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Abstract

In recent years, stochastic geometry has emerged as a powerful tool for the modeling,
analysis, and design of wireless networks with random topologies. Stochastic geometry has
been demonstrated to provide a tractable yet an accurate approach for the performance
analysis of wireless networks, when the network nodes are modeled as a Poisson point
process. This thesis develops analytical frameworks to study the performance of various
large-scale wireless networks with random topologies. Firstly, it develops a mathematical
model for the uplink analysis of heterogeneous cellular networks when the base stations have
multiple antennas. Further, it studies how the gains of downlink and uplink decoupling
can be optimized in such a network. Secondly, this thesis also models, analyzes, and
designs an ad-hoc network architecture that utilizes both the wireless power transfer and
backscatter communications. The performance of such a network is further compared with
a regular powered network. Finally, this thesis for the first time develops a scheduling
algorithm for cellular networks that has an information theoretic justification. Then using
tools from stochastic geometry, this thesis quantifies the gains of such scheduling algorithm
over the traditional scheduling algorithm for the downlink transmission. Furthermore, to
find the optimal system parameters that provide the maximum gains, this thesis performs
asymptotic analysis and provides a simple optimization algorithm. The accuracy of all the

mathematical models have been verified with extensive Monte Carlo simulations.
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1. Introduction

A fundamental property of electromagnetic signals is that they are attenuated when passing
through a wireless medium. This distance-dependent attenuation of electromagnetic signals
is called path loss. For the correct data recovery of the attenuated signal, the strength of the
received signal must be greater than the power of the thermal noise, such that, the signal-
to-noise power ratio (SNR) is greater than a certain threshold, defined for correct data
recovery. As a result, when the distance between the transmitter and receiver is greater
than beyond a certain distance, it is not possible for the receiver to distinguish the signal
from the thermal noise. Therefore, for correct data recovery, the transmitter is required to
transmit with enough power to compensate for the path loss and to achieve the required
SNR. Hence, the transmit power is one of the important design parameters in wireless
communications. Another important design parameter in wireless communications is the
available spectrum, which is usually divided into multiple frequency channels. Independent
communication links can be established over non-overlapping frequency channels. The
relation between the SNR, the bandwidth, and the maximum data rate supported by each

channel is given by Shannon's formula as follows:
C = Wlog, (1 + SNR), (1.1)

where W represents the bandwidth and C is in bits per seconds. In single link wireless
networks, the desired SNR level can be maintained by properly adjusting the transmission
power.

In order to accommodate a large number of devices, the same frequency channel is shared
and reused by multiple devices. In this multiple access channel, for correct data recovery
at the receiver, the signal-to-interference-and-noise ratio (SINR) should be greater than a

specific threshold. Shannon's formula for the multiple access channel is given by
C = Wlog, (1 +SINR), (1.2)

where the interference from other users is treated as noise. Unlike single link wireless net-
works, in the multiple-access networks, the required SINR level cannot be just maintained
by increasing the transmit power of all the transmitters, as this will increase both the signal
power as well as the interference power, and might degrade the SINR and hence the data
rate. Therefore, maintaining the required SINR level is a design problem and depends on

different network parameters. Two fundamental network parameters that highly affect the
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SINR are network geometry and the medium access control.

The relative position of network nodes in the spatial domain makes the network geometry
or network topology. The network geometry depends on the type of network and applica-
tion. For instance, cellular networks are carefully planned to provide coverage to a certain
geographical area and often have a regular network topology, while sensor networks usually
have random topology. To mediate access to the shared wireless medium a medium access
control (MAC) protocol is utilized. The purpose of a MAC is to select multiple users that
can simultaneously share the same spectrum while maintaining a sufficient SINR at each
link, and to ensure some kind of fair access to the shared spectrum among the users.

In multiple access networks, SINR is one of the main performance metrics and its value
depends on the location of transmitters (network topology) and the transmit power of the
transmitters. Some of the important performance metrics that depend on the SINR are

the following.

e Coverage Probability: Let © be the SINR decoding threshold. The coverage
probability is the probability that the SINR at the receiver is greater than ©. Math-
ematically, it can be defined as C = P [SINR > O].

e Rate Coverage Probability: Let W be the frequency resources, {2 be the load on
a base station (BS)!, and p be the rate threshold, then the rate coverage probability
can be defined as R = P [% log, (1 + SINR) > p].

e Average Rate or Spectral Efficiency: Average data rate or spectral efficiency
is the average rate supported per channel per hertz and can be defined as Rse =
log, [1 + SINR].

Other SINR-based performance metrics are spatial frequency reuse, delay and energy ef-
ficiency. After looking at the importance of SINR in wireless networks, next we discuss
different approaches used in the literature for the mathematical modeling of SINR-based

performance in large-scale wireless networks.

1.1. Background and Motivation

The mathematical modeling of wireless networks has always been a non-trivial task. The
well-known Wyner model completely ignores the network geometry and only incorporates
the distance dependent path-loss into the channel fading [1]. These simplistic assump-
tions make the Wyner model tractable, but the accuracy is compromised, which leads
to disputable insights [2]. Another over-simplified approach is a two-cell model in which
interference is assumed from a single cell only [3]. This model neglects most sources of

interference in the network and fails to capture the effect of network topology. A widely

n cellular networks, it is the number users in the coverage region of the BS.
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accepted and used model in the industry for large-scale infrastructure-based wireless net-
works is the grid-based model [4]. In the grid-based model, a 2-D network of base stations
(BSs) is modeled on a hexagonal lattice or a square lattice. However, the real network
deployment is far from the hexagonal-grid, and the grid-based model represents a very ide-
alistic deployment of the cellular networks. In particular, the heterogeneous deployment of
BSs will further increase randomness in the network topological structure. Moreover, the
grid-based model makes the analysis of the network very complicated and often requires
time-consuming Monte-Carlo simulations for the numerical evaluation of the complicated
expressions [2]. All these approaches either ignore the effect of network topology or as-
sume simple and deterministic network topology. The only mathematical tool that can
capture the effect of the random topology of a network and provide tractable yet accurate

expressions is stochastic geometry [5-9].

1.1.1. Stochastic Geometry: A Powerful Mathematical Tool for the
Analysis of Random Wireless Networks

Stochastic geometry is the branch of applied probability which permits the study of the av-
erage performance, over many spatial realizations, of a network whose nodes are distributed
according to some probability distribution [10]. In other words, stochastic geometry allows
spatial averaging of all possible network realizations weighted by their probability of oc-
currence [11]. Stochastic geometry uses point processes to model the spatial distribution of
the network elements such as BSs and user equipments (UEs). The commonly used point
processes are the Poisson point process (PPP), Binomial point process (BPP), Poisson clus-
ter point process (PCP) and the Matérn hard core point process (HCPP). The selection
of a particular point process is dependent on the deployment scenario. In the given point
process, PPP is the simplest and most widely used. In this thesis, PPP will be adopted for
the spatial modeling of the network elements.

PPP has two important properties; firstly, the number of points in a bounded area
follows the Poisson distribution. Secondly, the numbers of points in disjoint areas are
independent. The independent property of the points makes the PPP simple and the
resulting analysis tractable. A spatial point process ® = {z;;i € N} is a random, finite
or countably-infinite collection of points in the d—dimensional Euclidean space R?, where
z; € RY represents the coordinates of the ith point. For a PPP, let A C R?, the number of
points ® (A) = |® N A| ~ Poisson () with the following probability mass function

P[®(A)=n] = eAL<A>W, (1.3)

where ) is the intensity of the point process and L (.) represents the Lebesgue measure
[12]. The PPP results in pure random deployment of network elements and makes the
mathematical analysis tractable; however, due to this random deployment some of the

network nodes can become arbitrary close to each other. PPP is not suitable for a network
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with repulsion between nodes, where the locations of the nodes are correlated. To model
the repulsion among the nodes, the PCP and HCPP can be used. Nevertheless, the non-
PPP based abstraction models are generally not mathematically as tractable as the PPP
based abstraction models.

In the following, some of the important properties and statistical measures of the ho-
mogenous PPP are discussed that will be utilized throughout the main technical chapters.

More details about the point process can be found in the notable references [5,7-9,13].

1. Campbell’s theorem: Let ® be a PPP of density A and f : R? = R be measurable

function, then Campbell’s theorem states that

E|Y fm) :/d)\f(:c)dx. (1.4)

z, €P R

Note that the Campbell’s theorem converts an expectation of a random sum over a
PPP to an integral and can be used to compute the mean interference in a cellular

network.

2. Probability generating functional (PGFL): Let ® be a PPP of density A and
f:R%—[0,1] be a real value function, then the PGFL states that

E| ] /0| =exp (—)\/Rd (1—f(x))dx>. (1.5)

z,€P

The PGFL converts the expectation of a random product over a PPP to an integral.
As discussed later, the PGFL is very useful in the determination of the Laplace

transform of interference.

3. Slivnyak’s theorem: Slivnyak’s theorem for a PPP states that conditioning on a
point at a certain location, x;, does not change the statistical properties of the PPP2.
In other words, the PPP observed from any arbitrary location remains the same

irrespective of having a point on that location. Mathematically, it can be written as

B |3 Flo®\ @) = [ Bl (@) e, (16)

d
z, €P R

This suggests that adding or removing a point does not change the distribution of
other points of the process. Slivnyak’s theorem is important in the analysis of cellular
networks because it allows the modeling of the interfering points as a PPP, while
removing a point (for example, a serving BS in the downlink analysis of a cellular
network) from the PPP.

2The reduced Palm distribution of a PPP is equal to the distribution of the PPP itself [7-9].
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4. Independent thinning: The independent selection of points of a PPP with prob-
ability p and discarding those with probability (1 — p) results in two independent
PPPs of densities pA and (1 — p) A, respectively. The medium access control (MAC)
protocol such as Time-Division Multiple Access (TDMA) in cellular networks usually
leads to a thinning of the UEs. If the underlying UEs are modeled as a PPP, the
resulting thinned UEs also form a PPP.

5. Superposition: Let ®1, .-, ®, be the n independent homogeneous PPPs with den-
sities A1, - -« , Ap, respectively, the superposition of these point processes results in a
PPP & = J;" ®,, with density A = >_7" ;. The superposition property of the PPP is

generally exploited in the modeling of multi-tier cellular networks.

6. Displacement: When the points of a PPP are displaced by a random translation

vector V,, the resulting point process is again a PPP. Mathematically, we write as
o' = {ac, ed .z + in}, (1.7)

where V,, are independent random variables, but their distribution may depend on
x;. This shows that the independent displacements preserves the Poisson nature of a
PPP. The displacement property of the PPP is usually exploited in modeling mobility

of nodes in a network.

In wireless networks, interference is one of the main network parameters. Stochastic
geometry provides a systematic way to characterize interference. The interference® can
be considered as a function of the point process. The interference depends on the time
variant locations of the interfering network elements, modeled by the point process and the
instantaneous channel gains. Interference can be completely characterized by its probability
density function (PDF)*; however, generally there is no known PDF of the interference
in large-scale wireless networks. Therefore, the interference is usually characterized by
the Laplace transform (or characteristic function or moment generating function) of the

PDF [5]. The Laplace transform of the interference I can be written as
Lr(s)=E [e(_SI)} , (1.8)

and the Laplace transform always exists because the interference is strictly a positive
random variable. By considering interference as a function of the point process, i.e.

I'=3%", cqof (), the Laplace transform can be written as

Lr(s)=E |exp | —s Z fzi) || =E H lexp (—sf (x;))]. (1.9)

z, €D z, €P

3from now onwards, interference is defined as aggregate interference.
Yor equivalently its cumulative distribution function (CDF)
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Now,

we apply the PGFL of a PPP and as a result write the above equation as

L (s) =exp <—/\ » (1 - e_sf("”)) dx) . (1.10)

Note that the integration boundary represents the interference boundary (the region where
the PPP exists). The detailed discussion about how to find the Laplace transform of the

interference will be provided in the main technical chapters.

In literature, different techniques have been used to utilize the Laplace transform, the

characteristic function, or the moment generating function to study network performance,

such as coverage probability, average rate, and error probability. To the best of author

knowledge, these are nine techniques which can be briefly summarized as follows:

The first technique assumes that the desired link undergoes Rayleigh fading. With
the Rayleigh fading assumption, the exact distribution of the signal-to-interference-
and-noise ratio (SINR) can be obtained [5].

The second technique only considers the most dominant interferer or the nearest n

interferer to find a bound on the performance of the network [5].

In the third approach, the PDF of the interference is approximated by some known

distribution, such as Gaussian or shifted log-normal through empirical fitting [5].

The fourth technique uses the Plancherel-Parseval theorem to avoid inverting the
Laplace transform. This technique extends the stochastic geometry analysis to a
general fading environment; however, the resulting expressions involve complicated

integrals [5].

In the fifth approach, the Laplace transform, the characteristic function, or the mo-

ment generating function is numerically inverted [5].

A direct method for the computation of coverage probability without finding the

Laplace transform has been proposed in [14].

Equivalent-in-distribution representation of the other cell interference has been out-
lined in [15].

A moment generating function representation of other cell interference has been used
in [16] to find the average rate of the network. In order to find the average rate of the

network, this technique does not require the computation of coverage probability.

A mathematical framework for the computation of coverage probability and average

rate based on Gil-Pelaez inversion theorem has been introduced in [17].

The detailed discussion of the related work has been postponed to the technical chapters,

for the sake of an organized presentation. That is, in each technical chapter, a unique

network is studied and its related literature and novelty are discussed there.
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1.2. Outline and Contributions

This thesis utilizes stochastic geometry tools for the modeling, analysis, and design of
different network topologies that have not been studied before. The central goal of the thesis
is to develop generic frameworks for the design and analysis of large-scale wireless networks
that take into account the network topology. This thesis extends stochastic geometry
applications to new scenarios of large-scale wireless networks. The chapter-wise details are

as follows:

e Chapter 2: Downlink and Uplink Decoupling in Two-Tier Heterogeneous
Networks with Multi-Antenna Base Stations

This chapter studies the gain provided by the downlink and uplink decoupling in
two-tier heterogeneous networks where BSs have multiple antennas and UEs have
single antennas. It considers Maximal ratio combining as a linear receiver at the BSs
and derives the signal-to-interference ratio (SIR) coverage probability and the rate
coverage probability in the form of mathematically tractable expressions. It then
investigates how the beamforming gains of both tiers affects the gains of downlink
and uplink decoupling. Furthermore, it studies how the optimal performance can
be achieved by ofHloading UEs to the small BSs in case of high asymmetry in the

beamforming gains of both tiers.

e Chapter 3: Backscatter Communications for the Internet of Things

This chapter studies a unique ad-hoc network architecture that utilizes a combination
of wireless power transfer and backscatter communications. The network consists
of power beacons and passive backscatter nodes. The power beacons transmit a
sinusoidal continuous wave in an isotropic direction and the backscatter nodes reflect
back a portion of this signal through backscatter modulation, while harvesting the
remaining energy. This chapter derives the coverage probability and capacity of
such a network with the help of stochastic geometry. This chapter further compares
the performance of such a network with the regular powered network in which the

backscatter nodes have a reliable power source.

e Chapter 4: Treating Interference as Noise in Cellular Networks

This chapter develops a scheduling algorithm for the cellular networks that is based
on the optimality condition of treating interference as noise, a famous interference
management technique in the information theory. The signal-to-interference-and-
noise ratio (SINR) coverage probability and the spectral efficiency of the network,
utilizing this scheduling algorithm, have been derived in tractable and easily com-
putable expressions. This chapter then performs asymptotic analysis and provides
a simple optimization algorithm that gives the optimal system parameters for the

SINR coverage probability. These optimal system parameters provide the maximum
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gains over the classical scheduling algorithm in terms of the SINR coverage prob-
ability. Moreover, the performance of this scheduling algorithm is compared with
the classical scheduling algorithm, and the gains in terms of both the SINR coverage

probability and the spectral efficiency are quantified.

e Chapter 5: Conclusion

This chapter concludes the thesis and provides some further research directions.

1.3. Publications

This thesis has resulted in the following journal papers:

Submitted (under-review)

e M. Bacha, M. Di Renzo, and B. Clerckx, ” Treating Interference as Noise in Cellular
Networks: A Stochastic Geometry Approach,” submitted to IEEE Transactions on

Wireless Communications.

e M. Bacha and B. Clerckx, ”Backscatter Communications for the Internet of Things:
A Stochastic Geometry Approach,” submitted to IEEE Transactions on Communi-

cations.

Published

e M. Bacha, Y. Wu, and B. Clerckx, ”Downlink and Uplink Decoupling in Two-Tier
Heterogeneous Networks with Multi-Antenna Base Stations,” IEEE Transactions on
Wireless Communications, vol. 16 , no. 5, pp. 2760-2775, May 2017.
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2. Downlink and Uplink Decoupling in
Two-Tier Heterogeneous Networks
with Multi-Antenna Base Stations

In order to improve the uplink performance of future cellular networks, the idea to decou-
ple the downlink (DL) and uplink (UL) association has recently been shown to provide
significant gains in terms of both coverage and rate performance. However, all the work
is limited to single input single output (SISO) network. Therefore, to study the gain pro-
vided by the DL and UL decoupling in multi-antenna BSs setup, this chapter studies a two
tier heterogeneous network consisting of multi-antenna BSs, and single antenna UEs. It
uses maximal ratio combining (MRC) as a linear receiver at the BSs and using tools from
stochastic geometry, it derives tractable expressions for both SIR coverage probability and
rate coverage probability. It is observed that as the disparity in the beamforming gain of
both tiers increases, the gain in terms of SIR coverage probability provided by the decou-
pled association over non-decoupled association decreases. Furthermore, it is observed that
when there is asymmetry in the number of antennas of both tiers, then further biasing
towards the femto-tier is required on the top of decoupled association to balance the load

and to get the optimal rate coverage probability.

2.1. Introduction

The demand for high data rates is ever-growing and it is projected that over the next decade
a factor of a thousand times increase in wireless network capacity will be required [18]. In
order to meet this challenge, a massive densification of the current wireless networks char-
acterized by the dense deployment of low power and low cost small cells is required, which
will convert the existing single-tier homogeneous networks into multi-tier heterogeneous
networks (HetNets) [19]. HetNets that consist of different types of base stations (Macro,
Micro, Pico and Femto) cannot be operated in the same way as a single-tier homogeneous
network (consisting of macro base stations only) and need some fundamental changes in
their design and deployment to meet the high data rate demand.

Cellular networks have been designed mainly for downlink (DL) because initially the
traffic was asymmetric (mostly in the downlink direction). However, with the increase in
real-time applications, online social-networking, and video-calling, the traffic in UL has

greatly increased, which necessitates the need for the uplink (UL) optimization. In current
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cellular networks, cell association is based on downlink average received power, which is
viable for homogeneous networks where the transmit power of all the base stations (BSs)
is the same. However, in heterogeneous networks there is a big disparity in the transmit
power of different BSs, and the association scheme based on downlink received power is
highly inefficient, therefore, the idea of downlink and uplink decoupling (DUDe) has been
proposed for fifth generation mobile networks (5G) in [20-22].

2.1.1. Related Work

A simulation study has been performed on a two-tier live network where the UL association
is based on minimum path-loss while the DL association is based on DL received power [23].
This kind of association divides the users into three groups: users attached to a macro base
station (MBS) both in the DL and UL, users attached to a femto base station (FBS) both
in the DL and UL, and users attached to an MBS in the DL and an FBS in the UL.
The authors in [23] showed that the gain in UL throughput is quite high when the UL
association is based on minimum path-loss. The gain comes from those UEs which are
connected to an MBS in the DL and an FBS in the UL because they have a better channel
to the femto-cell and they create less interference to the macro-cell. A network consisting of
macro-tier and femto-tier is studied using tools from stochastic geometry in [24], where the
throughput gain due to decoupling has been shown. In [25], the analytical results obtained
from a stochastic geometry-based model have been compared with the results obtained
from the simulation in [23], and they found that both of them match each other. They also
found that the association probability mainly depends on the density of the deployment
and not on the process used to generate the deployment geometry. It has been shown
in [26] that DUDe provides gain in term of system rate, spectrum efficiency, and energy
efficiency. A joint study of DL and UL for k tier SISO network has been performed in [27],
while considering a weighted path-loss association and UL power control.

Stochastic geometry has emerged as a powerful tool for the analysis of cellular networks
after the seminal work of [28]. It has been shown that stochastic geometry-based models are
equally accurate as grid based models. In addition, they provide more tractability and their
accuracy becomes better as the heterogeneity of the network increases. Most of the work
that considered stochastic geometry-based models, mainly studied the DL performance of
the HetNets. For instance, SISO HetNets have been studied in [11,16,29-46], multiple input
multiple output (MIMO) HetNets in [47-55]. A complete survey can be found in [5,6] and
the references therein. However, only limited work has been carried out in UL because it is
more involved due to UL power control and correlation among interferers. The UL power
control is required because an interfering user may be closer to the BS than the scheduled
user, which creates an additional source of randomness in the UL modeling. The correlation
among interfering users comes due to the orthogonal channels assignment within a cell,
which prohibits the use of the same channel in a cell. In other words, there is only one UE

randomly located within the coverage region of the BS, which transmits in a given resource
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block. Therefore, the interference does not originate from the PPP distributed UEs but
instead from Voronoi perturbed lattice process [27]. The exact interference characterization
is not available [27], and thus makes the UL analysis even more involved.

An uplink model for the single tier network has been derived in [56], which uses fractional
power control (FPC) in the UL. A multi-tier UL performance has been studied in [27,57],
where each tier differs only in terms of density, cut-off threshold, and transmit power.
In [57], a truncated channel power inversion is used due to which mobile users suffer from
truncation outage in addition to SINR outage. The performance gain of DUDe is only
studied for a SISO network and there is no work which studies the decoupled association
in the MIMO network!. Therefore, this chapter considers multi-antenna BSs and also
considers UL biasing with the DUDe.

2.1.2. Contributions and Outcomes

The main challenge in modeling the UL multi-antennas HetNets, in addition to the generic
challenges discussed above, is to select an analytically tractable technique from the number
of possible multi-antenna techniques. The present chapter considers maximal ratio com-
bining (MRC) at the BSs and assumes that the channel is perfectly known at the receiver.
A receiver has knowledge about the channel between the transmitter and itself, but it does
not have any knowledge about the interfering channel. Furthermore, it considers power
control in the UL, which partially compensates for the path-loss [27,56]. This chapter
assumes Rayleigh fading in addition to path-loss?.

We use a cell association technique with biasing®, which can be used in any MIMO
HetNets. This association completely decouples the DL and UL association, and is generic
and simple. Cell biasing in the UL can be used to balance the load across the tiers. This
association scheme is motivated by the technique used in [24] for SISO HetNets. Due to the
DUDe, users are divided into three disjoint groups as shown in Fig. 2.1; (I) users attached
to the MBS both in the DL and UL, (II) users attached to the FBS both in the DL and
UL, and (III) users attached to the MBS in the DL and FBS in the UL. The gain in the
UL performance comes from the last kind of UE because they have a strong connection
to the FBS (low path-loss) and they create less interference to the MBS (due to a larger
distance).

This chapter studies both the SIR and rate coverage probability of a two tier network
where the association is based on DL and UL decoupling. The novel and insightful findings

of this chapter are as follows:

! [58] studies the UL performance in multi antennas BSs network. However, our analysis approach is signif-
icantly different than [58]. We explicitly take into account the beamforming gain in the cell association
and uses the Fad di Bruno’s formula [59] to find the high order derivative of the Laplace transform of
the interference, whereas [58] does not consider beamforming gain in the cell association and uses the
Gil-Pelaez inversion theorem to avoid finding the higher order derivative.

2For the sake of simplicity, shadowing in not considered in this work. Shadowing in a similar setup can be
found in [27,58].

3The biasing can be considered as the artificial increase in the transmit power of a given network tier.
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Macro BS

Femto BS

Figure 2.1.: System Model.

e The gain in terms of the SIR coverage probability provided by the DUDe association
over a no-DUDe association (association based on DL maximum received power aver-
aged over fading) decreases as the difference in the number BS’s antennas in the femto
and macro-tier increases. When the number of MBS antennas is larger than that of
FBS, the association region of an MBS is enlarged due to the larger beamforming
gain provided by the MBS. As a result of which UEs closer to the FBSs become
associated with MBSs. These boundary UEs, which are connected to the macro-tier,
create strong interference at nearby FBSs when they transmit to their serving MBSs.
On the other hand, when both tiers have the same beamforming gain, the coverage
region of both tiers are the same and the interference created by the boundary UEs
is not that strong. Thus, the DUDe gain over No-DUDe is high when both tiers have

the same beamforming gain.

e It has been shown in [23,24, 26, 27| that the DUDe association improves the load
balance and provides fairness in the UL performance of different UEs. In [27] it
is shown that in the UL the optimal rate coverage is provided by the minimum
path-loss association. However, we observe that in the single input multiple output
(SIMO) network, DUDe association does not completely solve the load imbalance
problem and the optimal rate coverage is not provided by the minimum path-loss
association. In the SIMO network, this load imbalance problem comes from the
different beamforming gain of the femto and macro-tier, therefore, we still need biasing
towards the femto-tier to balance the load. We show that when the beamforming
gain of the macro-tier is high as compared to the femto-tier then biasing towards the

femto-tier improves the rate coverage probability.

The rest of the chapter is organized as follows. In Section 2.2, we present our system
model and assumptions. In Section 2.3, we derive some enabling results, in particular, the
association probabilities and the distance distribution of a user to its serving BS. Section

2.4 is the main technical section, we develop the mathematical framework for the SIR
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Table 2.1.: List of Notations for Chapter 2.
| Notation | Description |

Dp, Oy PPP of tier K BSs, PPP of UEs

AK, AU density of tier K BSs, density of UEs

Pr, Py transmit power of each BS of the Kth tier , transmit power of a
UE

XK, ag distance between the typical UE and the tagged BS, path-loss ex-
ponent of Kth tier

Xk, X, distance between an interfering UE of K'th and Jth tier, and their
serving BSs respectively

Dg;, Dy, distance between an interfering UE of Kth and Jth tier, and the
tagged BS respectively

Ak, Nk association probability of a typical UE to Kth tier, number of
antennas at a Kth tier BS

B bias factor, B = g—;, where Br and Bj is biasing towards femto-
tier and macro-tier respectively

TK, PK,T SIR threshold and rate threshold of Kth tier, UL power control

fraction

C, Cx SIR coverage probability of the network, SIR coverage probability
of the Kth tier

R, Ri rate coverage probability of the network, rate coverage probability

of the Kth tier

Qr,Qr, W | load on a Kth tier BS, average load on Kth tier BS, bandwidth
in Hz

hr,, hg,,hy, | complex channel gain between the tagged BS and typical UE, an
interfering UE of Kth and Jth tier respectively

coverage probability and the rate coverage probability of the network. Section 2.5 presents
simulations and numerical results, while Section 2.6 provides a summary of this chapter.

The key notations used in this chapter are given in Table 2.1.

2.2. System Model

2.2.1. Network Model

We consider a heterogeneous network that consists of macro base stations (MBSs), femto
base stations (FBSs) and user equipments (UEs). The location of MBSs, FBSs and UEs are
modeled as 2-D independent homogeneous Poisson Point Processes (PPPs). Let @7, r,
and @y represent the PPPs for MBSs, FBSs and UEs respectively. Furthermore, let Ays, Ap,
and Ay be the density of &7, ®p, and ®y respectively. The transmit power of a MBS and
FBS are represented by Py; and Pp respectively, where Pys > Pr. We consider that MBSs
have Nj; and FBSs have Np antennas and Nj; > Np, while UEs have single antenna.
Throughout the system model, only inter-cell interference is considered i.e., a BS schedules

a single UE in a given resource block. The analysis is performed for a typical UE located
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at the origin and the BS serving this typical UE is referred to as the tagged BS, thanks to
Slivnyak’s theorem [7].

2.2.2. Uplink Power Control

We consider a fractional power control in the uplink that partially compensates for path-
loss [60]. Let X be the distance between a UE and its serving Kth-tier BS. The UE
transmits with Py = PyX ', where af is the path-loss exponent of the Kth-tier, P is
the transmit power of the UE before applying the UL power control, and 0 < n < 1 is the
power control fraction. If n = 1, the path-loss is completely inverted by the power control,
and if 7 = 0, no channel inversion is applied and all UEs transmit with the same power. We
do not consider the maximum transmit power constraint for the tractability of the analysis.
However, the analysis can be extended to include the maximum power constraint similar

to [57,58].

2.2.3. Signal Model

The received signal vector Y, at a tagged BS when a typical UE ug is served by a Kth

tier BS having Ng antennas is given by

Yio = VA higsi, £ Y0\ RXD s,

Z'Gq)/K\uo

interference from Kth tier scheduled UEs

> PXG D hy sy, 4, (2.1)

qe®’;

interference from Jth tier scheduled UEs

T
where af is the path-loss exponent of Kth tier (ax > 2); hg, = [hKl,hK2, .. hKNK}

is the complex channel gain and the magnitude of each h; follows Rayleigh distribution
(we assume Rayleigh fading channel); X, represents the Euclidean distance between the
qth UE of the Jth tier and its serving BS; D, is the Euclidean distance between the gth
interfering UE of the Jth tier to the tagged BS; s, is the signal transmitted by the gth UE
of the Jth tier having unit power; n = [ny,ng, -+ ,n NK]T is the vector of complex additive
white Gaussian noise at the tagged BS; @ and @', represent the point processes formed
by the thinned PPP of the scheduled UEs of the Kth and Jth tier respectively. Since, we

assume multiple antennas’ BS, we apply a receiver combiner gg to sk, of a typical UE. By
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using maximal ratio combining (MRC), gg = hﬁo, (2.1) can be written as

Ziey = Wi Yy = VP XF " gy P sk + Y A/ PoX e D bl by si,+

i€<I>’K\u0

> /RXGT DR hy, s, + hiin. (2.2)

qed’;

Similarly, the SINR g, at the tagged BS Ky can be written as

Py |l ||? X g

VKo = 3 5 ,  (2.3)
P hgthi XaKanaK P hggh‘]q XOZJUD*@K 2
o O T | X P B BT | X P+ o
i€ \ug Ko q€P’, Ko
| hil h, |?
where ||hg,||* ~ Gamma Nk, 1), whereas |~2—*| and |-.2—2| both follow independent
° [ | [ |

exponential distribution [61].

We assume high density for the UEs such that each BS has at least one UE in its
association region and UEs always have data to transmit in the UL (saturated queues).
Throughout the chapter the Kth tier will always be the serving tier of the typical UE while
Jth tier will be the interfering tier. We will use the terms UE and user, and typical user

and random user interchangeably.

2.2.4. Cell Association

The long term average received power (accounting for beamforming gain) at a typical UE
when a Kth tier BS transmits is PKNKX;(O‘K. Similarly, in the UL, the long term average
received power at a typical Kth tier BS is PyNg X ¥ (before employing UL power control).
In the DL, a UE is associated to a BS from which it receives the maximum average power,
while in the uplink it is associated to a BS that receives the maximum average power. In
the UL, each UE has the same transmit power, so the association is actually related to
the number of antennas and the path-loss. Due to the cell association criterion, there are
three sets of UEs: 1) UEs connected to the MBSs both in the DL and the UL, 2) UEs
associated to the MBSs in the DL and FBSs in the UL, and 3) UEs connected to the FBSs
both in the DL and the UL as shown in Fig. 2.1. In the DL, the load imbalance problem
arises due to the high transmit power and beamforming gain of the MBS as compared to
the FBS, whereas in the UL it is only due to the larger number of antennas at the MBS. In
order to balance the load among the macro-tier and femto-tier in the UL, we use bias factor
B = g—;, where Br and B)j; are the biases towards femto- and macro-tier respectively. A
biasing B > 1 offloads UEs from the macro-tier to the femto-tier, B < 1 offloads UEs from
the femto-tier to the macro-tier, and B = 1 means no biasing. The association criterion is
based on long-term average biased-received power and the UEs in different regions can be

written as:
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e (Casel- UEs connected to MBS both in the UL and DL:

(PuNauXy ™ > PeNpXpoF) () (NuBuXyf™ > NeBpXpF) o,

DL association rule UL association rule

e Case2- UEs connected to MBS in the DL and FBS in the UL:
{(PuNp Xy > PpNeX ") () (Na Bu X < NeBpXp®F) b,
e Case3- UEs connected to FBS both in the UL and DL:

{(PuNy X0 < PENpX o) () (Nar Bar Xy < NeBrXp*) |

2.3. Preliminaries

In this section, we find the association probabilities of UEs and the distance distribution of
a UE to its serving BS. These will be required in the next section to find the SIR coverage
probability and rate coverage probability of the network.

2.3.1. Association Probability

In this subsection, we find the association probabilities of the UEs.

Lemma 2.1. The probability that o typical UE is associated with the MBS both in the UL
and the DL is given by

2
- |:/\FT$/C¥F (XJ(\}M/‘XF> +)\MX]2\/1:|

o0
P (casel) = 27r)\M/ Xue dx s (2.4)
0

Br Pr _ BpNp Br Pr _ PpNp g
where for By 2 P T, = BN and for By < P T, = PN The association

probability is independent of the density of the UFEs.
Proof. See Appendix A.1. O

Lemma 2.2. The probability that a typical UE is associated with a MBS in the DL and a
FBS in the UL is

00 _zla T’2/0‘]M X"‘F/U‘]\/I 2+)\ Xz]
P (case2) = 2nAp [/ Xre Tr{ Mo ( r ) FoE dxp—
0

%) Y T/2/QM XaF/aM 2+/\ XQ}
/ Xpe “{M 2 () A lax, |, (25)
0
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where when BE > L then Y = BMNu gpg v, = DulNy gnd when g—]@ < L then

B Prr’ BrNp PrNp P
! PJMNM ! BMNM
T P and 15 = BN
Proof. The proof follows similar steps as Lemma 2.1. ]

Lemma 2.3. The probability that a typical UE associates with the FBS both in the DL and
the UL can be written as

2
—r |:/\AIT/22/O<,M (X;F/O‘]\/I> +)\FX%}

P (caseld) = 27r/\F/ Xrpe dxps (2.6)
0

where when g— > P—F then Y4 = IIDDM%M and when BF < IIDDIZ then T4, = %A;%f.
Proof. Tt can be easily proved by following the same steps as in Lemma 2.1. O

From Lemma 2.1, 2.2 and 2.3, the tier-association probabilities in the UL can be easily
obtained. Thus the probability that a typical UE is associated with Kth-tier BS is given
by
—r |:AJT2/QJ (X;K/(¥(1)2+>\KX%<:|

A = 277)\[(/ Xrke dxx (2.7)
0

B P _ BN B P
where K, J € {M,F} and K # J and for £ > 5B, T = 5L and for 5B < 5F,
T = DNs 1y g important to mention that the condition Br — Lr iy Lemma 2.1, 2.2,

P Nk Bm Py

2.3 and (2.7) is very unlikely to be true because usually we need to offload the UEs towards

the femto-tier instead of the macro-tier. However, we specifically mentioned it so that the
expression in Lemma 2.1, 2.2, 2.3 and (2.7) holds for the entire range of the bias B

For ag = aj = a, (2.7) simplifies to

AK

A= S T e,

(2.8)
The probability that a typical UE associates to the Kth tier increases with increasing the
density of Kth tier BS, or biasing towards Kth tier or placing more antennas at Kth tier
BSs. However, the increase due to biasing and the beamforming gain is not the dominant

factor due to the presence of the exponent 2/a where av > 2.

2.3.2. Distance Distribution to the Serving BS

In this subsection, we find the distance distribution of the scheduled user to the serving
BS.

Lemma 2.4. The distribution of the distance Xy between the typical UE and the tagged

BS is

2\ BiIN N oo ta
Fxn (Xi) = Z2EXpexpl—n [ AeX2 + 0, (2221 xHex/a) ) L (2.9)
Ax B Ng
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where K,J € {M,F} , K # J, and Ak is the tier association probability.
Proof. We provide the proof in Appendix A.2. O

Remark 2.1. It is important to mention that the distance distribution of an interfering
UE to its serving BS is different from the distribution of the typical UE and the tagged
BS because the distance between an interfering UE and its serving BS is upper bounded by
a function of the distance between an interfering UE and the tagged BS. Specifically, let
both the typical UE ug and an interfering UE u; belong to the Kth tier and let the distance
between w; and its serving BS be Xk,, and Dy, be the distance between u; and the tagged
BS, then 0 < Xk, < Dg,. Similarly, if u; belongs to the Jth tier (interfering tier) and the

distance between w; and its serving BS is X, and the distance between u; and the tagged

. Ny ByDSE 1oy
BSis Dy, then 0 < Xy, < | —x 50—

Remark 2.2. Based on the association rule in the previous section, we define the in-
terference boundary here. For a UE who is associated to Kth tier and the association

distance 1s Xy, the interference boundary Ix, for the Jth tier is given by Ix, = Dj >

NyBjy ay XaK/O‘J

Thus, both Remark 2.1 and Remark 2.2 define the regions where the interfering UEs
can be located and these regions come due to the association rule defined in the previous

section.

2.4. SIR and Rate Coverage Probability

2.4.1. SIR Coverage Probability

The UL SIR coverage probability? can be defined as the probability that the instantaneous
UL SIR at a randomly chosen BS is greater than some predefined threshold. The UL SIR

coverage probability C of our system model can be written as
C=CpAr+CynAyp, (2.10)

where Cp, Cps, Ar, and Ay are the coverage and association probability of the femto- and
macro-tier respectively. The Kth-tier coverage probability Cx for a target SIR 7x can be
defined as

Crk 2 Ex, [P[SIRx, > 7x]]. (2.11)

In the UL, the interfering UEs do not constitute a homogeneous PPP due to the cor-
relation among the interfering UEs. This correlation is due to the orthogonal channel

assignment within a cell and can be better modeled by a soft-core process [62]. However,

“We consider an interference-limited network similar to [34] and therefore study the SIR coverage proba-
bility instead of the SINR coverage probability.
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soft core processes are generally analytically not tractable [5]. Therefore, in most of the UL
analysis, the interfering UEs are approximated as a single homogeneous PPP (because in
the UL the transmit power of the UEs are the same and the association regions of BSs form
a Voronoi tessellation) [24-26,57]. However, in this system model, it can not be approxi-
mated as a single homogeneous PPP due to biasing and different beamforming gain for the
femto and macro-tier (the association regions of BSs form a weighted Voronoi tessellation).
Therefore, we approximate it as two independent PPPs, i.e., the femto-tier interfering UEs
constitute one homogeneous PPP while the macro-tier interfering UEs constitute another
homogeneous PPP. However, we do not approximate the interfering UEs as PPPs in the
entire 2-D plane but only in the regions defined in Remark 2.1 and 2.2. The constraints of
Remark 2.1 and 2.2 are taken into consideration in the rest of the analysis.

The channel hg, follows Gamma (Ng, 1), therefore, we need to find the higher order
derivative of the Laplace transform of the interference, which is a common problem in
MIMO transmission in the PPP network. In the literature, different techniques have been
used to simplify the nth derivative of the Laplace transform. A Taylor expansion-based
approximation is used in [63] while [64] uses special functions to approximate the nth
derivative of the Laplace transform. However, both of these techniques are applicable to
ad-hoc networks only. For a cellular network, a recursive-technique is used in [65], but their
final expression is still complicated. Hence, we utilize Faa di Bruno’s formula [59] to find
the nth derivative of the Laplace transform of the interference.

We state the coverage probability of a random user associated to a Kth tier BS in the

following theorem.

Theorem 2.1. The UL coverage probability Cx of the typical UE when the serving BS is
a Kth tier BS and the SIR threshold is Ti for the system model in Section 2.2 is given by

2 )\ 6% (6% [e%
Cx (7 77 K/ XKeXp (AKX§<+AJ(<)2/ 7 xHex/ J))}
Ng—1 n
s"(=1)" .,
3 (ni')cl (s)dx,, (2.12)
n=0 ’
where s = 7'KXO‘K(1 "), ¢ = ﬁjg;’{, L1 (s) is the Laplace transform of the interference

given

—27s X 2—ak(1-n) 2 2 —ax(1-n)
L = A X TR 1,1 - /2 — 2 s X KV
1(s) =exp (aK_2 [ K/O K; ok |1, ox’ P SAk, X

fXKi (XKZ) dXKi + >‘JC1_2/aK / Xi(:éJ/CVK—OéJ(l—n) X

oFy [1 -2 2 sCX ;0 "]fXJ (X4,) dx,, D (2.13)
oK’ ok’

Both the fx, (Xk;) and fx,, (Xj,) can be obtained from Lemma 2.4, and the L7 (s)
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represents the nth derivative of the Ly (s). In order to find L} (s), the Faa di Bruno’s

formula [59] is utilized which can be written as

where f (s) is the term inside the exponential of (2.13) and the summation is to be performed
over all different solutions in non-negative integers by, -+ by of by +2bs + -+ nb, =n
and k =b1 4+ - - + by,.

Proof. See Appendix A.3. O

It can be noticed that as the number of antennas Nk increases, the summation term
becomes larger, and after taking the nth derivative, the expression becomes very lengthy.

Hence, numerically computing the coverage probability is computationally very expensive.

2.4.2. Special Cases

The SIR coverage in Theorem 2.1 can be simplified for the following plausible special cases.

Corollary 2.1. The Kth tier SIR coverage probability without the UL power control (n = 0)
is given by (2.12), while Ly (s) simplifies to

—2 2 2
L1 (5>=exp< - {AKSQ/C“KQFl {1,1——,2——;—74 +
ag — 2 aK K
2—ap  2tay-ag 9 2 —TKslfaK/O‘J
e mh [1’1_J’2_£’W . (2.14)

where s = X3X and the rest of the variables have the predefined meaning.
The coverage probability can be found by evaluating just a single integral.

Corollary 2.2. The Cx with full channel inversion (n = 1) is given by (2.12), while Ly (s)

simplifies to

—27s 2
et =exo (275 Do |11 2o 2] [T v (o) ax +
2 2
1-2/a i B . 205 [k
AsC KoFy [171 —aK,Q —aK, SC:| /0 XJq fXJq (XJq) dXJq:|) , (2.15)

where s = T while the rest of the parameters remain the same.

Corollary 2.3. For BgkNg = ByNj and ag = aj = « the Cx is given by

NKln

me/ Xrcexp {—mAXE) Z LY (5)dxy, (2.16)

Crk (T
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where A = A\ + Ay and L (s) is given by

=2wsA [°° _o_a(1— 2 2 —a(l—
Ej(s):exp<a_2/0 DG L1=-—,2-~—sX; “ n)] in(Xi)dXi>-

(2.17)

The coverage probability behaves as if the interference is from a single tier network with
density A = Ag + AJ.

Corollary 2.4. For Ny =Ny, Bk = Bj,ag =aj=a, Tk =T; =7 and A\g = Aj = A

then the coverage probability is given by

2T\ [ 2 Nt Sn(_l)n n
C =C =C = ) Xy exp {—2mAX7 ) ;) — L7 (5) dx, (2.18)

where A= Axg = Ay and L1 (s) is

—4mrsA [ _o_a(1— 2 2 —a(l—
m(s)-exp( i / b G {1,1——,2——;—8& . ’”} fxi(Xz-)dxi>-
a—2 Jy Q «a

(2.19)

The network coverage probability C becomes equal to the tier coverage probability Cg,
Cy.

Corollary 2.5. For n = 0, BkNg = BjN;j, ag = ay = « the Cx is given by (2.16),
while Ly (s) simplifies to

(2.20)

— 2T 82N 2 2 })
2 )

Ly (s) = exp (TQFl 11— 572 LK

where s = X% and A = Ag + AJ.

The coverage probability is in the form of single integral and the interference behaves as

if it originates from a single tier network.
Corollary 2.6. Forn=0, Ny =1, ax = aj = «a the Cx is

Ak
A [N+ ArC2/% 4+ 225G (0 7ie, € e, M)

Ck (k) = , (2.21)

where G (o, Tie, C, Ak, Ag) = AgoF1 [1,1— 2,2 — 20 —qp] 4 ) ¢!

2 2. T _ B
oF 1,1—5,2—5,—%}, and ¢ = 25,

The coverage probability reduces to a closed form.

Corollary 2.7. Forn=0, Ny = N;y=1Bg = Bjy=1, ax = ay = « the the Cx can
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further be simplified to

Ck (1K) = (2.22)

1+2TK2F1[ 2———7‘}(]

The coverage probability becomes density invariant. Similar observation has been made
in [37,57].

2.4.3. Rate Coverage Probability

In this subsection, we find the rate coverage probability of the network, which is the prob-
ability that a randomly chosen user can achieve a target rate, or the average fraction of
users that achieve the target rate. The rate coverage probability of the network can be
written as

R=ArRr+ AuRum, (2.23)

where Rr and R are the rate coverage probabilities, and Ap and Ajs are the association
probabilities of the femto- and macro-tier respectively. The rate coverage R of the Kth

tier when the rate threshold is px can be written as
A w
R =P an log, (14 SIRk) > px |, (2.24)
K

where W is the frequency resources and 25 is the load on a Kth-tier BS. The rate distribu-
tion captures the effect of both SIR and load, which in turn depends on the corresponding
association area. The distribution of the association area is complex and not known. How-
ever, by using the association area approximation in [66], the probability mass function of

the load is given by

35 D(n+35) (AvdAr\" ! A Ay D)
P(QK_n)_(n_l)! T @3] < o ) (3.5+ v ) n>1, (2.25)

where I () = [ 2! exp (—x) dx is a gamma function.

We state the rate coverage probability Ry in the following Theorem.

Theorem 2.2. The R when the rate threshold is px for the system model under consid-

eration s given by

< 35% T(n+35) (Avdg\"”
RK(PK)_Z(n_l)! [ (3.5) ( [f\KK>

n>1

(n+3.5)
(3.5 4 Audx ) Cx (2PK”/W - 1) . (2.26)
AK

where Cg is given by (2.12).
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Figure 2.2.: UL Association probabilities vs. A\p/Ay, (a =4, Nyy =5, Np=1,B =1).
Proof. The rate coverage probability of the Kth tier for threshold px can be written as
w Qi /W
Ric(px) =P | o—logy (1 +SIRx) > p| =P [SIRK > 9K /W _ 1} . (227
K

By the definition of the SIR coverage probability, the above expression becomes

Ri (px) = B, [CK <2pKQK/W - 1)] =3 POk =n)Ck (20K”/W - 1) . (2.29)
n>1

By inserting (2.25) in the above expression, we obtain (2.26). O

The rate coverage probability expression in (2.26) can be further simplified by using the

mean load approximation used in [66]. The mean load is given by

1.28\py A
4 L8 Ak

Ok =E[Qk]=1
AK

(2.29)

where K € {M, F}. By using the mean load Qx the summation over n is removed from
(2.26).

2.5. Results and Discussion

First, we discuss the accuracy of our analysis and system model. The MBSs, FBSs and
UEs are deployed according to the system model. We fix the Py = 43 dBm, Pr = 20
dBm, Py = —100 dBm/Hz, and W = 10 MHz. All the densities, (Ays, Ap and Ay), are
per square kilometers /Km?. We consider the same SIR thresholds (7 = 7y = 7F), rate

thresholds (p = par = pr) and path-loss exponents (a = apr = ap) for both tiers.
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Figure 2.3.: Effect of biasing on the UL association probabilities, (o = 4, Ny = 5, Np =
1,B =5).

Fig. 2.2 shows the association probabilities of UEs to different cases (mentioned in
Section 2.2) versus ratio of Ap and Ay, (Ap/Aa), for the given parameters. The solid
lines show analytical results, derived using (2.4), (2.5), and (2.6) while marked points are
obtained using Monte Carlo simulations. It can be noticed that as the density of the FBS,
AF, increases, the number of UEs in case2 and case3 also increases, whereas the number of
UEs in casel decreases. It can be further noticed that initially the association probability
of case2 increases very rapidly and reaches a maximum value, (Ap/Ap =7) , and then
starts decreasing since a larger number of UEs become attached to FBSs both in the DL
and UL. The figure provides an estimate of the load in different tiers for design engineers.
We can observe that at Ap/Ay = 5, 30% of the UEs are attached to the macro-tier (casel)
while 70% of UEs are attached to the femto-tier (case2+case3), but if we increase Nj; = 25
and keep the rest of the parameters the same then 50% of the UEs will be attached to the
macro-tier and 50% to the femto-tier (using (2.7)). This shows that even when using DUDe
and a higher density for the femto-tier, we still need to balance the load between the tiers.
Therefore, we use biasing to balance the load and Fig. 2.3 shows the effect of biasing on
different UEs’ type.

Fig. 2.3 depicts the effect of biasing on association probabilities. It can easily be noticed
that by using B = 5 the association probability of case2 increases while the association
probability of casel decreases. When B > 1 it offloads the boundary UEs of the macro-tier
and these UEs become attached to femto-tier. Similarly, when B < 1 the boundary UEs
of the femto-tier are offloaded to the macro-tier, whereas B = 1 means no biasing. By
changing B, we can balance the load among two tiers for optimal performance.

Fig. 2.4 compares the SIR coverage probability obtained through simulations and anal-
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Figure 2.4.: Comparison of the SIR coverage probability obtained through simulations and
analysis.
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ysis for various network parameters. It can be noticed that the analysis and simulations
curves are close to each other, which shows that the independent homogeneous PPPs ap-
proximation of the interfering UEs is reasonably accurate. The gap between the simulation
and the numerical curve is due to the homogeneous PPP approximation of the interfering
UEs. There is some correlation among the interfering UEs as discussed in Section 2.4.
However, it is quite challenging to model this correlation. Therefore, in most of the UL
analysis this correlation is ignored [24,56-58]. The rest of the results in the current chapter
are obtained through Monte Carlo simulations unless stated otherwise.

Fig. 2.5 shows the effect of 1 on the SIR coverage probability when the cell association is
based on the maximum downlink received power and when it is based on DUDe. It can be
observed that power control affects the cell-centered (corresponds to large SIR threshold)
and cell-edged (corresponds to small SIR threshold) UEs differently, i.e., the centered UEs
coverage decreases with power control, whereas the cell-edged UEs coverage increases with
the middle value of n = 0.5 and with full channel inversion (n = 1) it decreases. With
1n = 1 the interference power becomes significant and hence decreases the overall coverage,
therefore, n should be optimized accordingly. Furthermore, comparing Fig. 2.5a and Fig.
2.5b reveals that the effect of power control is more prominent when the association scheme
is No-DUDe. This is due to the large cell size of the MBSs in the No-DUDe association as
compared to the cell size of the MBSs in the DUDe association.

Fig. 2.6 shows how the gain provided by the DUDe association over No-DUDe association
in term of SIR coverage probability changes with the beamforming gain of both tiers.
It is important to mention that the UL coverage probability of the network when the
association is based on maximum DL received power averaged over fading can be derived
by similar tools and methods used in this chapter. It is clear from the figure that the gain of
DUDe association over No-DUDe is maximum when both tiers have the same beamforming
gain, and decreases otherwise. When Ny, is large compared to Np, the beamforming gain
provided by a MBS increases, which enlarges the association region of a MBS. As a result of
which UEs closer to the FBSs become associated with MBSs. These boundary UEs, which
are connected to the macro-tier, create strong interference at nearby FBSs when they
transmit to their serving MBSs. Whereas, when both tiers have the same beamforming
gain, the coverage region of both tiers are the same and the interference created by the
boundary UEs is not that strong. Thus, the DUDe gain over No-DUDe is high when both
tiers have the same beamforming. In other words, we can say that as the difference in
beamforming gain of both tiers increases, the gain provided by the DUDe over No-DUDe
decreases. Fig. 2.7 shows the same effect when UL power control is not utilized.

Fig. 2.8 shows the effect of the number of MBS’s antennas and biasing on rate coverage
probability. For no biasing case B = 1, increasing Njs from 1 to 20 decreases the rate
coverage. To explain this effect, we know that the rate coverage depends on the load on
a BS (2.24). When Njy is high, the coverage region of the macro-tier increases and most
of the UEs become attached to MBSs due to which, the macro-tier is overloaded. Thus
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the overall rate coverage probability drops. Further, we can see from the figure that when
Ny = 1, no-biasing gives us the maximum rate coverage, which is in accordance with the
result of [27]. However, for higher Ny, we see that biasing improves the rate coverage. From
the network design perspective, we see that increasing Nj; can degrade the rate coverage,
therefore, to benefit from a large number of MBSs’ antennas we need a suitable biasing
towards the femto-tier.

Fig. 2.9 illustrates the effect of FBSs’ density and path-loss exponent a on the rate
coverage probability for the association scheme of DUDe and No-DUDe. It can be observed
that changing « from 3 to 4 increases the rate coverage probability for both DUDe and
No-DUDe, which comes from the decrease in the interference power. It can be further
observed that an increase in Ap increases the rate coverage for the DUDe case. This
improvement in the rate coverage comes from the inherent property of the DUDe to better
handle interference. On the other hand, for the No-DUDe association scheme, increasing Ag
slightly improves the rate coverage for centered UEs (large rate threshold) while decreases
the rate coverage of cell-edged UEs (small rate threshold). When Ar increases then the
load on BS decreases due to which, the rate coverage improves for the cell-centered users.
However, with the increase in Ap, the cell size of a BS decreases and by using channel
inversion the cell-edged UEs transmit power also reduces, thus the coverage of cell-edge

UEs reduces.

2.5.1. Optimal bias and optimal power control fraction

Fig. 2.10 shows the effect of biasing on SIR coverage probability for n = 0 and n = 1.
For n = 0 the optimal coverage probability is given by no biasing i.e., B = g—; =1or
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B = 0dB as shown by Fig. 2.10a. The SIR is independent of the load and depends on
the density of BSs, path-loss, beamforming gain of the BSs, and the SIR threshold 7, and
when 1 = 0 then all UEs transmit with the same power. By using biasing we force a UE
to associate to a BS to which the UE connection is not strong, and thus the SIR coverage
probability reduces. However, from Fig. 2.10b we see that when n = 1 the optimal SIR
is given by B = 5dB. With power control, the transmit power of a UE is proportional to
its distance from the BS and the transmit power of the cell-edged UEs is greater than the
cell-centered UEs. Further, when the beamforming gain Nj; of the macro-tier is greater
than the femto-tier, cell-edged UEs of macro cells transmit with large power and generate
high interference. Therefore, offloading these cell-edged UEs to the femto-tier improves the
SIR coverage.

The rate depends on the load and using an appropriate value of biasing can maximize the
rate coverage. To find a closed form expression for the optimal bias is beyond the scope of
this work. However, the optimal value can be found by a linear search. Fig. 2.11 shows the
rate coverage against biasing for different rate thresholds p. It is clear from the figure that
the maximum rate coverage is given by offloading UEs towards the femto-tier. However,
this optimal bias value changes with p. When p is small (corresponds to cell-edged UEs)
we need a small value of B, whereas for large p (corresponds to cell-centered UEs) we need
more aggressive biasing as shown in Fig. 2.11a and Fig. 2.11b, respectively. One can
observe that for B < 0 dB the rate coverage is very low. When the beamforming gain
of the macro-tier is high, the coverage region is also large as compared to femto-tier and
biasing towards macro-tier further increases the coverage region of MBSs (see Fig. 2.3).
Due to this enlargement of the coverage region, a large number of UEs becomes attached
to the macro-tier and it becomes overloaded, which drops the rate coverage probability.
In [27] it is shown that for a SISO network the UL rate coverage is maximized when the
association is based on minimum path-loss. However, for MIMO setup this is not the
case. Comparing the UL offloading with the DL, one can see that in the DL we need more
aggressive offloading of UEs to the small cell, because there is a high disparity in both
the transmit powers and beamforming gains of the macro and femto BSs. Whereas, in
the uplink the load imbalance is only due to the difference in the beamforming gain of the
macro and femto BSs.

Fig. 2.12 shows the rate coverage against 17. The power control fraction 7 affects the cell-
edged and cell-centered UEs differently. For the cell-edged UEs the optimal rate coverage
is given by the median value of 1, as shown in Fig. 2.12a. Whereas for cell-centered UEs
the optimal rate coverage is given without uplink power control n = 0, as shown in Fig.
2.12b. Therefore, based on the target rate threshold, the appropriate value of 1 can be

chosen to optimize the rate coverage.
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10, \y = 3000, o = 3).
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2.6. Chapter Summary

Using tools from stochastic geometry, the UL performance of a two-tier random network is
studied, where the cell association is based on DL and UL decoupling. Multiple antennas are
considered at BSs, and single antennas are considered at UEs. The position of the MBSs,
FBSs, and UEs are modeled using a 2-D PPP. Maximal ratio combining has been used at
the BS and tractable analytical expressions have been derived for the rate and SIR coverage
probability. It has been shown that the gain (in term of SIR coverage probability) of the
decoupled DL and UL association over the coupled DL and UL association is maximum
when both tiers have the same number of antennas (same beamforming gain). It has
also been observed that in order to leverage the benefits of multiple antennas in a DUDe
network, offloading of UEs to the small cell is required.

In the next chapter, we study an ad-hoc network that utilizes a combination of wireless
power transfers and backscatter communication. We develop an analytical framework for

this ad-hoc network by exploiting the stochastic geometry tools.
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3. Backscatter Communications for the

Internet of Things

Motivated by the recent advances in the Internet of Things (IoT) and in Wireless Power
Transfer (WPT), in this chapter, we study a network architecture that consists of power
beacons (PBs) and passive backscatter nodes (BNs). The PBs transmit a sinusoidal con-
tinuous wave (CW) and the BNs reflect back a portion of this signal while harvesting
the remaining part. A BN harvests energy from multiple nearby PBs and modulates its
information bits on the composite CW through backscatter modulation. The analysis of
this network architecture poses real challenges due to the double fading channel, and its
dependence on the PPPs of both the BNs and PBs. However, with the help of stochastic
geometry, we derive the coverage probability and the capacity of the network in tractable
and easily computable expressions, which depend on different system parameters. We ob-
serve that the coverage probability decreases with an increase in the density of the BNs,
while the capacity of the network improves. We further compare the performance of this
network with a regular powered network in which the BNs have a reliable power source
and show that for a very high density of the PBs, the coverage probability of the former

network approaches that of the regular powered network.

3.1. Introduction

The emerging Internet of Things (IoT) is expected to connect billions of small comput-
ing devices to the Internet [67]. These tiny devices have processing, sensing and wireless
communications capabilities. They are supposed to be deployed everywhere and can be
accessed from anywhere at any time. However, powering these small devices is a major
challenge (others are interoperability, management, security and privacy) [68,69]. It is very
expensive and impractical to replace the batteries of such a massive number of devices or
power them with wires. Therefore, harvesting energy from external sources for perpetual
operation is a viable option [69]. The advancement in Wireless Power Transfer (WPT) has
made it possible to power IoT devices [70].

In the current chapter, we study a random network consisting of passive backscatter
nodes (BNs) and power beacons (PBs). The PBs are deployed for WPT and they transmit

sinusoidal continuous waves (CW)!. The mobile nodes or backscatter nodes (BN), which

1Significant enhancements can nevertheless be obtained by proper multisine waveform designs [71,72].
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Figure 3.1.: Backscattering communication system.

are in the range of PBs will backscatter a portion of this CW to a nearby receiver by
mismatching its antenna impedance, while harvesting the remaining power to operate its
integrated circuit [73]. A BN modulates the data onto the backscattered signal by control-
ling its antenna impedance. A schematic diagram of a backscatter communication system
is shown in Fig. 3.1. In contrast to conventional radio architecture relying on power hungry
RF chains, the backscatter nodes do not have any active RF components. As a result, the
BN has miniature hardware and very low power consumption. For more details on the
backscatter operation, readers are referred to [73,74], and the references therein. The aim
of this work is to study the performance of this unique network, where the BNs are powered
through wireless power transfer from the PBs. The analysis is performed using tools from

the stochastic geometry.

3.1.1. Related Work

Backscatter communication is traditionally used in the Radio Frequency IDentification
(RFID) systems, where an RFID-reader reads data from a nearby tag via backscatter mod-
ulation [73-75]. Recently, there have been some studies, which used backscatter communi-
cation by harvesting energy from ambient sources such as TV and Wi-Fi signals [76-78].
However, this ambient energy harvesting technique cannot be used in the large scale IoT
due to a scalability issue [74,79]. The authors in [80] consider a single cell network in
which there is one reader in the center of the cell and the sensors nodes are distributed

uniformly within this cell. They studied the decoding probability under different collisions
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Table 3.1.: List of Notations for Chapter 3.

Notation ‘ Description ‘
Ppp, Py, Aps, Ay | PPP of the PBs, PPP of the BNs, density of the PBs, density
of the BNs
Ppp, B, Npp transmit power of each PB, backscattering efficiency, aver-
age number of the PBs in the harvesting region
af, ob path loss exponent of the forward channel, path-loss expo-
nent of the backward channel
Psn, Pen received power at BN, average received power at BN
dij, Tjk distance between ith receiver and jth BN, distance between
jth BN and kth PB
Ei(z) Ei(z) is the exponential integral function Ei(z) =
e it de
C,T,P[],E, coverage probability, transmission capacity, probability of
an event, expectation with respect to x
O, N, 'yj%,’yRO SINR threshold, variance of the noise, SINR at typical re-
ceiver Ry, modified SINR at Ry
hzf’ j complex channel gain of the forwardQChannel between the
ith BN and jth PB while h{, = |n/
h;k complex channel gain of the backward chagnel between the
jth receiver and kth BN while b, = |A!, |

resolution schemes such as using directional antennas, successive interference cancellation,
and ultra-narrow band transmission. They observed that a combination of these techniques
gives significant gains. A full-duplex backscatter communication setup is considered in [81]
where a multiple access scheme based on a time-hopping spread-spectrum is proposed to
reduce the interference. A comparison between multistatic and monostatic radio architec-
ture has been done in [82], where it has been demonstrated that multistatic architecture
outperforms the monostatic architecture in term of diversity order, bit error rate, energy
outage and coverage.

Most of the above works considered a single-reader single-tag or single-reader multiple-
tags, except [79], which considers a wireless powered backscatter communication network
in which dense PBs are deployed to wirelessly power BNs. They model the network as a
Poisson cluster point process (PCP), where PBs constitute the parent point process and
the BNs form daughter point processes. Using tools from stochastic geometry they studied
the coverage and network capacity of the network. However, they considered that a BN
only harvests energy from a single PB and they also did not consider fading in the forward
channel. Moreover, they derived lower bounds on the coverage and capacity of the network.

In the present chapter, we study a more generic and close to practical network setup. In
our setup both the PBs and the BNs are distributed according to PPPs and we consider
fading in both the forward and backward channel. We also consider that the BNs can

harvest and backscatter energy from multiple nearby PBs. Then we utilize tools from
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stochastic geometry to study the coverage and capacity of such a network.

3.1.2. Contributions and Outcomes

We develop a comprehensive model for the wireless powered backscatter IoT network in
which the locations of PBs and BNs are distributed as independent PPPs. The BNs
modulate the information on the unmodulated CW signal from the nearest PBs and reflect
a portion of the signal to the receiver. The remaining energy is harvested for the operation
of its integrated circuit. We study the coverage and capacity of this network for a typical
BN where the capacity is defined as the number of successful transmissions between the
BNs and their receivers in per unit area of the network. In a classical downlink cellular
network, the coverage (and capacity) depends on a single channel (between a base station
and a user equipment) and the density of the BSs, while in the uplink it depends on the
channel and the density of the UEs. Furthermore, the BS has a constant transmit power
in downlink while the UEs use power control in the uplink. Whereas, in our setup, the
coverage probability (and capacity) depends on the double fading channel, the PPP of BNs
and the joint probability distribution function (PDF) of the distances of the nearest PBs.
In addition, the reflected power of a BN is a random quantity and depends on the forward
channel and the PPP of the PBs. Thus all these unique features make the analysis very
challenging.

To tackle these challenges, we use a dimensionality reduction technique in which we apply
the expectation with respect to the forward channel to both the signal and interference
power, before the analysis is carried out. This makes the analysis tractable and we find
insightful and adequately accurate expressions for both the coverage and capacity of the
network. Our analysis captures the effect of instantaneous energy harvesting from multiple
PBs, backscatter modulations of the composite signal and the double fading channel in
a single tractable expression. This significantly contrasts with [79] that uses a constant
transmit power for the BNs and derives only the lower bound on the coverage probability
and capacity of the network.

To get further insight, our coverage probability expression can be simplified into a single
integral form when the BN harvests energy from a single nearest PB and the path-loss
exponent of both the forward and backward channel is the same. It can be further simplified
to a closed form solution when we consider that the BNs reflect the signal with the mean
harvested power. We further consider a network scenario in which the BN harvests from all
the PBs in the network and backscatters their signal. This case is even more challenging
because the coverage probability depends on the PPPs of both PBs and BNs, and the double
fading channel; therefore, we only find the approximation for this case. The accuracy of
the analysis is verified with extensive Monte Carlo simulations.

Leveraging the above analysis, we are in a position to ask and answer some important and
new questions/trade-offs that emerge in the wireless powered backscattered ToT network.

Firstly, increasing the density of the PBs improves the harvested and reflected power, but
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at the same time it increases the amount of interference. So, how does the coverage of the
network vary with the density of the PBs? Secondly, what is the impact of the density
of the BNs on the coverage and the capacity of the network? Finally, can the wireless
powered backscattered network give the same coverage as of the classical cellular network
where BNs are powered with a reliable power source rather than through backscattering?

The answers to these questions are outlined below:

e We observe that increasing the density of the PBs increases the coverage probability
of the BNs, where the coverage probability is defined as the probability that the in-
stantaneous SINR at the randomly chosen receiver is greater than some predefined
SINR threshold. However, when the SINR threshold is high, further increasing the
density can decrease the coverage probability. This decrease in the coverage proba-
bility at a high SINR threshold is due to the increase in the interference power. The
high SINR is achieved only by a very small fraction of the BNs, which are closer
to the PBs and an increase in the density of the PBs increases both the signal and
interfering power of the BNs. However, the increase in the interference power is more

prominent than the increase in the signal power.

e The coverage probability can be considered as the individual link reliability while
the capacity is the number of successful transmissions. Increasing the density of the
BNs decreases the coverage probability, while it increases the capacity of the network.
Therefore, the network provider should take into account the tradeoff between the

individual link-reliability and the number of successful transmissions.

e We compare the wireless powered backscatter IoT network with the regular powered
network in which the BNs are supplied with a reliable power source having the same
transmit power as of the PBs. We observe that the coverage of the wireless powered
backscatter network approaches to the coverage of the regular powered network for
a very high density of the PBs. We further observe that up to a certain extent, in-
creasing the density of PBs gives rapid increase in the coverage probability. However,
beyond a certain density, any further increase in the density of the PBs shows a very
small improvement in the coverage probability. This suggests that it may not be

cost-effective to keep increasing the density of PBs beyond a certain level.

The rest of the chapter is organized as follows. In Section 3.1, we present our system
model and discuss our performance metrics. In Section 3.3, we conduct the analysis and
find the coverage and capacity of the network, while in Section 3.4 we present the numerical
and simulation results. Finally, the summary of this chapter is provided in Section 3.5.

The key notations used in this chapter are given in Table 3.1.
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Figure 3.2.: Network model.

3.2. System Model

3.2.1. Network Model

We consider an ad-hoc network consisting of PBs and BNs. The positions of both the PBs
and BNs are modeled as independent homogeneous Poisson point processes (PPPs). Let
®pp and Py be the 2-D PPPs with densities Apg and Ay of the PBs and BNs, respec-
tively. The PBs transmit a CW isotropically and all the PBs use the same frequency. A
BN harvests some energy from this carrier? and modulates its data on the carrier through
backscatter modulation [73]. A BN receives a CW signal from multiple PBs and backscat-
ters the signal. This reflected signal from the BN is received by a receiver, which can be
located at a fixed distance from this BN in an isotropic direction. The network topology
is shown in Fig. 3.2. Without loss of generality, the analysis is performed for a typical
BNy, which is transmitting the signal to its dedicated receiver Ry [7]. In order to make
the analysis tractable, we do not consider the circuit-power constraint and assume that the
BNs modulate and backscatter the signal all the time. Moreover, we consider that the PBs
and the BNs have a single antenna.

We assume that, around each BN, there is a region z(Y,r;,) C R?, which represents a disk
of radius rp, centered at Y € ®gy. All the PBs inside this region contribute to the received
power Ppy at the BN. We further assume that the power received from the PBs which
are outside the harvesting region is negligible®. The number of PBs Npp inside z(Y,r) is

a Poisson random variable with mean Npp = wr%)\ pB. In order to avoid the expectation

2through AC-to-DC conversion
3later on we relax this condition
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with respect to the probability density function (PDF) of the number of PBs Npp inside
the harvesting region in the analysis, we use the average number of PBs Npp in the rest
of this chapter. We adjust r;, such that Npp is an integer number. The received power at

BNg can be written as )

Npp P
Pong = | > V/Ppphi g} : (3.1)
i=1

where Ppp is the transmit power of a PB, hg,i represents the forward channel gain between
BNj and its ith nearest PB and h{;i ~ CN(0,1), af > 2 represents the path-loss exponent
of the forward channel i.e., between the PBs and BNy, and z; is the distance between
BNg and its ¢th nearest PB. The received signal by BNy is modulated and reflected to
the receiver. The portion of the received power reflected back by BNg is modeled with a
reflection coefficient 8 € [0, 1], which we call backscattering efficiency. BNy reflects 5Ppx,
amount of power while the remaining power (1 — 3) Py, is harvested (as shown in Fig.
3.1) [73,83]. The harvested power is used by BNy to run its integrated circuit (IC).

The joint PDF of the distances from BNy to its nearest Npg PBs will be used throughout

the chapter, therefore, we present it here

_ 2
fa(xoa, -, ZoNpg) = (2rApp) PP Z015---,TONpp® MPBIO’NPB, (3.2)

where o1 < Zo2- - < To Npg [84]. The joint PDF of the distances between the non-typical
BNs to their nearest Npp PBs is the same as (3.2); however, to make the distinction clear,
we represent it by f(z1,-- -, 2N,y ) throughout the chapter. The SINR 7p, at a receiver Ry,
when the BNg transmits under the above system model and in the presence of interference

from other active BNs can be written as

_ b —af /2 2
ﬂhg,odo,g Z?ZB VPPBhg,z‘xo,? / ‘
’7, = ) (33)
" N D LV ey Sl
B jeasn\BN, Do jdos | 2020 vV PrBh; ), +
2
where hi{j = h?,j is the backward channel gain between the ith receiver and the jth

BN and h?’j ~ CN(0,1), hfnm is the forward channel between the mth BN and the nth
PB and hf,w ~ CN(0,1), d;; is the distance between the ith receiver and the jth BN,
ZTm,n is the distance between the mth BN and the nth PB, a’ is the path-loss exponent
of the backward channel i.e., between the BN and the receiver, and N is the variance
of the additive white Gaussian noise (AWGN). In order to avoid the singularity in the

forward link (infinite received power at a BN), we use the bounded path-loss model i.e.,
_af
mq
the typical BS dg g is fixed. We consider Rayleigh fading and assume that all channel gains

the path-loss is min {1, T } [7]. We assume that the distance between the receiver and

are independent and identically distributed (i.i.d).
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3.2.2. Performance Metrics

We consider two metrics to study the performance of this wireless powered backscatter
communication network. The first metric is the coverage probability, C, which is the success
probability that the receiver Rg can successfully decode the signal of BNy. Given a threshold
©, we defined the coverage probability as

C="P[vg, = 0], (3.4)

which gives us the percentage of BNs having successful transmission in the network. Our

second metric is the transmission capacity, 7, defined as
T = ABnC, (3.5)

which is the number of successful transmissions between the BNs and their corresponding

receivers per unit area of the network.

3.3. Coverage Probability Analysis

In this section, we find the coverage probability, C, and the capacity, 7, of the network.
For the coverage probability, we consider two cases. In the first case, we consider that a BN
harvests energy from the nearest Npp PBs as mentioned in the previous section, while for
the second case, we assume that the BNs harvest energy from all the PBs in the network.
The analysis depends on both the PPPs of PBs ®pp and of the BNs @5y, and both the
forward channel hfi j and the backward channel hzﬂ-. In conventional wireless networks, we
do not have this extra tier of PBs, and both the BS and the UE have a reliable power source.
The downlink analysis usually depends on the PPP of the BSs and the channel between
the UE and the BS, while the uplink analysis depends on the PPP of UEs and the channel.
Thus having the additional tier of PBs and the backscatter communications by the BNs
make the analysis very challenging. Therefore, in order to make the analysis tractable, we
make some assumption as discussed in the sequel. The second case is more complicated
than the first one, therefore, we find an approximation for the coverage probability. The

details of the derivation are given in the following subsections.

3.3.1. Coverage Probability when a BN harvests energy from Npp
nearby PBs

The transmission of a typical BN is successful when the SINR 7}30 exceeds the threshold
©. It is very difficult to find the coverage probability of the network due to double fad-
ing (forward and backward channel) and its dependence on ®py and Npp nearest PBs.
Therefore, in order to make the analysis tractable, we use a slightly modified definition
of the SINR. The received power at the typical BN Zf\; kB \/Eh{ii:va’ ?f/ 2[? is exponen-
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tially distributed with mean Ppp ZZ]\L £B Ty, f‘f. We replace the harvested power with its
mean value in (3.3). The accuracy of this assumption is verified through simulations in the
next section. It is important to mention that by doing so, we take the expectation only
with respect to the forward channel and not with the location of the Npp PBs. Similar
approaches have been used in the literature to reduce the dimensionality of the problem
when the analysis is very complicated and leads to intractable results [85-89]. More specif-
ically in [85], and [86], the authors considered an averaging circle around the receiver of
interest and modeled the interferers inside this region, while for the interference emanating
from outside the region, they used the expected value of it. Similarly, in [87], the authors
only considered the effect of two nearest interferers and for the rest of the interference, its

average value is considered. We write the modified SINR ~g, as

b —ab Npp . —af
hg ody o Dot Lo,

TRy = Z 1o ‘dfqb Npg m,Oéf n N
J€EPBN\BNo 770,570,j k=1 "jk BPpgB

(3.6)

Before deriving our main result for the coverage probability, we first find the average

received power by a random BN in the following lemma.

Lemma 3.1. The average received power at BNy when there are Npg PBs in the harvesting

zone s given by

Npp ;
— N -
Ppn, = Ppp (2mApp) 7" // Zo,15---,%0,Npp E : Toi
i=1

0<zo0,1 <x0,2<~"<$0,NPB <oo

—TAppx?
[§] TAPB O’NPBd$0717"- ,d$07NPB. (37)

Proof. The average received power at a BN can be written as

Npp 2

f Z V Pthé,ﬂS,?f/Q

h; 9>T0,1, %o, Np g
i=1

Py, =E[Pgn,) =E

Npp

—af
Ppp Z Lo ] , (3.8)

i=1

i1E

20,1, L0,Npp

where (a) follows because hgﬂ- is i.i.d distributed CN (0, 1) and after taking the expectation

with respect to o1, -+, Zo,Npy, We obtained the final result. O

It can be noticed from (3.7) that Pgy, increases with an increase in Ppg, Npp and App.
It is important to remember that on average, a BN harvests (1 — 3) Py N, while BPg N, 18
reflected back through the backscatter modulation. Moreover, it should be noted that we
do not use the dimensionality reduction in the proof of Lemma 3.1 and the expression in
(3.7) is exact.
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It should be noted that our work significantly differs from [90,91]. Both [90,91] consider
a cellular network while we consider an ad-hoc setup. In our work, each BN harvests energy
from the PBs in its harvesting zone and then backscatters the signal to the receiver, while
in [90,91] multiple BSs cooperatively transmit to a receiver. Moreover, the authors [90,91]
first map the PPPs to a single one-dimensional PPP and then carry out the analysis, while
we directly apply the probability generating functional (PGFL) of the 2-D PPP in the
proof of Theorem 3.1 and Corollary 3.1. We present the SINR coverage probability in the

following theorem.

Theorem 3.1. The SINR coverage probability C when the BNs harvests from the nearest
Npp PBs is given by

sN
C: // eXp(_?)ﬁl(S)fz(x(),l)"' 7w07NpB)dx0,17”' 7dx0,NPB
0<z0,1<®0,2 <"+ <T0, N p g <O

(3.9)
edg
SrRB gl

where s = L1(s) is the Laplace transform of the interference and is given by

2/
27‘1’2)\31\182/0‘17 Pl —af
,CI(S) = exp _WEJ/‘l’... ANpg ; Ty s (310)

and fy(xo1, - ,ToNpy) 1S the joint PDF of the distances to the Npp nearest PBs and

given is in (3.2).
Proof. The proof is provided in Appendix B.1. O

Remark 3.1. (Effect of 5 and Ppp on the coverage probability) It can be observed from
(3.9) that the coverage probability C increases by increasing the backscattering efficiency (3
or by increasing the transmit power Ppp of the PBs.

We observe that, as the number of PBs Npp in the harvesting region increases, the
numerical computation of the coverage probability C becomes very tedious. This is due
to the integration over the joint PDF of the distances to the Npp nearest PBs both in
the expression for the £;(s) and in the final expression of (3.9). Nonetheless, the coverage

probability C can be simplified for the following plausible special cases.

Corollary 3.1. When the BN harvests from the single nearest PB (Npg = 1) and of =

al = a, then the coverage probability simplifies to

& sN 9
C =2nw)App To,1 €xXp | — —|-7T>\pB.I01
0 BPpp ’

27T2)\BN$2/Q
o sin (%’r)

[1 —e"™rE _ rApgEi (—m\PB)}D dzoy, (3.11)
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where s = O©df yxg | and Ei(z) = [2% et 1dt is the exponential integral function [92]. The

coverage probability can be computed by evaluating just a single integral.

Proof. The proof follows similar steps as in the proof of Theorem 3.1. However, to be
self-contained, we provide the main steps here. By using the marginal PDF of z¢ 1, we

write C as -
C = 27[')\]33/ .’L‘071P [’}/RO > @’LE()J] exXp (—W/\pBwal) de’QJ, (3.12)
0

where, by utilizing the definition of v, the probability P [yr, > ©|z¢,1] can be written as

o b N
=P [hO,U >s <I+ ,BPPB>]

sN
BPpp

b -, —Q
ho,odo,o Lo,1

]P)[Z hb A=« fa_i_ N 2@
jE@BN\BN() 0,7 O,jwj,l BPpp

= exp(— )Lr(s), (3.13)

with s = Odfyzf; and I = 3 04, \BN, hg’jd&?‘x;f‘. Now, to find L;(s), we apply the

same steps as we did to obtain (B.3) in the proof of Theorem 3.1 and we get

2m2 g s2/@ _
%Em (371 2))

«

272\ 2/« 1 00
= exp —% (271')\133/ xle_”’\PB”C%dxl + 27r)\pB/ :Elle_”APBI%dm) ,
Q Sin (Eﬂ—) 0 1

Li(s) =exp <—

asin(

(3.14)

where the last expression is obtained by utilizing the bounded path-loss model for E,, (:cl_Q) .
In (3.14), the first integral 27 App fol $1e_”APBx%dx1 =1—e ™PB and the second integral
2mApRB floo xl_le*“)‘PB‘”%dxl = —7mAppEi(—7mApp), where Ei(z) is the exponential integral
function and Ei(z) = [e *t~'d¢ [92]. Thus evaluating both integrals in the above ex-
pression, inserting (3.14) in (3.13) and then inserting (3.13) back into (3.12), and doing

some manipulations, we obtain (3.11). O

Remark 3.2. (Effect of App on the coverage probability) The density of the PBs App
appears both inside the exponential and outside the exponential in (3.11). We expect that
when © is small then the App outside the exponential dominates and as a result the coverage
probability increases with an increase in A\pg. However, when © is large enough then the
exponential-term dominates due to which the coverage probability decreases with an increase

m )\pB.

Remark 3.3. (Effect of Apn on the coverage probability) The density of the BNs Apn
is only inside the exponential in (3.11), which suggests that an increase in Apn always

decreases the coverage probability.

Remark 3.4. (Effect of Agn on the capacity of the network) The capacity T = ApnC,
which shows that the density of BNs Apn is both inside the exponential term (in the ex-
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pression for C) and outside the exponential term. This means that the Apn outside and
inside the exponential affects the capacity T in a completely different way. We expect that

for small © it will increase T, whereas for large © it will decrease T .

Corollary 3.2. When Npg = 1,N = 0 and of = o’ = a then (3.11) can be further
simplified to

o2 \g s/

asin (%”)

C = 27[')\1:»3/ 0,1 €XpP (— !77)\1333:%,1 +
0
|:1 — e ™APB _ mAppEi (—ﬂ/\pB)H> d‘ili'()?l, (3.15)

where s = Odg4x( 1. The coverage probability becomes independent of the transmit power
Ppp of the PB and the backscattering efficiency 3.

Corollary 3.3. When N =0, but the BNs harvest energy from multiple nearby PBs then
the coverage probability simplifies to

2/ab

b N
C— 27‘1’2)\31\/82/0‘ E s —aot
= exp | ——— o Bar,anp, Z T, X

Q7 SIn (_b) =1

O<IO,1<IO,2<'”<$O,NPB<OO @ -
fe(mo1, s ZoNpp)dTo1 - dTo Npy,  (3.16)

odg"

where s = ﬁ and C is independent of the transmit power Ppp of PBs and the

i=1 L0,

backscattering efficiency 5.

Corollary 3.4. The coverage probability can be further simplified to

( N 27T2)\BN52/ab_1]>
C=exp|—s )

BPsN, ab sin (i—f)
if the BNs reflect the average power BPpy, instead of the instantaneous power B3Py, .

(3.17)

The coverage probability is in closed form. The network behaves like a conventional ad-hoc
network with BNs having the transmit power 3Pgy, and s = @d&%. Similarly, when N =0
and the BNs reflect the average power BPgy,, then (3.17) further simplifies to

) 2)\ (_)2/abd2
C =exp (— T BN 00 (3.18)

absin (i—ﬁf)

which depends only on the path-loss exponent b, density of the BN \gn, and the distance
do,o between the BN and its receiver. The network acts like a conventional ad-hoc network

and the coverage is independent of the transmit power of the BNs.

Proof. We first replace the instantaneous 5Py, in (3.6) with the average harvested power

Ppn,, and the rest of the proof follows similar steps as in Theorem 3.1. U
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3.3.2. Coverage Probability when a BN harvests energy from all PBs

In contrast to the previous subsection, here we assume that a BN harvests energy from all

the PBs in the network. We write the received power at the typical BN as

2

ot
Pong=| D v PPBhg,ixO,i 2, (3.19)

i€dpp
where the summation is over the ® pp. Similarly, we write the SINR 'y}% as
P hf —af/2 2
Ziecbpg VLPBRY T 4

B f —af/2
ZkE‘I’PB PPth,kxj,k-

b g—ab
Bhg odg

b g—ab
6 ZjG‘PBN\BNo hO,de,j

YRy = (3.20)

3 .
| +n

It is more challenging than the previous section to find the coverage probability based on
the above SINR expression because it depends on the PPPs of both PBs and BNs, and both
the forward and backward channel. Therefore, in order to make the analysis tractable, we
make some modifications to the above expression and consider SIR instead of SINR. We

write the modified expression for SIR as

b g—ab —af
ho,odo,o ZiechB Lo,i

YRy = — — (3.21)
2 jednn\BNo 10,3405 Dkedps Tk
—af /2|2
where we use the average of ’ZiG‘I)PB VPPBhg,i%,? /2‘ , which is Ppp ) icq,, maqu [7]. Tt

is important to mention that in (3.21), we only take the average with respect to the forward
channel and not the ®pp. The coverage probability still depends on the ®pg, Ppy and
hg’-’ - Similar approaches have been used in [85-89] to reduce the complexity of the problem
and to get tractable results.

Before presenting the main result of this section, we first find the average power at a BN

in the following lemma.

Lemma 3.2. The average power at a BN when it harvests from all PBs in the network is

given by
Pppmippal

— (3.22)

Ppn, =

It is important to mention that a power (1 — 3) Pgy, is harvested while the remaining
power BPpy, is reflected through backscatter modulation. Similar to Lemma 3.1, we do
not use the dimensionality reduction in the proof of Lemma 3.2 and the expression in (3.22)

is exact.
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Proof. The average harvested power Pgy in this setup can be written as

2
_ —af/2 —af
Py = EPong) =By o0 || 20 VProhiao | | £ Eapy |Pes D i |
i€EPpp i€Edpp
(3.23)
where a follows because hg.i is an i.i.d distributed CN (0, 1) and the final result follows from
Campbell’s theorem [7]. O

We know that the SIR coverage probability depends on both the ®pp, ®py, and its
exact expression cannot be obtained. Therefore, we utilize Jensen’s inequality and find the

approximated expression for the coverage probability in the following proposition.

Proposition 3.1. The SIR coverage probability when the BNs harvest energy from all the
PBs is approximated by

22 ApN O d2
C~ - —]. 3.24
P ( ab sin (%) (3:24)
Proof. See Appendix B.2. O

The above expression is the same as of (3.18), which makes sense because (3.18) is the
SIR coverage probability when the BNs use the average transmit power and we know that

SIR coverage is independent of the transmit power of the BNs.

3.4. Simulation Results and Discussion

In this section, we present numerical results to validate the accuracy of the analysis and the
tradeoffs that emerge in this wireless powered backscatter network. The system model of
Section 3.2 is carefully reproduced in the Monte Carlo simulations. We fix Ppg = 40dBm,
B =0.5, dyo=1 N = —40dB, and af = a® = a. Both App and Agy are in per square
meters ( / m2) and we consider a unit area of 100m? when computing the capacity 7 of the
network. If we do not mention o« and Npp then we keep a = 4 and Npp = 1, otherwise,
we state it.

In Fig. 3.3, we plot the average received power at a BN Ppy against the density of the
PBs App. It can be seen that the numerical results obtained through Lemma 3.1 and 3.2
exactly match with the simulations results. It can be observed that Pgy is greater for a
small path-loss exponent i.e., « = 3. Furthermore, it can be noticed that Py increases
with an increase in App for both Fig. 3.3a and Fig. 3.3b. However, for Lemma 3.1 in Fig.
3.3a, it saturates to 10W (40dBm) for App = 1, which is the transmit power Ppp of a PB.
This implies that when App = 1, Npp = 1 and the path-loss model is min {1, x7%}, the

received power is on average equal to the transmit power of a PB. Whereas, in Lemma 3.2
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Figure 3.3.: Simulations vs analysis (Lemma 3.1 and 3.2).

68



-
o

—©— Lemma 3.1,

—fe— Lemma 3.2, a=4
—P— Lemma 3.1, 0=3 b
=—f— | emma 3.2, a=3

average reveived powered at a random BN [W]

0 2 4 6 8 10
average number of PBs NPB in the harvesting region

Figure 3.4.: Impact of the number of PBs Npp in the harvesting zone on the Pgn, (App =
0.1).

the BNs harvest power from all the PBs, therefore, in Fig. 3.3b the Pgy does not saturate
and keep increasing with App.

Fig. 3.4 illustrates the impact of the number of PBs Npp in the harvesting zone on the
average received power Pgy. It can be noticed that, for Lemma 3.1, the average received
power Ppy increases with an increase in Npp, whereas, for Lemma 3.2, the Pgy is constant
because the harvesting zone is the whole network in Lemma 3.2. The important observation
is that most of the power is harvested from the nearest PBs especially for a = 4. In the
case of a = 4, the contribution from the far away PBs is very small, therefore, Pgy quickly
converges to the maximum value. On the other hand, for & = 3, the contribution from
those far away nodes is still significant and therefore convergence is not achieved.

In Fig. 3.5, we compare the Monte Carlo simulations results with the numerical results
for various network parameters. It can be noticed that the numerical and simulations curves
are matching well for both Theorem 3.1 and Corollary 3.4, which shows the accuracy of
the analysis. It is important to remember that, in the proof of Theorem 3.1, we used a
simplified expression for the SINR in order to make the analysis tractable. Similarly, in
Corollary 3.4, we defined the averaged received power Py as the harvested power at BN.

Similar to Fig. 3.5, we compare the numerical and simulation results in Fig. 3.6 for
Proposition 3.1. It can be noticed that there are two different curves for the simulations.
The first one is obtained when the BNs utilize the average harvested power (given in Lemma
3.2), while the second is obtained when the BNs utilize the instantaneous harvested power.
It can be noticed that the numerical curve is very close to the simulations’ curve, which is
obtained when the BNs transmit with the average harvested power. Whereas, the second

simulations curve provides the lower bound. This illustrates that the random transmit
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Figure 3.6.: Simulations vs analysis (Proposition 3.1).

power of the BNs degrades the coverage probability of the network. The rest of the results
in the current chapter are obtained numerically.

Fig. 3.7 shows the impact of the density of the PBs on the coverage probability for
different SINR thresholds. It can be noticed from Fig. 3.7a that the coverage probability
increases with an increase in density of the PBs for different values of Agy. This improve-
ment in the coverage probability is due to the increase in the received (and reflected) power
at the BNs as a result of the dense deployment of the PBs. However, for a large ©, the
dense deployment of PBs can reduce the SINR coverage probability, as shown in Fig. 3.7b.
From Fig. 3.7b, we observe that the coverage probability reaches a maximum point and
then starts decreasing with the increase in App. This decrease in the coverage probability
at higher SINR, thresholds is due to the increase in the interference power. The high SINR
is achieved only by a very small fraction of the BNs, which are very close to the PBs. The
distance between the PBs and BNs decreases with an increase in Apg, which improves the
harvested and reflected power of the BNs. As a result the interference power also increases
and the coverage probability drops. This confirms our earlier observation in Remark 3.2
and suggests that in order to achieve the optimal coverage, the density of the PBs should
be adjusted by taking © into account.

Fig. 3.8 depicts the impact of the density of the BNs on the coverage probability and
capacity of the network. It can be observed from both Fig. 3.8a and Fig. 3.8c that an
increase in the density of the BNs decreases the coverage probability, which is due to the
increase in the number of interferers. However, a more appropriate metric in this scenario
might be the capacity of network, which is the number of successful transmissions in some
unit area. Therefore, we plot the capacity corresponding to Fig. 3.8a and Fig. 3.8c in Fig.
3.8b and Fig. 3.8d, respectively. In contrast to the coverage probability, both Fig. 3.8b and
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Fig. 3.8d show that the capacity of the network increases with increase in the density of the
BNs. However, at the higher SINR threshold in Fig. 3.8d the capacity decreases with an
increase in the density of the BNs. The high SINR threshold is achieved by the BNs which
are in close vicinity of the PBs. The number of interfering BNs and the interference increase
with an increase in Agy, due to which, the BNs can not achieve such a high © and therefore,
the capacity drops. The insights from Fig. 3.8 again validate our earlier observations in
Remark 3.3 and 3.4. The coverage probability can be seen as an objective function of an
individual user, whereas the capacity is a network wide metric that the service provider
would be more interested in. The network provider would like to maximize the capacity
of the network given that certain minimum quality of service (coverage probability here)
should be satisfied. Therefore, in order to get an optimal performance the tradeoff between
the coverage and capacity should be considered along with ©.

In Fig. 3.9, we compare the coverage of a regularly powered network (RPN) with the
wireless powered backscatter communications network (WPBN). In RPN there is no PB
tier and each BN has a constant transmit power equal to the transmit power of a PB i.e.,
Ppp. Since, the transmit power of each BN is Ppp, its coverage probability is the same for
different values of App, as shown in the figure. In contrast, for the WPBN, the coverage
probability increases with an increase in the density of the PBs. It can be noticed that when
App = 0.6, the coverage probability of the WPBN approaches the coverage probability of
the RPN. Another key point that can be observed from both Fig. 3.9a and 3.9b is that
the coverage of WPBN increases very rapidly with increases in App initially, while after a
certain increase in App the gain in coverage is very small. For instance, in both Fig. 3.9a
and 3.9b the increase in the coverage probability is very significant when App goes from
0.01 to 0.3, whereas from 0.3 to 0.6 the improvement in the coverage is almost negligible.
This suggests that after a certain point, further densification of the WPBN with more PBs

would not improve the coverage significantly.

3.5. Chapter Summary

In this chapter, a general framework to study the performance of wireless powered backscat-
tered IoT networks is presented. To make the analysis tractable, a dimensionality reduction
technique has been applied. The coverage and the capacity of the network in the form of
tractable and numerically computable expressions are derived with the help of stochastic
geometry. These expressions can be further simplified for some relevant special cases. It
has been noticed that the coverage of the network can either increase or decrease with the
increase in the density of the PBs depending upon the SINR threshold. Furthermore, the
capacity of the network increases with an increase in the density of the BNs, whereas the
coverage probability decreases. Finally, the coverage of the wireless powered backscatter
network has been compared with the coverage of the regularly powered network and it has

been observed that for a very high density of the PBs, the coverage of the wireless powered
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backscattered network approaches the coverage of the regular powered network.

In the next chapter, we develop a stochastic geometry-based tractable analytical frame-
work to study the performance of our proposed scheduling algorithm for the cellular net-
works. This scheduling algorithm is motivated by the optimality condition of the famous
interference management technique, known as treating interference as noise. We further
carry out asymptotic analysis to show that, for the optimized parameters, our proposed
scheduling algorithm provides significant gains over the scheduling algorithm for the con-

ventional cellular networks.
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4. Treating Interference as Noise in
Cellular Networks

The interference management technique that treats interference as noise (TIN) is opti-
mal when the interference is sufficiently low. Scheduling algorithms based on the TIN
optimality condition have recently been proposed, e.g., for application to device-to-device
communications. TIN, however, has never been applied to cellular networks. In this work,
we propose a scheduling algorithm for application to cellular networks that is based on the
TIN optimality condition. In the proposed scheduling algorithm, each base station (BS)
first randomly selects a user equipment (UE) in its coverage region, and then checks the
TIN optimality conditions. If the latter conditions are not fulfilled, the BS is turned off.
In order to assess the performance of TIN applied to cellular networks, we introduce an
analytical framework with the aid of stochastic geometry theory. We develop, in particular,
tractable expressions of the signal-to-interference-and-noise ratio (SINR) coverage proba-
bility and average rate of cellular networks. In addition, we carry out asymptotic analysis
to find the optimal system parameters that maximize the SINR coverage probability. By
using the optimized system parameters, it is shown that TIN applied to cellular networks
yields significant gains in terms of SINR coverage probability and average rate. Specifically,
the numerical results show that average rate gains of the order of 21% over conventional

scheduling algorithms are obtained.

4.1. Introduction

Interference has always been one of the main limiting factors in cellular networks due to
its indeterministic nature. In order to cope with interference, different solutions have been
proposed. For example, coordinated multipoint (CoMP) [93] and intercell interference
coordination (ICIC) [94] have been considered for the long term evolution-advanced (LTE-
A) communications standards. In CoMP operation, multiple base stations (BSs) cooperate
over a backhaul link and jointly transmit data to the cell-edge user equipments (UEs)
in order to mitigate the intercell interference and hence improve the network throughput
[95]. The ICIC blanking of macrocells has been proposed for application to heterogeneous
networks in order to reduce the amount of interference to the UEs of small cells [96].
Fractional power control (FPC) is considered to be an essential feature in the uplink (UL)
of the LTE and LTE-A communication standards [97,98]. FPC, however, still generates

high levels of interference and limits the UL performance. Another approach is interference
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aware fractional power control (IAFPC), which limits the maximum amount of interference
that a UE can generate. If the interference generated is greater than a maximum threshold,
the UE adjusts its transmit power so as to reduce the interference to a given maximum
value [99]. These few examples confirm the relevance that mitigating interference in cellular
networks plays, as well as the research efforts that have been put towards this end. All
these approaches, however, are heuristic in nature and do not rely upon any information
theoretic optimality conditions.

Treating interference as noise (TIN) is a known interference management technique that
is optimal if the strength of the intended link is greater than or equal to the interference
strength that the intended link receives multiplied by the interference strength that the
intended link creates [100]. It is not just the optimality of TIN that makes it attractive to
the research community, but also its low complexity and robustness to channel uncertainty
[100-103]. Despite its optimality and simplicity, TIN has never been applied to cellular
networks. In the present chapter, we investigate the application of TIN to cellular networks
and introduce a tractable analytical framework in order to optimize its parameters and
quantify its achievable performance. To this end, the mathematical tools of stochastic

geometry and Poisson point processes are employed.

4.1.1. Related Work

A spectrum sharing mechanism for application in device-to-device (D2D) communications,
which is referred to as ITLinQ, has been proposed in [85]. ITLinQ is based on the TIN
optimality condition and it has been shown to provide performance gains compared with
other heuristic spectrum sharing algorithms. The authors of [85] provide a distributed
version of ITLinQ, which guarantees some fairness among the links. ITLinQ has further
been improved in [104], where ITLinQ+ has been introduced. By using stochastic geometry,
a semi-analytical framework for analyzing ITLinQ has been introduced in [105]. Therein,
some adjustable parameters are considered, which can be optimized to get high gain over
other D2D scheduling algorithms.

An analytical framework to study the performance of UL heterogeneous cellular networks
that employ IAFPC has been proposed in [106]. According to the IAFPC scheme, the UEs
that generate higher interference than a maximum threshold limit their transmit power so
that the interference is below an admissible maximum value. A similar approach that turns
off the UEs that generate more interference than a maximum threshold has been studied
in [107]. In both [106] and [107], stochastic geometry tools have been used for performance
analysis and optimization. Gains in terms of average rate and power consumption have
been shown. Another stochastic geometry based framework that studies the problem of BS
cooperation in the downlink for heterogeneous networks can be found in [90]. The analysis
of BS cooperation with retransmissions can be found in [91]. Simulations based studies
that consider interference aware power control can be found in [58,108,109].

The existing works that employ the TIN optimality condition for interference man-
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agement are limited to D2D communications [85,104,105], whereas the works that em-
ploy interference awareness methods in cellular networks are based on heuristic crite-
ria [58,90,91,99,106-109]. In the present chapter, we propose a scheduling algorithm
based on the TIN optimality condition and develop a tractable analytical framework for

its analysis and optimization by using tools from stochastic geometry.

4.1.2. Contributions and Outcomes

Designing a cellular network based on the TIN optimality conditions and developing an
analytical framework for its analysis and optimization is a challenging task. To this end, in
fact, a centralized controller that keeps track of all the channels of the cellular network and
that identifies the strongest interference received and the strongest interference created on
each link of the cellular network is needed. The complexity of such a centralized scheduler
may be too high for application to large-scale networks. The resulting scheduling algorithm,
in addition, would be intractable from the analytical standpoint and, therefore, difficult to
optimize without using extensive system-level simulations.

To deal with the issues of implementation complexity and analytical intractability, we
propose and study the performance of a simplified two-step version of the (optimal or
centralized) TIN-based scheduling algorithm, which can be implemented in a distributed
manner and requires only the channel state information (CSI) of neighboring BSs. In the
first step, each BS randomly selects a UE in its coverage region, similar to conventional
cellular networks that do not employ TIN. In the second step, only the BSs that fulfill the
TIN optimality conditions schedule for transmission the UE in their coverage region. The
rest of the BSs, on the other hand, are turned off. In order to make the TIN scheduling
algorithm suitable for application to cellular networks, we introduce two design parameters
(M and p) that are optimized in order to control the number of BSs that are turned off. The
optimization of these two parameters is important in order to identify a suitable trade-off
between the potential reduction of interference and the potential loss of average rate that
turning some BSs off entails. In spite of the latter potential loss of average rate, our analysis
shows that the proposed TIN-based scheduling algorithm outperforms conventional cellular
networks in terms of average rate, thanks to its effective interference reduction capability.

The proposed two-step TIN-based scheduling algorithm is simple to implement in cellular
networks. Its analysis and optimization are, however, still challenging. The main reason
is the lack of analytical results for the distribution of the downlink distances within the
typical cell of a Voronoi tessellation [38,43]. To overcome this limitation, we introduce some
approximations that lead to a tractable analytical framework, which is shown to be suitable
for system optimization yet sufficiently accurate. We approximate, in particular, the typical
cell of a Voronoi tessellation with the so-called Crofton cell [43], and the distribution of
the distance between a BS and its most interfered UE with the distribution of the distance
between the typical UE and the BS that creates the highest interference to it. These

two approximations result in a lower bound for the coverage probability of the proposed
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two-step TIN-based scheduling algorithm.

The unique contributions and outcomes of the present work can be summarized as follows:

e We derive tractable analytical expressions for the SINR coverage probability and
average rate of the proposed two-step (distributed) TIN scheduling protocol. For
specific system parameters, the analytical formulas are proved to reduce to the SINR

coverage probability and average rate of conventional cellular networks.

e We show that unique values of M and p that maximize the SINR coverage probability
and average rate exist. In order to compute such optimal M and p, we carry out
asymptotic analysis of the SINR coverage probability and provide a simple optimiza-
tion algorithm. By setting M = 1, more precisely, we identify the optimal value of u
for high and low values of the SINR decoding threshold.

e We observe that the optimal value of p decreases as the SINR threshold increases.
This implies that, in order to achieve a high SINR decoding threshold, more BSs need
to be turned off. If, on the other hand, the SINR threshold is small, we show that no
BSs need to be turned off, which implies that optimal performance can be obtained

by using the conventional scheduling algorithm.

e We further show that TIN-based scheduling algorithms with optimized parameters
significantly improve the SINR coverage probability and average rate. For example,
the exact implementation (through simulation without any approximation) of the two-
step TIN-based scheduling improves the SINR coverage probability by 67% and the
mathematically tractable implementation (lower bound) of the two-step TIN-based
scheduling improves the SINR coverage probability by 36%, if the SINR decoding
threshold is set to 10 dB. In addition, the corresponding increase of the average rate
is 21% and 11%, respectively, despite the fact that some BSs are turned off, compared

to the classical scheduling algorithm.

The rest of the present chapter is organized as follows. In Section 4.2, we introduce
the network model and the TIN-based scheduling algorithm. In Section 4.3, we provide
a tractable analytical framework of the SINR coverage probability and average rate. In
Section 4.4, we carry out asymptotic analysis in order to find the optimal system parameters
that optimize the SINR coverage probability. In Section 4.5, simulation and numerical
results are presented. Finally, Section 4.6 provides a summary of this chapter. The key

notations used in this chapter are given in Table 4.1.

4.2. System Model

4.2.1. Network Model

We consider a single-tier downlink cellular network in which the locations of BSs and

UEs are modeled as points of two bi-dimensional and mutually independent homogeneous
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Table 4.1.: List of Notations for Chapter 4

Notation | Description |
Dy, Py, A, Ay PPP of the BSs, PPP of the UEs, density of the BSs, density
of the UEs
P, N, « transmit power of each BS, power of the AWGN noise, path-
loss exponent
A1, Rr, P[Ayg] density of the interfering BSs, inhomogeneity ball, probabil-
ity that the typical UE is active
X1, X192, Xo1 distance between the typical UE and the typical BS, dis-

tance between the typical BS and the most interefered UE,
distance between the typcial UE and the nearest interfering
BS

max (.,.), min(.,.), © | the maximum operator, the minimum operator, SINR de-
coding threshold

C, Cpet SINR coverage probability of an active UE, effective SINR
coverage probability

Rse, Rsenet SINR average rate of an active UE, effective SINR average
rate
I'(a) The gamma function I' (a) = [;~ 2 e "dx

Poisson point processes (PPPs). We denote by ®, and ®, the PPPs, and by A\, and A\,
the densities of BSs and UEs, respectively. The density of UEs is assumed to be much
greater than the density of BSs. Thus, all the BSs are active and have UEs to serve in
every resource block (carrier frequency, time slot, etc.), if no scheduling for interference
management is applied. We assume full frequency reuse, i.e., all the BSs share the same
transmission bandwidth. Each UE is associated with the nearest BS. Accordingly, the
coverage regions of the BSs constitute a Poisson-Voronoi tessellation in the plane. The BSs
and UEs have a single antenna. The standard unbounded path-loss model with path-loss
exponent a > 2 is considered. The fast-fading is assumed to follow a Rayleigh distribution.
More general system models may be analyzed. In the present work, however, we consider
the so-called standard modeling assumptions [43], in order to focus our attention on the

impact and potential benefits of TIN.

4.2.2. Treating Interference as Noise

Treating interference as noise is a scheduling algorithm that has attracted major interest for
practical and theoretical reasons. From the implementation point of view, TIN is attrac-
tive due to its simplicity and adaptability to channel uncertainties. From the theoretical
standpoint, it is a promising solution due to its optimality under certain conditions [100].

The TIN optimality conditions, more precisely, can be stated as follows: In a wireless
network with n transmitter and receiver pairs, if the strength of the intended link (from an
intended BS to an intended UE) is greater than or equal to the product of the strengths

of the strongest interference that the intended BS creates and of the strongest interference
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that the intended UE receives, then TIN achieves the whole capacity region to within a
constant gap of log 3n [100]. In mathematical terms, the TIN optimality conditions can be

formulated as follows:

SNR; > maxINR;; maxINRy; Vi=1,...,n, (4.1)
J#i k#i

where SNR; and INR;; denote the signal-to-noise ratio (SNR) of link ¢ and the interference-

to-noise ratio (INR) of source j at destination i, respectively. It is worth mentioning, in

particular, that the SNRs and INRs in (4.1) depend on both the path-loss and the fast

fading.

4.2.3. TIN-Based Scheduling Algorithm

The scheduling algorithm based on the TIN optimality conditions in (4.1) may be difficult
to realize in large-scale cellular networks, since a centralized controller that is aware of
the (instantaneous) channel state information of all the links available in the networks is
necessary. In the present chapter, this approach is referred to as centralized TIN scheduling.

To overcome this issue, we propose a two-step distributed scheduling algorithm inspired
by (4.1), which, in addition, does not necessitate the instantaneous channel state informa-
tion of the links. This approach is referred to as two-step or distributed TIN scheduling. In
the first step, for each available resource block, each BS randomly selects a UE that lies in
its coverage region. In the second step, the BSs that do not fulfill the following (simplified)
TIN optimality conditions:

MSNR] > maxINR;; maxINRy; Vi=1,..,n, (4.2)
J#i ki

are turned off, where SNR; and Wij have the same meaning as in (4.1) except that they are
averaged with respect to the fast fading in order to dispense the scheduler from requiring
the instantaneous channel state information of the links. Equation (4.2), as opposed to
(4.1), is applied by each BS independently of the other BSs, which makes it suitable for
a distributed implementation and requires only the average channel state information of
neighboring BSs. In (4.2), in addition, we have introduced two design parameters, M and
1, for system optimization, which allow us to control the number of BSs that are turned
off, and, thus, are instrumental for interference management. In particular, M is a positive
real number greater than or equal to one (M > 1), and p is a positive real number greater
than or equal to one and less than or equal to two (1 < u < 2).

In order to get deeper understanding and insight from (4.2), we rewrite it with the aid of
a more explicit notation by taking as an example the cellular network realization depicted
in Fig. 4.1. For any realization of the cellular network under analysis, we select one cell
(BS) at random that is referred to as the typical cell or the typical BS. Among the UEs that

lay in its coverage region, we select one UE at random for every available resource block.
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Figure 4.1.: Network model.

We focus our attention on a randomly chosen resource block and the UE that is scheduled
for transmission on it is referred to as the typical UE. Let X1; denote the downlink distance
between the typical UE (UE1 in Fig. 4.1) and the typical BS (BS1 in Fig. 4.1), X12 denote
the downlink distance between the typical BS and the most interfered UE (UE2 in Fig. 4.1)
by it, and X5 denote the downlink distance between the typical UE and the BS (BS2 in
Fig. 4.1) that creates the highest interference to it. With the aid of this explicit notation,

(4.2) can be re-formulated as follows:

N N N (4.3)

Iy <PX1_1°‘>“ L PX* PXG°
where P is the transmit power of the BSs, NN is the noise power at the UE, and « is
the path-loss exponent. From (4.3), it follows that the typical BS necessitates only three
average SNRs to check the TIN optimality conditions, and, thus, a network-level controller
is not necessary.

Equivalently, (4.3) can be written as follows:

2—p

1 [N\ e 1
Xll S M on (F) (X12X21>l‘ . (44)

During the second step of the proposed TIN-based scheduling algorithm, the typical UE is
scheduled for transmission if X1; fulfills the constraint in (4.4). Otherwise, the typical BS
is turned off and the UEs that lay in its coverage region are not scheduled for transmission.

This implies that the interference can be potentially reduced at the cost of reducing the
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average rate and the fairness among the UEs, since some of them are not scheduled for
transmission at a given time instance. In the present chapter, we employ the pair of
parameters M and p to find the good balance in order to reduce the interference while
increasing both the SINR coverage probability and the average rate. We do not explicitly
study, on the other hand, the issue of fairness among the UEs. This is postponed to future
research. It is important to mention, however, that the fairness among the UEs may not
be a critical issue in a well designed system. If in a given time instance, e.g., a time-slot,
the TIN optimality condition in (4.4) is not fulfilled, it may be likely fulfilled in another
(the next) time instance. The local interference conditions that are considered in (4.4)
may, in fact, change at every time instance for two main reasons. i) In each resource
block, the BSs select the UEs at random. Accordingly, the interference perceived by the
typical UE may change every time that a random UE is chosen by the BSs. ii) Mobility
and shadowing, which are not explicitly considered in the present work, may change the
interference perceived by the typical UE as well. The system parameters M and g, in
addition, may be tuned in order to account for specific fairness requirements. By setting,
for example, M to a very large value, the scheduling criterion in (4.4) is deactivated and
the typical fairness requirements among the UEs can be guaranteed. In the sequel, it is
shown, more precisely, that our system model reduces to the original cellular network model
without TIN-based scheduling by setting M =1 and p = 2. Due to space limitations, the
analysis and optimization of M and p in order to find a good trade-off between average
rate and user fairness is postponed to future research.

To better understand the impact of the proposed TIN-based scheduling algorithm on the
downlink distances in (4.4), we analyze the joint probability density function of the distance
pairs (X1, X21) and (X131, X12). We compare, in particular, a cellular network where TIN
is not applied (i.e., each BS selects a UE at random in its coverage region, which is always
scheduled for transmission) and the same cellular network where the scheduling criterion in
(4.4) is applied. From Fig. 4.2a, if TIN is not applied, we evince that X is always greater
than X1, but the most interfering BS may be located just outside the coverage region of
the typical BS. If TIN is applied, on the other hand, Fig. 4.2b shows that, as opposed to
Fig. 4.2a, the most interfering BS is located further away from the coverage boundary of
the typical BS. This confirms that TIN is capable of reducing the interference at the typical
UE. From Fig. 4.2¢, if TIN is not applied, we evince that X2 may be greater or less than
X11. This implies that the most interfered UE may be located farther or closer than the
typical UE. If TIN is applied, on the other hand, Fig. 4.2d shows that the most interfered
UE is located farther than the typical UE. This highlights that TIN is capable of reducing
the interference towards the UEs.

In summary, the TIN-based scheduling algorithm is capable of reducing the interference
in cellular networks by turning off those BSs that create a high level of interference, as well
as those BSs whose tagged UEs receive a high level of interference. The proposed TIN-
based scheduling algorithm, in particular, is different from those reported in [106] and [107],
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Figure 4.2.: Top view of the joint probability density functions of (X1, X21) and (X11, X12)
in conventional and TIN-based cellular networks (A, =5, M =1, u = 1.8).

86



where the rationale is to compare the signal strengths against a maximum but fixed level
of tolerable interference. In the proposed TIN-based scheduling algorithm, the level of
tolerable interference depends on the signal strengths themselves, which makes TIN robust
to channel uncertainty as well. Also, the proposed TIN-based scheduling not only accounts
for the amount of interference that is received but also for the amount of interference that

is generated.

4.3. Coverage and Spectral Efficiency Analysis

In this section, we introduce analytical frameworks for computing the SINR coverage proba-
bility and average rate of TIN-based cellular networks. The obtained analytical frameworks
are instrumental to quantify the performance gains offered by TIN, to compare conventional
against TIN-based cellular networks, as well as to optimize the system parameters in order
to identify the correct tradeoff between interference reduction and the required average
rate.

To this end, some enabling results are needed. In particular, the probability that a
random UE satisfies the TIN optimality conditions in (4.4), and the joint and marginal
distributions of the distances X11, X129, and Xo1 are needed. However, they are not available
in the open technical literature. To overcome this analytical challenge, we resort to some
approximations that are introduced, motivated, and discussed in the following section for

ease of exposition, since they are applied throughout the rest of the present chapter.

4.3.1. Approximations for Tractable Analytical Modeling

Three main approximations are used, which are detailed as follows.

e In our network model, the distribution of the downlink distances within the typical
Poisson-Voronoi cell are needed. It is known, however, that these distributions are
unknown [38,43]. A tractable and accurate approximation that is typically employed
to overcome this limitation consists of approximating the typical cell with the Crofton
(or zero) cell. The Crofton cell of a Poisson-Voronoi tessellation is the cell that
contains the origin. It is known that the Crofton cell is larger than the typical cell,
but the two cells are equal in law [110]. Some discussions accompanied by empirical
results are available in [111]. To obtain a tractable yet accurate analytical framework
of the SINR coverage probability and average rate, we conduct the analysis for the
Crofton cell instead of for the typical cell. This approach is motivated by the fact
that the marginal and joint distributions of X711 and Xs; are available in closed-form
for the Crofton cell of a Poisson-Voronoi tessellation [84]. Since it is known that large
cells are more likely to contain the origin, the Crofton cell is larger than the typical
cell defined through the Palm measure [112]. This implies that, with the proposed

approximation, the distances X7 and X9; are overestimated.
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e In our network model, the distribution of the downlink distance, X2, between the
typical BS and its most interfered UE is needed. To the best of our knowledge, the
distribution of this distance is not available in closed-form. In order to overcome
this limitation, we still rely on the Crofton cell approximation, and, in addition, we
propose to approximate the distribution of X5 with the distribution of X5, i.e., with
the distance between the typical UE and its most interfering BS. This approximation
is empirically supported by comparing Fig. 4.2b and Fig. 4.2d, where it is shown that,
if TIN is applied, the conditional probability density functions of X712 and Xo; are
similar. In Fig. 4.3, in addition, we depict the corresponding cumulative distribution
functions of X195 and X91. We observe that they are not so different from each other,
especially for short distances. Furthermore, it is apparent that X1 overestimates
X1o.

e By applying the TIN-based scheduling algorithm, some BSs are turned off if the
TIN optimality conditions in (4.3) are not fulfilled. Even though the point process
of BSs is a PPP, the point process of the active BSs after applying TIN is not a
PPP anymore. The TIN-based scheduling algorithm, in fact, introduces some spatial
correlations among the set of active BSs that depend on the amount of downlink
interference generated and received throughout the entire cellular network. To the
best of our knowledge, no exact analytical characterization of the point process of
the active BSs exists in the open technical literature. For analytical tractability, and
similar to [106,107,113], we approximate the point process of the active BSs with an
inhomogeneous PPP. The spatial inhomogeneity is, in particular, determined by the
spatial constraints imposed by the TIN optimality conditions in (4.3), which allows
us to account, at least in part, for the spatial correlations among the active BSs. The

details of the approximating inhomogeneous PPP are provided in the sequel.

Based on the Crofton cell approximation, the joint probability density function of Xi;

and Xo; is approximated as follows [84]:

_ 2
Fxi1 X (T11, T21) = (27\y)? 119107021 (4.5)

. . _ 2
if 211 < 91 and fx,, x5 (z11,221) = 0 otherwise. Also, we have fx,, (z11) = 2w \yz11€ AT

and fx; xXo (711, 721) = fxy, (T11) fxo1x0, (T21|711), where fx,  x,, (w21]z11) is the condi-
tional probability density function of Xs;. Based on the second approximation, further-
more, we assume fx,,(x12) & fx,, (z21). By capitalizing on the Crofton cell approximation,
in addition, the typical UE can be assumed to be at the origin without loss of generality.
Based on the inhomogeneous PPP approximation, the point process of the interfering

BSs after applying the TIN optimality conditions is approximated with an inhomogeneous
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PPP of distance-dependent density A;(r) defined as follows:

if r<Rg

Ar(r) (4.6)
I

0
)\ (7‘) = /\(,IED [AUE] if T Z RI,

where Ayg denotes the event that (4.3) is true, P [Apg] is its probability of occurrence, and
Rz constitutes the smallest distance from the origin of any interfering BSs after applying

TIN. Rz is referred to as the inhomogeneity ball and can be formulated as follows:

v (P Ta 1 i
RI:HlaX(XH,X12 (N) (M) ), (47)

where max (-, -) denotes the maximum operator, and its first and second arguments originate
from the shortest distance cell association criterion and from the TIN-based optimality
conditions in (4.3), respectively. From (4.7), the condition X5; > Rz holds implicitly true.

The accuracy of the proposed approximations is analyzed in Section 4.5 with the aid of
Monte Carlo simulations. It is shown that the proposed approximations lead to a tractable
yet accurate analytical formulation of the SINR coverage probability and average rate. In

the sequel, the proposed approximations are used for all the analytical derivations.

4.3.2. Probability of TIN

In this section, we compute the probability that a randomly selected UE satisfies the TIN
optimality conditions in (4.4). Based on the approximations in Section 4.3.1, the event,

Aypg, that the typical UE fulfills the TIN optimality conditions can be formulated as follows:

2=p
1 (N a 2
X1 < Man <?> ' X;ll . (4.8)

The probability that the typical UE fulfills the event Ayg is given in the following lemma.

Lemma 4.1. The probability that the typical UFE is active can be formulated as follows:

where min (-, -) denotes the minimum function.

Proof. The probability that a UE is active can be written as follows:

2—p
4 [N\ ow _2
P[AUE] = EX117X21 [1 (X11 < Xgl) x 1 <X11 < (M‘W <F> X2“1>>] s (4.10)
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where the fist indicator function, 1 (+), is due to the cell association criterion based on the
shortest distance and the second indicator function is due to the TIN optimality conditions.
The expectation in (4.10) can be computed from the joint probability density function in

(4.5), which results in the following integral:

N

27 “
m1n<X21 Mcw (%) en X“) 5
P[Ayg] = / / (27T)\b)2 T11291e 2 Ay daey.

By solving the inner integral with respect to z11, the expression in (4.9) is obtained. This

concludes the proof. O

It is worth noting that P[Ayg] = 1 if M = 1 and p = 2. This corresponds to the
scenario where the TIN optimality conditions are inactive and the system model reduces
to a conventional cellular network without TIN.

4.3.3. Probability Density Function of X;; Conditioned Upon Ayg

In this section, we compute the probability density function of the distance, X11, between
the typical BS and the typical UE conditioned upon the event Ayg, i.e., the TIN optimality

conditions are fulfilled. It is formally stated in the following lemma.

Lemma 4.2. The probability density function of Xi1 conditioned upon Ayg in (4.8) can

be formulated as follows:
22— 1
Ay max? (xn,xg{ (B) 2 ( )m)

P[Ayg] ’

=

271’/\()37116

fx11 (z11|Ape) = (4.11)

where P[Ayg] is given in Lemma 4.1.
Proof. The probability density function of X1; conditioned upon Ay is defined as follows:

d P[Xi1 <azn1,Aug]
d$11 P [AUE]

fx11 (z11]|Ape) = (4.12)

The numerator of (4.12) can be expressed as follows:
u/2 P 2n 1\ /2
P[X11 < z11, Aug] = Exyy x| 1(Xo1 > Xu1) x 1 Xor > X N i

/ /max m, (2)3(

111 N

— 2
27‘(’)\[))2 r11X21€ A3 de‘gldLL‘ll,

Sy

)*) |
(4.13)

where the last equality is obtained by using (4.5). The proof follows by computing the inner
integral with respect to x9; and then applying Leibniz’s integration rule. This concludes
the proof. O
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It is worth noting that (4.11) reduces to the probability density function of the distance
of the nearest BS to the origin of a conventional cellular network if M = 1 and g = 2. This

corresponds to the scenario where TIN is not applied.

4.3.4. SINR Coverage Probability

In this section, we provide a tractable analytical framework for computing the SINR cover-
age probability of cellular networks in which the TIN-based scheduling algorithm is applied.

By capitalizing on the three approximations in Section 4.3.1, the SINR at the typical UE
can be formulated as follows:

SINR = X

, (4.14)

4 2—

I 2-p 1
S 1071 (D mas(x, X5 (§) (1)) + 3

where h; is the channel gain of the ¢th interfering BS, k17 is the channel gain of the intended
link, D; is the distance between the ith interfering BS and the typical UE, <I>; is the
inhomogeneous PPP of interfering BSs whose density is defined in (4.6), and the indicator
function makes explicit that the interfering BSs must lie outside the inhomogeneity radius
defined in (4.7).

We are interested in computing the effective SINR coverage probability, Cpet, of the
typical UE, which accounts for the fact that the typical UE may not be served by the
typical BS if it is turned off because it does not fulfill the TIN optimality conditions. Cpet
can be formulated as follows:

Cret = P [Aug]C, (4.15)

where P [Ayg] is the probability that the typical UE is active, which is given in (4.9), and C
is the SINR coverage probability of the typical active UE. This latter probability is defined

and computed in the following theorem.

Theorem 4.1. Let O be the SINR decoding threshold. The SINR coverage probability of
the typical active UE, C = P[SINR > 0], can be formulated as follows:

=

C = )[,I (1‘?1@) dmn, (4.16)

27T)‘b /OO mlle—ﬂ')\b rnaLX2 (Xll,x‘fl/Q(%) 22_71& ( )Qla) . (_ X(ﬂ;)N
P [AUE] 0

where L1 (s) is the Laplace transform of the interference:

_ 1-a
—2r P [Aug] [ 2 wo (PN 1\ 2
L1 (s) =exp ﬁs max | 11,27} N i
2 2 P 1)) C
_f 9 _ A _ 2 p2 (L L
oF1 11,1 0/2 = 5<max<:c11,x11 (N) <M> )) . (4.17)
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Proof. See Appendix C.1. O

Corollary 4.1. If M = 1 and p = 2, the SINR coverage probability in Theorem 4.1

simplifies as follows:

wcfl(BN

- - (ﬂ/\bx%ﬁ‘ P +7r)‘b$%19% 72 ;a/de>
C =2m\ ri1€e o 1tz dz1q, (418)
0

which is the SINR coverage probability of a conventional cellular network when TIN is not
applied [28].

4.3.5. SINR Average Rate

In this section, we provide a tractable analytical framework for computing the average rate
of cellular networks in which the TIN-based scheduling algorithm is applied.

Similar to the SINR coverage probability, we are interested in computing the effective
SINR average rate, Rsepet, of the typical UE, which accounts for the fact that the typical
UE may not be served by the typical BS if it is turned off because it does not fulfill the

TIN optimality conditions. Rsg,e can be formulated as follows:
Rsenet = P [Avr|Rse, (4.19)

where a similar notation as in (4.15) is used and Rs¢ is the SINR average rate of the typical
active UE. This latter average rate is defined and computed in the following theorem and

is measured in nats/sec/Hz.

Theorem 4.2. Let Rsg = E[In[1 + SINR]], where the SINR is given in (4.14). The SINR

average rate of the typical active UE, Rse, can be formulated as follows:

7 — 7\ max? ( z11,27 % (£ it ERE 7
Rse = 21 Ay /38116( Ap ma ( (%) (a7) )) /e(—%zgl(er_l))x
0 7>0

L (xf (e —1))drdzyy, (4.20)

where L7 (-) is the Laplace transform of the interference:

2=p 1 1-3
o /T =2\ P [AUE] o /T 2 of P\ 20 (12
L7 (zf; (e"T—1))=exp — 5 h (e —1)[ max ;CH,:UT{ N i

2—p -
2 9 : 5 2 (P\ 7% [1\%
oF |1,1— " 2— o —z (e" = 1) (max (:z:ll,xlfl/ (N) (M) >> (4.21)
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Proof. By definition of SINR average rate, we have:

Rse = E[In[1 4+ SINR]]

2—p
S A R “umae (st (§) 7 () %)
= n xr11€ x
PlAu] Jo 7 % 11 11
2mhy [ memaet (et (5) () %) by
= / ri1€ / P (In 1+41]\1, > 71| drdzy
PlAug] Jo 70 I+5
2mhy [ —mumae (e ah{2(5) F ()5 ) (0 e o
= / xi1€ / e DE L (28 (67 — 1)) drdayy,
P [Aug]/o >0

(4.22)

where I denotes the other-cell interference and its Laplace transform L; (z$ (¢” — 1)) can
be computed by using the same analytical steps as for the SINR coverage probability in
Theorem 4.1. This concludes the proof. O

Corollary 4.2. If M =1 and p = 2, the SINR average rate in Theorem 4.2 simplifies as

follows:

00 0 2 —
N .« T 2 T o [ L
B 5 7<Fa:11(e —Dtmhpat (T -1« [ -2 « de)
Ree ZQMb/me( el /e oo E ) g
0

>0
(4.23)

which is the SINR average rate of a conventional cellular network if TIN is not applied [28].

4.4. Asymptotic Analysis and Optimization Problem

The aim of this section is to study the existence and optimal setup for the pair of system
parameters M and p, in order to maximize the effective SINR, coverage probability. We
focus our attention, in particular, on the effective SINR coverage probability, since the
corresponding analytical framework is more tractable than (4.20).

The effective SINR coverage probability can be formulated as follows:

2—p 1
00 _a\ 2(,u/2ﬂw%%> s
Coa=2mhy [ eme ST R a2
0

where s = 2340, and Lz (+) is given in (4.17).

For simplicity, and without loss of generality, we assume M = 1 and focus our attention
on optimizing p € [1,2]. In order to find the optimal value of p, it is convenient to have
a closed form solution of the integral in (4.24). To this end, we employ the following
approach.

First, we rewrite the max(-,-) function, which allows us to split the integration range as
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follows:

1 _ 2
To Sk YIE) (220 | —mMPlAwEled 08 [% ) s aoy ormds
_ T H7207@ v a 1tz
Cnet—277)\b I11€ e [§] 11 dCL‘11
0

z @) ( 2 1

o 11 2

_ 2 — - PlAyE]z?, O [, 7dz)

+27T>\b/ ) xne( ”)"’xll)e< T e o 1% ") duyy, (4.25)
Ta

where we introduce the notation T = %.
In (4.25), the second integral is negligible compared with the first integral for sufficiently
high values of the SNR Y (high SNR regime). Under this assumption, (4.25) can be

approximated as follows:

1 2
Tao (—w)\bz“ T%TH) (—z%—l@> <_7r’\bP[AU]E]z%1®E f<>072 =2 2-u 104/2 dz)
11 T =M O a T «a 142
Cnet%%r/\b/ r11€ e e 1 da1g.
0

(4.26)

It is known that the integral inside the exponential function can be expressed in terms of
the Gauss hypergeometric function for general values of the path-loss exponent a > 2 [28].
In order to better highlight the proposed approach, we assume « = 4 in the sequel. A
similar approach can be applied for other values of «. This generalization is left to the
reader. By letting o = 4 and by using some algebraic manipulations, (4.26) can be written

as follows:

1 x‘u_QT%&
Y1 (—ﬂ)xbac*fl'r%ﬁ> (_ m%@) —m A PlApg]a?, VO | Z—arctan HT
Cret m27r)\b/ r11€ e e dzqq.

0
(4.27)

71711(—)) ( 1110)
The term e( "/ can be ignored, because when Y is dominant then e ) =1
and when the x{,;© dominates then the rest of the integral tends to 0. Therefore, (4.27)

simplifies as follows:

2—p
z”'_2'r 1

Ti (71'/\596’1L1T2jﬁ 77T/\5P[AU]E]I%1\/@ (garctan (%) ) >
Chet = 2Ty / Ti1€ daqy.  (4.28)
0

In the next two sections, we further simplify (4.28) by considering large and small values

of ©, respectively.

95



4.4.1. Large O

By definition, p € [1,2]. In addition, the function arctan (-) becomes small for large values

of ©, i.e., arctan (1/0) ~ 0. Thus, it can be ignored for large values of ©:

1 _
T4 <—7r)\b:c‘1L1T2‘4ﬁ_“2Ab]P[AU2]E]m%1 \@>
Cnet%277)\b r11€
0

%
dzi1 =271\ /T mlle(_Alx‘fl_A”%l)dxn,
’ (4.29)
where A; = W)\bTQ_Z,i and Ay = w.
The integral in (4.29) cannot be formulated in a simple closed-form expression that is
suitable to get insight for system optimization. To circumvent this issue, we express the

exponential e(fA”“nll) by using its power series representation:

T4
Cnet ~ 27T/\b/ 11
0

. Alﬁ'l{l N A%;f’f B A‘i’gfc!'f’f N Ai‘ﬁi‘? L ] o(~4203)
(4.30)

To further simplify the analysis, since the high SNR assumption is considered, the upper
integration limit can be simplified as T1/* — co. With the aid of this approximation, we

obtain:

oo o
—_A 2 Al +1 —A 2
Chet = 2T, [/0 w1l 1) dgy, — T/o ) e(42%) 4y

A2 o) _ 5 A3 0 3 5
+2_'1 xf’f“e( A22%) daryy — 3_11 x?’fﬂe( A27h) 4 dgyy -
- JO - JO

12 2+2 3u+2 Ap+2
ray AT AR () apr () air ()
~ T Ay e Tz e R e a R
: A, 204, 2 314, 2 414,

(4.31)

where the last expression is obtained by solving each integral and writing it in terms of the

Gamma function, i.e., [;* zMme " dr = % where v = mTH [92].

Equation (4.31) can be formulated, in a more compact form, as follows:

00 (_l)nR%I—\ nu+2
Cnet ~ WA—A; Z n < & ) ; (432)

n=0

where R = A7/AL.
It is not possible, to the best of our knowledge, to compute the explicit result of the

series for arbitrary values of u. This is possible, however, for the special case p = 2:

71')\1)
A+ Ay

Cnet ~=

In Fig. 4.4, we plot R as a function of u. We observe that, for constant values of A
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Figure 4.4.: R as a function of p

and Y, R decreases if u increases. It is difficult, however, to find the analytical expression
of the optimal value of p that maximizes Cpe; in (4.32). To circumvent this issue, we have
performed extensive Monte Carlo simulations and found that Ci.; is maximized by the
value of p that corresponds to R = 1.

As a result, the optimal value of y that maximizes Cy is the unique solution of the

following equation R = 1:

_ 2 a
A2 AN = (W2)\§T2TM> - (” AP [Aue] m) ~0. (4.33)

2

To compute the optimal value of p, a tractable expression of P [Ayg] is needed, which is

itself a function of u. From (4.9), P[Ayg] can be computed as follows:

[e's) 2 y— 2 2T 2
P[Ayg] =2 (71/\(,)2/ xgle*”)‘bxglmin (:pgl, Tl4u2 x51> dzoy =~ gg’{) T (4.34)
0 w(mAp)r ™ Tr2

where the approximation is obtained by using similar approximations as those used for
computing Che; in the high SNR regime.

By inserting (4.34) in (4.33) and with the aid of some algebraic manipulations, we obtain:

it ()t T2 R — <7T3A§\/6 r <%>>M =0. (4.35)

The optimization problem in (4.35) is much simpler to solve than (4.24). For example, it
can be easily solved by using the fzero function in Matlab. By direct inspection of (4.35),
in addition, the following conclusions can be drawn. The minuend term, u* (7r/\b)4 12K,
is independent of ©, and the subtrahend term, (7r3)\§\/@ r <%>)u, is dependent on ©. In
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Figure 4.5.: Inspection of the optimization problem (4.35)

the minuend, the term p* increases as p increases from 1 to 2, but the term Y2~* decreases
very rapidly with the same increase of u. This suggests that the minuend is a decreasing
function of p. For fixed and realistic values of A\, and O, the subtrahend decreases if
increases. We plot both the minuend and subtrahend terms in Fig. 4.5. It can be observed
that, for the given parameters, both the minuend and subtrahend decrease if p increases.
The minuend and subtrahend terms, however, cross each other in exactly one point, which
guarantees that there is a unique optimal value of p that maximizes the effective coverage
probability.

In Fig. 4.6, we show that, for each value of ©, an optimal value of p exists. In addition,
the accuracy of the solution of (4.35) compared with the exact values of p that maximizes
(4.24) is studied. A good accuracy is obtained. Fig. 4.6a, in particular, shows that the
effective coverage probability is maximized for values of p smaller than 2, which correspond

to a conventional cellular network where TIN is not applied.

4.4.2. Small ©

In this section, we study the existence of optimal values of p for small values of the SINR
2—p
threshold. If © is small, i.e. © ~ 0, we have arctan (

LTI
(4.28) reduces to:

NG
2—p 2
o0 —mpxt YT 27 (£
cmzzmb/ a:lle( r >dm11m 2(11‘) — (4.36)
0 p(mAp)r ™ Tho2

) = arctan (c0) = 7§, and

By direct inspection of (4.36), we evince that C,¢; increases if p increases. In particular,

Cnet = 1 when p = 2. This finding suggests that there is no need to turn any BSs off if the
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SINR threshold is small. For small values of ©, in other words, there is no need to apply

TIN. Figure 4.7 confirms this conclusion.

4.5. Results and Discussion

In this section, we illustrate some numerical and simulation results. We emphasize that the
Monte Carlo simulation results are generated without any approximations or assumptions
that are exploited to obtain the analytical frameworks. As for the simulation setup, we set
P =46 dBm and N = —110 dBm/Hz.

In Fig. 4.8, we plot the probability of TIN against p. The figure shows that the prob-
ability of TIN increases with p. It can be observed that the probability of TIN is zero if
# =1 and tends to one if M = 10 and p = 1.9. Similarly, the probability tends to one if
M =1 and pu = 2. We remind the reader that no BSs are turned off if the probability of
TIN is equal to one. In other words, every BS schedules a UE in any given time slot, as
in conventional cellular networks. This illustrates that both M and p are tunable param-
eters that control the number of UEs to be scheduled. For simplicity, and without loss of
generality, we keep M =1 and vary p in the rest of the results.

In Fig. 4.9, we plot the probability of TIN versus the density of the BS. It can be
observed that, for a given value of u, the probability of TIN decreases if A\, increases. This
result shows that, if we increase Ay, the probability that the UEs satisfy the TIN criterion
in (4.8) reduces. This is due to the increase of the amount of interference in the network.

Fig. 4.10 shows the effect of the path-loss exponent on the probability of TIN. It can be
observed that the probability of TIN increases if « increases. If the path-loss exponent is

large, the interference received at a UE is low, and, therefore, the probability that a UE
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Figure 4.11.: SINR coverage probability

satisfies the TIN criterion increases (4.8).

Fig. 4.11 compares the simulation and analytical curves of the SINR coverage probability.
We remind the reader that the first simulation curve is obtained if the TIN-based scheduling
is based on (4.4) and the second simulation curve is obtained if the TIN-based scheduling
is based on (4.8). The curve corresponding to the classical scheduling is obtained by not
turning any BSs off. The figure highlights that the analytical and simulation curves are
quite close to each other, which substantiates the accuracy of our analysis. The small gap
between the two curves originates from the approximations discussed in Section 4.3.1.

Fig. 4.12 illustrates the effect of A\; and © on the optimal value of u that maximizes the
SINR coverage probability. The optimal value of p is obtained as the solution of (4.35).
The figure highlights that the optimal value of y decreases if the SINR threshold increases.
This shows that, for large values of the SINR threshold, more BSs need to be turned off
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Figure 4.12.: Optimal u for SINR coverage probability

to maximize the effective coverage probability. Furthermore, it can be observed that the
optimal value of i increases if the density of the BSs increases. To understand this effect,
we need to consider the effect of A\, on the probability of TIN. We have seen in Fig. 4.9
that the probability of TIN decreases if the density of the BS increases. Our optimization
problem not only maximizes the SINR coverage probability, but, at the same time, tries
to turn the smallest number of BSs off. Therefore, the optimal value of p increases by
increasing the density of the BS.

Fig. 4.13 shows the SINR coverage probability gain provided by our proposed distributed
TIN-based scheduling scheme compared with the conventional scheduling scheme where no
BSs are turned off. The optimal value of u is obtained from (4.35) if the distributed TIN
scheduling algorithm is based on (4.8). It is obtained through simulations, on the other
hand, if the distributed TIN scheduling algorithm is based on (4.4). It can be observed that
the improvement provided by the distributed TIN scheduling scheme over the conventional
scheduling scheme changes with the SINR threshold. Specifically, it can be noticed that, if
© = 10dB, the improvement is 67% when the distributed TIN scheduling is based on (4.4),
and 36% when the distributed TIN scheduling is based on (4.8).

In Fig. 4.14, we depict the effective average rate against the density of the BSs. The
curves of the distributed TIN scheduling are obtained by setting p = 1.9. It can be
observed that the distributed TIN scheduling based on (4.4) improves the average rate by
21%, whereas the distributed TIN scheduling based on (4.8) improves the average rate by
11%. Furthermore, it can be observed that the gain remains constant for various values
of Ap. From Fig. 4.13 and 4.14, it can be concluded that a simple distributed TIN-based
scheduling algorithm significantly enhances the SINR effective coverage probability and the

effective average rate.
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4.6. Chapter Summary

In this chapter, we have proposed a simple scheduling algorithm for application to cellular
networks that is based on the TIN optimality condition. The original form of the schedul-
ing algorithm is shown not to be mathematically tractable. To overcome this issue, we
have proposed a simplified analytical framework to estimate the SINR effective coverage
probability and the effective average rate by using stochastic geometry tools. To enable
a simple optimization of the system parameters, we have developed simplified analytical
frameworks in the high SNR regime, and for small and large values of the SINR decoding
threshold. By optimizing the system with the aid of the proposed analytical frameworks,
it is shown that the proposed TIN-based scheduling algorithm outperforms conventional
cellular networks in terms of effective coverage probability and effective average rate.

In the next chapter, the work presented in this thesis is concluded and some future

research directions are highlighted.
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5. Conclusion

In this thesis, stochastic geometry tools have been used to model, analyze and design
various large-scale wireless networks with random topologies. For the sake of the simplicity
and tractability of the analysis, the Poisson point process based abstraction model for the
spatial modeling of the network elements has been adopted.

We have seen in this thesis that stochastic geometry enables us to analytically model
large-scale wireless networks, thanks to its amazing tractability. In Chapters 2, 3 and 4,
we have seen that nice insights can be obtained, especially for the plausible special cases.

Correlation among the interfering nodes is difficult to model. However, correlation be-
tween the typical node and the interfering nodes can be modeled easily and we have realized
in Chapters 2 and 4 that the resulting analysis is sufficiently accurate. Optimization in
stochastic geometry is challenging; however, with some asymptotic simplification it can be
performed. In the following, we provide chapter-wise details.

In Chapter 2, a tractable uplink model for the analysis and design of a two-tier heteroge-
neous network having multiple antennas at the BSs has been proposed. The performance
of the network in term of SIR coverage probability and rate coverage probability has been
quantified. Furthermore, the idea of downlink and uplink decoupling has been studied, and
how to get the optimal performance in such a decoupled accessed networks has been shown.

In Chapter 3, a general framework has been presented to study the performance of
an ad-hoc network that uses a combination of wireless power transfer and backscatter
communications. The coverage and capacity of a such network in terms of easily computable
expressions have been provided. The performance of this network is further compared
with the regular powered network and it has been shown that for some parameters the
performance of both the networks is comparable.

In Chapter 4, a scheduling algorithm for the cellular networks has been proposed that
is based on a well-known interference management technique in information theory, known
as treating interference as noise. The gains of this scheduling algorithm over the classical
scheduling algorithm in term of SINR coverage probability and average rate of the network,
for the downlink transmission, have been quantified. In order to obtain the optimal system
parameters that provide the maximum gains, an asymptotic analysis has been performed.
This asymptotic analysis resulted in a simple optimization algorithm for the optimal system

parameters.
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5.1. Future Work

There are many open and interesting research directions, related to the problems discussed

in this thesis that can be studied. Some of them are the following:

e In Chapter 2, we considered multiple antennas at the BSs and single antennas at the
UEs, future-work might study the performance of both the downlink and uplink for
the MIMO networks, and find the optimal offloading strategy, which jointly optimizes
both the downlink and the uplink performance. Another important research direction
is to investigate the potential gain offered by using both the multiple antennas BSs

and the interference cancellation scheme.

e In Chapter 3, the minimum circuit-power threshold is not considered, therefore, a
future study might consider a minimum circuit-power threshold on the harvested
power of the BN and if the harvested power threshold is not satisfied then the BN
will not backscatter the signal. It would also be interesting to incorporate different
collisions resolution schemes, such as using directional antennas and/or successive in-
terference cancellation and study its effect on the performance of this wireless powered

backscatter network.

e In Chapter 4, a TIN based scheduling algorithm has been proposed and its perfor-
mance for the downlink transmissions in the cellular networks has been studied. A
future work can study the performance of a such scheduling algorithm in the uplink.
The exact analysis in the uplink is even more challenging than the downlink; however,
we expect that a nice approximation can be obtained. In this work, we have proposed
an optimization algorithm for the SINR coverage probability. A similar asymptotic
analysis can be performed for the average rate. Another interesting extension would
be to study the energy efficiency of this scheduling algorithm in cellular networks.
Furthermore, the fairness of the scheduling algorithm is not investigated in this work.
Hence, it is important and interesting to study the fairness of the proposed scheduling

algorithm.
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A. Proofs for Chapter 2

A.1. Proof of Lemma 2.1

The association criterion when a typical UE connects to a MBS both in the UL and DL is
given by

P [{PuE { I} x5 > PeE { eI} X720}

{BuE {Inurl?} X3 > BeE {nr ) X700}

where the expectation is over the channel fading. The E { ||hM||2} =Ny, E {|hF|2} = Np,
where Ny, and Np are the array gains and represent the number of antennas at an MBS
and FBS respectively [114]. Bp and Bjs are bias factors towards the femto-tier and the

macro-tier respectively. The above equation can be equivalently written as

P [{PMNMXA_/[OCM > PFNFX;O‘F} ﬂ {BMNMXA—;M > BFNFXI;OCF}} '

We know that Pr < Pj; and when g—]@ > %, it can be easily observed that the com-

mon region in the above equation is Ny X,/ > g—]\F/[N FXp"F, or equivalently Xp >

(1/ar)

<%> X for, Similarly, when g—fj < 5—]@ then the common region is Xp >
(1/ar)

( 113:;5 %Z) XZC\}M/ " and the probability is calculated as

o0

P(casel)=P (Xr > a) :/0 (1= Fx, (a))fx, (Xar)dxy

_ 1/04F Oé]u/OéF . Br Pr _ BpNp Br Pr _
where a = T/77 X,/ , while for B 2 P T, = BN and for 5 < By T, =

FERE - Using the null probability of 2-D PPP, Fx, (Xar) = 1 — e ™ ¥, fr, (Xpy) =

QWAMXMe*”)‘MXIQM and evaluating the integral we obtain (2.4).

A.2. Proof of Lemma 2.4

The distance X g between a typical UE and the tagged BS is a random variable. The event
Xk > x is equivalent to the event that X > x given that a typical user is attached to the
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Kth tier (proof follows a similar method as in [29])

IP’[XK>m]:IP’[XK>x]n:K]:P[XK>Am’n:K], (A1)
K

where P[n = K] = Ak is the tier association probability given by (2.7). Let Prg and Pry
respectively be the biased received power from a typical UE at the nearest Kth tier and
Jth tier BS then the joint probability P [Xx > z,n = K] can be expressed as

]P’[XK >.’L‘,TL:K] :P[XK >(L’,PTK(XK) > PTj]

oo
- / P [Bi Nk X > ByNsX 7] froe (Xic) dcy
x

o0 ByNs\Y are/a
:/ P[XJ>( J J) XKK/ J] fXK(XK)dXK-

Brg Nk

1 . BNy \ VY yax/as
From the 2-D null probability of PPP, we obtain P | X ; > (ﬁ) X =

exp{_ﬂ-)\J (%>2/O¢J (X;K/Ou>2}7 and fo (XK) = 27T>\KXK6XP{_7T)\KX%(}7 and

inserting in the above equation, we get

oo
P[XK>JZ‘,TL:K]:27TAK/ Xk X
T

2/ag 2
exp{—w()\KX%(—l-)\J( 5;1]:;; > > (X;;K/“J) }dXK. (A.2)

By inserting (A.2) in (A.1), we get the following

2 )\ o B N 2/@] o o 2
P[Xk > 1] = ZKK/ XKeXp{—w()\KXIQ(—i—)\J(BJ J) )(XKK/ J) }dXK, (A.3)

KNk

which is the complementary cumulative distribution function (CCDF) of X, while it CDF
is Fx,(xr) = 1 —P[Xg > z], and probability density function is fx, (z) = %FXK ().
Thus, we obtain (2.9).

A.3. Proof of Theorem 2.1

We consider multiple antenna BSs and use MRC combining, therefore, the signal channel
follows Gamma (N, 1) , whereas the interfering channel still follows an exponential dis-
tribution [61]. Let Xk be the distance between a typical UE and its serving Kth tier BS
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then the coverage probability Cx for a given threshold can be written as

C (7)) 2 Ex,, [P[STRx, > 7| Xx]] = / P[STRx, > 75| Xx] frn (Xic)
0

27k

/ P[SIRXK 27K|XK]XK
K 0

2/ay
exp {—ﬂ' ()\KX%( + s (BB;xj() Xf((aK/a‘])> } dx,, (A4)

where the last expression follows by inserting fx, (.) from (2.9). For an interference limited

network, the P [SIRx, > 7x|X k]| can be written as

« —1
e, > X )

P[SIRXK > TK|XK]éP 5 > T
h%thi QKN oK h%Oth agn —oK
g [ Tl | X2 2 [T | X0,
€@l \uo 0 g€ 0
Ng—1 Ng—-1 n n
2 2 _sI| 3 s"(—=1)" d
:IP[HhKOH >sI]XK} =3 [ Z s eS| 2 Z ngl(s) (A.5)
n=0 n=0
ax (1-n) aKxn - e h hy |?
where s = T Xi"V 7 T = Y g XD+ Y 9 XTDSOK g = o
ie®\ug g, T o |
K J
b b ’ : .
, and g4 = ||}107|| . The expression after (1) follows due to the definition of SIR, (2)
Ko

follows due to hx, ~ Gamma (Ng, 1), and (3) follows due to the Laplace transform identity
L{Ime=sl} = (-1)" L5 (s).
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Next, we find the Laplace transform L (s) of the interference as follows:

L (S) =E; [E_SIK]

a Y OKT )—aK _ ayn p—aK
=Ky, Xy, D, |€XP| —5 E, 9iXg; D, qu,X.zwD(zq eXp| —s E :quJq DJq
1€ \ug qe®’;

b B - B }
:EXKi,DKi H Ey, [exp (_SgiX?g{nDKiaK> ]EXquDJq H qu [exp <_quX?qJnDanK)
it \uo ' s :

. EDKi H EXKi

iECD/K \uo

1
1+sxz:<nDK?K] B, | 1L B

1
sew, 1 —&—st;quanK]
4 exp (—27r>\K/OO (1 —Ex,. al — ]) udu) X
Xx 14 s X Mumex
oo

1
exp _277)\J/<NJBJX?(K)1/QJ (1 - EXJq 11 SX?‘W’UO‘K]> vdv
q

NgBg

e S8 U 1
= exp <—27r)\K/XK </0 1+ 3_1X[_<?K77uaK fXKi (XKi)dei> udu> X

NjBjv*K

ay
[ee]
1
exp (27TAJ/(NJBJX;K>1/QJ /( Nk B ) (Xs,) dx,, |vdv
L

- Ix,
0 14 571X o 7

o0 o0 1
_ 2/ak x2n o
P < 7T)\K/O i XKi (/52/111{)(}2((1_1—77) 1+ Z}l{K/2 dZK) fXKi (XKi)dXKi> x

o] oo 1
— 7\ 2/ak X20‘J77/O‘K -  d X d
exp ( ™ J/O 5 Jq <72/(1K872/04KX‘2]:¢J(1*71)/04K 1+ Zj;éK/2 Zy fXJq( J‘?) Xiq

—27\ 5 _ 2 2 _ _
Lexp (ﬂ / X2l gy {1, 1- = 2 = sx, 0 ")]fxx, (XKZ.)dXK) x
OZK _ 2 0 7 Ie% 7 7 i

K (03¢
—2mA (LMK s [ on jak—ay (i)
exp x2as/ax—ay M
O — 2 0 Jq
2 2 —ay(1-7) A
2F1 1, 1-— @, 2 — @, _SCXJ,L' fXJq (qu) dXJq ( 6)

where (a) follows because the interference is from both the femto-tier and macro-tier’s
scheduled users, and they are also independent of each other, (b) is due to the independent
and identically distributed assumption of g; and g4, and both g; and g, are further inde-
pendent of point process ®, (c) is due to g; ~ exp (1) and g, ~ exp (1), and (d) follows due
to the probability generating functional (PGFL) of PPP, which converts an expectation
over a point process to an integral E [[],cq f (2)] = exp (=X [go (1 — f (2))dx) [7]. It is
important to mention that in step (d) the integration limits in both of the integrals are not

the same, i.e., the closest interferer of the serving tier can be at a distance Xg from the
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typical BS, whereas the closest interferer of the non serving tier should be at a distance

NjByXX
Nk By

tions, which are required for power control. Again, it is important to note that the distance

ay
) , as mentioned in Remark 2.2. In step (e), we apply the inner expecta-

distribution of an interfering UE to its serving BS is different from that of the typical UE
to the tagged BS and for different tiers the distance distribution of an interfering UE to
its serving BS are also different, as mentioned in Remark 2.1. This difference can be seen
by the limits of the inner integral in both exponentials. Step (f) follows by changing the

integration order, inserting { = Jifv 1}] gi{ and some algebraic manipulations while (g) follows

by writing the inner integrals as Gauss hypergeometric functions [92]. We combine the
two exponentials and inserting it in (A.5) and then (A.5) into (A.4). Thus the proof is

completed.
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B. Proofs for Chapter 3

B.1. Proof of Theorem 3.1

By using the definition of g, in (3.6), we write C as

C=Plyr, 20| = // Plyr, > Olzo1,- -+, 2o,Np ]
0<z0,1<0,2<-"<To,Np g <00
fx(x(],la"' 7x0,NPB)d'1"0,1"“ >d$0,Np37 (Bl)
where the integration is over the joint PDF of the distances xq1,---, %o npp tO nearest
Npp PBs. Now, the conditional probability P [yg, > ©|zg 1, - ,Zo Ny, can be written as
—ab N —af
hg 0d0.0 Doict” Tog
Plyr, > Olzoa, -+ wonpp] =P [Z o - >0

b j—ab <—~Npp . —af N
jedsn\BNo D00 2 k21 Tik T Pap

:P[h&ozs<z+ N )] . g, [exp(—s <I+ N M — o= L), (B2)

BPpp BPpp BPpp
b
_ ©4dg.o _ b g—ab \~Npp .—af b
where s = W, = ZjG‘I)BN\BNo hO,de,j k=1 mj,k y (a) follows because h070 ~

exp(1l), and L;(s) = E; [exp (—sI)] is the Laplace transform of the interference I evaluated
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at s. Next, we find the Laplace transform as

Npp

_ _ b —ab —af
Lr(s) =Ef[exp(—sI)] = Ehg,j,do,j,xj,lw,xj,NpB exp | —s E hg ;d, E : Tk
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= Bdo 21,2 npp H Ehg,j exp | —shg ;dy; § : Tk
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d 27‘(‘ Apns/ P f e
BN —a
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where (a) follows due to the independence of hgd, (b) follows from the fact that hgd ~
exp(1) and the independence of E; , ... o, Npg! (c) follows from the probability generating
functional (PGFL) of 2-D PPP [7], changing the coordinates to the polar coordinates and
evaluating one of the integrals, and (d) follows by changing the order of integration and
expectation, and then computing the integral. The last expectation Exl’m’xNPB can be
computed by using the joint PDF given in (3.2). By inserting (B.3) in (B.2), and then
(B.2) in (B.1), we get the final expression for C.

B.2. Proof of Proposition 3.1

The SIR coverage probability can be written as

b —ab —af
ho,odo,o ZzeépB Lo,
b fab 7ozf
Zj€q>BN\BNO hOJ 0,7 ZI€G<I>PB 7.k

C~Plyp, > 0] =P >0, (B.4)

where we insert (3.21) for yg,. We know that ho o is exponentially distributed with a unit

mean, due to which the above expression becomes

f

—a
@ZjECDBN\BNO Zk‘ei’pB
C=Ey  o..no. |exp|— . 7 , (B.5)
BN,*¥PB>lg j d—a Z —Oé
0 i€dbpp OZ
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where the expectation should be with respect to ®py, Ppp, and hg’j. Due to the indepen-

dence of hg_j the previous expression can be written as

b g—ab —af

Ohg ;do 5 D kedps Tik
exp | — o —7
0,0 ZiE':DPB Lo,

CrEpyyapp H Ehg ;
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1
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>exp | —2mApN 1-— - udu |, (B.6)
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where (a) follows because h& ; ~ exp(1) and both ®py and ® pp are independent, (b) follows
due the probability generating functional of 2-D PPP [7], while in (¢) we utilize the Jensen’s

inequality. Now, to find the last expectation Eg,,, we use Jensen’s inequality and write

ot
—af E > T
Yhevpn Tk ‘I’PB{ ke®pp ik .
Eopy ="PE ]’kf > ++ = 1, where to find Eg,,, we utilize Lemma
. —a E Z ¢
Zz€<I>PB Lo,i ¢pPB [ icopp L0, ]

3.2. The final expression in (3.24) is obtained by doing some algebraic manipulations.
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C. Proofs for Chapter 4

C.1. Proof of Theorem 4.1

The SINR coverage probability of the typical UE given that it satisfies the TIN optimality

conditions can be expressed as follows:

C = / P [SINR Z @] lel (x11|AUIE) dxn
0

2—p 1
(@) 27\ /oo hllml_la —mAp max? (:1:11717‘;1/2(%)37(% ﬁ)
S P > 0| x11e dz1y (C.1)
N .
P [Aug] Jo I+5
2—p 1

o0 g‘ P\ 2a 2a
(b) 2mAp / —z0 0N 2 Or —mA\p max> (x117z11(ﬁ) (M) )
= E 1 d
P[AUE] ; e Py [e ] ri1e T11,

where I denotes the other-cell interference, (a) follows by using fx,, (z11|Ayr) in (4.11),
(b) follows because hiy ~ exp (1) is an exponential random variable, and E; [e™*1197] =
L (z{,0) is the Laplace transform of the other-cell interference I.

Let us define s = z¢40. The Laplace transform L (s) can be written as follows:
Lr (3) =E; [6751] = Ehi,Di [e

—a7 (c 1
7

=9 Zi&(blb h’iDz‘a]

= =2
2 2 AP [A ]/oo (1 _ ) d (€2)
I e — - udu
P ’ v max(:cu,:cﬁm(%)%(ﬁ)%a) 1+ su—«
> 1

2
=exp | =7 P [Ayg 83/ _ ——dz |,
' sl ] ma (s 2() 7 ()7 ) 142272
where (c) follows by computing the expectation with respect to h;, and (d) follows from the
probability generating functional theorem of PPPs [28] by assuming that the point process
of interfering BSs is an inhomogeneous PPP whose density is given in (4.6). The proof

follows with the aid of simple algebraic manipulations.
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