (2.31) 0.50 (0.11)
INTC 398,523 (171,709) 94.24 (0.99) 5.32 (1.00) 0.44 (0.08)
YHOO 423,360 (206,285) 93.84 (0.79) 5.79 (0.80) 0.37 (0.09)

Panel B: Isolated events

Ticker SUB % Full CAN % Partial CAN % EXE %

MSFT 50.51 (0.52) 47.37 (0.59) 1.12 (0.34) 1.00 (0.23)
INTC 50.61 (0.40) 47.58 (0.67) 0.97 (0.63) 0.84 (0.21)
YHOO 50.16 (0.39) 47.89 (0.63) 0.90 (0.34) 1.05 (0.28)

Panel C: Event pairs

Ticker CAN-SUB % TWO-EXE % Others %

MSFT 94.66 (1.53) 4.80 (1.38) 0.54 (0.26)
INTC 93.65 (2.37) 4.60 (1.53) 1.75 (1.45)
YHOO 94.28 (1.66) 5.35 (1.58) 0.37 (0.15)

Panel D: Event bundles

Ticker ALL-EXE % Others %

MSFT 94.95 (2.62) 5.05 (2.62)
INTC 93.87 (2.20) 6.13 (2.20)
YHOO 94.70 (1.73) 5.30 (1.73)
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events are of type execution;

• around 6% of the timestamps have two events being recorded: nearly 95%

of these event pairs are in the form of ‘a full cancellation followed by a

submission of an order with the same size and on the same side’, and

nearly 5% of those event pairs are in the form of ‘executions of two

orders on the same side’;

• around 0.5% of the timestamps have more than two events being recorded,

and nearly 95% of those event bundles are in the form of ‘executions

of multiple orders on the same side’.

Remark A.1. A timestamp is the time at which an event is recorded by

a computer, which is di↵erent from the time of the event itself [9]. Intu-

itively, the greater the timestamp granularity, the less likely di↵erent events

are recorded at the same timestamp. However, we observe that approxi-

mately 12.6% of the events are non-isolated in a nanosecond-timestamped

environment. Furthermore, Nasdaq has a platform latency of around 10�6

second [12], which arises due to the time it takes to process and route mes-

sages1 inside the automated trading platform [57]. Therefore, we propose

that events recorded at the same timestamp are processed concurrently and

are extremely likely triggered by a single message. Based on our empirical

results in Table A.1, most event pairs are in the form of ‘same-size, same-

side full cancellation and submission’. Together with Figure A.1 indicating

the direction of the order price modification, we believe that this pattern is

interpreted as a pegged order adjusting its price to the newly generated best

price inside the spread. Furthermore, most event bundles are in the form of

‘same-side executions’. We believe that this pattern indicates a single market

order matching with several di↵erent limit orders.

Based on Remark A.1, we convert the limit order oriented raw dataset into

a message oriented dataset through the following rules:

(R1) if two events, first (resp. second) of which is of type full cancellation

1Amessage is a standardised packet of data that enables a trader and a trading platform
to communicate with each other.
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Figure A.1: YHOO: direction of order price modification for event pairs in the form of
‘same-size, same-side full cancellation and submission’.

The red (resp. green) bars represent the counts of the event pairs on the sell (resp. buy) side
of the market. On the horizontal axis, 0 represents that the cancellation and submission of
an order occur at the same price level; 1 (resp. �1) represents that the submission price is
one tick higher (resp. lower) than the cancellation price.

(resp. submission), have the same timestamp, same size, same direc-

tion, they will be combined into a single message of type modification;

(R2) if more than one event, all of which are of type execution, have the

same timestamp, they will be combined into a single message of type

market order;

(R3) in other cases, each event of type submission, full/partial cancellation

and execution is treated as a message of type limit order, full/partial

cancellation and market order, respectively2.

We call the dataset generated through the above procedures the message

dataset. Clearly, the message dataset describes the market participants’

behaviours in a more e�cient and convenient way, as each message represents

a single trading directive sent to the platform.

2Event pairs or event bundles with a pattern that is not included in (R1) and (R2)
barely appear and we therefore regard them as collections of isolated events for simplicity.
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A.2 Clock-time Periodicity

In this section, we study the periodicity of the messages arriving to the

market by processing the timestamps in the message datasets. In the first

place, we introduce the following definition for nanosecond timestamps.

Definition A.2. For a nanosecond timestamp t (in seconds after midnight),

we define its millisecond remainder (resp. microsecond remainder) by

b1000(t� btc)c (resp. b1000(1000t� b1000tc)c),

which is interpreted as the number of the millisecond (resp. microsecond)

past the most recent one-second (resp. one-millisecond) boundary.

Under the premiss that message arrivals have no clock-time periodicity, the

millisecond and the microsecond remainders are expected to be uniformly

distributed over the integer set {0, 1, . . . , 999}. However, this is not true for

millisecond remainders based on a previous empirical study by Hasbrouck

and Saar [44]. The authors employ a millisecond-timestamped Nasdaq sam-

ple data in October 2007 and June 2008, and find that the empirical distri-

butions of the millisecond remainders in both sample periods distinctively

departure from uniformity: large peaks occur at roughly 10 to 30 millisecond

and around 150 millisecond after the one-second mark. They propose that

this periodic pattern is mainly driven by the employments of agency algo-

rithms that examine and respond to market conditions every second. They

also argue that the peak positions shown in the empirical distributions re-

flect the levels of algorithm latency caused by computation and information

transmission.

In Figure A.2, we exhibit the empirical distributions of both the millisecond

and microsecond remainders together with the null distribution depicted by

the horizontal line at 0.001.

In terms of the empirical distribution of the millisecond remainders, the re-

sults obtained from our sample data (we call them new distributions) are

similar to those from Hasbrouck and Saar’s experiment (we call them old
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Figure A.2: MSFT (top-left), INTC (top-right) and YHOO (bottom): empirical distribu-
tions of the millisecond and microsecond remainders in 2016.

This figure exhibits the empirical distributions of the millisecond remainders (blue lines) and
the microsecond remainders (red lines) of the timestamps in the message datasets for three
stocks, MSFT, INTC and YHOO, in 2016. For a certain timestamp, the millisecond (resp.
microsecond) remainder is the number (rounded down to the nearest integer) of millisecond
(resp. microsecond) past the most recent one-second (one-millisecond) boundary. The
horizontal black solid line in each subgraph represents the position of the uniform distribution
(the null hypothesis).

94



distributions): large peaks occur shortly after the one-second boundary. In

general, we agree with Hasbrouck and Saar’s viewpoint proposing that such

pattern is indicative of the periodic behaviour by the agency algorithms.

Furthermore, the new distributions are more positively skewed than the old

ones and the peak positions observed in the new distributions are located at

around 0 to 5 millisecond and roughly 20 to 30 millisecond, which are closer

to the one-second boundary than those in the old distributions. These dif-

ferences may indicate a general decline of algorithm latency in recent years

because of wider applications of co-location services and developments in

information technology. Besides, moderate elevations in probability are ob-

served at and shortly after integer multiples of one hundred millisecond in

the new distributions. This may suggest that some agency algorithms are im-

plementing the check-and-react strategies at a higher frequency, from every

second to every one hundred millisecond.

The empirical distributions of the microsecond remainders are much closer

to the uniform distribution than those of the millisecond remainders. This

direct comparison suggests that market participants have more control over

the message arrivals to the market within each one-second interval than those

within each one-millisecond interval. In order to measure the clock-time

periodicity at the microsecond level, we propose the following hypothesis test

for the sample data consisting of the microsecond remainders in the message

datasets for each of the selected stocks over the entire sample period.

H
0

: The sample data of the microsecond remainders are consistent with the

discrete uniform distribution over the set {0, 1, . . . , 999};

HA : The sample data of the microsecond remainders are not consistent with

the discrete uniform distribution over the set {0, 1, . . . , 999}

We use the Cramér-von Mises statistics for discrete distributions [23] in our

hypothesis test, namely, W 2, U2 and A2. As shown in Panel A of Table A.2,

we reject the null hypotheses at a significance level of 5% for all the se-

lected stocks when using any of the test statistic. We further implement

the same hypothesis test on a daily basis, and Panel B of Table A.2 indi-

cates that the null hypotheses is rejected at a significance level of 5% in 222
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Table A.2: Cramér-von Mises test for discrete uniform distribution

This table presents the Cramér-von Mises goodness-of-fit tests of the sample distributions of
the microsecond remainders compared with the discrete uniform distribution over the integer
set {0, 1, . . . , 999}. The null and alternative hypotheses are:

H0 : The sample data of the microsecond remainders are consistent with the discrete
uniform distribution over the set {0, 1, . . . , 999};

HA : The sample data of the microsecond remainders are not consistent with the discrete
uniform distribution over the set {0, 1, . . . , 999}

In Panel A, we illustrate the test results (that is, the name of the statistics, the critical

value at a significance level of 5% and the value of the test statistics for each selected stock)

for microsecond remainders in the message datasets over the entire sample period (January to

August, 2016). We then apply the same goodness-of-fit test on a daily basis. Panel B presents

the percentages of trading days in which the null hypotheses is rejected at a significance level

of 5% for each selected stocks. Panel C presents the same percentages after the probability

anomalies are manually removed.

Panel A: Microsecond remainders over the entire sample period

Statistic CV (↵ = 0.05) MSFT INTC YHOO

W 2 0.461 3.203 0.931 2.500
U2 0.187 2.949 0.648 2.427
A2 2.492 16.356 8.439 15.614

Panel B: Microsecond remainders on a daily basis

Statistic MSFT (%) INTC (%) YHOO (%)

W 2 88.62 89.22 90.42
U2 97.60 95.21 95.21
A2 95.21 90.42 93.41

Panel C: Microsecond remainders on a daily basis (after removing anomalies)

Statistic MSFT (%) INTC (%) YHOO (%)

W 2 3.9 4.8 4.4
U2 6.0 5.6 6.7
A2 4.8 4.4 4.4
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to 245 out of the total 252 trading days, depending on the selection of the

stocks and the test statistic. We therefore draw the preliminary conclusion

that the microsecond remainders are not uniformly distributed. In order to

verify the rationality and robustness of this conclusion, we visualise all the

daily empirical distributions of the microsecond remainders for each of the

selected stocks. Surprisingly, we observe a strange but widespread pattern:

the empirical probability for each microsecond remainder is in general closely

located around the level of 0.001, except for one or several short-lived but

significant ‘probability anomalies’, each of which is composed of a slump im-

mediately followed by a spike. We then repeat the hypothesis test to the

sample microsecond remainders on a daily basis after manually removing the

probability anomalies. Panel C of Table A.2 shows that the null hypotheses

is rejected at the significance level of 5% in only 10 to 17 out of 252 trading

days, depending on the selection of the stocks and the test statistics. Fur-

thermore, the probability anomalies basically appear in the same positions

within the same week across all the selected stocks. For example, for each

selected stock and trading day in the first week in 2016 (Jan 4th to Jan 8th,

2016), we observe one probability anomaly, which is composed of a slump

in probability at 936 to 938 microsecond followed by a spike in probability

at 939 to 941 microsecond (See Figure A.3). We believe that this weekly

periodic pattern across all selected stocks is unlikely to be driven by certain

algorithm strategies in the market. Instead, this phenomenon is probably

caused by the system latency in the platform.
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Figure A.3: YHOO: example of probability anomalies in the daily empirical distributions of
microsecond remainders.

For each working day in the first week in 2016, we observe one probability anomaly, which is
composed of a slump in probability at 936 to 938 microsecond followed by a spike in
probability at 939 to 941 microsecond.
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B
Appendix for Chapter 2

B.1 Proof of Theorem 2.14

(a) Consider an initial condition (t, z) := (t, p, y, x) 2 B. Based on the

definition of the termination time ⌧ in (2.22), we immediately have

Zt,z,(↵)
⌧ = Zt,z,(↵)

t = z almost surely, for all ↵ 2 A. (B.1)

Combining (B.1) and (2.34) yields

w(t, z) � u(x+ �g(p)y) = E
⇥

u(X t,x,(↵)
⌧ + �g(P t,p,(↵)

⌧ )Y t,y,(↵)
⌧ )

⇤

= J(t, z,↵), (B.2)

for all ↵ 2 A and then w(t, z) � v(t, z) on B.

Now consider an initial condition (t, z) 2 [0, T )⇥S. Choose an admissible

liquidation strategy ↵ =
⇣

(Qt, Ht)t�0

, (⌧j.⇠j)j2N+

⌘

2 A and n < m 2 N+

such that ⌧n�1

< t < ⌧n < ⌧n+1

< · · · < ⌧m. Without loss of generality,
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we set ⌧
0

= 0. Since w 2 C1,2 ([0, T )⇥ S), applying Itô formula yields

w
⇣

⌧Ri+1

, Žt,z,(↵)

⌧Ri+1�

⌘

= w
⇣

⌧Ri , Z
t,z,(↵)

⌧Ri

⌘

+

Z ⌧Ri+1

⌧Ri

✓

@w

@t

�

s, Zt,z,(↵)
s

�

+
1

2
�2

@2w

@p2
�

s, Zt,z,(↵)
s

�

◆

ds+

Z ⌧Ri+1

⌧Ri

�
@w

@p

�

s, Zt,z,(↵)
s

�

dWs

+
X

($,⇧)=

{(m,M),(l,L),(c,C)}

Z ⌧Ri+1

⌧Ri

h

w
⇣

s,�$
⇣

Qs, Hs, Z
t,z,(↵)
s� ,⇧N$

s

⌘⌘

� w(s, Zt,z,(↵)
s� )

i

⇥
⇣

�$s ds+ d eN$
s

⌘

, (B.3)

for i = n� 1, n, . . . ,m� 1 and R > 0, where

• eN$
s := N$

s �
Z s

0

�$� d� for s � 0;

• �$s = �$
⇣

d
⇣

P t,p,(↵)
s�

⌘

+Qs

⌘

for$ 2 {m, l, c} and s � 0 as in (2.16);

• Žt,z,(↵)
⌧j� := Zt,z(↵)

⌧j� + dNZ
t,z,(↵)
⌧j for j 2 N+ as in (2.21);

• ⌧Rj := ⌧ 0j ^ TR, where

TR := inf
�

s > 0 :
�

�Zt,z,(↵)
s � z

�

� � R
 

, and

⌧ 0j :=

(

t, if j = n� 1,

⌧j, if j 2 {n, n+ 1, . . . ,m}.

For each $ 2 {m, l, c}, the process �$ defined by

�$
t := w

�

t,�$(Qt, Ht, Zt�,⇧N$
t
)
�

� w(t, Zt�), for t � 0,

is predictable. Therefore, E
h

R t

0

|�$
s |�$s ds

i

is finite for all t � 0 since w

and �$ are bounded, and
R ·
0

�$
s d eN

$
s is a martingale by [13, Chapter II,

Theorem T8]. Taking expectation on both sides of (B.3) and letting R
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tends to infinity, we obtain

E
h

w
⇣

⌧ 0i+1

, Žt,z,(↵)

⌧ 0i+1�

⌘i

= E
h

w
⇣

⌧ 0i , Z
t,z,(↵)

⌧ 0i

⌘i

+ E
"

Z ⌧ 0i+1

⌧ 0i

✓

@w

@t

�

s, Zt,z,(↵)
s

�

+
1

2
�2

@2w

@p2
�

s, Zt,z,(↵)
s

�

◆

ds

#

+
X

($,⇧)=

{(m,M),(l,L),(c,C)}

E
"

Z ⌧ 0i+1

⌧ 0i

⇣

Z

R+

w
�

s,�$
⇣

Qs, Hs, Z
t,z,(↵)
s� , ⌫

⌘

�

dF$(⌫)

� w
⇣

s, Zt,z,(↵)
s�

⌘⌘

�$ (d(P )s� +Qs) ds

#

, (B.4)

for i = n� 1, n, . . . ,m� 1. We then translate (2.33) into

�@w(t, z)
@t

� �2

2

@2w(t, z)

@p2
� sup

(q,h)2[0,⌫̄]2
s.t. q+hy

Lq,hw(t, z) � 0, (B.5)

w(t, z)� sup
e2[0,ē^y]

Mew(t, z) � 0, (B.6)

for (t, z) 2 [0, T ) ⇥ S. Summing up (B.4) from i = n to i = m � 1,

together with (B.5), yields

w(t, z) +
m�1

X

i=n

E
h

w
�

⌧i, Z
t,z,(↵)
⌧i

�

� w
⇣

⌧i, Ž
t,z,(↵)
⌧i�

⌘i

� E
⇥

w
�

⌧m, Ž
t,z,(↵)
⌧m�

�⇤

= �E


Z ⌧m

t

@w

@t

�

s, Zt,z,(↵)
s

�

+
�2

2

@2w

@p2
�

s, Zt,z,(↵)
s

�

+ LQs,Hsw
⇣

s, Zt,z,(↵)
s�

⌘

ds

�

� 0. (B.7)

Besides, combining (B.6) with (2.14) and (2.15) yields

w
�

⌧i, Z
t,z,(↵)
⌧i

�

= w
⇣

⌧i, P̌
t,p,(↵)
⌧j� , Y̌ t,y,(↵)

⌧j� � ⇠i, X̌
t,x,(↵)
⌧j� + g

⇣

P̌ t,p,(↵)
⌧j�

⌘

⇠i
⌘

= M⇠iw
⇣

⌧i, Ž
t,z,(↵)
⌧i�

⌘

 sup
e2

h
0,ē^ ˇY

t,y,(↵)
⌧j�

iM
ew

⇣

⌧i, Ž
t,z,(↵)
⌧i�

⌘

 w
⇣

⌧i, Ž
t,z,(↵)
⌧i�

⌘

. (B.8)
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Next, combining (B.8) with (B.7) gives

w(t, z) � E
h

w(⌧m, Ž
t,z,(↵)
⌧m� )

i

.

Based on (2.32) and (2.34), together with limm"1 ⌧m = ⌧ as in (2.24),

letting m ! 1 yields

w(t, z) � J(t, z,↵).

Since ↵ 2 A is arbitrarily chosen, we then get

w(t, z) � v(t, z), on [0, T )⇥ S. (B.9)

(b) By (2.35), we get the equality for (B.2) and then w(t, z) = v(t, z) on B.

Applying the arguments in (a) for (t, z) 2 [0, T )⇥ S with

b↵ :=
⇣

�

b'
�

s, Z(b↵)
s

��

s�0

,
n⇣

b⌧j, b⇠j
⌘

: j 2 N+

o⌘

2 A.

Then by (2.36) we get the equality for (B.7), and by (2.37) and (2.38)

we get the equality for (B.8). We therefore obtain

w(t, z) = E
h

w
⇣

bwm, Ž
t,z,(b↵)
b⌧m�

⌘i

,

and lettingm ! 1 yields w(t, z) = J(t, z, b↵), which combined with (B.9)

finishes the proof.
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C
Appendix for Chapter 3

C.1 Proof of Proposition 3.23

In Scenario [S1], the agent posts a limit order at the best ask price (l � 1),

and the best ask queue is depleted before the best bid queue (j̃ = +1).

Hence,

• the execution time of the best ask queue is less than that of the best

bid queue;

• the limit order posted by the agent must get fully executed in the

queueing race;

• the duration of the queueing race is the depletion time of the best ask

queue.
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Therefore, we can write

Qj,v,↵

�

t, j̃, z̃
�

= P
⇣

Xn+1

 t, Jn+1

= +1
�

�

�

Jn = j, (V b
n , V

a
n ) = (vb, va), An = ↵

⌘

⇥ P
⇣

Zn+1

= z̃
�

�

�

Jn+1

= +1, Ln = l
⌘

= P (⌧Bb > ⌧Al , ⌧Al  t)1{z̃=l}

=

⇢

FAl(t)�
Z t

0

fAl(u)FBb(u)du

�

1{z̃=l}.

In Scenario [S2], the agent posts no limit order at the best ask price (l = 0).

The dynamics of best ask queue can be then described by the process Ba,

independent of that of the best bid queue. The proof is similar to that in

Scenario [S1].

In Scenario [S3], the agent posts a limit order at the best ask price (l � 0),

and the best bid queue is depleted before the best ask queue (j̃ = �1), while

the agent’s limit order gets no execution (z̃ = 0). Hence,

• the execution time of the best bid queue is less than that of one unit

size of the agent’s limit order together with the limit orders with higher

time priority at the best ask price, and is therefore less than that of

the entire best ask queue;

• the duration of the queueing race is the depletion time of the best bid

queue.

We then have

Qj,v,↵

�

t, j̃, z̃
�

= P
⇣

Xn+1

 t, Zn+1

= 0
�

�

�

Jn = j, (V b
n , V

a
n ) = (vb, va), An = ↵

⌘

⇥ P (Jn+1

= �1|Ln = l, Zn+1

= 0)

= P (⌧C1 > ⌧Bb , ⌧Bb  t)

= FBb(t)�
Z t

0

fBb(u)FC1(u)du.

In Scenario [S4], the agent posts a limit order of one unit size at the best

ask price (l = 1), the best bid queue is depleted before the best ask queue
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(j̃ = �1) and the agent’s limit order gets executed (z̃ = 1). According to

Remark 3.20, we have Qj,v,↵

�

t, j̃, {0, 1}
�

= Qj,v,↵

�

t, j̃, 0
�

+Qj,v,↵

�

t, j̃, 1
�

, so

that

Qj,v,↵ (t,�1, 1)

= P
⇣

Xn+1

 t, Jn+1

= �1
�

�

�

Jn = j, (V b
n , V

a
n ) = (vb, va), An = (m, 1)

⌘

�Qj,v,↵ (t,�1, 0)

= P (⌧A1 > ⌧Bb , ⌧Bb  t)�Qj,v,↵ (t,�1, 0)

= FBb(t)�
Z t

0

fBb(u)FA1(u)du�


FBb(t)�
Z t

0

fBb(u)FC1(u)du

�

=

Z t

0

fBb(u) [FC1(u)� FA1(u)] du.

In Scenario [S5], the best bid queue is depleted before the best ask queue

(j̃ = �1), while z̃ 2 {1, . . . , l � 1} out of l > 1 unit size of the agent’s limit

order gets executed when this queueing race terminates. Hence,

• the execution time of the best bid queue lies within the interval [⌧C z̃ , ⌧C z̃+

�), where � is the execution time of one unit size of the agent’s limit

order when at the top of the queue, which is exponentially distributed

with parameter µa
j and is independent of ⌧C z̃ ;

• the duration of the queueing race is the depletion time of the best bid

queue.
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We then have

Qj,v,↵

�

t, j̃, z̃
�

= P
⇣

Xn+1

 t, Zn+1

= z̃
�

�

�

Jn = j, (V b
n , V

a
n ) = (vb, va), An = ↵

⌘

⇥ P (Jn+1

= �1|La
n = l, Zn+1

= z̃)

= P
⇣

⌧C z̃  ⌧Bb < ⌧C z̃ + �, ⌧Bb  t
⌘

=

Z 1

0

Z 1

0

P (⌧Bb 2 [u, u+ ⌫), ⌧Bb  t) fC z̃(u)P(� 2 d⌫)dud⌫
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0

Z t�u

0

[FBb(u+ ⌫)� FBb(u)] fC z̃(u)P(� 2 d⌫)d⌫du

+
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0

Z 1

t�u

[FBb(t)� FBb(u)] fC z̃(u)P(� 2 d⌫)d⌫du

= µa
j

Z t
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eµ
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j ufC z̃(u)

✓

Z t
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e�µa
j ✏FBb(✏)d✏

◆

du

+ e�µa
j tFBb(t)

Z t

0

eµ
a
j ufC z̃(u)du�

Z t

0

FBb(u)fC z̃(u)du

= µa
j

Z t

0

F ⇤
Bb(✏)

Z ✏

0

f ⇤
C z̃(u)dud✏+

Z t

0

[F ⇤
Bb(✏)]

0
Z ✏

0

f ⇤
C z̃dud✏

=

Z t

0

f ⇤
Bb(✏)

Z ✏

0

f ⇤
C z̃(u)du d✏

where f ⇤
Cz(⇠) := eµ

a
j ⇠fCz(⇠), f ⇤

Bb(⇠) := e�µa
j ⇠fBb(⇠) and F ⇤

Bb(⇠) := e�µa
j ⇠FBb(⇠)

for any ⇠ � 0 and z 2 N+.

Finally, in Scenario [S6], according to Remark 3.20, for
�

j, vb, va,↵
�

2 K0

such that l > 1, we have

Qj,v,↵ (t,�1, {0, 1, . . . , l}) = Qj,v,↵ (t,�1, 0)+
l�1

X

z=1

Qj,v,↵ (t,�1, z)+Qj,v,↵ (t,�1, l) ,

which yields the result by using [S3] and [S5].
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C.2 Proof of Proposition 3.24

If l = 0 and z = 0, then

P (z|(e,↵),�) = P (⌧Bb ^ ⌧Ba > �)

= P (⌧Bb > �)P (⌧Ba > �) = FBb(�)FBa(�).

If l � 1, z = 0, then

P (z|(e,↵),�) = P (⌧Bb ^ ⌧Al > �, ⌧C1 > �)

= P (⌧Bb > �)P (⌧C1 > �) = FBb(�)FC1(�).

If l > 1 and z 2 {1, . . . , l � 1}, then

P (z|(e,↵),�) = P (⌧Bb ^ ⌧Al > �, ⌧Cz + ⌅ > � � ⌧Cz)

= P (⌧Bb > �)P (⌧Cz + ⌅ > � � ⌧Cz)

= P (⌧Bb > �)P
⇥

1� P (⌧Cz > �)� P (⌧Cz + ⌅  �)
⇤

= FBb(�) [FCz(�)� (FCz ⇤ F
⌅

) (�)] .

If l � 1 and z = l, then

P (z|(e,↵),�) = P (⌧Bb ^ ⌧Al > �, ⌧Cl  �) = P (⌧Bb > �)P (⌧Al > � � ⌧Cl)

= P (⌧Bb > �)
⇥

1� P (⌧Cl > �)� P (⌧Al  �)
⇤

= FBb(�) [FCl(�)� FAl(�)] .

By Remark 3.9, the terminal kernel has zero value in all other scenarios.
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C.3 Proof of Proposition 3.30

To prove Part (a) of the proposition, we can write the inequality

kT �uk  sup
(e,�)2E⇥T

|r(e,�(e,�))|+ sup
(e,�)2E⇥T
z2{0,...,¯l}

|w(e,�(e,�), z)|

+ sup
(e,�)2E⇥T

�

�

�

�

�

X

ẽ2E

Z �

0

u(ẽ,�� t)Q
�

dt, ẽ|(e,�(e,�))
�

�

�

�

�

�

,

for any � 2 � and u 2 U . The first two terms are bounded since the state

space E and the action space A are finite. Regarding the last term, applying

Lemma 3.29 yields

sup
(e,�)2E⇥T

�

�

�

�

�

X

ẽ2E

Z �

0

u(ẽ,�� t)Q
�

dt, ẽ|(e,�(e,�))
�

�

�

�

�

�

 kuk sup
(e,�)2E⇥T

�

�

�

�

�

X

ẽ2E

Z �

0

Q
�

dt, ẽ|(e,�(e,�))
�

�

�

�

�

�

= kuk sup
(e,�)2E⇥T

Q
�

�, E|(e,�(e,�))
�

 kuk sup
�2T

(1� e�2◆�)

= kuk(1� e�2◆T ) < 1.

Therefore the codomain of T � is U . The contraction property follows directly

from (3.16), since kT �u� T �vk  (1� e�2◆T )ku� vk holds for all u, v 2 U ,
and the monotonicity follows from the properties of the semi-Markov kernel.

To prove Part (b), we can write, for any (e,�) 2 E⇥T and ⇡ := {�
0

,�
1

,�
2

, . . . } 2
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⇧,

V ⇡(e,�) =
1
X

n=0

E⇡
(e,�)

⇥

r(En,An)1{⇤n�0} + w(En,An,Z)1{0⇤n<Xn+1}
⇤

= E⇡
(e,�)

⇥

r(E
0

,A
0

)1{⇤0�0} + w(E
0

,A
0

,Z)1{0⇤0<X1}
⇤

+
1
X

n=1

E⇡
(e,�)

⇥

r(En,An)1{⇤n�0} + w(En,An,Z)1{0⇤n<Xn+1}
⇤

= E⇡
(e,�)

"

E⇡
(e,�)

"

r(E
0

,A
0

)1{⇤0�0} +
1
X

z=0

w(E
0

,A
0

, z)1{0⇤0<X1,Z=z}

�

�

�

H
0

##

+
1
X

n=1

E⇡
(e,�)

h

E⇡
(e,�)

h

r(En,An)1{⇤n�0} + w(En,An,Z)1{0⇤n<Xn+1}

�

�

�

H
1

,
ii

= r(e,�
0

(e,�)) +
1
X

z=0

w(e,�
0

(e,�), z)P (z|(e,�
0

(e,�)),�)

+
1
X

n=1

E⇡
(e,�)

h

E⇡�
(E1,⇤1)

⇥

r(En�1

,An�1

)1{⇤n�1�0} + w(En�1

,An�1

,Z)1{0⇤n�1<Xn}
⇤

i

= r(e,�
0

(e,�)) +
1
X

z=0

w(e,�
0

(e,�), z)P (z|(e,�
0

(e,�)),�) + E⇡
(e,�) [V

⇡�(E
1

,⇤
1

)]
�

= r(e,�
0

(e,�)) +
1
X

z=0

w(e,�
0

(e,�), z)P (z|(e,�
0

(e,�)),�)

+
X

ẽ2E

Z �

0

V ⇡�(ẽ,�� t)Q
�

dt, ẽ|(e,�
0

(e,�))
�

,

according to Remark 3.18 and Theorem 3.16, which concludes the proof.

C.4 Proof of Proposition 3.31

Let i := (0, 0, 0, 1, 0, 0) and k := (0, 0, 0, 0, 1, 0), so that e = e +�pi +�zk,

where �p = p� p and �z := z � z. Define further ê := e+�zk. According

to Proposition 3.30 and [31, Theorem 3], we can write

V ⇤(ê,�) = AV ⇤(ê,�) = V ⇤(e,�) + ⇢�z(p� j). (C.1)
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With the auxiliary function u(e,�) := V ⇤(e��pi,�)+⇢�p(y+z) for (e,�) 2
E⇥T, simple calculations yield Au(e,�) = u(e,�) for any (e,�) 2 E⇥T, and
Theorem 3.28 implies that V ⇤(e,�) = V ⇤(ê,�)+ ⇢�p(y+ z). Combining this

with (C.1) concludes the proof.

C.5 Maximum Likelihood Estimation for the Poisson Parame-

ters

Fix s 2 {a, b}, j 2 {+1,�1} and denote the Poisson parameters µs
j,

s
j, ✓

s
j

by µ,, ✓ respectively. Introduce the auxiliary parameters µ0 := µSl/Sm

and ✓0 := ✓Sl/Sc. Suppose we observe li times of limit order arrivals, mi

times of market order arrivals and ci times of cancellations on the s side

in the i-th queueing race, whose starting time is ⌧i, duration is di and the

volume in unit size at s price at time t is Voli(t), for i 2 {1, . . . ,#Qj}. The
likelihood functions are then constructed as:

L
�

µ0 : m
1

, . . . ,m
#Qj , d1, . . . , d#Qj

�

:=

#Qj
Y

i=1

(µ0di)
mi

mi!
e�µ0di ,

L
�

 : l
1

, . . . , l
#Qj , d1, . . . , d#Qj

�

:=

#Qj
Y

i=1

(di)
li

li!
e�di ,

L
�

✓0 : c
1

, . . . , c
#Qj ,⇥(d1), . . . ,⇥(d#Qj)

�

:=

#Qj
Y

i=1

⇥(di)
ci

ci!
e�⇥(di),

where ⇥(di) := ✓0
R ⌧i+di
⌧i

Voli(t)dt. Taking logarithms, and cancelling the

derivatives yield the optima (3.21) with

N$
s,j =

#Qj
X

i=1

$i, for $ 2 {m, l, c} Ds,j =

#Qj
X

i=1

di, Vs,j =

#Qj
X

i=1

Z ⌧i+di

⌧i

Voli(t)dt.
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[77] L. Takács. Introduction to the Theory of Queues. Oxford University

press, Chapman & Hall, 1959.

[78] H. C. Tijms. A first course in stochastic models. John Wiley and Sons,

2003.

[79] I. M. Toke and N. Yoshida. Modelling intensities of order flows in a limit

order book. Quantitative finance, 17(5): 683-701, 2017.

[80] T. W. Yang and L. Zhu. A reduced-form model for level-1 limit order

books. Market Microstructure and Liquidity, 2(2): 1650008, 2016.
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