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Majorana Algebras and Subgroups of the Monster

Madeleine L. Whybrow

Abstract

Majorana theory was introduced by A. A. Ivanov in [Iva09] as an axiomatisation of certain

properties of the 2A axes of the Griess algebra. This work was inspired by that of S. Sakuma

[Sak07] who reproved certain important properties of the Monster simple group and the Griess

algebra using the framework of vertex operator algebras.

The objects at the centre of Majorana theory are known as Majorana algebras and are real,

commutative, non-associative algebras that are generated by idempotents known as Majorana

axes. To each Majorana axis, we associate a unique involution in the automorphism group of

the algebra, known as a Majorana involution.

These involutions form an important link between Majorana theory and group theory. In partic-

ular, Majorana algebras can be studied either in their own right or as Majorana representations

of finite groups.

The main aim of this work is to classify and construct Majorana algebras generated by three axes

a0, a1 and a2 such that the subalgebra generated by a0 and a1 is isomorphic to a 2A dihedral

subalgebra of the Griess algebra.

We first show that such an algebra must occur as a Majorana representation of one of 26

subgroups of the Monster. These groups coincide with the list of triangle-point subgroups of the

Monster given by S. P. Norton in [Nor85]. In particular, our result reproves the completeness of

Norton’s list. This work builds on that of S. Decelle in [Dec13].

Next, inspired by work of Á. Seress, we design and implement an algorithm to construct the

Majorana representations of a given group. We use this to construct a number of important

Majorana representations which are independent of the main aim of this work.

Finally, we use this algorithm along with our first result to construct all possible Majorana

algebras generated by three axes, two of which generate a 2A-dihedral algebra. We use these

constructions to show that each of these algebras must be isomorphic to a subalgebra of the

Griess algebra.

This is our main result and can equivalently be thought of as the construction of the subalgebras

of the Griess algebra which correspond to the groups in Norton’s list of triangle-point groups.
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Notation

M the Monster simple group

VM the Griess or Monster algebra

mn the elementary abelian group of order mn

D2n the dihedral group of order 2n

Sn the symmetric group of degree n

An the alternating group of degree n

Ln(pk) the projective special linear group of dimension n over the field of order pk

p1+2n
+ the extraspecial group of order p1+2n and type +

GL(V ) the general linear group of a vector space V .

For a Majorana algebra V :

〈X〉 the smallest subspace of V containing the set X ⊆ V
〈〈X〉〉 the smallest subalgebra of V containing the set X ⊆ V
τ(a) the Majorana involution corresponding to the Majorana axis a

V
(a)
µ the µ-eigenspace of (the adjoint action of) the Majorana axis a

For two groups G and H:

〈X〉 the smallest subgroup of G containing the set X ⊆ G
G×H the direct product of G and H

G.H an extension of G by H

G : H a semidirect product of G and H

G wr H the wreath product of G and H
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Chapter 1

Background

In the classification of finite simple groups, it was shown that there are exactly 26 sporadic

simple groups, groups that do not lie in any of the infinite families that make up the rest of the

classification. The Monster simple group, M, is the largest of these sporadic groups and contains

20 of the others as subgroups or quotients of subgroups. It has order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8× 1053.

The existence of the Monster was independently conjectured by B. Fischer and R. Griess in

1973. It was first constructed by Griess in [Gri82] as the automorphism group of VM, a 196,884-

dimensional commutative, non-associative, real algebra known as the Griess or Monster algebra.

The algebra VM is the direct sum (as a vector space) of an irreducible module of M and the

one-dimensional trivial module. This construction was later simplified by J. H. Conway [Con84]

and J. Tits [Tit84].

It is well known (see [CCN+85]) that M contains two conjugacy classes of involutions which

we will refer to as 2A and 2B, where 2A is the smaller of the two. These two classes play an

important role in the study of the Monster. The 2A involutions are 6-transpositions in that

the product of any two has order at most 6. Moreover, M is generated by the 2A involutions,

making it a 6-transposition group.

Conway [Con84] showed that for each x ∈ 2A, we may define an idempotent vector ψ(x) ∈ VM
called the 2A-axis corresponding to x. S. P. Norton and Conway [Con84, Nor96] have described

all the subalgebras generated by two 2A-axes ψ(x) and ψ(y). They are known as dihedral

subalgebras and are completely determined by the conjugacy class in M of the product xy, for

which there are nine distinct possibilities:

1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

The type of the dihedral subalgebra generated by ψ(x) and ψ(y) is defined to be the conjugacy

class of the product xy.

Simply by its position as the largest of the sporadic groups, the Monster is an object of great sig-
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nificance in group theory. However, as mathematicians began to work on the so-called “Friendly

Giant”, they began to see some surprising connections between the Monster and another area

of mathematics, modular functions.

In 1978, J. McKay noticed that the first coefficient in the q-expansion of the elliptic modular

function (commonly denoted j) is equal to 196,884, the dimension of the Griess algebra. He

informed J. Thompson of this remarkable observation who then went on to show that in fact

all of the first few coefficients in the q-expansion of the function j can be expressed as linear

combinations of the dimensions of the smallest irreducible representations of M [Tho79].

This numerical link between the Monster and the function j appeared to suggest a deeper

connection between the two objects. In [CN79], Conway and Norton proposed a number of

conjectures formalising this idea, which they christened “Monstrous Moonshine”.

In [FLM88], I. Frenkel, J. Lepowsky and A. Meurman constructed an infinite graded algebra V \

known as the moonshine module such that Aut(V \) = M and such that the graded dimension

of V \ is given by the function j. In 1992, R. Borcherds [Bor92] used the moonshine module to

prove Conway and Norton’s Monstrous Moonshine conjectures in work that contributed to his

receipt of a Fields medal in 1998.

The module V \ lies in a class of mathematical objects known as vertex operator algebras, or

VOAs. Both VOAs and their close relatives, vertex algebras, were first introduced as purely

mathematical tools but have since been shown to have applications in certain areas of physics.

They play a key role in the motivation behind Majorana theory.

Suppose that V =
⊕∞

n=0 Vn is a real VOA such that V0 = R1 and V1 = 0. Then the space V2

has the structure of a commutative non-associative algebra and is referred to as the generalised

Griess algebra of V . Crucially, when V = V \, V2 ∼= VM, which means that the Griess algebra is

an example of a generalised Griess algebra.

M. Miyamoto [Miy96] showed that, for a VOA V as above, there exist involutions τa ∈ Aut(V )

that correspond to special generators a ∈ V2 known as Ising vectors. Moreover, when V = V \,

the vectors 1
2a are 2A-axes of VM and the τa are 2A-involutions of M. S. Sakuma, a student

of Miyamoto, then proved the following result, which we refer to later in the text as Sakuma’s

theorem.

Theorem 1.0.1. If V2 is a generalised Griess algebra and a1, a2 ∈ V2 are Ising vectors then the

subalgebra 〈〈a1, a2〉〉 is isomorphic to one of the nine dihedral subalgebras of the Monster algebra.

This was a remarkable result that reproved the classification of the dihedral algebras of the

Griess algebra, but in the more general setting of VOAs. It offered hope that this approach

might lead to a new way of studying the Monster. However, VOAs are very complex objects

and it is difficult to fully exploit their potential in studying the Monster.

Majorana theory offers a solution to this problem. In 2009, A. A. Ivanov [Iva09] introduced

Majorana theory as an axiomatisation of certain properties of generalised Griess algebras which

reframed the approach of VOAs in a way which could easily be applied to group theoretic
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problems.

In particular, the Majorana axioms allow the construction of non-associative real algebras known

as Majorana algebras, which can be considered as analogues of generalised Griess algebras. Ma-

jorana algebras are generated by certain idempotents, known as Majorana axes, that correspond

to involutions in the automorphism group of the algebra, known as Majorana involutions. Ma-

jorana axes and involutions correspond to Ising vectors and Miyamoto involutions respectively.

In 2010, [IPSS10] Ivanov et al. proved that a Majorana algebra generated by two Majorana axes

is isomorphic to one of the dihedral subalgebras of VM. This reproved Sakuma’s theorem using

the Majorana axioms, demonstrating the potential of the new theory.

Since then, a number of publications have further developed the theory (cf. [CRI14], [Dec14],

[IPSS10], [Iva11b], [Iva11a], [IS12a], [IS12b], [Ser12]). In particular, Majorana theory has been

used to construct a number of important subalgebras of the Griess algebra including two algebras

of dimension 20 and 26 corresponding to the 2A-generated A5-subgroups in the Monster [IS12a].

Majorana algebras show a remarkable tendency to embed into the Griess algebra, with only a

few of the known Majorana algebras existing independently. In fact A. A. Ivanov has posed the

following Straight Flush Conjecture.

Conjecture 1.0.2. Every indecomposable Majorana algebra in which 2,3,4,5 and 6 appear as

the order of the product of two Majorana involutions, always embeds into the Griess algebra.

If the conjecture was true, it would place the Griess algebra as the universal object in the class of

Majorana algebras, adding weight to the belief that Majorana theory will prove to be a crucial

tool in the study of the Monster and the Griess algebra.

We will later show (Lemma 2.3.1) that the eigenvectors of the adjoint action of a Majorana

axis must obey what are known as the Majorana fusion rules. This is a phenomenon which has

long been known to hold in the Griess algebra, as well as certain other important examples of

non-associative algebras.

In 2015, J. I. Hall, F. Rehren and S. Shpectorov [HRS15b] defined an axial algebra to be a

commutative, non-associative algebra that is generated by idempotents whose eigenvectors obey

fusion rules. Majorana algebras are one of the earliest, and most important, examples of axial

algebras and play a crucial role in this new theory.

Since their inception, a number of papers ([CRMR17], [CRM18], [HRS15a], [DR17], [DV17],

[HRS15a], [HSS17], [Reh15], [Yab17]) have further developed the theory of axial algebras. In

particular, many of the definitions and results in Chapter 2, have analogues in the language of

axial algebras.

Virasoro algebras are objects occuring in mathematical physics, notably relating to the Ising and

n-state Potts models in statistical mechanics. The discrete series Vir(p, q) of Virasoro algebras

gives rise to many examples of fusion rules. In particular, the Virasoro operator algebra Vir(4, 3)

is the operator algebra of the Ising model of free Majorana fermions and its associated fusion
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rules are those of Majorana algebras, giving the theory its name.

This thesis primarily addresses the problem of classifying and constructing certain 3-generated

Majorana algebras as a natural part of the classification of low-dimensional Majorana algebras.

In particular, these algebras are closely related to triangle-point groups, a class of finitely gener-

ated groups which play an important role in the study of the Monster group.

In Chapter 3, we use the work of S. Decelle [Dec13] on triangle-point groups to prove the following

classification result.

Theorem 1.0.3. Suppose that V is a Majorana algebra which obeys axiom M8 and which is

generated by three Majorana axes a0, a1, a2 such that the dihedral algebra 〈〈a0, a1〉〉 is of type 2A.

Then V must occur as a Majorana representation of one of 27 groups, each of which occurs as

a subgroup of the Monster.

In Chapter 4, we give the details of the implementation of an algorithm to construct generic

finite dimensional Majorana representations. This is work is inspired by that of Á. Seress [Ser12].

We also give some details of the algebras constructed using this algorithm, some of which are

examples which have not before been constructed. This work is independent of Chapter 3.

In Chapter 5, we combine the work in the preceding two chapters to give a full classification and

construction of Majorana algebras as in the hypothesis of Theorem 1.0.3. The following is the

main theorem of this thesis.

Theorem 1.0.4. Suppose that V is a Majorana algebra which obeys axiom M8 and which is

generated by three Majorana axes a0, a1, a2 such that the dihedral algebra 〈〈a0, a1〉〉 is of type 2A.

Then V is isomorphic to a subalgebra of the Griess algebra VM.

In [Nor85], Norton gives a list (up to conjugacy) of all triangle-point subgroups G = 〈a, b, c〉 of

the Monster such that a, b, c, ab ∈ 2A. The work in this thesis proves that this list is complete

and provides constructions of each of the corresponding subalgebras of the Griess algebra, details

of which are given in Table 5.1.

In most cases, the number of times that a triangle-point group G = 〈a, b, c〉 appears in Norton’s

list is equal to the number, up to isomorphism, of Majorana representations of the form (G,T, V )

where a, b, c, ab ∈ 2A. However, this is not the case for the groups L2(11), 24.D10 and S5. This

implies the following result.

Corollary 1.0.5. Let G be one of the groups L2(11), 24 : D10 and S5. Then, from [Nor85],

there are two non-conjugate embeddings ι0 and ι1 of G as a triangle-point group into M. The

subalgebras 〈〈ψ(ι0(G) ∩ 2A)〉〉 and 〈〈ψ(ι1(G) ∩ 2A)〉〉 of VM are isomorphic.
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Chapter 2

An introduction to Majorana

theory

In this section we go over some basic definitions and results in the Majorana theory. Our main

reference for this section is [Iva09].

2.1 Majorana algebras

Majorana algebras are the objects at the heart of Majorana theory. They are defined using a

series of axioms which have their roots in the theory of VOAs. These axioms are all known to

hold in the Griess algebra VM.

Let V be a real vector space equipped with a positive-definite, symmetric, bilinear form ( , ) and

a bilinear, commutative, non-associative algebra product · such that

M1 ( , ) associates with · in the sense that

(u, v · w) = (u · v, w)

for all u, v, w ∈ V ;

M2 the Norton inequality holds so that

(u · u, v · v) ≥ (u · v, u · v)

for all u, v ∈ V .

Let A be a subset of V \{0} and suppose that for every a ∈ A the following conditions M3 to

M7 hold:

M3 (a, a) = 1 and a · a = a, so that the elements of A are idempotents of length 1;
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M4 V = V
(a)
1 ⊕V (a)

0 ⊕V (a)
1
22
⊕V (a)

1
25

where V
(a)
µ = {v | v ∈ V, a·v = µv} is the set of µ-eigenvectors

of the adjoint action of a on V ;

M5 V
(a)
1 = {λa | λ ∈ R};

M6 the linear transformation τ(a) of V defined via

τ(a) : u 7→ (−1)2
5µu

for u ∈ V (a)
µ with µ = 1, 0, 1

22 ,
1
25 , preserves the algebra product (i.e. uτ(a) ·vτ(a) = (u·v)τ(a)

for all u, v ∈ V );

M7 if V
(a)
+ is the centraliser of τ(a) in V , so that V

(a)
+ = V

(a)
1 ⊕ V (a)

0 ⊕ V (a)
1
22

, then the linear

transformation σ(a) of V
(a)
+ defined via

σ(a) : u 7→ (−1)2
2µu

for u ∈ V (a)
µ with µ = 1, 0, 1

22 , preserves the restriction of the algebra product to V
(a)
+ (i.e.

uσ(a) · vσ(a) = (u · v)σ(a) for all u, v ∈ V (a)
+ .

Definition 2.1.1. The elements of A are called Majorana axes while the automorphisms τ(a) are

called Majorana involutions. A real, commutative, non-associative algebra (V, ·, ( , )) equipped

with an inner product ( , ) is called a Majorana algebra if it satisfies axioms M1 and M2 and is

generated by a set of Majorana axes.

Definition 2.1.2. If V is a Majorana algebra then its dimension is its dimension as a vector

space over R.

Definition 2.1.3. Two Majorana algebras V1 and V2 are isomorphic if there exists a linear map

φ from V1 to V2 which preserves the inner and algebra products and which induces a bijection

from the Majorana axes of V1 to the Majorana axes of V2. If V1 = V2 then φ is an automorphism

of V1.

The Majorana axes and Majorana involutions correspond to the 2A-axes in the Griess algebra

and the 2A-involutions in the Monster respectively. The fact that the 2A-axes obey the axioms

M3 - M7 was implicitly stated in [Nor96] and was explicitly shown in Proposition 8.6.2 of [Iva09].

The following is a natural axiomatisation of the relationship between the Monster and the Griess

algebra.

Definition 2.1.4. A Majorana representation is a tuple

R = (G,T, V, ·, (, ), ϕ, ψ)

where

• G is a finite group;

• T is a G-invariant set of generating involutions of G;

14



• V is a real vector space equipped with an inner product ( , ) and bilinear, commutative,

non-associative algebra product · satisfying M1 and M2 such that V is generated by a set

A of Majorana axes;

• ϕ : G→ GL(V ) is a linear representation that preserves both products,

• ψ : T → A is a bijective mapping such that for all t ∈ T and g ∈ G

ψ(tg) = ψ(t)ϕ(g).

We also require that if τ(ψ(t)) is the involution defined as in axiom M6 then τ(ψ(t)) = ϕ(t) for

all t ∈ T .

Majorana representations have proved to be a very powerful tool in Majorana theory, allowing

us to exploit the natural relationships between Majorana algebras and groups in order to study

and construct Majorana algebras. Almost all known examples of Majorana algebras have been

constructed as Majorana representations of finite groups.

A key example of a Majorana representation is when G is isomorphic to M, T is the conjugacy

class of 2A-involutions of M and V is VM. In this case, the map ψ is Conway’s bijection from

the 2A-involutions of M to the 2A axes of VM [Con84].

We say that a Majorana representation is based on an embedding into M if G is isomorphic

to a subgroup of M generated by 2A-involutions and V is isomorphic to the subalgebra of VM

generated by the corresponding 2A axes.

We note that it is possible for a Majorana algebra to be infinite dimensional. However, there

are no known non-trivial examples of such an algebra. In fact, almost all known examples of

Majorana algebras are equal to the linear span of the set of their elements which are the product

of most two Majorana axes or, equivalently, are 2-closed, as defined below.

Definition 2.1.5. Let V be a commutative algebra and let X ⊆ V . Then we say that the

subalgebra 〈〈X〉〉 is k-closed (with respect to X) if it is equal to the linear span of the set

k⋃
n=1

{x1 · x2 · · ·xn : xi ∈ X}.

In this definition, as the algebra product is not necessarily associative, we must specify that the

notation x1 · x2 · · ·xn refers to the algebra products obtained from all possible combinations of

brackets on the elements. For example, if n = 3, we include x1 · (x2 · x3) as well as (x1 · x2) · x3.

2.2 Sakuma’s theorem

The seminal paper in Majorana theory was that of Ivanov et al. [IPSS10]. In the first part of

the paper, they reproved Sakuma’s theorem (Theorem 1.0.1) as stated below. This result truly

forms the foundation of Majorana theory. It can equivalently be thought of as the classification

of 2-generated Majorana algebras, i.e. those generated by at most two Majorana axes.
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Theorem 2.2.1 ([IPSS10]). Let R = (G,T, V, ·, (, ), ϕ, ψ) be a Majorana representation of G,

as defined above. For t0, t1 ∈ T let a0 = ψ(t0), a1 = ψ(t1), τ0 = ϕ(t0), τ1 = ϕ(t1) and ρ = t0t1.

Finally, let D ≤ GL(V ) be the dihedral group 〈τ0, τ1〉. Then

(i) |D|= 2N for some N with 1 ≤ N ≤ 6;

(ii) the subalgebra U = 〈〈a0, a1〉〉 is isomorphic to a dihedral algebra of type NX for X ∈
{A,B,C}, the structure of which is given in Table 2.1;

(iii) for i ∈ Z and ε ∈ {0, 1}, the image of aε under the i-th power of ρ, which we denote a2i+ε,

is a Majorana axis and τ(a2i+ε) = ρ−iτερ
i.

Table 2.1 does not show all pairwise algebra and inner products of the basis vectors. Those that

are missing can be recovered from the action of the group 〈τ0, τ1〉 together with the symmetry

between a0 and a1. We also note that the dihedral algebra of type 1A is a 1-dimensional algebra

generated by one Majorana axis and so is omitted from Table 2.1.

We can use the values in Table 2.1 to calculate the eigenvectors of these algebras with respect

to the axis a0.

Proposition 2.2.2. The eigenspace decompositions with respect to the axis a0 for each dihedral

Majorana algebra are given in Table 2.2. In each case, the 1-eigenspace is the 1-dimensional

space spanned by a0 and so is omitted from this table.

The following result is also a direct consequence of the values in Table 2.1.

Proposition 2.2.3. Let V be a Majorana algebra and let a0, a1 ∈ A. Let U := 〈〈a0, a1〉〉 and

let t0 := τ(a0) and t1 := τ(a1).

If U is of type 3A or 4A then U contains the additional basis vector uρ(t0,t1) or vρ(t0,t1) respectively

where uρ(t0,t1) and vρ(t0,t1) depend only on the cyclic subgroup 〈t0t1〉. That is to say,

uρ(t0,t1) = uρ(t0,t0t1t0) and vρ(t0,t1) = vρ(t0,t0t1t0).

Similarly, if U is of type 5A then U contains an additional basis vector wρ(t0,t1) which, up to a

possible change of sign, depends only on the cyclic subgroup 〈t0t1〉, as below

wρ(t0,t1) = −wρ(t0,t1t0t1) = −wρ(t0,t0t1t0t1t0) = wρ(t0,t0t1t0). (2.1)

Moreover, if U := 〈〈a0, a1〉〉 is a dihedral algebra of type 3A, 4A or 5A then uρ(t0,t1) = uρ(t1,t0),

vρ(t0,t1) = vρ(t1,t0) or wρ(t0,t1) = wρ(t1,t0) respectively.

Sakuma’s theorem provides a crucial tool in Majorana theory. If the dihedral subalgebras of a

Majorana algebra are known, they provide initial values for the inner and algebra products which

can be used to explore the structure of the whole algebra. As such, it is important to classify

the possibilities for the dihedral algebras which are contained in a given Majorana algebra. This

idea is formalised in the following definition.
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Type Basis Products and angles

a0 · a1 = 1
23 (a0 + a1 − aρ(t0,t1)), a0 · aρ(t0,t1) = 1

23 (a0 + aρ(t0,t1) − a1)

2A a0, a1, aρ(t0,t1) aρ(t0,t1) · aρ(t0,t1) = aρ(t0,t1)

(a0, a1) = (a0, aρ(t0,t1)) = (aρ(t0,t1), aρ(t0,t1)) = 1
23

2B a0, a1 a0 · a1 = 0, (a0, a1) = 0

a0 · a1 = 1
25 (2a0 + 2a1 + a−1)− 33·5

211 uρ(t0,t1)

3A a−1, a0, a1, a0 · uρ(t0,t1) = 1
32 (2a0 − a1 − a−1) + 5

25uρ(t0,t1)

uρ(t0,t1) uρ(t0,t1) · uρ(t0,t1) = uρ(t0,t1)

(a0, a1) = 13
28 , (a0, uρ(t0,t1)) = 1

22 , (uρ(t0,t1), uρ(t0,t1)) = 23

5

3C a−1, a0, a1 a0 · a1 = 1
26 (a0 + a1 − a−1), (a0, a1) = 1

26

a0 · a1 = 1
26 (3a0 + 3a1 + a2 + a−1 − 3vρ(t0,t1))

4A a−1, a0, a1, a0 · vρ(t0,t1) = 1
24 (5a0 − 2a1 − a2 − 2a−1 + 3vρ(t0,t1))

a2, vρ(t0,t1) vρ(t0,t1) · vρ(t0,t1) = vρ(t0,t1), a0 · a2 = 0

(a0, a1) = 1
25 , (a0, a2) = 0, (a0, vρ(t0,t1)) = 3

23 , (vρ(t0,t1), vρ(t0,t2)) = 2

4B a−1, a0, a1, a0 · a1 = 1
26 (a0 + a1 − a−1 − a2 + aρ(t0,t2))

a2, aρ(t0,t2) a0 · a2 = 1
23 (a0 + a2 − aρ(t0,t2))

(a0, a1) = 1
26 , (a0, a2) = (a0, aρ(t0,t1)) = 1

23

a0 · a1 = 1
27 (3a0 + 3a1 − a2 − a−1 − a−2) + wρ(t0,t1)

5A a−2, a−1, a0, a0 · a2 = 1
27 (3a0 + 3a2 − a1 − a−1 − a−2)− wρ(t0,t1)

a1, a2, wρ(t0,t1) a0 · wρ(t0,t1) = 7
212 (a1 + a−1 − a2 − a−2) + 7

25wρ(t0,t1)

wρ(t0,t1) · wρ(t0,t1) = 52·7
219 (a−2 + a−1 + a0 + a1 + a2)

(a0, a1) = 3
27 , (a0, wρ(t0,t1)) = 0, (wρ(t0,t1), wρ(t0,t1)) = 53·7

219

a0 · a1 = 1
26 (a0 + a1 − a−2 − a−1 − a2 − a3 + aρ(t0,t3)) + 32·5

211 uρ(t0,t2)

6A a−2, a−1, a0, a0 · a2 = 1
25 (2a0 + 2a2 + a−2)− 33·5

211 uρ(t0,t2)

a1, a2, a3 a0 · uρ(t0,t2) = 1
32 (2a0 − a2 − a−2) + 5

25uρ(t0,t2)

aρ(t0,t3), uρ(t0,t2) a0 · a3 = 1
23 (a0 + a3 − aρ(t0,t3)), aρ(t0,t3) · uρ(t0,t2) = 0

(aρ(t0,t3), uρ(t0,t2)) = 0, (a0, a1) = 5
28 , (a0, a2) = 13

28 , (a0, a3) = 1
23

Table 2.1: The dihedral Majorana algebras



Type 0 1
22

1
25

2A a1 + aρ(t0,t1) − 1
22 a1 − aρ(t0,t1)

2B a1

3A uρ(t0,t1) + 2·5
33 a0 + 25

33 (a1 + a−1)
uρ(t0,t1) − 23

32·5a0

− 25

32·5 (a1 + a−1)
a1 − a−1

3C a1 + a−1 − 1
25 a0 a1 − a−1

4A vρ(t0,t1) − 1
2a0 + 2(a1 + a−1), a2

vρ(t0,t1) − 1
3a0

− 2
3 (a1 + a−1)− 1

3a2
a1 − a−1

4B
a1 + a−1 − 1

25 a0 −
1
23 (aρ(t0,t2) − a2),

a2 + aρ(t0,t2) − 1
22 a0

a2 − aρ(t0,t2) a1 − a−1

5A
wρ(t0,t1) + 3

29 a0 −
3·5
27 (a1 + a−1)− 1

27 (a2 − a−2),

wρ(t0,t1) − 3
29 a0 + 1

27 (a1 + a−1) + 3·5
27 (a2 + a−2)

wρ(t0,t1) + 1
27 (a1 + a−1)

− 1
27 (a2 + a−2)

a1 − a−1,
a2 − a−2

6A

uρ(t0,t2) + 2
32·5a0 −

28

32·5 (a1 − a−1)

− 25

32·5 (a2 + a−2 + a3 − aρ(t0,t3)),
a3 + aρ(t0,t3) − 1

22 a0,

uρ(t0,t2) − 2·5
33 a0 + 25

33 (a2 + a−2)

uρ(t0,t2) − 23

32·5a0

− 25

32·5 (a2 + a−2 + a3)

+ 25

32·5aρ(t0,t3),

a3 − aρ(t0,t3)

a1 − a−1,
a2 − a−2

Table 2.2: The eigenspace decomposition of the dihedral Majorana algebras



Definition 2.2.4. If R = (G,T, V ) is a Majorana representation then we define a map Ψ which

sends (t, s) ∈ T 2 to the type of the dihedral Majorana algebra 〈〈at, as〉〉. Then the shape of R is

the multiset [Ψ((ti1 , tj1)),Ψ((ti2 , tj2)) . . . ,Ψ((tin , tjn))] where the (tik , tjk) are representatives of

the orbitals of G on T .

It is worth noting that, whilst it is not necessarily the case that two non-isomorphic Majorana

representations must have different shapes, no such examples have been found where this is not

the case. It is an open question as to whether this is true in general.

When determining the shape of a Majorana representation, if t, s ∈ T and 〈t, s〉 ∼= D2N then

Ψ((t, s)G) = NX for X ∈ {A,B,C}. If N = 1, 5 or 6, there is only one option for the value of

X. If N takes any other value, we must use other results to restrict the possible value of X. In

particular, the following lemma can be deduced from the structure of the dihedral algebras (see

Lemma 2.20, [IPSS10]).

Lemma 2.2.5. Let U be an algebra of type NX (as in Table 2.1) that is generated by Majorana

axes a0 and a1. Then U contains no proper, non-trivial subalgebras, with the exception of the

following cases.

(i) If U is of type 4A or 4B then the subalgebras 〈〈a0, a2〉〉 and 〈〈a1, a−1〉〉 are of type 2B or

2A respectively.

(ii) If U is of type 6A then the subalgebras 〈〈a0, a3〉〉 and 〈〈a1, a−2〉〉 are of type 3A and the

subalgebras 〈〈a0, a2〉〉, 〈〈a1, a−1〉〉, 〈〈a0, a−2〉〉 and 〈〈a1, a3〉〉 are of type 2A.

Informally, this means that we have the following inclusions of algebras:

2A ↪→ 4B, 2B ↪→ 4A, 2A ↪→ 6A, and 3A ↪→ 6A

and that these are the only possible inclusions of non-trivial algebras.

Given a group G and a set of G-invariant involutions T , we let Γ be the directed graph whose

vertex set is the set of orbitals of G on T and where (t0, t1)G → (t2, t3)G if and only if

〈〈at0 , at1〉〉 ↪→ 〈〈at2 , at3〉〉 and t0 6= t1. If we fix the type of the dihedral algebra correspond-

ing to one vertex v ∈ V (Γ) then this determines the types of the algebras corresponding to all

vertices in its connected component. In particular, there are at most 2c possible shapes for a

representation of the form (G,T, V ), where c is the number of connected components of Γ.

2.3 Basic results

We now survey a few basic results which follow as a consequence of the Majorana axioms. We

will frequently refer to this section in the remainder of the text.

Perhaps the most important consequence of the Majorana axioms is that the eigenspace de-

composition of (the adjoint action of) a given Majorana axis must obey the Majorana fusion

rules.
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1 0 1
22

1
25

1 1 0 1
22

1
25

0 0 0 1
22

1
25

1
22

1
22

1
22 1, 0 1

25

1
25

1
25

1
25

1
25 1, 0, 1

22

Table 2.3: The Majorana fusion rules

Lemma 2.3.1. For a fixed Majorana axis a, if u ∈ V (a)
µ , v ∈ V (a)

ν then the product u · v lies in

the sum of eigenspaces with corresponding eigenvalues given by the (µ, ν)-th entry of Table 2.3.

Proof. As in the hypothesis, let u ∈ V (a)
µ , v ∈ V (a)

ν . If 1 ∈ {µ, ν} then the result follows from

axiom M4. If either zero or two of {µ, ν} are equal to 1
25 then τ(a) preserves u · v which must

then lie in V
(a)
1 ⊕V (a)

0 ⊕V (a)
1
22

. However, if exactly one of µ and ν is equal to 1
25 , then τ(a) inverts

u · v and so u · v ∈ V (a)
1
25

.

A similar analysis using the action of σ(a) shows that if {µ, ν} = {0, 1
22 } then u · v ∈ V (a)

1
22

and

if µ = ν is equal to 0 or 1
22 then u · v ∈ V (a)

1 ⊕ V (a)
0 . Finally, axioms M1 and M4 show that if

µ = ν = 0 then the projection of u · v on to V
(a)
1 is zero.

The fusion rules give Majorana algebras much of their structure and play a crucial role in the

construction of these algebras. In particular, although Majorana algebras are, in general, non-

associative, the fusion rules allow us to consider products of the form a · (u · v) for a ∈ A and

u, v ∈ V , even if the value of the product u · v is not known. As mentioned in Chapter 1, the

fusion rules mean that Majorana algebras are examples of a larger class of algebras, known as

axial algebras.

A further important consequence of the fusion rules is the resurrection principle. This result

first appeared in its current form in [IPSS10] but the basic ideas were used in [Sak07]. It takes

its name from that fact that the vector v disappears at the start of the proof, only to reappear

at the end.

Proposition 2.3.2 (The Resurrection Principle). Let V be a Majorana algebra and let a ∈ V be

a fixed Majorana axis. Let W be an a-stable subspace of V (i.e. a subspace such that a ·w ∈W
for all w ∈W ). For v ∈ V suppose that

αv = v + wα ∈ V (a)
0 and βv = v + wβ ∈ V (a)

1
22

for some wα, wβ ∈W . Then

v = −[4a · (wα − wβ) + wβ ]

in particular, v ∈W .

Proof. From the fusion rules,

a · (wα − wβ) = a · (αv − βv) = − 1

22
βv = − 1

22
v − 1

22
wβ .
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The following results are further consequences of the Majorana axioms.

Lemma 2.3.3. Let V be a Majorana algebra and let a ∈ V be a Majorana axis. If v ∈ V then

v − vτ(a) ∈ V (a)
1
25
.

Moreover, if v ∈ V (a)
+ then

v − vσ(a) ∈ V (a)
1
22
.

Proof. Let v ∈ V then as τ(a) is an involution,

(v − vτ(a))τ(a) = −(v − vτ(a))

and so we must have v−vτ(a) ∈ V (a)
1
25

. As similar argument follows for the second statement.

Lemma 2.3.4. Let V be a real vector space satisfying the axioms M1 to M5, and let a be a

Majorana axis of V . Then the eigenspace decomposition in M4 is orthogonal with respect to ( , )

(i.e. (u, v) = 0 for all u ∈ V (a)
µ , v ∈ V (a)

ν with µ, ν ∈ {1, 0, 1
22 ,

1
25 } and µ 6= ν).

Proof. Let u ∈ V (a)
µ , v ∈ V (a)

ν with µ 6= ν as in the hypothesis. Suppose first that µ = 0 and

ν 6= 0. Then, from axiom M1,

(u, v) =
1

ν
(u, a · v) =

1

ν
(a · u, v) = 0

If both µ and ν are non-zero then

1

µ
(a · u, v) = (u, v) =

1

ν
(u, a · v) =

1

ν
(a · u, v)

and so, as µ 6= ν, (a · u, v) = (u, v) = 0.

Lemma 2.3.5. Let V be a real vector space satisfying the axioms M1 to M5, and let a be a

Majorana axis of V . Then for all v ∈ V , the projection of v onto the eigenspace V
(a)
1 is (a, v)a.

Proof. Let v ∈ V and write

v = λa+ v0 + v 1
22

+ v 1
25

where λ ∈ R and vµ ∈ V (a)
µ for µ ∈ {0, 1

22 ,
1
25 }. Then, from Lemma 2.3.4,

(a, v) = λ(a, a) + (a, v0) + (a, v 1
22

) + (a, v 1
25

) = λ

and so the projection of v onto V
(a)
1 is λa = (a, v)a.

Lemma 2.3.6. Let V be a Majorana algebra and let a be a Majorana axis of V . Then the

linear transformation τ(a) defined in axiom M6 preserves the inner product ( , ) on V , i.e.

(uτ(a), vτ(a)) = (u, v) for all u, v ∈ V . Similarly, the linear transformation σ(a) defined in axiom

M7 preserves the inner product ( , ) on V
(a)
+ .
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Proof. We start by writing u and v as

u = u1 + u0 + u 1
22

+ u 1
25

v = v1 + v0 + v 1
22

+ v 1
25

where uµ, vµ ∈ V (a)
µ for µ ∈ {1, 0, 1

22 ,
1
25 }. From Lemma 2.3.4, the eigenspaces of a are mutually

orthogonal with respect to the inner product and so

(u, v) = (u1, v1) + (u0, v0) + (u 1
22
, v 1

22
) + (u 1

25
, v 1

25
).

Now as

uτ(a) = u1 + u0 + u 1
22
− u 1

25

vτ(a) = v1 + v0 + v 1
22
− v 1

25

we clearly have

(uτ(a), vτ(a)) = (u1, v1) + (u0, v0) + (u 1
22
, v 1

22
) + (u 1

25
, v 1

25
) = (u, v).

A similar argument follows for the transformation σ(a).

Lemma 2.3.7. Let V be a Majorana algebra and let a and b be two Majorana axes of V . Then

τ(aτ(b)) = τ(b)τ(a)τ(b) on V and σ(aτ(b)) = τ(b)σ(a)τ(b) on V
(aτ(b))
+ .

Proof. We will show that for all v ∈ V , vτ(a
τ(b)) = vτ(b)τ(a)τ(b). Recall that

vτ(a
τ(b)) =

v if v ∈ V (aτ(b))
+

−v if v ∈ V (aτ(b))
1
25

.

Now, by definition, τ(b) is an involution which preserves the algebra product on V and so

v ∈ V (aτ(b))
µ if and only if vτ(b) ∈ V (a)

µ for µ ∈ {1, 0, 1
22 ,

1
25 }. Thus if v ∈ V (aτ(b))

+ then vτ(b) ∈ V (a)
+

and so

vτ(b)τ(a)τ(b) = (vτ(b))τ(a)τ(b) = vτ(b)τ(b) = v.

Similarly, if v ∈ V (aτ(b))
1
25

then

vτ(b)τ(a)τ(b) = (vτ(b))τ(a)τ(b) = −vτ(b)τ(b) = −v.

and so the action of τ(b)τ(a)τ(b) on V coincides with that of τ(aτ(b)).

A similar argument follows to show that σ(aτ(b)) = τ(b)σ(a)τ(b). We only note that, again, if

v ∈ V (aτ(b))
+ then vτ(b) ∈ V (a)

+ and so the action of τ(b)σ(a)τ(b) is well-defined on V
(aτ(b))
+ .

Proposition 2.3.8. Let V be a Majorana algebra and let a and b be two Majorana axes of V .

Then aτ(b) obeys the axioms M3 - M7.

Proof. By axiom M6 and Lemma 2.3.6, the action of τ(b) preserves the inner and algebra prod-

ucts on V and so axioms M3 - M5 hold for aτ(b). By Lemma 2.3.7, τ(aτ(b)) and σ(aτ(b)) are both

products of linear transformations which preserve the algebra product on V and V
(aτ(b))
+ respec-

tively. Thus τ(aτ(b)) and σ(aτ(b)) must also be linear transformations preserving the algebra

product on their respective spaces, and so aτ(b) also obeys axioms M6 and M7.
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We note that in the definition of a Majorana representation (Definition 2.1.4), as is customary,

we require that the set T be closed under the action of G. This proposition shows that such an

assumption is not in any way restrictive as any additional axes of the form ag for a ∈ A and

g ∈ G are already required to obey the Majorana axioms.
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Chapter 3

Classifying Majorana

representations of triangle-point

groups

With Sakuma’s classification of the Majorana algebras generated by two Majorana axes complete,

it is natural to consider the classification of algebras generated by three Majorana axes. Whilst

the question of classifying all 3-generated Majorana algebras is clearly beyond the scope of this

work (the Griess algebra itself is one such example), we consider a natural first step towards this

question.

In particular, we are interested in the classification of Majorana algebras generated by three

axes, two of which generate a 2A dihedral algebra. In this chapter, we will prove the following

result.

Theorem 3.0.1. Suppose that V is a Majorana algebra that satisfies axiom M8 and which is

generated by three Majorana axes a0, a1, a2 such that the dihedral algebra 〈〈a0, a1〉〉 is of type 2A.

Then V must occur as a Majorana representation of one of 26 groups, each of which occurs as

a subgroup of the Monster.

In order to prove this result, we will consider a class of groups known as triangle-point groups,

which are finitely generated groups of importance in the study of the Monster group. Before

defining these groups, we first discuss the role of the axiom M8, which we state below.

M8 Suppose that V is a Majorana algebra and suppose that a0, a1 ∈ V are Majorana axes such

that the dihedral algebra U := 〈〈a0, a1〉〉 is of type 2A. Then the basis vector

aρ := a0 + a1 − 8a0 · a1

is a Majorana axis of V and τ(aρ) = τ(a0)τ(a1). Conversely, we require that the map

τ : A → Aut(V ) is injective and that if a0, a1, a2 ∈ V are Majorana axes such that

τ(a0)τ(a1) = τ(a2) then the algebra 〈〈a0, a1〉〉 is of type 2A and aρ = a2.
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This axiom is a very natural additional condition which is known to hold in the Griess algebra.

A similar (but slightly weaker) version for Majorana representations is assumed in nearly all

published works in Majorana theory. Moreover, this additional assumption means that the

Majorana axioms model the behaviour of the Griess algebra extremely closely.

In particular, of all known Majorana algebras which have been constructed, there is only one (a

representation of A6 constructed in [Iva11a]) which obeys axiom M8 and which does not embed

as a subalgebra of the Griess algebra. As one of the main aims of Majorana theory is to study the

Griess algebra as closely as possible, it is reasonable to include this axiom in our assumptions.

Axiom M8 and the inclusions of dihedral algebras imply the following useful lemma.

Lemma 3.0.2. Suppose that (G,T, V ) is a Majorana representation which obeys axiom M8 and

suppose that t0, t1 ∈ T . Then

(i) if o(t0t1) = 2 then the dihedral algebra 〈〈ψ(t0), ψ(t1)〉〉 is of type 2A if and only if t0t1 ∈ T ;

(ii) if o(t0t1) = 4 then the dihedral algebra 〈〈ψ(t0), ψ(t1)〉〉 is of type 4B if and only if (t0t1)2 ∈ T ;

(iii) if o(t0t1) = 6 then we must have (t0t1)3 ∈ T .

Proof. The claim (i) follows from axiom M8. In particular, if t0, t1 ∈ T such that t0t1 ∈ T then

ψ(t0t1) is a Majorana axis such that τ(ψ(t0t1)) = t0t1 = τ(ψ(t0))τ(ψ(t1)). Axiom M8 then

implies that 〈〈ψ(t0), ψ(t1)〉〉 is of type 2A.

Conversely, if 〈〈ψ(t0), ψ(t1)〉〉 is of type 2A then from axiom M8, the basis vector aρ := ψ(t0) +

ψ(t1)− 8ψ(t0) · ψ(t1) is a Majorana axis and τ(aρ) = τ(ψ(t0))τ(ψ(t1)) = t0t1 ∈ T as required.

If t0, t1 ∈ T such that o(t0t1) = 4 then the dihedral algebra 〈〈ψ(t0), ψ(t1)〉〉 is of type 4B if and

only if the subalgebra 〈〈ψ(t0), ψ(tt10 )〉〉 is of type 2A. Part (i) implies that this occurs if and only

if (t0t1)2 ∈ T .

Similarly, if t0, t1 ∈ T such that o(t0t1) = 6 then the dihedral algebra 〈〈ψ(t0), ψ(t1)〉〉 is of type

6A and contains the 2A subalgebra 〈〈ψ(t0), ψ(tt0t11 )〉〉. Part (i) then implies that (t0t1)3 ∈ T .

The work in this chapter has been published by the author in [Why18].

3.1 Triangle-point groups

We begin by considering the structure of the groups G that may admit a Majorana representation

(G,T, V ) where V is of the desired form.

Definition 3.1.1. Let G be a group such that

(i) G is generated by three elements a, b, c of order 2 such that ab is also of order 2;
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(ii) for any two elements t, s ∈ X := aG ∪ bG ∪ cG ∪ (ab)G, the product ts has order at most 6

then G is a triangle-point group.

Proposition 3.1.2. Suppose that V is a Majorana algebra that satisfies axiom M8 and which is

generated by three Majorana axes a0, a1, a2 such that the dihedral algebra 〈〈a0, a1〉〉 is of type 2A.

Then V must exist as a Majorana representation (G,T, V ) where G = 〈a, b, c〉 is a triangle-point

group and T ⊂ G is such that a, b, c, ab ∈ T .

Proof. Let G := 〈τ(a0), τ(a1), τ(a2)〉 ≤ Aut(V ). From Proposition 2.3.8, if a ∈ V is a Majorana

axis and g ∈ G then ag is also a Majorana axis. Thus the elements of B := aG0 ∪ aG1 ∪ aG2 are all

Majorana axes.

As V obeys axiom M8, if a, b ∈ B such that 〈〈a, b〉〉 is a 2A dihedral algebra then the element

a+ b− 8a · b is also a Majorana axis with Majorana involution τ(a)τ(b). Thus if we let

A := B ∪ {a+ b− 8a · b | a, b ∈ B s.t. 〈〈a, b〉〉 is of type 2A}

then we can take A to be the Majorana axes of V . Note that this set is closed under the action

of G.

We will now choose a set of involutions T and maps ϕ and ψ such that (G,T, V, ϕ, ψ) is a

Majorana representation. We let

T := {τ(a) | a ∈ A} = {τ(a) | a ∈ B} ∪ {τ(a)τ(b) | a, b ∈ B s.t. 〈〈a, b〉〉 is of type 2A} ≤ G.

As V obeys axiom M8, the map τ : A → T is a bijection and so we can take ψ := τ−1 and, as

we already have G ≤ Aut(V ), we can choose ϕ to be the identity map. It is then easy to check

that (G,T, V, ϕ, ψ) is a Majorana representation as required.

We will now show that G := 〈τ(a0), τ(a1), τ(a2)〉 is a triangle-point group. As the subalgebra

〈〈a0, a1〉〉 is of type 2A and the algebra V obeys axiom M8, the element τ(a0)τ(a1) is a Majorana

involution and so is of order 2, as required.

Now, if X := τ(a0)G ∪ τ(a1)G ∪ τ(a2)G ∪ (τ(a0)τ(a1))G then X ⊆ T and so ψ is well defined on

X. Then if t, s ∈ X, then the algebra 〈〈ψ(t), ψ(s)〉〉 is a dihedral algebra and so we must have

o(ts) ≤ 6. Thus G is a triangle-point as required.

Triangle-point groups are of particular interest in the context of the Monster group. The Mon-

ster graph is defined to be the graph whose vertices are the 2A-involutions of M such that two

vertices are joined by an edge if and only their product is also a 2A-involution of M. Nor-

ton [Nor85] studied the subgraphs of the Monster graph induced by sets of vertices the form

a, b, ab, c. He named these subgraphs triangle-point configurations of the Monster graph and

studied the possibility of constructing the Griess algebra as a permutation representation on

these configurations.

In particular, his work includes a list of subgroups of the form G = 〈a, b, c〉 such that a, b, c, ab ∈
2A which we partially reproduce in Table 3.1. In each case he gives explicit generators of these
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subgroups (usually as elements of A12) and so it is easy to check that these are indeed triangle-

point subgroups of the Monster. However, Norton does not prove that this list is complete. A

consequence of this work is to give a proof, independent of the Monster, that this list is indeed

complete (see the discussion following Theorem 3.2.1).

In general, we say that a triangle-point group G = 〈a, b, c〉, 2A-embeds into the Monster if there

exists an injective homomorphism ι : G→M such that ι(a), ι(b), ι(c), ι(ab) ∈ 2A.

In [Nor85], for each triple (a, b, c) of 2A involutions, Norton defines the corresponding ancestor

subgroups of 〈a, b, c〉 to be

A1 := 〈a, b, ac〉, A2 := 〈a, b, bc〉 and A3 := 〈a, b, (ab)c〉.

In Table 5 of [Nor85], as in our reproduction in Table 3.1, for each triple (a, b, c), the column

labelled “ancestors” gives the indices of the rows corresponding to the groups A1, A2 and A3.
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No. Order Iso. Type
Classes of

ac, bc, abc
Ancestors No. Order Iso. Type

Classes of

ac, bc, abc
Ancestors

1 4 22 (1A 2A 2A) (1, 1, 1) 20 32 24.2 (4A 4B 4B) (8, 2, 2)

2 8 23 (2A 2A 2B) (1, 1, 1) 21 160 24 : D10 (4A 5A 5A) (8, 27, 27)

3 12 D12 (2A 3A 6A) (1, 3, 3) 22 240 2× S5 (4A 5A 6A) (9, 22, 11)

4 16 2×D8 (2A 4A 4A) (1, 2, 2) 23 96 22 × S4 (4A 6A 6A) (7, 11, 11)

5 8 D8 (2A 4B 4B) (1, 1, 1) 24 192 24 : D12 (4A 6A 6A) (8, 10, 10)

6 8 23 (2A 2B 2B) (1, 1, 1) 25 64 24.22 (4B 4B 4B) (4, 4, 4)

7 16 2×D8 (2B 4A 4A) (1, 2, 2) 26 72 32.D8 (4B 4B 6A) (3, 3, 13)

8 16 2×D8 (2B 4B 4B) (1, 2, 2) 27 160 24 : D10 (4B 5A 5A) (4, 21, 21)

9 24 22 × S3 (2B 6A 6A) (1, 3, 3) 28 120 S5 (4B 5A 5A) (3, 28, 10)

10 24 S4 (3A 3A 4B) (10, 10, 5) 29 48 2× S4 (4B 5A 6A) (5, 10, 10)

11 48 2× S4 (3A 4A 6A) (11, 7, 11) 30 384 25.D12 (4B 6A 6A) (4, 11, 11)

12 60 A5 (3A 5A 5A) (12, 12, 12) 31 660 L2(11) (5A 5A 5A) (33, 33, 33)

13 36 S3 × S3 (3A 6A 6A) (13, 3, 3) 32 960 24.A5 (5A 5A 6A) (32, 32, 12)

14 24 S4 (3C 3C 4B) (14, 14, 5) 33 660 L2(11) (5A 6A 6A) (31, 12, 12)

15 60 A5 (3C 5A 5A) (15, 15, 15) 34 1440 2× S6 (5A 6A 6A) (34, 11, 11)

16 108 31+2.22 (3C 6A 6A) (16, 3, 3) 35 120 S5 (6A 6A 6A) (12, 12, 12)

17 32 22 wr 2 (4A 4A 4A) (6, 6, 6) 36 576 1
2 .S4 wr 2 (6A 6A 6A) (12, 12, 12)

18 64 23.23 (4A 4A 4B) (7, 7, 4) 37 3840 25.S5 (6A 6A 6A) (12, 12, 12)

19 144 2× 32.D8 (4A 4A 6A) (9, 9, 13)

Table 3.1: Norton’s list of triangle-point subgroups of the Monster



Name
Isomorphism

type

G(m,n,p)

(m,n, p)

Added relations

Rrii

(r1, r2, r3, r4, r5)

2A-embeds in M

G1 23.23 (4, 4, 4) Y

G2 (S3 × S3) : 22 (4, 4, 6) Y

G3 24 : D10 (4, 5, 5) Y

G4 2× S5 (4, 5, 6) Y

G5 L2(11) (5, 5, 5) Y

G6 (24 : D12)× 2 (4, 6, 6) (4,−,−,−,−) Y

G7 24 : A5 (6, 5, 5) (5,−,−,−,−) Y

G8 2× S6 (6, 6, 5) (4,−,−,−,−) Y

G9 (24 : (S3 × S3))× 2 (6, 6, 6)

(4, 6, 6,−,−)

(6, 4, 6,−,−)

(6, 6, 4,−,−)

N

G10 25 : S5 (6, 6, 6) (5, 5, 5, 4,−) Y

G11 (34 : 2) : (31+2
+ : 22) (6, 6, 6) (6, 6, 6,−, 3) N

Table 3.2: The groups G1, . . . , G11

A crucial first step in the proof of our main result was completed by Decelle in Theorem 3.3 of

[Dec13].

Theorem 3.1.3 ([Dec13]). Each triangle-point group must occur as a quotient of at least one

of the 11 groups given in Table 3.2. Each of these groups occurs as a quotient of a group of the

form

G(m,n,p) := 〈a, b, c | a2, b2, c2, (ab)2, (ac)m, (bc)n, (abc)p〉

for m,n, p ∈ [1..6], potentially with additional relations of the form Rrii for i ∈ [1..5] and

R1 := a · bc, R2 := ab · bc, R3 := ab · ac, R4 := c · bca, R5 := ca · cbc.

Our first aim is to use Theorem 3.1.3 to construct a list of all possible triangle-point groups.

We do this by classifying the normal subgroups, and the corresponding quotients, of the groups

G1, . . . , G11. However, some smaller examples will appear as quotients of many of the above

groups. Thus, to significantly reduce the number of normal subgroups that we must classify, we

first consider small examples of triangle-point groups.

Proposition 3.1.4. Suppose that G is a triangle-point group of order at most 12. Then G is

either a dihedral group or an elementary abelian group of order 8.

Proof. Suppose that G = 〈a, b, c〉 is a triangle-point group. Then G contains the subgroup

〈a, b〉 ∼= 22 and so the order of G must be a multiple of 4 and so must be equal to 4, 8 or 12. Up

to isomorphism, the only groups of these orders that are generated by their involutions are D4,

D8, 23 and D12 and it is easy to check that each of these is indeed a triangle-point group.
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In Tables 3.3 and 3.4 below, for each i ∈ [1..11] we give a complete list of the non-trivial normal

subgroups N / Gi such that [Gi : N ] > 12. Note that the groups G3 and G5 have no such normal

subgroups and are thus omitted from these tables.

The lists of normal subgroups in Table 3.3 have been calculated in GAP [GAP16] using explicit

generators of each of the groups G1, . . . , G10 and by using the group presentation in the case

of G11. In most cases, the generators used below are given in [Nor85]. In particular, where

possible, we choose these generators to be elements of A12.

Proposition 3.1.5. For 1 ≤ i ≤ 10, Table 3.3 gives

• elements a, b, c ∈ Gi such that Gi = 〈a, b, c〉 as a triangle-point group;

• generators in terms of a, b, c of all normal subgroups N E Gi such that [Gi : N ] > 12;

• the isomorphism types for the corresponding quotients Gi/N .

Table 3.4 gives generators of all normal subgroups N E G11 such that [G11 : N ] > 12 and the

isomorphism types for the corresponding quotients G11/N .

Using Tables 3.3 and 3.4 and Proposition 3.1.4, we have compiled a complete list (up to isomor-

phism) of triangle-point groups which we give in Table 3.5. With the exception of the groups

of order less than or equal to 12, for each triangle-point group G, we give the indices i of the

groups G1, . . . , G11 such that G occurs as a quotient of the group Gi.

3.2 The main theorem

In this section we prove the main result of this chapter.

Theorem 3.2.1. Suppose that V is a Majorana algebra that satisfies axiom M8 and which is

generated by three Majorana axes a0, a1, a2 such that the dihedral algebra 〈〈a0, a1〉〉 is of type 2A.

Then V must occur as a Majorana representation of one of 26 groups, each of which occurs as

a subgroup of the Monster.

By comparing the list of triangle-point groups in Table 3.5 with Norton’s list of triangle-point

subgroups of the Monster (Table 3 of [Nor85]), we see that of the 36 triangle-point groups, there

are 10 that do not appear on Norton’s list. We reproduce the rows of Table 3.5 which contain

these 10 groups in Table 3.6.

In the remainder of this section, we consider these ten groups and show that none of them can

admit a Majorana representation of the form (G,T, V ) where G = 〈a, b, c〉 and a, b, c, ab ∈ T .

In doing so, we also show that these groups cannot exist as triangle-point subgroups of the

Monster (as otherwise they would have to admit such a Majorana representation) and so prove

that Norton’s list of triangle-point groups is complete.

Throughout this section, we make use of the following result, which is Lemma 8.6.3 in [Iva09].
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G Generators a, b, c N X ⊂ G s.t. N = 〈X〉G G/N

G1

(1, 2)(3, 4)

(1, 3)(2, 4)(5, 6)(7, 8)

(1, 5)(2, 7)

22

22

22

2

(ac)2

(bc)2

(abc)2

(a · bc)2

2×D8

2×D8

2×D8

24 : 2

G2

(1, 2)(3, 4)

(5, 6)(7, 8)

(1, 2)(3, 9)(4, 5)(6, 10)

32

2

(a · bc)2

(a · bc)3
2×D8

(S3 × S3) : 2

G4

(1, 2)(3, 4)

(1, 2)(3, 4)(5, 6)(7, 8)

(1, 9)(2, 5)(3, 4)(7, 8)

2 (ac)2 S5

G6

(1, 2)(3, 4)

(1, 3)(2, 4)(5, 6)(7, 8)(9, 10)(11, 12)

(1, 2)(3, 5)(4, 7)(6, 9)(8, 11)(10, 12)

24

24

23

23

23

22

2

(bc)3, (abc)3

(ac)2

(ab · bc)3, (ac · cb)2

(bc)3

(abc)3

(ac · cb)2

(ab · bc)3

S4

22 × S3

2× S4

2× S4

2× S4

22 × S4

24 : D12

G7

(1, 3)(2, 15)(4, 13)(6, 12)(7, 11)(14, 16)

(1, 11)(2, 12)(3, 9)(4, 10)(5, 6)(13, 14)

(1, 3)(2, 15)(4, 13)(6, 12)(7, 11)(14, 16)

24 (ac)3 A5

G8

(1, 2)(7, 8)

(1, 2)(3, 4)(5, 6)(9, 10)

(1, 3)(4, 5)(7, 8)(9, 10)

2 ((bc)3 · bca)3 S6

G9

(1, 2)(3, 4)(5, 6)(7, 8)

(1, 8)(2, 7)(3, 4)(5, 6)

(2, 5)(3, 6)(9, 10)(11, 12)

24 : 3

24 : 3

25

24

2

(ac)2, (a · bc)2

(bc)2, (a · bc)2

(abc)2, (a · bc)2

(a · bc)2

a · (b · cac)3

22 × S3

22 × S3

S3 × S3

2× S3 × S3

24 : (S3 × S3)

G10

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

(1, 3)(2, 4)(5, 8)(6, 7)(9, 12)(10, 11)

(1, 7)(2, 6)(3, 9)(4, 11)(5, 10)(8, 12)

25

2

((ac)2(bc)2)2

(ca · (bc)3)3
S5

24 : S5

Table 3.3: Some normal subgroups of G1, . . . , G10



N X ⊂ G11 s.t. N = 〈X〉G11 G11/N

(34 : 3) : 3

(34 : 3) : 3

(34 : 3) : 3

(34 : 3) : 2

(34 : 3) : 2

(34 : 3) : 2

34 : 3

34 : 3

34 : 3

34 : 2

34 : 2

34 : 2

34

34

34

34

33

33

33

32

32

32

3

(ac)2

(bc)2, (a · bc)2

(abc)2

(ac)3, (ab · bc)2

(bc)3, (ab · ac)2

(abc)3, (a · ac)2

(a · bc)2

(ab · bc)2

(ab · ac)2

(ac)3

(bc)3

(abc)3

(acbcacb)2

(a · cbc)2

(b · cac)2

(ab · cac)2

(ab · acbc)2, (a · bcabc)2

(ab · bcac)2, (a · bcabc)2

(ab · bcac)2, (ab · acbc)2

(a · bcabc)2,

(ab · bcac)2,

(ab · acbc)2

cacbcacb · cbcacbca

22 × S3

22 × S3

22 × S3

S3 × S3

S3 × S3

S3 × S3

2× S3 × S3

2× S3 × S3

2× S3 × S3

31+2
+ : 22

31+2
+ : 22

31+2
+ : 22

S3 × S3 × S3

2× (31+2
+ : 22)

2× (31+2
+ : 22)

2× (31+2
+ : 22)

S3 : (31+2
+ : 22)

S3 : (31+2
+ : 22)

S3 : (31+2
+ : 22)

(32 : 2) : (31+2
+ : 22)

(32 : 2) : (31+2
+ : 22)

(32 : 2) : (31+2
+ : 22)

(33 : 2) : (31+2
+ : 22)

Table 3.4: Some normal subgroups of G11



i G |G|
Quotient of

Gi for i in
i G |G|

Quotient of

Gi for i in

1 22 4 − 19 24 : D10 160 3

2 23 8 − 20 24 : D12 192 6

3 D8 8 − 21 S3 × S3 × S3 216 11

4 D12 12 − 22 2× (31+2
+ : 22) 216 11

5 2×D8 16 1, 2 23 2× S5 240 4

6 22 × S3 24 6, 9, 11 24 25 : D12 384 6

7 S4 24 6 25 24 : (S3 × S3) 576 9

8 24.2 32 1 26 (3 : 2) : (31+2
+ : 22) 648 11

9 S3 × S3 36 9, 11 27 L2(11) 660 6

10 2× S4 48 6 28 S6 720 8

11 A5 60 7 29 24.A5 960 7

12 23.23 64 1 30 (24 : (S3 × S3))× 2 1152 9

13 2× S3 × S3 72 9, 11 31 2× S6 1440 8

14 (S3 × S3) : 2 72 2 32 24 : S5 1920 10

15 22 × S4 96 6 33 (32 : 2) : (31+2
+ : 22) 1944 11

16 31+2
+ .22 108 11 34 25.S5 3840 10

17 S5 120 10 35 (33 : 2) : (31+2
+ : 22) 5832 11

18 (S3 × S3) : 22 144 2 36 (34 : 2) : (31+2
+ : 22) 17496 11

Table 3.5: A complete list of triangle-point groups



i G |G|
Quotient of

Gi for i in

13 2× S3 × S3 72 9, 11

21 S3 × S3 × S3 216 11

22 2× (31+2
+ : 22) 216 11

26 (3 : 2) : (31+2
+ : 22) 648 11

28 S6 720 8

30 (24 : (S3 × S3))× 2 1152 9

32 24 : S5 1920 10

33 (32 : 2) : (31+2
+ : 22) 1944 11

35 (33 : 2) : (31+2
+ : 22) 5832 11

36 (34 : 2) : (31+2
+ : 22) 17496 11

Table 3.6: The triangle-point groups that do not 2A-embed into the Monster



Lemma 3.2.2. Suppose that there exists a group G that admits a Majorana representation

(G,T, V ). Suppose also that G contains a subgroup K isomorphic to the elementary abelian

group of order 8. Then there must exist at least one non-identity element of K that does not lie

in T .

Proof. Suppose that K := 〈t0, t1, t2〉 and suppose for contradiction that all non-identity elements

of K lie in T . Since any two axes ψ(ti) and ψ(tj) generate a 2A algebra,

ψ(t1)− ψ(t0t1), ψ(t2)− ψ(t0t2) and ψ(t1t2)− ψ(t0t1t2)

are all 1
22 -eigenvectors of ψ(t0). However,

(ψ(t1)− ψ(t0t1)) · (ψ(t2)− ψ(t0t2)) = − 1

22
(ψ(t1t2)− ψ(t0t1t2)).

is also a 1
22 -eigenvector of ψ(t0). This contradicts the fusion rules and so such a representation

cannot exist.

In most of the cases below, we have explicit generators for the groups in question. However, as

Tables 3.3 and 3.4 provide an exhaustive list of all triangle-point groups of order greater than

12, we can also use these to determine the exact presentations of these groups. Whether we use

explicit generators or the group presentation for our calculations is simply a question of clarity.

3.2.1 The group 2× S3 × S3

Proposition 3.2.3. Suppose that G = 〈a, b, c〉 ∼= 2 × S3 × S3 is a triangle-point group and

suppose that T ⊆ G such that a, b, c, ab ∈ T . Then there exist no Majorana representations of

the form (G,T, V ) which obey axiom M8.

Proof. From Tables 3.3 and 3.4, we see that G occurs either as a quotient of G9, or as a quotient

of G11. In either case, we must have

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)6, (bc)6, (abc)6, (a · bc)r1 , (ab · bc)r2 , (ab · ac)r3〉

where (r1, r2, r3) ∈ {(2, 6, 6), (6, 2, 6), (6, 6, 2)}. We first suppose that (r1, r2, r3) = (2, 6, 6) and

show that the group

K := 〈a, b, (abc)3〉 ≤ G

is isomorphic to 23 and that all of its non-identity elements are contained in T . Using the

presentation of G in GAP, we have checked that o(ac) = o(bc) = o(abc) = 6. By assumption,

a, b, ab ∈ T and, from Lemma 3.0.2, as o(abc) = 6, (abc)3 ∈ T . Using the presentation of G, and

in particular the relation (a · bc)2 = 1, we can show that

a · (abc)3 = ((bc)3)ac ∈ T

b · (abc)3 = ((ac)3)bc ∈ T

ab · (abc)3 = cabc ∈ T
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and so 23 ∼= K ⊂ T ∪ {e}. This is a contradiction with Lemma 3.2.2 and so no such represen-

tation can exist. In the case that (r1, r2, r3) = (6, 2, 6) or (6, 6, 2), we take K to be 〈a, b, (ac)3〉
or 〈a, b, (bc)3〉 respectively. In either case, we find that 23 ∼= K ⊂ T ∪ {e}, again giving a

contradiction.

3.2.2 The group S6

Proposition 3.2.4. Suppose that G = 〈a, b, c〉 ∼= S6 is a triangle-point group and suppose that

T ⊆ G such that a, b, c, ab ∈ T . Then there exist no Majorana representations of the form

(G,T, V ) which obey axiom M8.

Proof. From Tables 3.3 and 3.4, we see that G must occur as the group

〈a, b, c | a2, b2, c2, (ab)2, (ac)6, (bc)6, (abc)5, (a · bc)4, x3〉

where x = (bc)3 · bca, so that x3 is the central element of G8. In this case, we use explicit

generators. If we pick

a := (1, 2)(3, 4)(5, 6)

b := (5, 6)

c := (2, 3)(4, 5)

then a, b, c satisfy the relations above and generate the group S6. Thus we may take G = 〈a, b, c〉.
By definition, T must contain the conjugacy classes

aG = (1, 2)(3, 4)G, bG = (5, 6)G, (ab)G = (1, 2)(3, 4)(5, 6)G.

In particular, as the conjugacy classes in S6 are indexed by the cycle types of their elements,

this must mean that all involutions of G are contained in T . Finally, G contains the subgroup

〈(1, 2), (3, 4), (5, 6)〉 ∼= 23, all of whose non-identity elements must be contained in T . This is in

contradiction with Lemma 3.2.2 and the result follows.

3.2.3 The group (24 : (S3 × S3))× 2

Proposition 3.2.5. Suppose that G = 〈a, b, c〉 ∼= (24 : (S3 × S3)) × 2 is a triangle-point group

and suppose that T ⊆ G such that a, b, c, ab ∈ T . Then there exist no Majorana representations

of the form (G,T, V ) which obey axiom M8.

Proof. In this case, we must have G = G9. Although we have explicit generators of the group, it

is easier to consider G as a finitely presented group with generators a, b, c. We now let x := ab·cac

and claim that

K := 〈a, b, x3〉
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is isomorphic to 23 and that all the non-identity elements of K lie in T . By definition, a, b, ab ∈ T .

We calculate that

a · x3 = (b · cac)3

b · x3 = ((ac)3)bcacac

ab · x3 = cacabcacac.

Either by using explicit generators, or by calculating with the group presentation in GAP, we see

that x, b · cac and ac are all of order 6. Moreover, as they are each the product of two elements

of T , by Lemma 3.0.2, their cubes must all also lie in T . This shows that K must be isomorphic

to 23 and that all non-identity elements of K are contained in T . This is in contradiction with

Lemma 3.2.2 and the result follows.

3.2.4 The group 24 : S5

We deal with this group using slightly different techniques to the other cases. We begin by

noting that from Tables 3.3 and 3.4, we see that G must occur as the group

〈a, b, c | a2, b2, c2, (ab)2, (ac)6, (bc)6, (abc)6, (a · bc)5, (ab · bc)5, (ab · ac)5, (c · bca)4, x3〉

where x = ca · (bc)3, so that x3 is the central element of G10. If we take

a := (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

b := (1, 3)(2, 4)(5, 6)(7, 8)(13, 14)(15, 16)

c := (1, 12)(3, 14)(4, 6)(5, 16)(7, 11)(9, 13).

then a, b, c generate a group of order 1920 and satisfy the presentation of G and so we may take

G = 〈a, b, c〉.

We will show that G contains a subgroup K ∼= 2×D8 and that there exist no representations of

the form (K,K ∩ T,U). This will in turn show that there exist no representations of the form

(G,T, V ).

Lemma 3.2.6. Let K := 〈(1, 2), (1, 3)(2, 4), (5, 6)〉 ∼= 2×D8 then K contains eleven involutions,

which we label ti for 1 ≤ i ≤ 11 as below.

i ti i ti i ti

1 (1, 2) 5 (1, 3)(2, 4)(5, 6) 9 (1, 2)(3, 4)

2 (3, 4) 6 (1, 4)(2, 3)(5, 6) 10 (1, 2)(3, 4)(5, 6)

3 (1, 2)(5, 6) 7 (1, 3)(2, 4) 11 (5, 6)

4 (3, 4)(5, 6) 8 (1, 4)(2, 3)

If we let S := {t1, . . . , t10} then there exist no Majorana representations of the form (K,S,U).

Proof. We suppose for contradiction that such a representation exists and show that it cannot

obey axiom M1. In the following, we let ai := ψ(ti) for 1 ≤ i ≤ 10. Note that t1t4 =
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(1, 2)(3, 4)(5, 6) = t10 and so the algebra 〈〈a1, a4〉〉 is of type 2A and

a1 · a4 =
1

23
(a1 + a4 − a10).

Now o(t1t5) = o(t4t5) = 4 and (t1t5)2, (t4t5)2 ∈ S and so, by Lemma 3.0.2, the algebras 〈〈a1, a5〉〉
and 〈〈a4, a5〉〉 are of type 4B and

(a1, a5) = (a4, a5) =
1

26
.

Finally, t10t5 = (1, 4)(2, 3) = t8 and so 〈〈a10, a5〉〉 is of type 2A, (a10, a5) = 1
23 and

(a1 · a4, a5) = − 3

28
.

Similarly, we calculate that

a4 · a5 =
1

26
(a4 + a5 − a3 − a6 + a9)

and that

(a1, a4 · a5) =
1

26
6= (a1 · a4, a5)

which is in contradiction with axiom M1, showing that such an algebra cannot exist.

Proposition 3.2.7. Suppose that G = 〈a, b, c〉 ∼= 24 : S5 is a triangle-point group and suppose

that T ⊆ G such that a, b, c, ab ∈ T . Then there exist no Majorana representations of the form

(G,T, V ) which obey axiom M8.

Proof. If we let

x := a, y := bcacac and z := ((ac)3)b

then it is easy to check that the map f that sends

x 7→ (1, 2)(3, 4)(5, 6)

y 7→ (3, 4)

z 7→ (1, 4)(2, 3)

is an isomorphism from K := 〈x, y, z〉 to 2×D8.

By definition and by Lemma 3.0.2, we have x, y, z ∈ T . Moreover,

xy = (ab)cacac ∈ T,

xz = cacb ∈ T,

(yz)2 = (b · bcacac)3 ∈ T.

By considering the conjugacy classes of 2×D8, we see that

|xK ∪ yK ∪ zK ∪ (xy)K ∪ (xz)K ∪ ((yz)2)K |= 10

and so, as K contains 11 involutions in total, |K ∩ T | is equal to 10 or 11.

If |K∩T |= 11 then K contains an elementary abelian subgroup of order 8 all of whose involutions

are contained in T and so the representation (K,K ∩ T,U) cannot exist. If |K ∩ T |= 10 then

(K,K ∩ T,U) is the representation in Lemma 3.2.6 and so equally cannot exist. Thus we may

conclude that there exist no representations of the form (G,T, V ), as required.
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3.2.5 The group S3 × S3 × S3

Proposition 3.2.8. Suppose that G = 〈a, b, c〉 ∼= S3 × S3 × S3 is a triangle-point group and

suppose that T ⊆ G such that a, b, c, ab ∈ T . Then there exist no Majorana representations of

the form (G,T, V ) which obey axiom M8.

Proof. From Tables 3.3 and 3.4, we see that G must occur as the group

〈a, b, c | a2, b2, c2, (ab)2, (ac)6, (bc)6, (abc)6, (a · bc)6, (ab · bc)6, (ab · ac)6, (ca · cbc)3, x2〉

where x = acbcacb. In this case, we use explicit generators. If we pick

a := (1, 2)(4, 5)

b := (4, 5)(7, 8)

c := (1, 3)(4, 6)(7, 9)

then a, b, c satisfy the relations above and generate the group S3 × S3 × S3. Thus we may take

G = 〈a, b, c〉. By assumption, T must contain the conjugacy classes aG, bG, cG, (ab)G. By Lemma

3.0.2, it must also contain

(ac)3 = (7, 9)

(bc)3 = (1, 3)

(abc)3 = (4, 6).

We now let

K := 〈(1, 3), (4, 6), (7, 9)〉 ≤ G.

then K is clearly elementary abelian of order 8 and, from the above discussion, all the non-

identity elements of K are contained in T . This is a contradiction with Lemma 3.2.2 and so such

a representation cannot exist.

3.2.6 The group 2× (31+2
+ : 22)

Proposition 3.2.9. Suppose that G = 〈a, b, c〉 ∼= 2 × (31+2
+ : 22) is a triangle-point group and

suppose that T ⊆ G such that a, b, c, ab ∈ T . Then there exist no Majorana representations of

the form (G,T, V ) which obey axiom M8.

Proof. From Tables 3.3 and 3.4, we see that G must occur as the group

〈a, b, c |, a2, b2, c2, (ab)2, (ac)6, (bc)6, (abc)6, (a · bc)6, (ab · bc)6, (ab · ac)6, (ca · cbc)3, y2〉

where y ∈ {a · cbc, b · cac, ab · cac}.

Note that any of the possible values for y can be sent to any other by a suitable permutation of the

generators a, b, ab. Moreover, such a permutation preserves all other relations in the presentation

of these groups (to show this for the relation (ca ·cbc)3 = 1 requires some calculation, in all other
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cases it is clear). Thus, permutating a, b and ab induces pairwise isomorphisms between the

three groups arising from the different choices of y.

Without loss of generality, we can now pick y = a · cbc and let

a = (1, 4)(2, 6)(3, 5)(8, 9), b = (1, 4)(2, 8)(6, 9)(10, 11), c = (2, 7)(3, 4)(5, 9).

Then it is easy to check that a, b, c satisfy the presentation of G and generate a group of order

216. Thus we may take G = 〈a, b, c〉. We then calculate that

ac = (1, 3, 9, 8, 5, 4)(2, 6, 7)

b · cac = (1, 8, 6)(2, 4, 9)(10, 11)

ab · cac = (1, 9, 6, 4, 8, 2)(3, 5)(10, 11)

are all of order 6. We now let

K := 〈a, b, y〉.

where y := (b · cac)3. From Lemma 3.0.2, (b · cac)3, (ab · cac)3, (ac)3 ∈ T . Thus

a · y = (ab · cac)3 ∈ T

b · y = ((ac)3)b(ac)
3

∈ T

ab · y = cacabc(ac)
2

∈ T.

We now have K ∼= 23 ⊆ T ∪ {e}, which is a contradiction with Lemma 3.2.2 and so such a

representation cannot exist.

3.2.7 The remaining quotients of the group G11

Here we consider the case where G = 〈a, b, c〉 ∼= (3i : 2) : (31+2
+ : 22) for i = 1, 2, 3, 4. The

following is Proposition 3.52 in [Dec13].

Lemma 3.2.10. Let K be the quotient of G(6,6,6) with the additional relations

(a · bc)6 = (ab · bc)6 = (ab · ac)6 = (c · bca)r4 = 1

then

• if r4 ∈ {1, 5} then K ∼= D12;

• if r4 ∈ {3} then K ∼= G(3,6,6) ∼= 31+2
+ : 22;

• if r4 ∈ {2, 4} then K ∼= 2×G(3,6,6) ∼= 2× (31+2
+ : 22).

We will also require the following result.

Lemma 3.2.11. Let G := G(m,6,6) then

• if m = 1, G ∼= 22;
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• if m = 2, G ∼= 2×D12;

• if m = 3, G ∼= 31+2
+ : 22.

In particular, if m ∈ {1, 2, 3} then |G(m,6,6)|≤ 108.

Proof. We let G := G(m,6,6) and deal with the cases m = 1, 2, 3 in turn.

• m = 1: Here a = c and so G = 〈a, b | a2, b2, (ab)2〉 ∼= 22.

• m = 2: Here a commutes with b and c and is of order 2 and so G = 2× 〈b, c〉 ∼= 2×D12.

• m = 3: This case is given in Lemma 3.2.10 above.

Proposition 3.2.12. Suppose that G = 〈a, b, c〉 ∼= (3i : 2) : (31+2
+ : 22) for i = {1, 2, 3, 4} is

a triangle-point group and suppose that T ⊆ G such that a, b, c, ab ∈ T . Then there exist no

Majorana representations of the form (G,T, V ) which obey axiom M8.

Proof. Let m := o(ac), n := o(bc) and p := o(abc). We will show that we must have (m,n, p) =

(6, 6, 6). Suppose for contradiction that this is not true. Then G must be isomorphic to a

quotient of G(m,6,6) for m ∈ {1, 2, 3}. However, |G|≥ 648, in contradiction with with Lemma

3.2.11 above, and so we must have (m,n, p) = (6, 6, 6). With Lemma 3.0.2, this implies that

(ac)3, (bc)3, (abc)3 ∈ T .

We now consider the element x := b · (ac)3. As G is a triangle-point group and (ac)3 ∈ T , we

must have o(x) ≤ 6. If we were to have o(x) < 6 then R4 = xcac would also be of order strictly

less than 6 and so G would have to exist as the quotient of one of the groups in Lemma 3.2.10.

Comparison of orders again shows that this cannot be the case, and so we get o(R4) = o(x) = 6.

We claim that

K := 〈a, b, x3〉

is elementary abelian of order 8 and that all its non-identity elements lie in T . By assumption,

a, b, ab ∈ T and, by Lemma 3.0.2, x3, (abc)3, (ac)3 ∈ T .

a · x3 = ((abc)3)bcabcabca

b · x3 = cacbcacac

ab · x3 = (ac)3.

We now have K ∼= 23 ⊆ T ∪ {e}, which is a contradiction with Lemma 3.2.2 and so such a

representation cannot exist.
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Chapter 4

An algorithm for constructing

n-closed Majorana

representations

4.1 Background

Since its inception, Majorana theory has proved to be an impressive tool with which to study the

Griess algebra and related objects. Over the past few years, a number of important subalgebras

of the Griess algebra have been constructed using Majorana theory. Most of the early work

on Majorana theory was completed by hand. However, it soon became clear that, in order to

construct larger and more complex algebras, a more computational approach was necessary.

In 2012, Seress published a celebrated paper [Ser12] in which he announced the existence of an

algorithm to construct 2-closed Majorana algebras. This was hailed “a groundbreaking work”

that “marks a turning point in Majorana Theory.” Sadly, shortly after the publication of this

paper, Seress passed away and recovering the full details of his algorithm and results has been

an important aim of the theory ever since.

We have sucessfully used GAP to implement and run an algorithm based largely on Seress’

method and have completely recovered his results, given in Section 4.6. Moreover, we have also

extended Seress’ methods and are also able to construct generic Majorana algebras, including

those which are not 2-closed, as explained in Section 4.5.

This work is joint with Markus Pfeiffer of the University of St Andrews who has contributed

invaluable help in the implementation of the algorithm. All of our work can be found at

https://github.com/mwhybrow92/MajoranaAlgebras, where it is also possible to see the exact

contributions of the two authors.
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4.2 Additional axioms

Recall that if (G,T, V, ϕ, ψ) is a Majorana representation and t0, t1 ∈ T then, from Theorem

2.2.1, the algebra U := 〈〈ψ(t0), ψ(t1)〉〉 must be isomorphic to one of the nine dihedral algebras

of the Griess algebra. In particular, if U is of type 3A, 4A or 5A respectively then U is spanned

as a vector space by its Majorana axes and one further axis, denoted uρ(t0,t1), vρ(t0,t1) or wρ(t0,t1)

and referred to as a 3A, 4A or 5A axis respectively.

As in Seress’ original work, in the implementation of our algorithm we assume five axioms 2Aa,

2Ab, 3A, 4A and 5A as described below in addition to the Majorana axioms M1 - M7. These

enforce certain equalities on the 2A, 3A, 4A and 5A axes.

Definition 4.2.1. Let (G,T, V ) be a Majorana representation and let t0, t1, t2, t3 ∈ T , with

corresponding Majorana axes ati = ψ(ti) for 0 ≤ i ≤ 3. We define the axioms 2Aa, 2Ab, 3A,

4A and 5A as below.

2Aa If t0t1t2 = 1 and 〈〈at0 , at1〉〉 is of type 2A then at2 ∈ 〈〈at0 , at1〉〉 and at2 = aρ for the basis

element aρ = aρ(t0,t1) of 〈〈at0 , at1〉〉.

2Ab If o(t0t1) = o(t2t3) = 2 and 〈t0t1〉 = 〈t2t3〉, and both 〈〈at0 , at1〉〉 and 〈〈at2 , at3〉〉 are of type

2A then the basis elements aρ(t0,t1) and aρ(t2,t3) of the two subalgebras are equal.

3A If o(t0t1) = o(t2t3) = 3 and 〈t0t1〉 = 〈t2t3〉, and both 〈〈at0 , at1〉〉 and 〈〈at2 , at3〉〉 are of type

3A then the basis elements uρ(t0,t1) and uρ(t2,t3) are equal.

4A If o(t0t1) = o(t2t3) = 4 and 〈t0t1〉 = 〈t2t3〉, and both 〈〈at0 , at1〉〉 and 〈〈at2 , at3〉〉 are of type

4A then the basis elements vρ(t0,t1) and vρ(t2,t3) are equal.

5A If o(t0t1) = o(t2t3) = 5 and 〈t0t1〉 = 〈t2t3〉, and both 〈〈at0 , at1〉〉 and 〈〈at2 , at3〉〉 are of type

5A then, up to a possible change of sign, the basis elements wρ(t0,t1) and wρ(t2,t3) are equal

as in (2.1).

We note that axiom 2Aa above is a weaker version of axiom M8.

In general, the axioms above say that if two axes are indexed by the same group element then

they are equal, even if they arise from different dihedral algebras. Thus, where we assume these

axioms, if t, s ∈ T and h := ts then we write

uh := uρ(t,s), vh := vρ(t,s), wh := wρ(t,s).

In particular, we can represent a spanning set of the algebra by a duplicate-free list of group

elements corresponding to the Majorana axes and the 3A, 4A and 5A axes.

The axioms 2Aa - 5A are known to hold in the Griess algebra and, crucially, these axioms restrict

the cardinality of the spanning set used in the algorithm. That is to say, to assume axioms 2Aa

- 5A gives a more restrictive but more efficient algorithm.

As the main goal of our computational work is to use the Majorana axioms to construct large

subalgebras of the Griess algebra, it is advantageous to assume these additional axioms. However,
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we have in fact implemented two different versions of the algorithm; one which obeys the axioms

2Aa - 5A above, and another which requires no axioms, other than the Majorana axioms M1 -

M7.

Whilst this more general version of the algorithm is less efficient, it is necessary to have such a

version if we wish to use our algorithm(s) to prove full classification results in Majorana theory.

In particular, we use the more general version of the algorithm to prove the main theorem in

Chapter 5. We give full details of this version of the algorithm in Section 5.1.

For the remainder of this chapter, we assume that the axioms 2Aa - 5A hold and consider the

algorithm in which these hold to be the default method.

Note that if we assume axiom 2Aa then to additionally assume axiom M8 leads only to restric-

tions on the possible shapes of the Majorana representation, not in the construction itself. As

such, in the main version of the algorithm, the user can choose to consider only shapes which

obey axiom M8, by using the function ShapesOfMajoranaRepresentationAxiomM8 in place of

the function ShapesOfMajoranaRepresentation in Step 1 of Section 4.3 below.

Finally, we discuss the role of axiom M2, known as Norton’s inequality, in this work. This axiom

is used neither in Seress’ algorithm nor in any other published papers which construct Majorana

algebras and it is an open problem as to whether it is a consequence of the other Majorana

axioms. Like Seress, we do not use axiom M2 in our algorithm.

Using the result below, we are able to check if an algebra obeys axiom M2. However, it is

computationally very expensive to do so and so we do not routinely perform this check.

Lemma 4.2.2 ([IS12a, Lemma 7.8]). Let V be an n-dimensional algebra with commutative

algebra product · and scalar product ( , ). Let {vi : 1 ≤ i ≤ n} be a basis of V , and define

a (n2 × n2)-dimensional matrix B = (bij,kl) in the following way. The rows and columns are

indexed by the ordered pairs (i, j) for 1 ≤ i, j ≤ n and

bij,kl = (vi · vk, vj · vl)− (vj · vk, vi · vl).

If B is positive semidefinite then V satisfies Norton’s inequality M2.

Proof. For u, v ∈ V , write u and v as linear combinations

u =
n∑
i=1

λivi and v =

n∑
j=1

µjvj

and form the n2-long vector z with entries λiµj . In this vector, the coordinate λiµj is in the

position indexed by (i, j) in the matrix B. Then the inequality (u · u, v · v)− (u · v, u · v) ≥ 0 is

equivalent to zBzT ≥ 0. Hence, if B is positive semidefinite then M2 must hold in V .

4.3 Notes on the implementation

The construction of these algebras is expensive both in terms of time and memory and a large

part of the implementation of the algorithm involves mitigating these factors. In particular, we
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exploit the fact that the algebra and inner products on the algebra are preserved by the action

of the group on the algebra. That is to say, for all u, v ∈ V and g ∈ G, (ug, vg) = (u, v) and

ug · vg = (u · v)g.

Thus, given a spanning set C of V , we store the products corresponding to a proper subset of

all possible pairs of elements of C. From this subset we can use the action of the G to recover

the full product values. Similarly, we store eigenvectors only for representatives of the orbits of

G on the axes of V .

In the following, we take C to be the union of the Majorana axes and the 3A, 4A and 5A axes of

V . Note that the value of C can be immediately determined from the shape of the representation.

Moreover, if V is 2-closed then C will be a spanning set of V .

Recall from Proposition 2.2.3 that we have the following equalities on 3A, 4A and 5A axes:

uh = uh2 , vh = vh3 , and wh = −wh2 = −wh3 = wh4 .

In the implementation of the algorithm, we exploit these equalities, as well as those from the

axioms above, whilst keeping track of any sign changes from the 5A axes.

Note that the spanning set C is invariant under the action of G, up to possible changes of sign.

In a departure from Seress’ methods, if the set C is of size n, we express the elements of G as

signed permutations on the n points. This is more efficient both in terms of time and memory

and also makes it easier to implement an n-closed version of the algorithm (see Section 4.5). In

particular, we express an element g of G as

[±i1,±i2, . . . ,±in]

where C[j]g = ±C[ij ].

For each algebra, we store the following data structures which enable the calculation of the

signed permutation corresponding to a given element. As we assume the axioms 2Aa - 5A, the

elements of C can be indexed by elements of the group and we store C in terms of these elements,

rather then vectors themselves.

• coordinates: This is the set C, a sorted, duplicate-free list consisting of all elements of

T , as well as, or including, exactly one generator of each cyclic group of the form 〈t0t1〉 for

t0, t1 ∈ T such that the dihedral algebra 〈〈ψ(t0), ψ(t1)〉〉 is of type 2A, 3A, 4A or 5A.

• longcoordinates: This is a set consisting of all elements of T as well as, or including,

all generators of each cyclic group 〈t0t1〉 for t0, t1 ∈ T such that the dihedral algebra

〈〈ψ(t0), ψ(t1)〉〉 is of type 2A, 3A, 4A or 5A.

• positionlist: This is a list whose order is equal to the cardinality of longcoordinates.

The absolute value of positionlist[i] is the index of the element of coordinates which

corresponds to longcoordinates[i]. The entry positionlist[i] is negative if and only

if longcoordinates[i] is of order 5 and is equal to h2 or h3, where h is the corresponding

element of coordinates.
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We note that in the case of the n-closed algorithm, we store further elements in the lists

coordinates and longcoordinates as described in detail in Section 4.5.

We now describe how we use these signed permutations to recover generic product values. The

set longcoordinates is invariant (up to signs) under the action of G and so this action partitions

the set longcoordinates × longcoordinates. We consider the classes formed by the closure

of this partition with respect to the following conditions, where P is a class and u, v, w, z ∈ V :

• if (u, v) ∈ P then (v, u) ∈ P ;

• if (u, v) ∈ P , 〈u〉 = 〈w〉 and 〈v〉 = 〈z〉 then (v, w) ∈ P .

We label these equivalence classes P1, . . . , Pk. We do not need to explicitly store these classes.

Instead, we have implemented a bespoke orbits algorithm which outputs the following structures.

• pairrepresentatives: From each equivalence class Pi, we pick a representative pi.

The entry pairrepresentatives[i] is a list of length two consisting of the positions

in coordinates of the elements of pi.

• pairorbitlist: This is a matrix of size |C|×|C| whose entries lie in {1, 2, . . . , k}. If

[coordinates[i], coordinates[j]] ∈ Pk then pairorbitlist[i][j] is equal to k.

• pairconjelements: This is a list of length |G| consisting of the signed permutations

corresponding to each element of G.

• pairconj: This is a matrix of size |C|×|C| whose entries lie in {1, 2, . . . , |G|}. If [coordinates[i],

coordinates[j]] ∈ Pk then the value of pairconj[i][j] gives the index in pairconjelements

of a signed permutation which sends the representative pk of Pk to [coordinates[i],

coordinates[j]].

In order to recover the product of the two basis vectors corresponding to the elements C[i] and

C[j], we execute the following steps:

1. Let k := pairorbit[i][j] and let l := pairconj[i][j].

2. Then u := algebraproducts[k] will be a row vector and g := pairconj[l] will be a

signed permutation representing a group element which sends the representative of the

orbital Pk to [coordinates[i], coordinates[j]].

3. The desired product will be equal to the row vector v where

v[i] :=

u[g[i]] if g[i] > 0

-u[-g[i]] if g[i] < 0.

Finally, we store eigenvectors only for representatives of the orbits of G on T . Again, instead

of storing the full orbits, we use a bespoke orbits algorithm which outputs the following two

structures.
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• orbitrepresentatives: This is a list whose entries give the indices in coordinates of

representatives of orbits of G on T .

• conjelements: This is a duplicate free list of signed permutations corresponding to the

group elements which send an element of coordinates to one of the representatives in

orbitrepresentatives.

Finally, we note that the methods used in this algorithm require the solving of potentially large

systems of linear equations over the rational numbers. Storing the matrices involved and reducing

them to row echelon form takes a large amount of the memory and time required by the program.

In what we believe to be an improvement on Seress’ methods, we use the sparse matrix format

provided by the GAP package Gauss [GBG] as an efficient way to store and compute with the

matrices in question.

4.4 The algorithm

Input: A finite group G and a G-invariant set of involutions such that G = 〈T 〉. The user must

also choose which one of the possible shapes found by the function ShapesOfMajoranaRepresentation

is to be considered by the algorithm.

Output: The algorithm returns a record with the following components.

• group and involutions: The group G and generating set of involutions T , as inputed by

the user.

• shape: The shape of the representation, as chosen by the user.

• setup: A record whose components are the 9 structures given in Section 4.3.

• algebraproducts: A list of row vectors (in sparse matrix format) where algebraproducts[i]

gives the algebra product of the two basis vectors whose indices are given by setup.pairreps[i].

• innerproducts: A list where innerproducts[i] gives the inner product of the two basis

vectors whose indices are given by setup.pairreps[i].

• evecs: If i is in setup.orbitrepresentatives then for j = 1, 2, 3, evecs[i][j] gives

respectively a basis (in sparse matrix format) of the 0-, 1
22 - or 1

25 -eigenspace of the ith

axis.

• nullspace: A matrix (in sparse matrix format) which forms a basis of the nullspace of

the algebra with respect to the spanning set C (as defined below).

Suppose that V is an algebra with a spanning set C. Then the space 〈C〉 will also be an algebra

but, as C is not necessarily a basis of V , there might be some linear combinations of vectors of

C which are equal to zero. As the bilinear form ( , ) is positive definite, we can use this form to
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determine which vectors of 〈C〉 are equal to 0 in V . In particular, we define the nullspace of V

with respect to C to be

N(C) := {v ∈ 〈C〉 | (v, v) = 0}.

Then, V = 〈C〉/N(C) and the ideal N(C) is equal to the row space of the nullspace of the Gram

matrix of ( , ) on C.

Step 1 - Shapes

The first step is to find all possible shapes of a Majorana representation of the form (G,T, V ).

That is to say, we find representatives of the orbitals of G on T×T and determine the possibilities

for the types of the dihedral algebras generated by the Majorana axes corresponding to each

of these representatives. Note that the possible shapes must respect the inclusions of dihedral

algebras, as described in Lemma 2.2.5.

The function ShapesOfMajoranaRepresentation takes as its input a group G and a set of

involutions T and returns a record, of which one of the components is labelled shapes and gives

a list of possible shapes for a representation of the form (G,T, V ). The user may then choose

which of these possible shapes they want to use for the constructive part of the algorithm.

This output is then used as the first input variable in the function MajoranaRepresentation.

The second variable is an integer i which signifies that the user has chosen the shape at the

position i.

Step 2 - Set Up

The first step is to build the nine objects which form the record setup, as described in Section

4.3. We then record all product values and eigenvectors which are given from the known values

on dihedral algebras, i.e. those in Tables 2.1 and 2.2.

Step 3 - Inner Products

The first step in the main part of the algorithm is to find inner product values on the spanning

set C of V given by setup.coordinates. Let u, v and w be elements of C. Then, from axiom

M1

(u, v · w) = (u · v, w).

We consider all cases where the algebra products v · w and u · v are known, but at least one

of the inner products above are not. Using equations of this form, we build systems of linear

equations of the unknown products (u, v) where u and v are elements of C. We then solve this

system and record any new inner products.

Example 4.4.1. Suppose that t0, t1, t2 ∈ T such that the algebras 〈〈ψ(t0), ψ(t1)〉〉 and 〈〈ψ(t1), ψ(t2)〉〉
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are of types 3A and 2B respectively. Then

(ψ(t0), ψ(t1) · ψ(t2)) = 0

and so, by axiom M1,

(ψ(t0) · ψ(t1), ψ(t2)) =
1

25
(2ψ(t0) + 2ψ(t1) + ψ(tt01 )− 33 · 5

211
ut0t1 , ψ(t2)) = 0.

As the inner product value of any two Majorana axes is known, we can use this expression in

order to determine the value of (ut0t1 , ψ(t2)).

If at this stage, all inner product values are known then we construct the Gram matrix of the

inner product and store basis vectors of its nullspace as the component nullspace. In particular,

as the inner product is positive definite, these vectors will form a basis of the nullspace of the

algebra.

We note that Seress instead uses the orthogonality of eigenvectors (Lemma 2.3.4) to determine

new inner products. We have tested both methods and have found that our approach tends to

find more products and is more efficient. However, in either case, finding inner products tends

to take only a small amount of the total running time.

Step 4 - Fusion of Eigenvectors

For each of the orbit representatives of G on T given by setup.orbitrepresentatives we take

the corresponding Majorana axis a and consider all pairs of known eigenvectors α ∈ V (a)
µ and

β ∈ V (a)
ν . If the product α · β is known then we can use this along with the fusion rules to find

further eigenvectors.

If µ 6= ν, or if µ = ν = 0 then α·β is itself an eigenvector, and is added to the relevant eigenspace.

If µ = ν = 1
22 then, using the fusion rules and Lemma 2.3.5.

α · β = v0 + (a, α · β)a = v0 +
1

22
(α, β)a

where v0 ∈ V (a)
0 . Thus, if the value of (α, β) is known, then we can recover the eigenvector v0

and add it to the 0-eigenspace of a.

Similarly, if µ = ν = 1
25 then

α · β = v0 + v 1
22

+
1

25
(α, β)a

where v0 ∈ V (a)
0 and v 1

22
∈ V (a)

1
22

. If the value of (α, β) is known, then we further calculate

a · (α · β) =
1

22
v 1

22
+

1

25
(α, β)a

and so we can recover both v0 and v 1
22

and add them to their respective eigenspaces.
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Step 5 - Algebra Products

We seek products of the form u · v for u, v ∈ C. We write a system of linear equations of the

unknown products from the following sources:

• if v ∈ V (a)
µ for some a ∈ A and µ ∈ {1, 0, 1

22 ,
1
25 } then a · v = µv;

• if u ∈ C and v ∈ V such that (v, v) = 0 then u · v = 0.

If there remains unknown algebra products then we again construct a system of linear equations,

this time making use of the resurrection principle.

Proposition 4.4.2 (The Generalised Resurrection Principle). Fix a ∈ A and let α, γ ∈ V (a)
0

and β ∈ V (a)
µ for µ ∈ { 1

22 ,
1
25 }. Then

a · ((α− β) · γ) = −µ(γ · β).

Similarly, if α, γ ∈ V (a)
1
22

and β ∈ V (a)
µ for µ ∈ {0, 1

25 }. Then

a · ((α− β) · γ) =
1

22
(α, γ)a− ν(γ · β)

where ν = 1
22 if µ = 0 and ν = 1

25 if µ = 1
25 .

Proof. Firstly,

a · ((α− β) · γ) = a · (α · γ)− a · (β · γ).

The result then follows from the fusion rules.

In particular, where possible, we choose α, β and γ such that the product (α− β) · γ is known,

but β · γ is not known. In this way, we obtain a linear combination of terms a · x for the x ∈ C
occuring in (α − β) · γ, and y · z for y ∈ β and z ∈ γ. Using these, we construct and solve a

system of linear equations.

Example 4.4.3. Suppose again that t0, t1, t2 ∈ T such that the algebras 〈〈ψ(t0), ψ(t1)〉〉 and

〈〈ψ(t1), ψ(t2)〉〉 are of types 3A and 2B respectively. Then the following are eigenvectors of

ψ(t1) given by the known values of the dihedral algebras of type 2B and 3A:

α := ut0t1 −
2 · 5
33

ψ(t1) +
25

33
(ψ(t0) + ψ(tt01 )) ∈ V (ψ(t1)

0

β := ut0t1 −
23

32 · 5
ψ(t1)− 25

32 · 5
(ψ(t0) + ψ(tt01 )) ∈ V (ψ(t1)

1
22

γ := ψ(t2) ∈ V (ψ(t1)
0 .

We consider the equality

ψ(t1) · ((α− β) · γ) = − 1

22
β · γ.

All product values required to calculate β ·γ are known, with the possible exception of the product

ut0t1 ·ψ(t2). Similarly, the product (α−β) ·γ can be calculated using the known values of dihedral
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algebras. If the product ψ(t1) · ((α − β) · γ) is also known then we can immediately record the

value ut0t1 · ψ(t2). Otherwise, this equality gives rise to a linear equation where the unknown

values are ut0t1 · ψ(t2) as well as some products of the form ψ(t1) · v for v ∈ C.

In some cases, there still remains unknown algebra and inner product values and so we run steps

3 - 5 repeatedly until all values have been found. In some rare cases, it is not possible to find

all products and the program exits with the output fail.

Step 6 - Check the algebra

Finally, we check that the algebra obtained in these calculations is indeed a Majorana algebra.

We first check that all triples of basis vectors obey axiom M1. This then implies that axiom M1

is satisfied by all triples of vectors in V .

We also check that, for each a ∈ A, the eigenspaces of the adjoint action of a on V obey the

fusion rules. From the following result, this is sufficient to show that the algebra V is indeed a

Majorana algebra.

Lemma 4.4.4. Suppose that V is a real vector space equipped with a commutative algebra product

·. Suppose also that V is generated by a set A of idempotents such that for some a ∈ A, a obeys

the axiom M4 (Definition 2.1.1) as well as the fusion rules of Majorana algebras (Table 2.3).

Then a also satisfies axioms M6 and M7. That is to say, the linear transformation τ(a) of V

defined via

τ(a) : u 7→ (−1)2
5µu

for u ∈ V (a)
µ with µ = 1, 0, 1

22 ,
1
25 and the linear transformation σ(a) of V

(a)
+ := V

(a)
1 ⊕V (a)

0 ⊕V (a)
1
22

defined via

σ(a) : v 7→ (−1)2
2µv

for v ∈ V (a)
µ with µ = 1, 0, 1

22 preserve the algebra product. That is to say, for all u1, u2 ∈ V and

for all v1, v2 ∈ V (a)
+

u
τ(a)
1 · uτ(a)2 = (u1 · u2)τ(a) and v

σ(a)
1 · vσ(a)2 = (v1 · v2)σ(a).

Proof. Let u, v ∈ V , let a ∈ A, and suppose that V obeys axiom M4 and the fusion rules. Then

u and v possess unique presentations of the form

u = x1 + γ1

v = x2 + γ2

where x1, x2 ∈ V (a)
0 ⊕ V (a)

1 ⊕ V (a)
1
22

and γ1, γ2 ∈ V (a)
1
25

. Then

u · v = (x1 + γ1) · (x2 + γ2)

= x1 · x2 + γ1 · x2 + x1 · γ + γ1 · γ2.
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By the fusion rules,

u · v + γ1 · γ2 ∈ V (a)
0 ⊕ V (a)

1 ⊕ V (a)
1
22

and γ1 · x2 + x1 · γ ∈ V (a)
1
25
.

As τ acts as the identity on V
(a)
0 ⊕ V (a)

1 ⊕ V (a)
1
22

and as multiplication by the scalar −1 on V
(a)
1
25

.

So

(u · v)τ(a) = x1 · x2 − γ1 · x2 − x1 · γ + γ1 · γ2

= (x1 − γ1) · (x2 − γ2) = uτ(a) · vτ(a)

as required. A similar argument applies for the transformation σ(a).

4.5 The n-closed algorithm

In a significant improvement on Seress’ work, we have been able to implement a version of the

algorithm which allows the construction of n-closed representations, theoretically for any given

n. Of course, technology limits the value of n in practice. We have implemented this part of the

algorithm so that the first step is to attempt construction of the 2-closed part of the algebra as,

in the vast majority of cases, this is sufficient.

If the algorithm is unable to determine all algebra products of the 2-closed algorithm then the

user may pass the incomplete algebra outputted by the function MajoranaRepresentation to

the function NClosedMajoranaRepresentation in order to attempt construction of the 3-closed

algorithm. In order to attempt construction of the n-closed part of the algebra, the user must

pass the incomplete algebra to the function NClosedMajoranaRepresentation n − 2 times for

n > 2.

We describe the implementation of the function NClosedMajoranaRepresentation. We note

that this method crucially relies on our use of signed permutations to encode the action of the

group on the algebra, as described in Section 4.3.

The main steps of the n-closed algorithm are the same as those for the 2-closed algorithm. The

function NClosedMajoranaRepresentation extends the spanning set of the algebra and adjusts

the record encoding the algebra as described below. We then perform Steps 2 - 5 of the main

algorithm until no more algebra products can be found. We describe this process in detail below.

Input: A record which has been outputted by the function MajoranaRepresentation where

at least one of the entries in the component algebraproducts has the value false, indicating

a product which has not yet been determined.

Output: The function has no output. We record additional values in the components of the

input record.

We first record a list of indices k such that algebraproducts[k] has the value false. For each

52



entry k of this list, if the value of algebraproducts[k] is still false, then we perform the

following steps.

Step 1 - Extend the spanning set of the algebra

For all i, j ∈ {1, . . . , |C|}, if the absolute value of pairorbitlist[i][j] is equal to k, then

we add the ordered pair [i,j] to the list coordinates. This corresponds to adding the vector

C[i] · C[j] to the spanning set of the algorithm.

Step 2 - Extend the known values

For all known products in algebraproducts and all vectors in evecs and nullspace, extend

the length of the vectors to the new cardinality of coordinates by adding zeroes to the end.

Set the value of the entry algebraproducts[k] to be the vector with a one at position i and

zeroes elsewhere, where i is such that coordinates[i] is equal to pairrepresentatives[k].

Step 3 - Extend the signed permutations

Let p be an element of pairconjelements or conjelements corresponding to an element g ∈ G.

Let l be such that coordinates[l] is equal to [i,j] where [i,j] is one of the additional

elements recorded in Step 1.

Let x be the ordered list consisting of the abolute values of p[i] and p[j]. Then

p[l] = ± Position(coordinates, x)

where p[l] > 0 if and only if p[i]*p[j] > 0.

The generality of the method of signed permutations means that this method works regardless of

whether the vectors corresponding to coordinates[i] and coordinates[j] are in the 2-closed

part of the algebra and are thus stored as group elements, or whether they are in the n-closed

part for n > 2 and are stored as ordered pairs of integers.

Step 4 - New orbitals

We can now use the orbits function developed for the main algorithm along with the signed

permutations found in the previous step to find any additional orbitals of G on coordinates

× coordinates. We add any new entries to pairrepresentatives and add new values to the

matrices pairorbitlist and pairconj.
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Step 5 - New eigenvectors

Finally, if t ∈ T and u, v ∈ V then, from Lemma 2.3.3, the vector u ·v−(u ·v)t is a 1
25 -eigenvector

of the 2A axis ψ(t). We use the signed permutations found in Step 3 to find and record any

vectors of this form.

Step 6 - The main steps

The extended algebra can now be passed through Steps 3 - 5 of Section 4.4. If at any point

all products have been found then the algebra is complete and the function exits. If no more

products can be found, but there are still missing values then we repeat the above Steps 1 - 6

with the next index k from our original list of unknown algebra product values.

If we have performed these steps for all values in this list and there still remains unknown

products then the function exits and the algebra is still incomplete. The user may then decide

to again run the function NClosedMajoranaRepresentation on the incomplete representation

in order to attempt the construction of the n-closed algebra for the next value of n.

4.6 Results

We now present the basic details for some of the representations which we have constructed

using our program. For each representation (G,T, V ), we give the following information

• the isomorphism type of G;

• the cardinality of T , where c1 + c2 + . . .+ ck indicates that T is the union of k conjugacy

classes of size c1, c2, . . . , ck;

• a subset of the shape of V , showing only the values of Ψ for the orbitals where a choice

has been made on the type of the corresponding dihedral algebra;

• the cardinality of the spanning set C of the 2-closed part of the algebra, which consists of

the 2A, 3A, 4A and 5A axes;

• the dimension of the algebra V as a vector space over R;

• whether the algebra is 2-closed or not, all those which are not 2-closed are 3-closed.

We note that, for a given group G and set of involutions for a T , and for a given shape, if

the algorithm returns a completed algebra then this must be the unique representation of the

form (G,T, V ) with this shape. In particular, our work reproves the constructive results found

in [IPSS10], [IS12a], [IS12b], [Iva11b], [Iva11a] and [Dec14]. Additionally, many of the above

algebras had not been constructed before Seress’ work [Ser12] and the algebras in the above list

which are not 3-closed are completely new examples.
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i G |T | Shape |C| dim. 2-closed

1 S4 6 + 3 (2B, 3C) 12 12 Y

2 S4 6 + 3 (2A, 3C) 9 9 Y

3 S4 6 + 3 (2B, 3A) 10 25 N

4 S4 6 + 3 (2A, 3A) 13 13 Y

5 S4 6 (2B, 3C) 6 6 Y

6 S4 6 (2A, 3C) 9 9 Y

7 S4 6 (2B, 3A) 28 13 N

8 A5 15 (2B, 3C) 21 21 Y

9 A5 15 (2A, 3C) 21 20 Y

10 A5 15 (2B, 3A) 31 46 N

11 A5 15 (2A, 3A) 31 26 Y

12 S5 15 + 10 (2B, 2A) 41 36 Y

13 S5 15 + 10 (2A, 2A) 41 36 Y

14 L3(2) 21 (2A, 3C) 21 21 Y

15 L3(2) 21 (2A, 3A) 49 49 Y

16 A6 45 (2A, 3C) 81 70 Y

17 A6 45 (2A, 3A) 121 76 Y

18 S6 45 + 15 (2A, 2B, 3A) 136 91 Y

19 3.A6 45 (2A, 3C, 3C) 81 70 Y

20 3.A6 45 (2A, 3A, 3C) 141 105 Y

21 3.A6 45 (2A, 3A, 3C) 201 76 Y

22 3.S6 45 + 45 (2A, 3A, 3C) 187 136 Y

23 (S4 × S3) ∩A7 18 + 3 (2A, 3A) 34 30 Y

24 (S4 × S3) ∩A7 18 (2A, 3A) 34 30 Y

25 A7 105 (2A, 3A) 406 196 Y

26 3.A7 105 (2A, 3A, 3C) 336 211 Y

27 3.A7 105 (2A, 3A, 3A) 756 196 Y

28 3.S7 105 + 63 (2A, 3A, 3C) 400 254 Y

29 L2(11) 55 (2A, 3A) 176 101 Y

30 L3(3) 117 (2A, 3C, 3A) 169 144 Y

31 M11 165 (2A, 3A) 781 286 Y

32 (S5 × S3) ∩A8 30 + 15 (3A) 62 67 N

Table 4.1: Certain constructed Majorana representations



The groups which have been considered above are all know to exist as subgroups of the Monster.

However, it is of course possible to use this algorithm to construct Majorana representations of

groups which are not known to embed into the Monster.
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Chapter 5

Constructing Majorana

representations of triangle-point

groups

In this section, we contribute to the classification of Majorana representations of triangle-point

groups. We will prove the following result.

Theorem 5.0.1. Suppose that V is a Majorana algebra which obeys axiom M8 and which is

generated by three Majorana axes a0, a1, a2 such that the dihedral algebra 〈〈a0, a1〉〉 is of type 2A.

Then V is must be isomorphic to one of the 34 Majorana algebras whose dimensions are given

in Table 5.1. In particular, V must be isomorphic to a subalgebra of the Griess algebra.

Recall that axiom M8 is defined as below. For a full discussion about its use, see Chapter 3. For

the remainder of this chapter, we assume that axiom M8 holds.

M8 Suppose that V is a Majorana algebra and suppose that a0, a1 ∈ V are Majorana axes such

that the dihedral algebra U := 〈〈a0, a1〉〉 is of type 2A. Then the basis vector

aρ := a0 + a1 − 8a0 · a1

is a Majorana axis of V and τ(aρ) = τ(a0)τ(a1). Conversely, we require that the map

τ : A → Aut(V ) is injective and that if a0, a1, a2 ∈ V are Majorana axes such that

τ(a0)τ(a1) = τ(a2) then the algebra 〈〈a0, a1〉〉 is of type 2A and aρ = a2.

In Theorem 3.2.1, we show that an algebra as in the hypothesis of Theorem 5.0.1 must occur as

a Majorana representation of the form (G,T, V ) where G = 〈a, b, c〉 is isomorphic to one of the

26 triangle-point subgroups of the Monster and T is such that a, b, c, ab ∈ T .

The orders and isomorphism types of these 26 groups are given in Table 5.1. This table also

gives the cardinality of the set T and the dimension of the algebra V for all possible Majorana

representations (G,T, V ) such that a, b, c, ab ∈ T .
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In order to prove the main theorem, we take each of these triangle-point groups in turn. We

classify all possible values for the set T such that a, b, c, ab ∈ T and such that (G,T, V ) is a

Majorana representation of G.

Finally, for each choice of G and T , we use a slightly generalised version of the algorithm

described in Chapter 4 to classify and construct all possible Majorana representations of the

form (G,T, V ). This is equivalent to constructing all Majorana algebras as in the hypothesis of

the main theorem above. We then check that each of these Majorana representation is based on

an embedding on G into the Monster.
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No. G |G| |T | dim V No. G |G| |T | dim V

1 22 4 3 3 14 22 × S4 96 30 36

2 23 8
4

6

4

6
15 31+2

+ : 22 108 27 32

3 D8 8 5 5 16 S5 120 25 36

4 D12 12 7 8 17 (S3 × S3) : 22 144 34 45

5 2×D8 16

8

8

10

8

10

11

18 24 : D10 160 30 46

6 22 × S3 24 12 13 19 24 : D12 192 28 54

7 S4 24
9

9

9

13
20 2× S5 240 36 61

8 24.2 32
10

14

18

15
21 25 : D12 384 60 76

9 S3 × S3 36 15 18 22 24 : (S3 × S3) 576 66 93

10 2× S4 48
16

16

20

23
23 L2(11) 660 55 101

11 A5 60
15

15

20

26
24 24.A5 960 70 125

12 23.23 64
18

22

28

24
25 2× S6 1440 106 151

13 (S3 × S3) : 2 72 21 25 26 25 : S5 3840 156 231

Table 5.1: The triangle-point subgroups of the Monster and their Majorana representations



5.1 A generalised version of the constructive algorithm

Before we commence with the main body of this chapter, we describe the implementation of the

modified algorithm which we have used in the proof of our main theorem above.

Recall that in the main implementation of the algorithm we assume five axioms 2Aa, 2Ab, 3A,

4A and 5A in addition to the Majorana axioms M1 - M7. In order to prove Theorem 5.4.1,

we have implemented and used a version of the algorithm which assumes none of these further

axioms, but does assume axiom M8.

For completeness, we have also implemented a version of the algorithm which assumes no axioms

other than the main Majorana axioms M1 - M7. However, we have not had need to use this

third version in this work.

It is important to note that, although we are no longer assuming that two axes indexed by the

same group element are equal, certain equalities between axes still hold as a consequence of

Theorem 2.2.1.

Recall from Proposition 2.2.3 that if (G,T, V ) is a Majorana representation and if t0, t1 ∈ T

such that the dihedral algebra 〈〈ψ(t0), ψ(t1)〉〉 is of type 3A, 4A or 5A then

uρ(t0,t1) = uρ(t0,t0t1t0), vρ(t0,t1) = vρ(t0,t0t1t0)

or

wρ(t0,t1) = −wρ(t0,t1t0t1) = −wρ(t0,t0t1t0t1t0) = wρ(t0,t0t1t0).

respectively.

Furthermore, the structure of 6A dihedral algebras gives further equalities on the 3A-axes.

Proposition 5.1.1. Suppose that (G,T, V ) is a Majorana representation. If t0, t1 ∈ T such that

the dihedral algebra 〈〈ψ(t0), ψ(t1)〉〉 is of type 6A then

uρ(t0,t1t0t1) = uρ(t1,t0t1t0).

Proof. From the structure of the dihedral algebras given in Table 2.1, we see that the algebra

〈〈ψ(t0), ψ(t1)〉〉 contains two distinct dihedral algebras of type 3A. By considering the action of

the group 〈t0, t1〉 on the algebra, we see that the 3A axes contained in these two algebras must

be equal.

In particular, if the intersection of two distinct 6A dihedral algebras contains a 3A dihedral

algebra then the 3A axes from both algebras must be equal. In this version of the algorithm,

we exploit the equalities given by Proposition 2.2.3 and the intersection of 6A algebras whilst

assuming no further equalities.

We now describe the implementation of this algorithm. We note that this version differs from

the main algorithm only in the set up of the algebra. The main steps described in Section 4.4

are common to both.
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Moreover, the data structures used in the main algorithm play a similar role in this algorithm,

as described below.

• coordinates: This is a set consisting of all elements of T and exactly one ordered pair

[i,j] for each 3A, 4A and 5A axis such that the dihedral algebra generated by the axes

corresponding to T[i] and T[j] contains the 3A, 4A or 5A axis in question.

• longcoordinates: This is a set consisting of all elements of T and all ordered pairs [i,j]

such that the dihedral algebra generated by the axes corresponding to T[i] and T[j] is

of type 3A, 4A or 5A.

• positionlist: This is a list whose order is equal to the cardinality of longcoordinates.

The absolute value of positionlist[i] is the index of the element of coordinates which

represents the 3A, 4A or 5A axis contained in the dihedral algebra corresponding to the

involutions whose indices are given by longcoordinates[i]. The entry positionlist[i]

is negative if and only if the involutions in longcoordinates[i] correspond to a 5A axis

which is equal to the negative of its representative axis.

If we want to implement the algorithm in full generality (i.e. without the assumption of axiom

M8) then we also record indices corresponding to the 2A axes of the algebra in coordinates

and longcoordinates.

In order to find the signed permutations which encode the group’s action on the set coordinates,

we first use the group structure to find the signed permutations of the action on T using the

method described in Section 4.3. We then use the method used in the n-closed version of the

algorithm, as described in Step 3 of Section 4.5, to extend the signed permutation to the full

spanning set of V .

We can then use the orbits function from the main algorithm to construct the components

pairrepresentatives, pairorbitlist, pairconjelements and pairconj. These components

play exactly the same role here as in the main version of the algorithm.

As in the case of the n-closed algorithm, once this setup has been achieved, all components are

compatible with the main part of the algorithm, and we can run Steps 2 - 5 in Section 4.4 until

all possible products have been found.

5.2 Constructions

In the following, if (G,T, V, ϕ, ψ) is a Majorana representation then we write

ai := ati := ψ(ti)

for ti ∈ T .

The following result shows that we may be able to exploit automorphisms of the group G in

order to restrict the number of possibilities for the set T which we must consider.
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Lemma 5.2.1. Suppose that G is a finite group and that (G,T1, V1) and (G,T2, V2) are two

Majorana representations of G. Suppose further that there exists an automorphism α of G such

that the image of T1 under α is T2. Then the possible shapes for the Majorana representation

(G,T1, V1) will be the same as those for (G,T2, V2) .

Proof. The possible shapes of a Majorana representation (G,T1, V1) are determined by the iso-

morphism types and inclusions of the dihedral groups of the form 〈t, s〉 for s, t ∈ T1. These are

preserved under the action of the automorphism α.

Lemma 5.2.2. Suppose that G is a finitely presented group with generators X := {x1, . . . , xn}
and relations RX := {R1(x1, . . . , xn) = 1, . . . , Rk(x1, . . . xn) = 1}. Suppose further that there ex-

ists a second set of generators Y := {y1, . . . , yn} of G such that for all 1 ≤ i ≤ k, Ri(y1, . . . , yn) =

1. Then there exists α ∈ Aut(G) such that

TY :=

n⋃
i=1

yGi =

n⋃
i=1

α(xGi ).

Proof. As X and Y both generate G and satisfy the same relations, we may choose α to be the

automorphism which maps xi 7→ yi for 1 ≤ i ≤ n. Then α will also map xGi to yGi , and the

result follows.

Suppose that G is a triangle-point group and suppose that we know all possible presentations

for G as a triangle-point group. Then these two results show that for each possible presentation

of G it is sufficient to classify representations of the form (G,T, V ) where a, b, c, ab ∈ T for any

set of generators {a, b, c} which generate G and which satisfy the relations in question.

In most cases, this is the first time that these groups have been considered in the Majorana

framework. We now briefly discuss the groups where this is not the case. Each of the dihedral

groups have at most two possibilities for the set T , and their Majorana representations are

classified in [IPSS10].

The group S4 has exactly two conjugacy classes of involutions, C1 := (1, 2)S4 and C2 :=

(1, 2)(3, 4)S4 . As the conjugacy class C2 does not generate the whole group, we must have

C1 ⊆ T . Moreover, if a, b ∈ C1 such that o(ab) = 2 then we must have ab ∈ C2 and so we must

take T = C1 ∪C2. Consider a Majorana representation of the form (G,T, V ). Then the algebra

generated by a(1,2) and a(1,3) may be of type 3A or 3C. Each of these possibilities gives rise to

a Majorana representation, as shown in Section 4 of [IPSS10].

The group A5 has exactly one conjugacy class of involutions so there is only one choice for the

value of the set T . There are exactly two Majorana representations of A5, as shown in [IS12a].

Finally, in [Dec14], Decelle shows that there is exactly one Majorana representation of L2(11).

We now consider each of the remaining groups in turn. Recall that, as the inner product ( , ) is

assumed to be positive definite, the nullspace of an algebra V with respect to a spanning set C

is defined to be

N(C) := {v ∈ 〈C〉 | (v, v) = 0}.
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In particular, the dimension of the algebra is given by the rank of the Gram matrix of ( , ) on

C.

In the following, all representations have been shown to be 2-closed unless otherwise stated.

5.2.1 The Group 23

Proposition 5.2.3. Let G = 〈a, b, c〉 ∼= 23 be a triangle-point group. Then G admits exactly

two Majorana representations of the form (G,T, V ) where a, b, c, ab ∈ T .

With the exception of 22, which is a dihedral group, 23 is the only abelian group to be considered

and thus is dealt with slightly differently to the other groups. In particular, every conjugacy class

of G is of size 1 and there are seven conjugacy classes of involutions (one for each non-identity

element).

From Lemma 5.2.1, if T1, T2 ⊆ G and there exists an automorphism of G sending T1 to T2, then

the Majorana representations (G,T1, V1) and (G,T2, V2) have the same shape. Our first task is

thus to determine the orbits of Aut(G) on candidates for the set T in a Majorana representation

of G.

Lemma 5.2.4. If G ∼= 23 then the automorphism group Aut(G) is transitive on the following

sets for x, y and z pairwise distinct non-identity elements

i) X1 := {{a, b, c, ab} | G = 〈a, b, c〉};

ii) X2 := {{a, b, c, ab, x} | G = 〈a, b, c〉, x ∈ G, x /∈ {a, b, c, ab}};

iii) X3 := {{a, b, c, ab, x, y} | G = 〈a, b, c〉, x, y ∈ G, x, y /∈ {a, b, c, ab}};

iv) X4 := {{a, b, c, ab, x, y, z} | G = 〈a, b, c〉, x, y, z ∈ G, x, y, z /∈ {a, b, c, ab}}.

Proof. Considering 23 as the vector space of dimension 3 over GF (2), we see that Aut(G) ∼=
GL(3, 2). Moreover, if three elements a, b, c ∈ G generate G then their corresponding vectors

must be linearly independent. It follows from basic linear algebra that GL(3, 2) is transitive on

3-tuples of linearly independent vectors and so Aut(G) is transitive on minimal generating sets

of G.

Now let {a, b, c, ab}, {d, e, f, de} ∈ X1. Then, from the preceding discussion, there exists α ∈
Aut(G) such that α(a) = d, α(b) = e and α(c) = f . Then we also have α(ab) = α(de) and α

maps the first set to the second which implies that Aut(G) acts transitively on X1.

Now, if {a, b, c, ab, x}, {d, e, f, de, y} ∈ X2 then, by permuting the elements {a, b, ab}, we may

assume without loss of generality that x = ac. Similarly, we may assume that y = df . Then the

element α ∈ Aut(G) which maps {a, b, c, ab} to {d, e, f, de} also sends x to y and we are done.

Similar arguments follow for the final two cases.
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Proof of Proposition 5.2.3. The above lemma shows that when classifying the Majorana repre-

sentations of G as a triangle-point group we need only classify the Majorana representations of

the form (G,Ti, V ) where Ti is a representative of Xi for 1 ≤ i ≤ 4.

Propositions 5.2.6 and 5.2.8 below show that there are no representations of the form (G,T2, V )

or (G,T4, V ). We have checked in GAP that T1 and T3 each give exactly one representation,

details of which are given in Propositions 5.2.5 and 5.2.7 below.

We now label the elements of the Ti as below.

i ti i ti

1 a 5 ac

2 b 6 bc

3 c 7 abc

4 ab

Proposition 5.2.5. There is exactly one Majorana representation of the form (G,T1, V ) where

T1 := {ti | 1 ≤ i ≤ 4}.

The algebra V contains no further axes and its nullspace is zero dimensional and so the dimension

of V is 4.

Note that this algebra is in fact the orthogonal annihilating sum of the 2A algebra 〈〈a(1,2), a(3,4)〉〉
and the one-dimensional algebra spanned by a(5,6).

Proposition 5.2.6. There are no Majorana representations of the form (G,T2, V ) where

T2 := {ti | 1 ≤ i ≤ 5}.

Proof. Suppose for contradiction that there exists a Majorana representation of the form (G,T2, V ).

As t1t2 = t4 ∈ T2 and t2t3 = t6 /∈ T2, the algebras 〈〈a1, a2〉〉 and 〈〈a2, a3〉〉 are of types 2A and

2B respectively and so from the known values of dihedral algebras

a1 · a2 =
1

8
(a1 + a2 + a4)

a2 · a3 = 0.

Similarly, we calculate that

(a1 · a2, a3) =
1

16

(a1, a2 · a3) = 0.

In particular, (a1 ·a2, a3) 6= (a1, a2 ·a3) which contradicts axiom M1. Thus such a representation

cannot exist.

Proposition 5.2.7. There is exactly one Majorana representation of the form (G,T3, V ) where

T3 := {ti | 1 ≤ i ≤ 6}.

The algebra V contains no further axes and its nullspace is zero dimensional and so the dimension

of V is 6.
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Proposition 5.2.8. There are no Majorana representations of the form (G,T4, V ) where

T4 := {ti | 1 ≤ i ≤ 7}.

Proof. In this case, the set T4 consists of all non-identity elements of G. We have already shown

in Lemma 3.2.2 that there can be no Majorana representations of this form.

5.2.2 The Group 2×D8

Proposition 5.2.9. Let G = 〈a, b, c〉 ∼= 2×D8 be a triangle-point group. Then G admits exactly

three Majorana representations of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we can see that we must have G ∼= G(4,4,2). If we let

a := (1, 2), b := (1, 2)(5, 6), and c := (1, 3)(2, 4)(5, 6)

then a, b, c generate G and satisfy the presentation of G(4,4,2). We label the conjugacy classes of

involutions of G C1, . . . C7, as below.

i Ci |Ci| i Ci |Ci|
1 aG 2 5 (abc)G 2

2 bG 2 6 ((ac)2)G 1

3 cG 2 7 (a · bc)G 1

4 (ab)G 1

By assumption, T must contain X := C1 ∪ . . . ∪ C4.

Furthermore, G contains a subgroup

K := 〈(1, 2), (3, 4), (5, 6)〉 ∼= 23.

If T ⊆ G is a set of involutions such that |T ∩K|∈ {5, 7} then section 5.2.1 shows that there are

no representations of the form (G,T, V ). As

|K ∩X|= 5 and |K ∩ C6|= |K ∩ C7|= 1,

T must contain exactly one of C6 or C7. Thus there are four possibilities for the value of T , as

shown below.

i Ti |Ti| i Ti |Ti|
1 X ∪ C6 8 3 X ∪ C5 ∪ C6 10

2 X ∪ C7 8 4 X ∪ C6 ∪ C7 10

Proposition 5.2.12 below shows that there is no representation of the form (G,T3, V ). We have

checked in GAP that T1, T2 and T4 each give exactly one representation, details of which are

given in Propositions 5.2.10, 5.2.11 and 5.2.13 below.
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In the following, we label the elements of the Ti as below.

i ti i ti i ti

1 a 5 c 9 (abc)a

2 ac 6 ca 10 (ac)2

3 b 7 ab 11 a · bc

4 bc 8 abc

Proposition 5.2.10. There is exactly one Majorana representation of the form (G,T1, V ) where

T1 := X ∪ C6 = {ti | 1 ≤ i ≤ 7} ∪ {t10}.

The algebra contains no further axes and its nullspace is zero dimensional and so the dimension

of the algebra is 8.

Proposition 5.2.11. There is exactly one Majorana representation of the form (G,T2, V ) where

T2 := X ∪ C7 = {ti | 1 ≤ i ≤ 7} ∪ {t11}.

The algebra V contains two 4A-axes, vρ(t1,t5) and vρ(t3,t5). The nullspace of V is zero dimensional

and so the dimension of V is 10.

Proposition 5.2.12. There are no Majorana representations of the form (G,T3, V ) where

T3 := X ∪ C5 ∪ C6 = {ti | 1 ≤ i ≤ 10}.

Proof. Suppose for contradiction that there exists a Majorana representation of the form (G,T3, V ).

As t1t3 = (5, 6) ∈ T3, t3t5 = (1, 4, 2, 3) and (t3t5)2 = (1, 2)(3, 4) ∈ T3, the algebras 〈〈a1, a3〉〉 and

〈〈a3, a5〉〉 are of type 2A and 4B respectively. Thus

a1 · a3 =
1

23
(a1 + a3 − a7)

a3 · a5 =
1

26
(a3 − a4 + a5 − a6 + a10).

Similarly, we calculate that

(a1 · a3, a5) =
1

28

(a1, a3 · a5) = − 3

28
.

In particular, (a1 ·a3, a5) 6= (a1, a3 ·a5) which contradicts axiom M1. Thus such a representation

cannot exist.

Proposition 5.2.13. There is exactly one Majorana representation of the form (G,T4, V ) where

T4 := X ∪ C6 ∪ C7 = {ti | 1 ≤ i ≤ 9} ∪ {t11}.

The algebra V contains four 4A-axes, vρ(t1,t5), vρ(t1,t8), vρ(t3,t5) and vρ(t3,t8). The nullspace of

V is spanned by the vectors

n1 := a1 + a2 + a3 + a4 + a5 + a6 − a7 + a8 + a9 − a10 −
3

2

(
vρ(t1,t5) + vρ(t1,t8)

)
n2 := vρ(t1,t5) − vρ(t3,t8)
n3 := vρ(t1,t8) − vρ(t3,t5)

and so the dimension of V is 11.
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5.2.3 The Group 22 × S3

Proposition 5.2.14. Let G = 〈a, b, c〉 ∼= 22 × S3 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T

Proof. We first show that we must have G ∼= G(2,6,6). From Tables 3.3 and 3.4, we can see that

G must occur as a quotient of Gi for i ∈ {6, 9, 11}. If G occurs as a quotient of G6, then we

must have

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)2, (bc)6, (abc)6, (a · bc)4〉.

However, if (ac)2 = 1 then

o(a · bc) = o((ab)c) = 2

and so we have G = G(2,6,6).

If G occurs as a quotient of G9 then we must have either

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)2, (bc)6, (abc)6, (a · bc)2, (ab · bc)6, (ab · ac)6〉

or

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)6, (bc)2, (abc)6, (a · bc)2, (ab · bc)6, (ab · ac)6〉.

In this first case, as a2 = b2 = c2 = (ab)2 = (ac)2 = (bc)6 = (abc)6 = 1,

o(a · bc) = o(cacb) = o(ab) = 2,

o(ab · ac) = o(bacac) = o(b) = 2

and o(a) = 2, o(bcbc) = 3 and [a, bcbc] = 1 and so

o(ab · bc) = 6

as required. Similarly, in the second case, we can show that G = G(6,2,6) ∼= G(2,6,6).

If G occurs as a quotient of G11 then we can again show that each of the three possibilities from

Table 3.4 gives G = G(2,6,6).

If we let

a := (1, 2), b := (3, 4), c := (4, 5)(6, 7)

then a, b and c generate G and satisfy the presentation of G(2,6,6). We label the conjugacy

classes of involutions of G C1, . . . C7, as below.

i Ci |Ci| i Ci |Ci|
1 aG 1 5 ((bc)3)G 1

2 bG 3 6 ((abc)3)G 1

3 cG 3 7 (ac)G 3

4 (ab)G 3
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Note that, as o(bc) = o(abc) = 6, the elements (bc)3 = (6, 7) and (abc)3 = (1, 2)(6, 7) must be

contained in T and so X := C1 ∪ . . . ∪ C6 ⊆ T . Moreover, G clearly contains an elementary

abelian subgroup of order 8 and so T cannot contain all involutions of G. Thus we must have

T = X. We have checked in GAP that T gives exactly one Majorana representation of G, details

of which are given in 5.2.15 below.

In the following, we label the elements of T as below.

i ti i ti i ti

1 a 5 c 9 (ab)c

2 b 6 cb 10 (ab)cb

3 bc 7 cbc 11 (bc)3

4 bcb 8 ab 12 (abc)3

Proposition 5.2.15. There is exactly one Majorana representation of the form (G,T, V ) where

T := {t1, . . . , t12}.

The algebra V contains one 3A-axis, uρ(t2,t3). The nullspace of the algebra V is zero dimensional

and so the dimension of the representation is 13.

5.2.4 The Group 24.2

Proposition 5.2.16. Let G = 〈a, b, c〉 ∼= 24.2 be a triangle-point group. Then G admits two

Majorana representations of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as the quotient of G1 and that

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)4, (bc)4, (abc)4, (a · bc)2〉.

If we let

a := (1, 2)(3, 4), b := (5, 6)(7, 8), c := (1, 3)(5, 7)

then a, b, c satisfy the relations of G and generate a group of order 32 and so we can take

G = 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C10, as below.

i Ci |Ci| i Ci |Ci| i Ci |Ci|
1 aG 2 5 ((ac)2)G 1 9 (ab · bc)G 2

2 bG 2 6 ((bc)2)G 1 10 (ab · ac)G 2

3 cG 4 7 ((abc)2)G 1

4 (ab)G 2 8 (a · bc)G 2
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Now note that the group G contains the following subgroups:

K1 := 〈a, b, bc〉 ∼= 23

K2 := 〈a, b, ac〉 ∼= 23

K3 := 〈ab, ac, bc〉 ∼= 23

K4 := 〈cb, cab, (bc)2〉 ∼= 23.

If we let X := aG ∪ bG ∪ cG ∪ (ab)G then by assumption we have X ⊆ T . Moreover, we see that

|Ki ∩X|= 4 for 1 ≤ i ≤ 4 and

|K1 ∩ C6| = |K1 ∩ C8|= |K1 ∩ C9|= 1

|K2 ∩ C5| = |K2 ∩ C8|= |K2 ∩ C10|= 1

|K3 ∩ C7| = |K3 ∩ C9|= |K3 ∩ C10|= 1

|K4 ∩ C5| = |K4 ∩ C6|= |K4 ∩ C7|= 1.

Thus T must contain exactly 0 or 2 of the conjugacy classes Ci, Cj and Ck for

{i, j, k} ∈ {{6, 8, 9}, {5, 8, 10}, {7, 9, 10}, {5, 6, 7}}.

This means that there are no possibilities for T which contain exactly 1, 5 or 6 of {C5, . . . , C10}.
We can also put strong restrictions on the remaining possibilities for T . At this stage, all

possibilities are shown below. Here, as before, we denote X := aG ∪ bG ∪ cG ∪ (ab)G.

i Ti |Ti| i Ti |Ti|
1 X 10 5 X ∪ C8 ∪ C9 ∪ C10 16

2 X ∪ C5 ∪ C6 ∪ C8 14 6 X ∪ C5 ∪ C6 ∪ C9 ∪ C10 16

3 X ∪ C5 ∪ C7 ∪ C10 14 7 X ∪ C5 ∪ C7 ∪ C8 ∪ C9 16

4 X ∪ C6 ∪ C7 ∪ C9 14 8 X ∪ C6 ∪ C7 ∪ C8 ∪ C10 16

We further restrict the possibilities for T by considering automorphisms of G. As the relations of

G are preserved by permuting {a, b, ab}, any such permutation induces an automorphism of G.

In particular, there exist permutations of {a, b, ab} sending T2 to T3 and T4 and permutations

sending T6 to T7 and T8. Thus we need only consider representations of the form (G,Ti, V ) for

i ∈ {1, 2, 5, 6}.

Propositions 5.2.19 and 5.2.20 below show that there are no representations of the form (G,T5, V )

or (G,T6, V ). We have checked in GAP that T1 and T2 give exactly one representation each,

details of which are given in Propositions 5.2.17 and 5.2.18 below.

In the following, we label the elements of the Ti as below.
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i ti i ti i ti

1 a 8 cab 15 (a · bc)c

2 ac 9 ab 16 ab · bc

3 b 10 (ab)c 17 (ab · bc)c

4 bc 11 (ac)2 18 ab · ac

5 c 12 (bc)2 19 (ab · ac)c

6 ca 13 (abc)2

7 cb 14 a · bc

Proposition 5.2.17. There exists exactly one Majorana representations of the form (G,T1, V )

where

T1 := {ti | 1 ≤ i ≤ 10}.

The algebra is spanned by the ten 2A axes, six 4A axes and also by the products a1 · vρ(t3,t5) and

a5 · vρ(t1,t7). The nullspace on the algebra generated by this spanning set is zero dimensional and

so the dimension of the algebra is 18.

Unlike all other algebras that we have constructed in this chapter, this is an example of an

algebra which is 3-closed not 2-closed.

Proposition 5.2.18. There is exactly one Majorana representation of the form (G,T2, V ) where

T2 := {ti | 1 ≤ i ≤ 12} ∪ {t14, t15}.

The algebra contains four 4A axes, vρ(t5,t9), vρ(t5,t14), vρ(t6,t9) and vρ(t6,t14). The nullspace of V

is spanned by the vector

n1 := a5 + a6 + a7 + a8 + a9 + a10 − a11 − a12 + a13 + a14 −
2

3
(vρ(t5,t9) + vρ(t5,t14))

along with two vectors of the form

vρ(s0,s1) − vρ(s2,s3)

where s0, s1, s2, s3 ∈ T2 and 〈s0s1〉 = 〈s2s3〉. Thus the dimension of V is 15.

Proposition 5.2.19. There exist no Majorana representations of the form (G,T5, V ) where

T5 := {ti | 1 ≤ i ≤ 10} ∪ {ti | 14 ≤ i ≤ 19}.

It is not possible to show that this algebra does not exist by considering only the 2-closed part

of the algebra, one must attempt a construction of the 3-closed part before a contradiction is

found. This proof is given in full in Section 5.3.1.

Proposition 5.2.20. There exist no Majorana representations of the form (G,T6, V ) where

T6 := {ti | 1 ≤ i ≤ 12} ∪ {ti | 16 ≤ i ≤ 19}.

Proof. Suppose for contradiction that there exists a Majorana representation of the form (G,T6, V ).

As t1t3 = ab = t9, the dihedral algebra 〈〈a1, a3〉〉 is of type 2A and so

a1 · a3 =
1

23
(a1 + a3 − a9).
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Using the known values of the inner product on dihedral algebras, we can then calculate that

(a1 · a3, a5) = 0.

Now, as t3t5 = bc is of order 4 and (t3t5)2 = t12, the dihedral algebra 〈〈a3, a5〉〉 is of type 4B

and so

a3 · a5 =
1

26
(a3 − a4 + a5 − a7 + a12).

Similarly, we calculate that

(a1, a3 · a5) =
1

28
.

In particular, (a1, a3 · a5) 6= (a1 · a3, a5), in contradiction with axiom M1, and so such a repre-

sentation cannot exist.

5.2.5 The Group S3 × S3

Proposition 5.2.21. Let G = 〈a, b, c〉 ∼= S3 × S3 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. We use the natural embedding of S3 × S3 into S6, that is to say

〈(1, 2), (1, 3), (4, 5), (5, 6)〉 ∼= S3 × S3.

We can see that G has only three conjugacy classes: (1, 2)G, (4, 5)G and (1, 2)(4, 5)G. Moreover,

considering the values of a, b and ab, we see that they must each belong to different conjugacy

classes. Thus the only possibility for T is

T := (1, 2)G ∪ (4, 5)G ∪ (1, 2)(4, 5)G.

In the following, we label the elements of T as below.

i ti i ti i ti

1 (1, 2) 6 (5, 6) 11 (1, 3)(4, 6)

2 (1, 3) 7 (1, 2)(4, 5) 12 (1, 3)(5, 6)

3 (2, 3) 8 (1, 2)(4, 6) 13 (2, 3)(4, 5)

4 (4, 5) 9 (1, 2)(5, 6) 14 (2, 3)(4, 6)

5 (4, 6) 10 (1, 3)(4, 5) 15 (2, 3)(5, 6)

Note that t7t11 = (1, 2, 3)(4, 5, 6) and there exists no elements ti, tj ∈ T such that o(titj) = 6

and (titj)
2 = t7t11. Thus the axes a7 and a11 generate an algebra which may be of type 3A or

3C.

In Proposition 5.2.23 below, we show that this algebra cannot be of type 3C. We have checked

in GAP that when this algebra is of type 3A, T gives exactly one representation, details of which

are given in Proposition 5.2.22 below.
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Proposition 5.2.22. There is exactly one Majorana representations of the form (G,T, V ) where

the algebra 〈〈a7, a11〉〉 is of type 3A. The algebra contains eight 3A axes and the nullspace of V

is spanned by the vector

n1 := − 25

32 · 5

15∑
i=7

ai + uρ(t1,t2) + uρ(t4,t5) + uρ(t7,t11) + uρ(t7,t12)

along with four vectors of the form

uρ(s0,s1) − uρ(s2,s3)

where s0, s1, s2, s3 ∈ T and 〈s0s1〉 = 〈s2s3〉. Thus the dimension of V is 18.

Proposition 5.2.23. There exist no representations of the form (G,T, V ) where the algebra

〈〈a7, a11〉〉 is of type 3C.

Proof. We will show that such a representation cannot obey axiom M1. Suppose that such a

representation exists. Firstly, the axes a1 and a4 generate an algebra of type 2A and so

a1 · a4 =
1

8
(a1 + a4 − a7)

and

(a1 · a4, a11) =
3

210
.

However, the axes a4 and a11 generate an algebra of type 6A and so

a4 · a11 =
1

26
(a2 + a4 − a5 − a6 − a10 + a11 − a12) +

32 · 5
220

uρ(t4,t5).

The axes a1 and uρ(t4,t5) are contained in the 6A algebra generated by a5 and a7 and so

(a1, uρ(t4,t5)) = 0. We can now calculate that

(a1, a4 · a11) = − 3

211
6= (a1 · a4, a11)

which is in contradiction with axiom M1. Thus such a representation cannot exist.

5.2.6 The Group 2× S4

Proposition 5.2.24. Let G = 〈a, b, c〉 ∼= 2 × S4 be a triangle-point group. Then G admits

exactly two Majorana representations of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as a quotient of G6. If we let

m := o(ac), n := o(bc), p := o(abc) then we must have (m,n, p) ∈ {(4, 3, 6), (4, 6, 3), (4, 4, 6)}. In

the first two cases, we in fact have G = G(m,n,p).

In order to procede, we need to determine the conjugacy classes of G. To do so, we use the

following embedding of G into S6:

G ∼= 〈(1, 2), (1, 3), (1, 4), (5, 6)〉.

We label the conjugacy classes of involutions of G C1, . . . , C5, as below.
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i Ci |Ci| i Ci |Ci|
1 (1, 2)G 6 4 (1, 2)(3, 4)(5, 6)G 3

2 (1, 2)(3, 4)G 3 5 (5, 6)G 1

3 (1, 2)(5, 6)G 6

We first suppose that (m,n, p) ∈ {(4, 3, 6), (4, 6, 3)} in which case we have G = G(m,n,p). More-

over, as G(4,3,6) ∼= G(4,6,3), without loss of generality, we can take (m,n, p) = (4, 3, 6). From

Lemma 5.2.1, we need only consider one set of generators a, b, c of G. If we pick

a := (1, 2)(3, 4)(5, 6), b := (1, 2), c := (1, 3)

then a, b and c generate G and obey the presentation of G(m,n,p). By assumption, and from

axiom M8, we must have X1 ⊆ T where

X1 := C1 ∪ C3 ∪ C4 ∪ C5.

Now note that G contains a subgroup K := 〈(1, 2), (3, 4), (5, 6)〉 ∼= 23. If T were to contain all

involutions of G, then there would exist a subrepresentation (K,T ∩K,U), such that |T ∩K|= 7.

This is a contradiction from Proposition 5.2.8. We conclude that if (m,n, p) = (4, 3, 6) then we

must have T = C1 ∪ C3 ∪ C4 ∪ C5.

We now turn to the case (m,n, p) = (4, 6, 6) and put restrictions on the value of T by considering

the conjugacy classes of G. We let Ci := aG, Cj := bG, Ck := cG and Cl := (ab)G where

1 ≤ i, j, k, l ≤ 5. Either by inspection, or by considering the structure constants of S4, we see

that, as o(bc) = o(abc) = 6, we must have

(j, k), (l, k) ∈ {(1, 3), (3, 1)}.

We suppose first that k = 1 then j = l = 3 and so we must have i = 2. Similarly, if k = 3 then

j = l = 1 and, again, i = 2. In each of these cases, (bc)3 = (abc)3 = (5, 6) and so, by axiom M8,

we must have (5, 6) ∈ T . Thus, if (m,n, p) = (4, 6, 6), we must have

X2 := C1 ∪ C2 ∪ C3 ∪ C5 ≤ T.

As before, T cannot consist of all involutions of G, else we would have a contradiction with

the representations of 23 and so in this case we have T = C1 ∪ C2 ∪ C3 ∪ C5. This is indeed a

possibility, as can be shown by choosing, for example, the generators

a := (1, 2)(3, 4), b := (1, 2)(5, 6), c := (1, 3).

Thus the possibilities for T are given below.

i Ti |Ti|
1 C1 ∪ C3 ∪ C4 ∪ C5 16

2 C1 ∪ C2 ∪ C3 ∪ C5 16

We have checked in GAP that T1 and T2 each give exactly one Majorana representation, details

of which are given in Propositions 5.2.25 and 5.2.26 below.
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In the following, we label the elements of T1 and T2 as below.

i ti i ti i ti

1 (1, 2) 8 (1, 3)(2, 4) 15 (3, 4)(5, 6)

2 (1, 3) 9 (1, 4)(2, 3) 16 (1, 2)(3, 4)(5, 6)

3 (1, 4) 10 (1, 2)(5, 6) 17 (1, 3)(2, 4)(5, 6)

4 (2, 3) 11 (1, 3)(5, 6) 18 (1, 4)(2, 3)(5, 6)

5 (2, 4) 12 (1, 4)(5, 6) 19 (5, 6)

6 (3, 4) 13 (2, 3)(5, 6)

7 (1, 2)(3, 4) 14 (2, 4)(5, 6)

Proposition 5.2.25. There is exactly one Majorana representation of the form (G,T1, V ) where

T1 := {ti | 1 ≤ i ≤ 15} ∪ {t19}.

The algebra V contains four 3A-axes and the nullspace of V is zero dimensional and so the

dimension of the representation is 20.

Proposition 5.2.26. There is exactly one Majorana representation of the form (G,T2, V ) where

T2 := {ti | 1 ≤ i ≤ 6} ∪ {ti | 10 ≤ i ≤ 19}.

The algebra V contains four 3A-axes and six 4A-axes. The nullspace of V is spanned by the

vectors

n1 :=
2

32
(3a1 + 3a6 − a10 + 2a11 + 2a12 + 2a13 + 2a14 − a15 − 3a16 − 3a17 − 3a18 − 3a19)

− 5

23
(uρ(t1,t2) + uρ(t1,t3) + uρ(t2,t3) + uρ(t4,t5)) + vρ(t10,t17)

− 1

3
(vρ(t1,t17) − 2vρ(t2,t16) − 2vρ(t3,t16))

n2 :=
2

32
(3a2 + 3a5 + 2a10 − a11 + 2a12 + 2a13 − a14 + 2a15 − 3a16 − 3a17 − 3a18 − 3a19)

− 5

23
(uρ(t1,t2) + uρ(t1,t3) + uρ(t2,t3) + uρ(t4,t5)) + vρ(t11,t16)

− 1

3
(−2vρ(t1,t17) + vρ(t2,t16) − 2vρ(t3,t16))

n3 :=
2

32
(3a3 + 3a4 + 2a10 + 2a11 − a12 − a13 + 2a14 + 2a15 − 3a16 − 3a17 − 3a18 − 3a19)

− 5

23
(uρ(t1,t2) + uρ(t1,t3) + uρ(t2,t3) + uρ(t4,t5)) + vρ(t12,t16)

− 1

3
(−2vρ(t1,t17) − 2vρ(t2,t16) + vρ(t3,t16))

and so the dimension of the representation is 23.

Remark 5.2.27. We note that 2× S4 contains two subgroups isomorphic to S4, that there are

four Majorana representations of S4 and that these have shapes (2B, 3A), (2A, 3A), (2B, 3C) and

(2A, 3C) [IPSS10]. The representation given in Proposition 5.2.26 contains subrepresentations

U1, U2 ≤ V of S4 of type (2B, 3A).

As representations of S4, U1 and U2 are not 2-closed, each containing 3 basis vectors in ad-

dition to the 2A and 3A axes. The above result shows that in V these vectors are equal to

{vρ(t10,t17), vρ(t11,t16), vρ(t12,t16)} and {vρ(t1,t17), vρ(t2,t16), vρ(t3,t16)} in the case of U1 and U2 re-

spectively.
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5.2.7 The Group 23.23

Proposition 5.2.28. Let G = 〈a, b, c〉 ∼= 23.23 be a triangle-point group. Then G admits exactly

two Majorana representations of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as a quotient of G1, in which case

we in fact have G = G1. Thus, the presentation of G is known and, by Lemma 5.2.1, we may

consider some fixed generators a, b, c of G.

If we let

a := (1, 2)(3, 4), b := (1, 3)(2, 4)(5, 6)(7, 8) , c := (1, 5)(2, 7)

then a, b, c satisfy the relations of G1 and generate a group of order 64 and so we can take

G = 〈a, b, c〉.

We label the conjugacy classes of involutions of G C1 . . . C9 as below.

i Ci |Ci| i Ci |Ci| i Ci |Ci|
1 aG 4 4 (ab)G 4 7 ((abc)2)G 2

2 bG 4 5 ((ac)2)G 2 8 (acabcbc)G 4

3 cG 4 6 ((bc)2)G 2 9 ((a · bc)2)G 1

The group G contains the following subgroups:

K1 = 〈a, acb, acbc〉 ∼= 23

K2 = 〈c, cb, (ac)2〉 ∼= 23.

If we were to have T ⊆ G such that |T∩K1|∈ {5, 7} or |T∩K2|∈ {5, 7} then, from the classification

of Majorana representations of the group 23, there would be no Majorana representations of the

form (G,T, V ). We can thus use these groups to restrict the possibilities for the set T .

Note first that

|K1 ∩ C1|= 4, |K1 ∩ C3|= 2, |K1 ∩ C9|= 1.

Thus, as we must have C1 ⊆ T , we cannot have C9 ⊆ T . Furthermore,

|K2 ∩ C3|= 3, |K2 ∩ C5|= |K2 ∩ C6|= |K2 ∩ C7|= |K2 ∩ C8|= 1.

As we must have C3 ∈ T , we must have precisely 0, 1 or 3 of {C5, C6, C7, C8} contained in T .

At this stage, we have the following possibilities for the values of T . In the table below we denote

X := aG ∪ bG ∪ cG ∪ (ab)G.
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i Ti |Ti| i Ti |Ti|
1 X 16 6 X ∪ C5 ∪ C6 ∪ C7 22

2 X ∪ C5 18 7 X ∪ C5 ∪ C6 ∪ C8 24

3 X ∪ C6 18 8 X ∪ C5 ∪ C7 ∪ C8 24

4 X ∪ C7 18 9 X ∪ C6 ∪ C7 ∪ C8 24

5 X ∪ C8 20

We can restrict these choices further by considering the automorphisms of G. The follow map is

an automorphism of G (as can be verified by checking that it preserves the presentation of G).

α : a 7→ b, b 7→ ab, c 7→ ca.

Moreover, it is an outer automorphism inducing the following action on the conjugacy classes of

G,

aG 7→ bG 7→ (ab)G 7→ aG,

((ac)2)G 7→ ((bc)2)G 7→ ((abc)2)G 7→ ((ac)2)G.

In particular, either α or its inverse maps T3 and T4 to T2 and T8 and T9 to T7. Thus, by Lemma

5.2.1, we need only consider representations of the form (G,Ti, V ) for i ∈ {1, 2, 5, 6, 7}.

In Propositions 5.2.29 and 5.2.31, we show that there exist no representations of the form

(G,T1, V ) or (G,T5, V ). We have checked in GAP that T2 and T6 each give exactly one Majorana

representation, details of which are given in Propositions 5.2.30 and 5.2.32 below.

In the following, we label the elements of the Ti as below.

i ti i ti i ti

1 a 10 ca 19 (bc)2

2 ac 11 cb 20 ((bc)2)a

3 acb 12 cab 21 (abc)2

4 acbc 13 ab 22 ((abc)2)a

5 b 14 (ab)c 23 acabcbc

6 bc 15 (ab)ca 24 (acabcbc)a

7 bca 16 (ab)cac 25 (acabcbc)b

8 bcac 17 (ac)2 26 (acabcbc)ab

9 c 18 ((ac)2)b 27 (a · bc)2

Proposition 5.2.29. There are no representations of the form (G,T1, V ) where

T1 := {ti | 1 ≤ i ≤ 16}.

It is not possible to show that this algebra does not exist by considering only the 2-closed part

of the algebra, one must attempt a construction of the 3-closed part before a contradiction is

found. This proof is much more involved than the others in this chapter and is given in full in

Section 5.3.2.
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Proposition 5.2.30. There is exactly one representation of the form (G,T2, V ) where

T2 := {ti | 1 ≤ i ≤ 18}.

The algebra V contains eighteen 4A axes. The nullspace of V is spanned by the vectors

n1 :=
2

3
(−a1 + a2 + a3 − a4 − a6 − a7 − a14 − a15 − a17 − a18) + vρ(t1,t6) + vρ(t1,t14)

n2 :=
2

3
(a1 − a2 − a3 + a4 − a5 − a8 − a13 − a16 − a17 − a18) + vρ(t2,t5) + vρ(t2,t13)

n3 :=
2

3
(a5 + a8 + a14 + a15 + a17 + a18)− vρ(t1,t6) − vρ(t2,t13) − vρ(t5,t14) + vρ(t6,t13)

n4 :=
2

3
(2a5 + 2a6 + 2a7 + 2a8 − a13 − a14 − a15 − a16 + a17 + a18)− vρ(t1,t6) − vρ(t2,t5)

− vρ(t5,t9) − vρ(t5,t10) − vρ(t6,t10) − vρ(t7,t9) + vρ(t9,t13) + vρ(t9,t15) + vρ(t10,t13) + vρ(t10,t14)

along with four vectors of the form

vρ(s0,s1) − vρ(s2,s3)

where s0, s1, s2, s3 ∈ T2 and 〈s0s1〉 = 〈s2s3〉. Thus the dimension of V is 28.

Proposition 5.2.31. There are no representations of the form (G,T5, V ) where

T5 := {ti | 1 ≤ i ≤ 16} ∪ {ti | 23 ≤ i ≤ 26}.

Proof. We will show that if such a representation were to exist then it would contain a subalgebra

U which is a Majorana representation of the form (G,T1, V ). As we have shown in Proposition

5.2.29 that such a representation cannot exist, this implies that the representation (G,T5, V )

cannot exist either.

As T1 ⊆ T5, we can take U = 〈〈ψ(t) | t ∈ T1〉〉, where ψ is the bijective mapping associated with

the representation (G,T5, V ). Then this algebra is clearly a Majorana representation of the form

(G,T1, U) which is contained in V .

In particular, we have checked that for all t, s ∈ T1, ts /∈ {t23, . . . , t26} this means that the

representation (G,T1, U) obeys axiom M8 and so neither U nor V can exist.

Proposition 5.2.32. There is exactly one Majorana representation of the form (G,T6, V ) where

T6 := {ti | 1 ≤ i ≤ 22}.

The algebra contains eighteen 4A axes. The nullspace of V is spanned by the vectors

n1 :=
2

3
(−a1 + a2 + a3 − a4 − a6 − a7 − a14 − a15 − a17 − a18) + vρ(t1,t6) + vρ(t1,t14)

n2 :=
2

3
(a1 − a2 − a3 + a4 − a5 − a8 − a13 − a16 − a17 − a18) + vρ(t2,t5) + vρ(t2,t13)

n3 :=
2

3
(−a1 − a4 + a5 − a6 − a7 + a8 − a13 − a16 − a19 − a20) + +vρ(t1,t6) + vρ(t1,t19)

n4 :=
2

3
(−a2 − a3 − a5 + a6 + a7 − a8 + a13 + a16 + a17 + a18 − a21 − a22)− vρ(t1,t6) + vρ(t1,t21)

n5 :=
2

3
(a13 + a14 + a15 + a16 + a17 + a18 + a19 + a20 − a21 − a22)− vρ(t1,t6) − vρ(t2,t5)
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along with twelve vectors of the form

vρ(s0,s1) − vρ(s2,s3)

where s0, s1, s2, s3 ∈ T6 and 〈s0s1〉 = 〈s2s3〉. Thus the dimension of V is 23.

Proposition 5.2.33. There are no representations of the form (G,T7, V ) where

T7 := {ti | 1 ≤ i ≤ 20} ∪ {ti | 23 ≤ i ≤ 26}.

Proof. We will show that such an algebra cannot obey axiom M1. Suppose that such a repre-

sentation exists. Firstly, the axes a1 and a2 generate an algebra of type 2A and so

a1 · a2 =
1

23
(a1 + a2 − a17)

and

(a1 · a2, a11) = − 3

28
.

Conversely, the axes a2 and a11 generate an algebra of type 4B and so

a2 · a11 =
1

26
(a2 − a4 + a11 − a12 + a18)

and

(a1, a2 · a11) =
1

26
.

In particular,

(a1 · a2, a11) 6= (a1, a2 · a11)

which contradicts axiom M1 and so such an algebra cannot exist.

5.2.8 The Group (S3 × S3) : 2

Proposition 5.2.34. Let G = 〈a, b, c〉 ∼= (S3×S3) : 2 be a triangle-point group. Then G admits

exactly one representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as a quotient of G2 and must have

presentation

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)4, (bc)4, (abc)6, (a · bc)3〉.

If we let

a := (1, 2), b := (4, 5), c := (1, 6)(2, 5)(4, 3)

then a, b, c satisfy the relations of G and generate a group of order 72 and so we can take

G = 〈a, b, c〉. Then G has just three conjugacy classes

C1 := aG, C2 := cG, C3 := (ab)G

and so T must contain all involutions of the group G. We have checked in GAP that T gives

exactly one Majorana representation, details of which are given in Proposition 5.2.35 below.
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In the following, we label the elements of T as below.

i ti i ti i ti

1 a 8 ca 15 (ab)ca

2 ac 9 cb 16 (ab)cb

3 acb 10 cab 17 (ab)cab

4 b 11 cabc 18 (ab)cac

5 bc 12 cabca 19 (ab)cbc

6 bca 13 ab 20 (ab)cacb

7 c 14 (ab)c 21 (ab)cbca

Proposition 5.2.35. There exists exactly one Majorana representation of the form (G,T1, V )

where

T := {ti | 1 ≤ i ≤ 21}.

The algebra V contains four 3A axes and the nullspace of V is spanned by the vector

n1 := − 25

32 · 5

21∑
i=13

ai + uρ(t1,t6) + uρ(t2,t3) + uρ(t7,t10) + uρ(t8,t9)

and so the dimension of V is 24.

5.2.9 The Group 22 × S4

Proposition 5.2.36. Let G = 〈a, b, c〉 ∼= 22 × S4 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ), where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we can see that G must occur as a quotient of G6 and must

have presentation

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)4, (bc)6, (abc)6, (a · bc)4, (ac · cb)2〉.

If we take

a := (1, 2)(3, 4)(5, 6), b := (1, 2)(7, 8), c := (2, 3)(5, 6)

then a, b, c satisfy the relations of G and generate a group of order 96 and so we can take

G = 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . , C11, as below.

i Ci |Ci| i Ci |Ci| i Ci |Ci|
1 aG 3 5 ((ac)2)G 3 9 (ac · cb)G 6

2 bG 6 6 ((bc)3)G 1 10 (ab · cbc)G 3

3 cG 6 7 ((abc)3)G 1 11 (b · cabc)G 3

4 (ab)G 6 8 ((ab · bc)3)G 1
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As o(bc) = o(abc) = (ab · bc) = 6, T must contain X := C1 ∪ C2 ∪ C3 ∪ C4 ∪ C6 ∪ C7 ∪ C8 The

group G contains the subgroups

K1 := 〈ac · cb, (bc)3, (abc)3〉 = 〈(2, 4), (5, 6)(7, 8), (7, 8)〉 ∼= 23

K2 := 〈ac · cb, (ac · cb)a, (ab · bc)3〉 = 〈(2, 4), (1, 3), (5, 6)〉 ∼= 23

K3 := 〈ac · cb, (ac · cb)a, (bc)3〉 = 〈(2, 4), (1, 3)(5, 6), (7, 8)〉 ∼= 23

K4 := 〈(ac)2, (bc)3, (ab · bc)3〉 = 〈(1, 2)(3, 4), (5, 6), (7, 8)〉 ∼= 23.

Note that

|K1 ∩X| = 6, |K1 ∩ C9|= 1

|K2 ∩X| = 4, |K2 ∩ C5|= 1, |K2 ∩ C9|= 2

|K3 ∩X| = 5, |K3 ∩ C9|= 1, |K3 ∩ C11|= 1

|K4 ∩X| = 4, |K4 ∩ C5|= 1, |K4 ∩ C10|= 1, |K4 ∩ C11|= 1.

Thus T must contain C10 and C11 but cannot contain C5 or C9, leaving just one possibility for

T :

T1 := X ∪ C10 ∪ C11.

We have checked in GAP that T gives exactly one Majorana representation, details of which are

given in Proposition 5.2.37 below.

In the following, we label the elements of T as below.

i ti i ti i ti

1 a 11 ca 21 (ab)cac

2 ac 12 cb 22 (bc)3

3 acb 13 cab 23 (abc)3

4 b 14 cbc 24 (ab · bc)3

5 bc 15 cabc 25 ab · cbc

6 bca 16 ab 26 (ab · cbc)c

7 bcb 17 (ab)c 27 (ab · cbc)cb

8 bcab 18 (ab)ca 28 b · cabc

9 bcac 19 (ab)cb 29 (b · cabc)c

10 c 20 (ab)cab 30 (b · cabc)cb

Proposition 5.2.37. There exists exactly one Majorana representation of the form (G,T, V )

where

T := {ti | 1 ≤ i ≤ 30}.

The algebra V contains four 3A-axes and twenty-seven 4A-axes and the nullspace of V is spanned

by the vectors n1, . . . , n10, as below, along with fifteen vectors of the form

vρ(s0,s1) − vρ(s2,s3)

where s0, s1, s2, s3 ∈ T and 〈s0s1〉 = 〈s2s3〉. Thus the dimension of V is 36.
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i ni

1 − 2
3 (a1 + a3 + a5 + a6 + a12 + a13 − a22 + a25 + a27 − a29) + vρ(t1,t5) + vρ(t1,t12)

2 − 2
3 (a1 + a2 + a7 + a8 + a10 + a11 − a22 + a25 + a26 − a30) + vρ(t1,t7) + vρ(t1,t10)

3 − 2
3 (a1 + a2 + a10 + a11 + a19 + a20 − a23 − a27 + a28 + a29) + vρ(t1,t10) + vρ(t1,t19)

4 − 2
3 (a1 + a3 + a12 + a13 + a17 + a18 − a23 − a26 + a28 + a30) + vρ(t1,t12) + vρ(t1,t17)

5 − 2
3 (a2 + a3 + a4 + a9 + a14 + a15 − a22 + a26 + a27 − a28) + vρ(t2,t4) + vρ(t2,t14)

6 − 2
3 (a2 + a3 + a14 + a15 + a16 + a21 − a23 − a25 + a29 + a30) + vρ(t2,t14) + vρ(t2,t16)

7 − 2
3 (−a1 + a4 + a9 + a16 + a21 − a24 + a26 + a27 + a29 + a30) + vρ(t4,t26) + vρ(t4,t29)

8 − 2
3 (−a2 + a5 + a6 + a17 + a18 − a24 + a25 + a27 + a28 + a30) + vρ(t5,t25) + vρ(t5,t28)

9 − 2
3 (−a3 + a7 + a8 + a19 + a20 − a24 + a25 + a26 + a28 + a29) + vρ(t7,t25) + vρ(t7,t28)

10
− 1

3

∑3
i=1 ai −

2
3

∑21
i=4 ai +

∑24
i=22 ai −

1
3

∑30
i=25 ai + 15

24

∑
u∈V (3) u+ vρ(t1,t10)

+ vρ(t1,t12) + vρ(t2,t14)

5.2.10 The Group 31+2
+ : 22

Proposition 5.2.38. Let G = 〈a, b, c〉 ∼= 31+2
+ : 22 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as a quotient of G(m,n,p) for (m,n, p) ∈
{(6, 6, 3), (6, 3, 6), (3, 6, 6)}. In fact, by Lemma 3.2.11, we have G = G(3,6,6). Furthermore, any

permutation of a, b and ab induces an automorphism of G which permutes the values m, n and

p and so, without loss of generality, we may take G = G(3,6,6).

Now that we have the presentation of G, Lemma 5.2.1 allows us to consider fixed generators

a, b, c of G. If we let

a := (1, 2)(3, 4)(5, 6), b := (1, 3)(2, 4)(7, 8), c := (1, 9)(3, 8)(5, 7)

then a, b, c satisfies the relations of G(3,6,6) and generate a group of order 108 and so we can take

G = 〈a, b, c〉.

Using these generators, we calculate there are just three conjugacy classes of involutions, C1 =

aG = cG, C2 = bG and C3 = (ab)G. Thus there is only one choice for T :

T := C1 ∪ C2 ∪ C3.

In the following, we label the elements of T as below.

81



i ti i ti i ti

1 a 10 b 19 ab

2 ac 11 bc 20 (ab)c

3 aca 12 bca 21 (ab)ca

4 acb 13 bcb 22 (ab)cb

5 acab 14 bcab 23 (ab)cab

6 acbc 15 bcabc 24 (ab)cbc

7 acbca 16 bcabcb 25 (ab)cbcb

8 acbcac 17 bcabcbc 26 (ab)cbcbc

9 acbcaca 18 bcabcbcb 27 (ab)cbcbca

Note that t1t2 = (ac)2 is of order 3 and there exists no elements ti, tj ∈ T such that o(titj) = 6

and (titj)
2 = t1t2. Thus the axes a1 and a2 generate an algebra which may be of type 3A or 3C.

Proposition 5.2.39 below shows that if this algebra is of type 3A then the representation does

not exist. We have checked in GAP that if this algebra is of type 3C then there is exactly one

representation of the form (G,T, V ), details of which are given in Proposition 5.2.40.

Proposition 5.2.39. There are no Majorana representations of the form (G,T, V ) where the

algebra 〈〈a1, a2〉〉 is of type 3A.

Proof. Suppose for contradiction that G does admit such a representation. As t1t10 = ab ∈ T ,

the dihedral algebra 〈〈a1, a10〉〉 is of type 2A and

a1 · a10 =
1

23
(a1 + a10 − a19).

We now let w := a3 + 3a11 then

(a1 · a10, w) =
13

29
.

Now, the algebra 〈〈a3, a10〉〉 is of type 6A and contains the algebra 〈〈a10, a11〉〉. Therefore the

algebra 〈〈a10, a11〉〉 must be of type 3A and we have the products

a10 · a11 =
1

25
(2a10 + 2a11 + a13)− 33 · 5

211
uρ(t10,t11).

and

a3 · a10 =
1

26
(a3 − a5 − a9 + a10 − a11 − a13 + a27) +

32 · 5
211

uρ(t10,t11).

Thus

a10 · w =
1

26
(3a3 − 3a5 − 3a9 + 7a10 + a11 − a13 + 3a27)

and so we can use the known values of the inner product on dihedral algebras to calculate that

(a1, a10 · w) =
25

211
.

In particular, (a1 ·a10, w) 6= (a1, a10 ·w), which contradicts axiom M1. Thus such a representation

cannot exist.
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Proposition 5.2.40. There is exactly one Majorana representation of the for (G,T, V ) where

the algebra 〈〈a19, a20〉〉 is of type 3C. The algebra contains seven 3A axes and the nullspace of

V is spanned by the vectors

n1 := − 25

33 · 5

1∑
i=10

8ai + uρ(t1,t6) + uρ(t2,t4) + uρ(t3,t5) + uρ(t10,t15)

n2 := − 25

33 · 5

26∑
i=19

ai + uρ(t1,t9) + uρ(t2,t5) + uρ(t3,t4) + uρ(t10,t15)

and so the dimension of the representation is 32.

5.2.11 The Group S5

Proposition 5.2.41. Let G = 〈a, b, c〉 ∼= S5 be a triangle-point group. Then G admits exactly

one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. It is well known that G contains just two conjugacy classes of involutions: C1 := (1, 2)G

and C2 := (1, 2)(3, 4)G and G = 〈C1〉. However, if a, b ∈ C1 and o(ab) = 2 then we must have

ab ∈ C2. Thus we must take

T := (1, 2)G ∪ (1, 2)(3, 4)G.

We have checked in GAP that T gives exactly one Majorana representation, details of which are

given in Proposition 5.2.42 below.

In the following, we label the elements of T as below.

i ti i ti i ti

1 (1, 2) 10 (4, 5) 19 (1, 5)(2, 4)

2 (1, 3) 11 (1, 2)(3, 4) 20 (1, 3)(4, 5)

3 (1, 4) 12 (1, 3)(2, 4) 21 (1, 4)(3, 5)

4 (1, 5) 13 (1, 4)(2, 3) 22 (1, 5)(3, 4)

5 (2, 3) 14 (1, 2)(3, 5) 23 (2, 3)(4, 5)

6 (2, 4) 15 (1, 3)(2, 5) 24 (2, 4)(3, 5)

7 (2, 5) 16 (1, 5)(2, 3) 25 (2, 5)(3, 4)

8 (3, 4) 17 (1, 2)(4, 5)

9 (3, 5) 18 (1, 4)(2, 5)

Proposition 5.2.42. There is exactly one Majorana representation of the form (G,T, V ) where

T := {t1, . . . , t25}.

The algebra contains ten 3A axes and six 5A axes. The nullspace of V is 5-dimensional and so

the dimension of V is 36.
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5.2.12 The Group (S3 × S3) : 2
2

Proposition 5.2.43. Let G = 〈a, b, c〉 ∼= (S3×S3) : 22 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as a quotient of G2, and in fact we

have G = G2.

If we let

a := (1, 2)(3, 4), b := (1, 2)(5, 6), c := (1, 10)(2, 9)(3, 8)(4, 5)(6, 7)

then a, b, c satisfy the relations of G2 and generate a group of order 144 and so we can take

G = 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . , C7, as below.

i Ci |Ci| i Ci |Ci|
1 aG 6 5 ((ac)2)G 9

2 bG 6 6 ((abc)3)G 6

3 cG 6 7 ((a · bc)3)G 1

4 (ab)G 9

The group G contains the subgroup

K := 〈a, b, (a · bc)3〉 ∼= 23.

If we were to have T ⊆ G such that |K∩T |∈ {5, 7} then, from the classification of Majorana rep-

resentations of the group 23, there would be no Majorana representations of the form (G,T, V ).

We can thus use this group to restrict the possibilities for the set T .

We let X := aG ∪ bG ∪ cG ∪ (ab)G and note that, by assumption, we must have X ⊆ T . Note

further that

|K ∩X|= 5, |K ∩ C5|= |K ∩ C7|= 1.

Therefore T must contain exactly one of C5 and C7. Finally, as o(abc) = o(a · bc) = 6, from

axiom M8, T must also contain C6 and C7.

Thus we have just one possibility for T :

T := X ∪ C6 ∪ C7.

We have checked in GAP that T gives exactly one Majorana representation, details of which are

given in Proposition 5.2.44.

In the following, we label the elements of T as below.
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i ti i ti i ti

1 a 13 c 25 (ab)cbc

2 ac 14 ca 26 (ab)cacb

3 acb 15 cb 27 (ab)cbca

4 acbc 16 cab 28 (abc)3

5 acbca 17 cabc 29 ((abc)3)a

6 acbcac 18 cabca 30 ((abc)3)ac

7 b 19 ab 31 ((abc)3)aca

8 bc 20 (ab)c 32 ((abc)3)acb

9 bca 21 (ab)ca 33 ((abc)3)acab

10 bcac 22 (ab)cb 34 (a · bc)3

11 bcacb 23 (ab)cab

12 bcacbc 24 (ab)cac

Proposition 5.2.44. There exists exactly one Majorana representation of the form (G,T1, V )

where

T := {ti | 1 ≤ i ≤ 34}.

The algebra V contains four 3A axes and thirty-six 4A axes. The nullspace of V is spanned by

the vectors n1, . . . , n11, as below along with eighteen vectors of the form

vρ(s0,s1) − vρ(s2,s3)

where s0, s1, s2, s3 ∈ T and 〈s0s1〉 = 〈s2s3〉. Thus the dimension of V is 45.

i ni

1 − 2
3 (a1 + a2 + a11 + a12 + a13 + a14 − a26 + a32 + a33 − a34) + vρ(t1,t13) + vρ(t1,t32)

2 − 2
3 (a1 + a3 + a10 + a12 + a15 + a16 − a24 + a30 + a31 − a34) + vρ(t1,t15) + vρ(t1,t30)

3 − 2
3 (a1 + a6 + a7 + a12 + a17 + a18 − a19 + a28 + a29 − a34) + vρ(t1,t17) + vρ(t1,t28)

4 − 2
3 (a2 + a4 + a9 + a11 + a15 + a17 − a21 + a29 + a30 − a34) + vρ(t2,t15) + vρ(t2,t29)

5 − 2
3 (a2 + a5 + a8 + a11 + a16 + a18 − a20 + a28 + a30 − a34) + vρ(t2,t16) + vρ(t2,t28)

6 − 2
3 (a3 + a4 + a9 + a10 + a13 + a18 − a23 + a28 + a33 − a34) + vρ(t3,t13) + vρ(t3,t28)

7 − 2
3 (a3 + a5 + a8 + a10 + a14 + a17 − a22 + a29 + a32 − a34) + vρ(t3,t14) + vρ(t3,t29)

8 − 2
3 (a4 + a6 + a7 + a9 + a14 + a16 − a25 + a30 + a32 − a34) + vρ(t4,t14) + vρ(t4,t30)

9 − 2
3 (a5 + a6 + a7 + a8 + a13 + a15 − a27 + a31 + a33 − a34) + vρ(t7,t13) + vρ(t7,t32)

10

vρ(t1,t13) + vρ(t1,t15) + vρ(t1,t17) + vρ(t2,t15) + vρ(t2,t16) + vρ(t3,t13) + vρ(t3,t14) + vρ(t4,t14)

+ vρ(t4,t15) − vρ(t1,t30) − vρ(t1,t32) − vρ(t2,t28) − vρ(t2,t29) − vρ(t3,t28) − vρ(t3,t29)

− vρ(t4,t30) − vρ(t5,t31) − vρ(t7,t17)

11 − 25

32·5
∑27
i=19 ai + uρ(t1,t4) + uρ(t2,t3) + uρ(t13,t16) + uρ(t14,t15)
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5.2.13 The Group 24 : D10

Proposition 5.2.45. Let G = 〈a, b, c〉 ∼= 24 : D10 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as a quotient of G3, and in fact we

have G = G3.

If we let

a := (1, 2)(3, 4), b := (1, 3)(2, 4)(5, 6)(7, 8)(9, 10), c := (1, 2)(3, 5)(4, 7)(6, 9)(8, 10)

then a, b, c satisfy the relations of G3 and generate a group of order 160 and so we can take

G = 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C4, as below.

i Ci |Ci| i Ci |Ci|
1 aG 5 3 ((ac)2)G 5

2 bG 20 4 ((a · bc)2)G 5

By assumption, T must contain the classes C1 and C2. Note that G contains the group

K := 〈a, b, ((a · bc)2)c〉 ∼= 23.

Moreover,

|K ∩ C2|= 4, |K ∩ C1|= |K ∩ C3|= |K ∩ C4|= 1

and so T must contain exactly one of C3 and C4. At this stage, we have two possibilities for the

value of T , as shown below. Here, we denote X := aG ∪ bG.

i Ti |Ti| i Ti |Ti|
1 X ∪ C3 30 2 X ∪ C4 30

We can restrict these choices further by considering the automorphisms of G. The follow map is

an automorphism of G (as can be verified by checking that it preserves the presentation of G).

α : a 7→ ((a · bc)2)c, b 7→ b, c 7→ c.

Moreover, it is an outer automorphism inducing the following action on the conjugacy classes of

G,

aG 7→ ((a · bc)2)G

bG 7→ bG

((ac)2)G 7→ aG

((a · bc)2)G 7→ ((ac)2)G.

In particular, α maps T1 to T2. Thus by Lemma 5.2.1, we need only consider representations of

the form (G,T1, V ).

We have checked in GAP that T1 gives exactly one Majorana representation, details of which

are given in Proposition 5.2.46.
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In the following, we label the elements of T1 as below.

i ti i ti i ti

1 a 11 bcbc 21 (ab)cbc

2 ac 12 c 22 (ab)cbcb

3 acb 13 ca 23 (ab)cbca

4 acbc 14 cab 24 (ab)cbcab

5 acbcb 15 cabc 25 (ab)cbcac

6 b 16 ab 26 (ac)2

7 bc 17 (ab)c 27 ((ac)2)b

8 bca 18 (ab)ca 28 ((ac)2)bc

9 bcb 19 (ab)cb 29 ((ac)2)bcb

10 bcac 20 (ab)cac 30 ((ac)2)bcbc

Proposition 5.2.46. There exists exactly one Majorana representation of the form (G,T1, V )

where

T1 := {ti | 1 ≤ i ≤ 30}.

The algebra V contains twenty 4A axes and sixteen 5A axes. The nullspace of V is 20-dimensional

and so the dimension of V is 46.

5.2.14 The Group 24 : D12

Proposition 5.2.47. Let G = 〈a, b, c〉 ∼= 24 : D12 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must occur as a quotient of G6 and must have

presentation

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)4, (bc)6, (abc)6, (a · bc)4, (ab · bc)3〉.

If we let

a := (1, 2)(3, 4), b := (1, 2)(5, 6), c := (1, 5)(2, 7)(3, 6)(4, 8)

then a, b, c satisfy the relations of G and generate a group of order 192 and so we can take

G = 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C6, as below.

i Ci |Ci| i Ci |Ci|
1 aG 6 4 ((ac)2)G 6

2 bG 12 5 ((bc)3)G 4

3 cG 12 6 (ab · bcac)G 3

By assumption, T must contain the classes C1, C2 and C3 and, by axiom M8, T must contain

C5. In the following we let X = C1 ∪ C2 ∪ C3 ∪ C5. Note that G contains the group

K := 〈a, b, bcac〉 ∼= 23.
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Moreover,

|K ∩ C1|= 2, |K ∩ C2|= 4, |K ∩ C6|= 1

and so T cannot contain C6. At this stage, we have the following possibilities for the value of T .

i Ti |Ti| i Ti |Ti|
1 X 34 2 X ∪ C4 40

Proposition 5.2.49 below shows that there are no Majorana representations of the form (G,T2, V ).

We have checked in GAP that T1 gives exactly one Majorana representation, details of which

are given in Proposition 5.2.48.

In the following, we label the elements of the Ti as below.

i ti i ti i ti i ti

1 a 11 bcab 21 cb 31 (bc)3

2 ac 12 bcac 22 cab 32 ((bc)3)a

3 acb 13 bcabc 23 cbc 33 ((bc)3)ac

4 acbc 14 ab 24 cabc 34 ((bc)3)aca

5 acbcb 15 (ab)c 25 cbca 35 (ac)2

6 acbcbc 16 (ab)ca 26 cabca 36 ((ac)2)b

7 b 17 (ab)cab 27 cbcac 37 ((ac)2)bc

8 bc 18 (ab)cac 28 cabcac 38 ((ac)2)bcb

9 bca 19 c 29 cbcacb 39 ((ac)2)bcbc

10 bcb 20 ca 30 cabcacb 40 ((ac)2)bcbcb

Proposition 5.2.48. There exists exactly one Majorana representation of the form (G,T1, V )

where

T1 := {ti | 1 ≤ i ≤ 34}.

The algebra V contains sixteen 3A axes and forty-two 4A axes. The nullspace of V is 38-

dimensional and so the algebra is 54-dimensional.

Proposition 5.2.49. There exist no Majorana representations of the form (G,T2, V ) where

T2 := {ti | 1 ≤ i ≤ 40}.

Proof. Suppose for contradiction that such an algebra exists. Then t1t2 = (ac)2 = t35 and so

the algebra 〈〈a1, a2〉〉 is of type 2A and

a1 · a2 =
1

23
(a1 + a2 − a35).

We then calculate that

(a1 · a2, a7) =
1

26
.

However, t2t7 = ac · b = (1, 2)(5, 7, 6, 8) and (t2t7)2 = t6 ∈ T2 and so the algebra 〈〈a2, a7〉〉 is of

type 4B and

a2 · a7 =
1

26
(a2 − a3 + a6 + a7 − a12).
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We then calculate that

(a1, a2 · a7) = 0.

Thus we have

(a1 · a2, a7) 6= (a1, a2 · a7)

and so the algebra does not obey axiom M1.

5.2.15 The Group 2× S5

Proposition 5.2.50. Let G = 〈a, b, c〉 ∼= 2 × S5 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must be equal to G4 = G(4,5,6).

If we let

a := (1, 2), b := (1, 2)(3, 4)(6, 7), c := (1, 5)(2, 3)(6, 7)

then a, b, c satisfy the relations of G4 and generate a group of order 240 and so we can take

G = 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C5, as below.

i Ci |Ci| i Ci |Ci|
1 aG 10 4 (ac)2 15

2 bG 15 5 (ab · ac)3 1

3 (ab)G 10

The group G clearly contains a subgroup K which is elementary abelian of order 8 and so T

cannot contain all involutions of G. By assumption, T must contain the classes aG, bG, cG and

(ab)G. By axiom M8, T must also contain (ab · ac)3. This leaves us with just one possibility for

T :

T := C1 ∪ C2 ∪ C3 ∪ C5.

We have checked in GAP that T gives exactly one Majorana representation, details of which are

given in Proposition 5.2.51.

In the following, we label the elements of T as below.
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i ti i ti i ti

1 (1, 2) 13 (1, 4)(2, 3)(6, 7) 25 (2, 5)(3, 4)(6, 7)

2 (1, 3) 14 (1, 2)(3, 5)(6, 7) 26 (1, 2)(6, 7)

3 (1, 4) 15 (1, 3)(2, 5)(6, 7) 27 (1, 3)(6, 7)

4 (1, 5) 16 (1, 5)(2, 3)(6, 7) 28 (1, 4)(6, 7)

5 (2, 3) 17 (1, 2)(4, 5)(6, 7) 29 (1, 5)(6, 7)

6 (2, 4) 18 (1, 4)(2, 5)(6, 7) 30 (2, 3)(6, 7)

7 (2, 5) 19 (1, 5)(2, 4)(6, 7) 31 (2, 4)(6, 7)

8 (3, 4) 20 (1, 3)(4, 5)(6, 7) 32 (2, 5)(6, 7)

9 (3, 5) 21 (1, 4)(3, 5)(6, 7) 33 (3, 4)(6, 7)

10 (4, 5) 22 (1, 5)(3, 4)(6, 7) 34 (3, 5)(6, 7)

11 (1, 2)(3, 4)(6, 7) 23 (2, 3)(4, 5)(6, 7) 35 (4, 5)(6, 7)

12 (1, 3)(2, 4)(6, 7) 24 (2, 4)(3, 5)(6, 7) 36 (6, 7)

Proposition 5.2.51. There exists exactly one Majorana representation of the form (G,T, V )

where

T := {ti | 1 ≤ i ≤ 36}.

The algebra V also contains ten 3A axes, thirty 4A axes and six 5A axes. Its nullspace is 21

dimensional and so the algebra V is 61 dimensional.

5.2.16 The Group 25 : D12

Proposition 5.2.52. Let G = 〈a, b, c〉 ∼= 25 : D12 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must be equal to G6. If we let

a := (1, 2)(3, 4)(9, 10), b := (1, 2)(5, 6), c := (1, 5)(2, 7)(3, 8)(4, 6)(9, 10)

then a, b, c satisfy the relations of G and generate a group of order 384 and so we can take

G := 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C13, as below.

i Ci |Ci| i Ci |Ci|
1 aG 6 8 ((ac)2)G 6

2 bG 12 9 ((a · bc)2)G 6

3 cG 12 10 (ab · bcac)G 3

4 (ab)G 12 11 ((a · cbc)2)G 3

5 ((bc)3)G 4 12 (bc · (ab)cbca)G 12

6 ((abc)3)G 4 13 (ac · cbcacb)G 6

7 ((ab · bc)3)G 1

By assumption and by axiom M8, T must contain X := C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7.
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The group G contains the following subgroups

K1 := 〈a, b, (ab · bc)3〉 ∼= 23

K2 := 〈a, b, bcac〉 ∼= 23

K3 := 〈a, b, acbcbc〉 ∼= 23

K4 := 〈b, (bc)3, abcac〉 ∼= 23

K5 := 〈(a · bc)2, ((a · bc)2)c, (ab · bc)3〉 ∼= 23.

We use these groups, along with the fact that if, for some i, |Ki ∩ T |∈ {5, 7} then the represen-

tation (G,T, V ) cannot exist. Note that

|K1 ∩X| = 6, |K1 ∩ C9|= 1

|K2 ∩X| = 5, |K2 ∩ C9|= 1, |K2 ∩ C10|= 1

|K3 ∩X| = 6, |K3 ∩ C11|= 1

|K4 ∩X| = 5, |K4 ∩ C10|= 1, |K4 ∩ C12|= 1

|K5 ∩X| = 3, |K5 ∩ C8|= 1, |K5 ∩ C9|= 2, |K5 ∩ C13|= 2

and so T must contain C10, cannot contain any of C9, C11, C12 and cannot contain both C8 and

C13. Thus there are just three possibilities for the value of T .

i Ti |Ti| i Ti |Ti|
1 X ∪ C10 54 3 X∪C10∪C13 60

2 X ∪C10 ∪C8 60

We show in Propositions 5.2.53 and 5.2.55 that there are no representations of the form (G,T1, V )

or (G,T3, V ). We have checked in GAP that T2 admits exactly one Majorana representation,

details of which are given in Proposition 5.2.54.

In the following, we label the elements of the Ti as below.
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i ti i ti i ti i ti

1 a 18 bcabcabc 35 (ab)cab 52 ab · bcac

2 ac 19 c 36 (ab)cac 53 (ab · bcac)c

3 acb 20 ca 37 (ab)cbc 54 (ab · bcac)cb

4 acbc 21 cb 38 (ab)cbca 55 (ac)2

5 acbcb 22 cab 39 (ab)cbcb 56 ((ac)2)b

6 acbcbc 23 cbc 40 (ab)cbcab 57 ((ac)2)bc

7 b 24 cabc 41 (ab)cbcbc 58 ((ac)2)bcb

8 bc 25 cbca 42 (ab)cbcabc 59 ((ac)2)bcbc

9 bca 26 cabca 43 (bc)3 60 ((ac)2)bcbcb

10 bcb 27 cbcac 44 ((bc)3)a 61 ac · cbcacb

11 bcab 28 cabcac 45 ((bc)3)ac 62 (ac · cbcacb)b

12 bcac 29 cbcacb 46 ((bc)3)aca 63 (ac · cbcacb)c

13 bcabc 30 cabcacb 47 (abc)3 64 (ac · cbcacb)bc

14 bcabca 31 ab 48 ((abc)3)a 65 (ac · cbcacb)cb

15 bcabcb 32 (ab)c 49 ((abc)3)ac 66 (ac · cbcacb)bcb

16 bcabcab 33 (ab)ca 50 ((abc)3)aca

17 bcabcbc 34 (ab)cb 51 (ab · bc)3

Proposition 5.2.53. There are no Majorana representations of the form (G,T1, V ) where

T1 := X ∪ C10 = {ti | 1 ≤ i ≤ 54}.

Proof. Suppose for contradiction that such an algebra exists. From the known values of the

algebra and inner products on dihedral algebras, we calculate that

(a1 · a7, a19) =
1

23
(a1 + a7 − a31, a19) =

1

28
.

Now, the dihedral algebra 〈〈a7, a19〉〉 is of type 6A and contains the 3A algebra 〈〈a7, a11〉〉 and

so

a7 · a19 =
3

26
(a7 − a11 − a16 + a19 − a25 − a28 + a31) +

45

211
uρ(t7,t11).

We now determine the value of (a1, uρ(t7,t11)). Firstly, using the known values of dihedral algebras

as before, we calculate that

(a1 · a7, a11) =
1

23
(a1 + a7 − a31, a11) =

1

27
.

Conversely,

(a1, a7 · a11) =
1

25
(a1, 2a7 + 2a11 + a16)− 135

211
(a1, uρ(t7,t11)) =

11

210
− 135

211
(a1, uρ(t7,t11))

therefore, by axiom M1,

(a1, uρ(t7,t11)) =
2

32 · 5
.

We can now calculate that

(a1, a7 · a19) =
1

29
.

This contradicts axiom M1 and so such an algebra cannot exist.

92



Proposition 5.2.54. There is exactly one Majorana representation of the form (G,T2, V ) where

T2 := X ∪ C8 ∪ C10 = {ti | 1 ≤ i ≤ 60}.

The algebra V contains sixteen 3A axes and one hundred and fifty-six 4A axes. Its nullspace is

132-dimensional and so the algebra V is 100-dimensional.

Proposition 5.2.55. There are no Majorana representations of the form (G,T3, V ) where

T3 := X ∪ C10 ∪ C13 = {ti | 1 ≤ i ≤ 54} ∪ {ti | 61 ≤ i ≤ 66}.

Proof. We will show that if such a representation were to exist then it would contain a subalgebra

U which is a Majorana representation of the form (G,T1, V ). As we have shown in Proposition

5.2.53 that such a representation which obeys axiom M8 cannot exist, this implies that the

representation (G,T3, V ) cannot exist either.

As T1 ⊆ T3, we can take U = 〈〈ψ(t) | t ∈ T1〉〉, where ψ is the bijective mapping associated with

the representation (G,T3, V ). Then this algebra is clearly a Majorana representation of the form

(G,T1, U) which is contained in V .

In particular, we have checked that for all t, s ∈ T1, ts /∈ {t61, . . . , t66} this means that the

representation (G,T1, U) obeys axiom M8 and so neither U nor V can exist.

5.2.17 The Group 24 : (S3 × S3)

Proposition 5.2.56. Let G = 〈a, b, c〉 ∼= 24 : (S3×S3) be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ).

Proof. From Tables 3.3 and 3.4, we see that we must have

G = 〈a, b, c | a2, b2, c2, (ab)2, (ac)6, (bc)6, (abc)6, (a · bc)4, a · (b · cac)3〉.

If we let

a := (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

b := (1, 3)(2, 4)(5, 6)(7, 8)(9, 10)(11, 12)

c := (2, 5)(6, 7).

Then a, b and c satisfy the presentation of G and generate a group of order 576, so we may take

G = 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C5, as below.

i Ci |Ci| i Ci |Ci|
1 a 12 4 (abc)3 6

2 b 12 5 (a · bc)2 9

3 c 36

93



By assumption, T must contain C1, C2, C3 and C4. However, as G clearly contains an elementary

abelian subgroup of order 8 so T cannot contain all involutions of the group G. Thus we have

just one choice for the value of T :

T := C1 ∪ C2 ∪ C3 ∪ C4.

We have checked in GAP that T gives exactly one Majorana representation, details of which are

given in Proposition 5.2.57.

In the following, we label the elements of T as below.

i ti i ti i ti i ti

1 a 18 bcac 35 cacbc 52 cbcacabc

2 ac 19 bcabc 36 cbcac 53 cabcacac

3 aca 20 bcaca 37 cabcac 54 cabcacbc

4 acb 21 bcabcb 38 cacbca 55 cacbcaca

5 acab 22 bcacac 39 cacbcb 56 cacbcacb

6 acbc 23 bcabcbc 40 cacbcab 57 cacbcabca

7 acabc 24 bcacacb 41 cbcaca 58 cacbcabcb

8 acbcb 25 c 42 cbcacb 59 cacbcabcac

9 acabca 26 ca 43 cbcacab 60 ab

10 acbcbc 27 cb 44 cabcaca 61 (abc)3

11 acabcac 28 cab 45 cabcacb 62 ((abc)3)a

12 acbcbca 29 cac 46 cabcacab 63 ((abc)3)ac

13 b 30 cbc 47 cacbcac 64 ((abc)3)aca

14 bc 31 cabc 48 cacbcbc 65 ((abc)3)acb

15 bca 32 cacb 49 cacbcabc 66 ((abc)3)acab

16 bcb 33 cbca 50 cbcacac

17 bcab 34 cabca 51 cbcacbc

Proposition 5.2.57. There is exactly one Majorana representation of the form (G,T, V ) where

T := {ti | 1 ≤ i ≤ 66}.

The algebra V contains fifty-six 3A axes and ninety 4A axes. Its nullspace is 119-dimensional

and so the algebra is 93-dimensional.

5.2.18 The Group 24 : A5

Proposition 5.2.58. Let G = 〈a, b, c〉 ∼= 24 : A5 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .
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Proof. From Tables 3.3 and 3.4, we see that G must be equal to G7. If we let

a := (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

b := (1, 11)(2, 12)(3, 9)(4, 10)(5, 6)(13, 14)

c := (1, 3)(2, 15)(4, 13)(6, 12)(7, 11)(14, 16)

then a, b, c satisfy the relations of G7 and generate a group of order 960 and so we can take

G := 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C3, as below.

i Ci |Ci| i Ci |Ci|
1 aG 60 3 ((b · cac)2)G 5

2 ((ac)3)G 10

By assumption, a ∈ T and by axiom M8, (ac)3 ∈ T . Moreover, G contains an elementary abelian

subgroup of order 8 and so T cannot contain all involutions of G. Thus we have one choice for

the value of T :

T1 := C1 ∪ C2.

We have checked in GAP that T1 gives exactly one Majorana representation, details of which

are given in Proposition 5.2.59

In the following, we label the elements of T as below.

i ti i ti i ti i ti

1 a 19 acabcbcac 37 bcabcac 55 (ab)cacbcab

2 ac 20 acabcbcaca 38 bcabcbc 56 (ab)cacbcac

3 aca 21 acabcbcacb 39 bcabcaca 57 (ab)cacbcbc

4 acb 22 b 40 bcabcacb 58 (ab)cacbcbcb

5 acab 23 bc 41 bcabcacab 59 (ab)cacbcbcbc

6 acbc 24 bca 42 bcabcacbc 60 (ab)cacbcacabc

7 acabc 25 bcb 43 ab 61 (ac)3

8 acbca 26 bcab 44 (ab)c 62 ((ac)3)b

9 acbcb 27 bcac 45 (ab)ca 63 ((ac)3)bc

10 acbcab 28 bcbc 46 (ab)cb 64 ((ac)3)bca

11 acabca 29 bcabc 47 (ab)cac 65 ((ac)3)bcb

12 acabcb 30 bcaca 48 (ab)cbc 66 ((ac)3)bcab

13 acabcab 31 bcbca 49 (ab)caca 67 ((ac)3)bcbc

14 acbcac 32 bcbcb 50 (ab)cacb 68 ((ac)3)bcabc

15 acbcabc 33 bcabca 51 (ab)cacac 69 ((ac)3)bcbca

16 acabcac 34 bcabcb 52 (ab)cacbc 70 ((ac)3)bcabca

17 acabcbc 35 bcabcab 53 (ab)cacbca

18 acabcbca 36 bcbcac 54 (ab)cacbcb

Proposition 5.2.59. There exists exactly one Majorana representation of the form (G,T1, V )

where

T1 := {ti | 1 ≤ i ≤ 70}.
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The algebra V contains forty 3A axes, ninety 4A axes and ninety-six 5A axes. Its nullspace is

171-dimensional and so the algebra is 125 dimensional.

5.2.19 The Group 2× S6

Proposition 5.2.60. Let G = 〈a, b, c〉 ∼= 2 × S6 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .

Proof. From Tables 3.3 and 3.4, we see that G must be equal to G8. If we let

a := (1, 2), b := (1, 2)(3, 4)(5, 6)(7, 8), c := (2, 3)(4, 5)(7, 8)

then a, b and c generate a group of order 1440 and satisfy the presentation of G8 and so we may

take G := 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C7, as below.

i Ci |Ci| i Ci |Ci|
1 a 15 5 (bc)3 15

2 b 15 6 (a · ((ac)3)bc)3 1

3 c 45 7 (a · bc)2 45

4 (ac)3 15

By assumption and by axiom M8, T must contain C1 ∪ . . . ∪ C6. The group G clearly contains

an elementary abelian subgroup of order 8 and so T cannot contain all involutions in G. Thus

we have only one choice for the value of T :

T := C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6.

We have checked in GAP that T admits exactly one Majorana representation, details of which

are given in Proposition 5.2.61.

Proposition 5.2.61. There exists exactly one Majorana representation of the form (G,T, V )

where

T :=

6⋃
i=1

Ci = {ti | 1 ≤ i ≤ 106}.

The algebra contains forty 3A axes, four hundred and five 4A axes and thirty-six 5A axes. The

nullspace is 436-dimensional and so the algebra is 151-dimensional.

5.2.20 The Group 25 : S5

Proposition 5.2.62. Let G = 〈a, b, c〉 ∼= 25 : S5 be a triangle-point group. Then G admits

exactly one Majorana representation of the form (G,T, V ) where a, b, c, ab ∈ T .
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Proof. From Tables 3.3 and 3.4, we see that G must be equal to G10. If we let

a := (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

b := (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12)

c := (1, 8)(2, 6)(3, 9)(4, 12)(5, 10)(7, 11)

then a, b and c generate a group of order 3840 and satisfy the presentation of G10 and so we

may take G := 〈a, b, c〉. We label the conjugacy classes of involutions of G C1, . . . C7, as below.

i Ci |Ci| i Ci |Ci|
1 a 60 5 a · (b · cac)2 15

2 c 40 6 ((ac)2 · (bc)2)2 15

3 (ac)3 40 7 (a · cbc)2 60

4 ((ac)3 · cabc)3 1

By assumption and by axiom M8, T must contain X := C1∪C2∪C3∪C4. The group G contains

the subgroups

K1 := 〈c, (ac)3, (c · cacb)2〉 ∼= 23

K2 := 〈a, cacb, ((abc)3)a·b
c·abc〉 ∼= 23

K3 := 〈a, cac, (b · cac)2〉 ∼= 23.

Note that

|K1 ∩X| = 6, |K1 ∩ C6|= 1

|K2 ∩X| = 6, |K2 ∩ C7|= 1

|K3 ∩X| = 5, |K3 ∩ C5|= 1, |K3 ∩ C7|= 1

and so T must contain C5 but cannot contain either C6 or C7. Thus we must have T :=

X ∪ C5.

Proposition 5.2.63. There is exactly one Majorana representation of the form (G,T, V ) where

T = X ∪ C5. The algebra contains one hundred and twenty-nine 3A axes, one thousand and

twenty 4A axes and ninety-six 5A axes. Its nullspace is 1201-dimensional and so the algebra is

231-dimensional.
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5.3 The 3-closed examples

We now deal with the two non-existence results which involve algebras which are not 2-closed.

These proofs are rather involved and are presented here in order to show the logical steps of the

argument rather than the full details of the calculations. All calculations have been performed

in GAP and are reproducible using the tools available as part of the package MajoranaAlgebras

[WP].

5.3.1 The Group 24.2

Let

a := (1, 2)(3, 4), b := (5, 6)(7, 8), c := (1, 3)(5, 7)

and let G = 〈a, b, c〉 ∼= 24.2.

In the following, we label certain involutions of G as below.

i ti i ti i ti

1 a 8 cab 15 (a · bc)c

2 ac 9 ab 16 ab · bc

3 b 10 (ab)c 17 (ab · bc)c

4 bc 11 (ac)2 18 ab · ac

5 c 12 (bc)2 19 (ab · ac)c

6 ca 13 (abc)2

7 cb 14 a · bc

Proposition 5.3.1. There exist no Majorana representations of the form (G,T5, V )

T5 := {ti | 1 ≤ i ≤ 10} ∪ {ti | 14 ≤ i ≤ 19}.

In the following, we suppose that there exists such an algebra V and let ai := ψ(ti) for 1 ≤ i ≤ 10

and 14 ≤ i ≤ 19.

Lemma 5.3.2. Suppose that V is a Majorana algebra as in Proposition 5.3.1. Then Table 5.2

gives the value of the inner product on certain vectors of V .

Proof. We use axiom M1 to find the required products.

Row 1 First,

(a1, a6 · a9) =
1

26
(a1, 3a6 + a7 + 3a9 + a10 − 3vρ(t6,t9)) =

5

29
− 3

26
(a1, vρ(t6,t9)).

Conversely,

(a1 · a9, a6) =
1

23
(a1 − a3 + a9, a6) =

1

28
.

Axiom M1 then implies that (a1, vρ(t6,t9)) = 1
23 as required.
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i u v (u, v)

1 a1 vρ(t6,t9)
1
23

2 a3 vρ(t1,t5)
1
23

3 a3 vρ(t6,t9)
1
23

4 a3 vρ(t5,t16)
1
23

5 a14 vρ(t6,t9)
1

23·3

6 a16 vρ(t6,t9)
1
23

7 a18 vρ(t6,t9)
1
23

8 a3 a1 · vρ(t6,t9) − 1
26

Table 5.2: Some inner product values on V for G ∼= 24.2

Row 2 First,

(a3, a1 · a5) =
1

26
(a3, 3a1 + a2 + 3a5 + a6 − 3vρ(t1,t5)) =

5

29
− 3

26
(a3, vρ(t1,t5)).

Conversely,

(a1 · a3, a5) =
1

23
(a1 + a3 − a9, a5) =

1

28
.

Axiom M1 then implies that (a3, vρ(t1,t5)) = 1
23 as required.

Row 3 First,

(a3, a6 · a9) =
1

26
(a3, 3a6 + a7 + 3a9 + a10 − 3vρ(t6,t9)) =

5

29
− 3

26
(a3, vρ(t6,t9)).

Conversely,

(a3 · a9, a6) = − 1

23
(a1 − a3 − a9, a6) =

1

28
.

Axiom M1 then implies that (a3, vρ(t6,t9)) = 1
23 as required.

Row 4 First,

(a3, a5 · a16) =
1

26
(a3, 3a5 + a6 + 3a16 + a17 − 3vρ(t5,t16)) =

5

29
− 3

26
(a3, vρ(t5,t16)).

Conversely,

(a3 · a16, a5) =
1

23
(a3 − a14 + a16, a5) =

1

28
.

Axiom M1 then implies that (a3, vρ(t5,t16)) = 1
23 as required.

Row 5 First,

(a14, a6 · a9) =
1

26
(a14, 3a6 + a7 + 3a9 + a10 − vρ(t6,t9)) =

1

29
− 3

26
(a14, vρ(t6,t9)).

Conversely, a9 · a14 = 0 and so (a9 · a14, a16) = 0. Axiom M1 then implies that

(a14, vρ(t6,t9)) = 1
23·3 as required.

Row 6 First,

(a16, a6 · a9) =
1

26
(a16, 3a6 + a7 + 3a9 + a10 − 3vρ(t6,t9)) =

5

29
− 3

26
(a16, vρ(t6,t9)).
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Conversely,

(a9 · a16, a6) = − 1

23
(a4 − a9 − a16, a6) =

1

28
.

Axiom M1 then implies that (a16, vρ(t6,t9)) = 1
23 as required.

Row 7 First,

(a18, a6 · a9) =
1

26
(a18, 3a6 + a7 + 3a9 + a10 − 3vρ(t6,t9)) =

5

29
− 3

26
(a18, vρ(t6,t9))).

Conversely,

(a9 · a18, a6) = − 1

23
(a2 − a9 − a18, a6) =

1

28
.

Axiom M1 then implies that (a18, vρ(t6,t9)) = 1
23 as required.

Row 8 Using the inner product values given by rows 1 and 3 of this table, we calculate that

(a3, a1 · vρ(t6,t9)) = (a1 · a3, vρ(t6,t9)) =
1

23
(a1 + a3 − a9, vρ(t6,t9)) = − 1

26
.

Lemma 5.3.3. Suppose that V is a Majorana algebra as in 5.3.1. Then

a10 · (vρ(t5,t18) + vρ(t6,t18)) =− 1

24 · 3
(7a1 − a2 − 2a4 + a9 − 5a10 + 2a16 − 2a19)

− 1

24
(vρ(t1,t5) + vρ(t1,t7))−

1

25
(vρ(t5,t9) + 3vρ(t6,t9))

+
1

23
(vρ(t5,t18) + vρ(t6,t18)) + 2a1 · vρ(t6,t9).

Proof. The dihedral algebras 〈〈a1, a10〉〉 and 〈〈a6, a10〉〉 are of types 2A and 4A respectively and

so

α0 := 2a6 + 2a7 −
1

2
a10 + vρ(t6,t9) ∈ V

(a10)
0

β0 := −1

3
(2a6 + 2a7 + a9 + a10) + vρ(t6,t9) ∈ V

(a10)
1
22

α1 := a1 −
1

22
a10 + a19 ∈ V (a10)

0

β1 := a1 − a19 ∈ V (a10)
1
22

.

Using the inner product values given by rows 1 and 7 of Table 5.2, we calculate that (β0, β1) = 0.

Thus, using the fusion rules,

a10 · ((α0 − β0) · (α1 − β1)) = − 1

22
(α0 · β1 + α1 · β0). (5.1)

We calculate that

(α0 − β0) · (α1 − β1) =
1

23 · 3
(a1 + 2a5 + 5a6 + 2a7 + 2a8) +

1

24
(a9 + a10)− 1

22 · 3
(a17 − 6a18)

+
13

23 · 3
a19 +

1

24
vρ(t6,t9) −

1

22
(vρ(t5,t18) + vρ(t6,t18)).

Thus

a10 · ((α0 − β0) · (α1 − β1)) =− 1

24
a1 +

1

26 · 3
(2a3 + a5 + a6 + a7 + a8 + a9 + 13a10)

− 1

25 · 3
(2a16 + a17 − a18 − 6a19)− 1

27
(vρ(t5,t9) + vρ(t6,t9))

− 1

22
a10 · (vρ(t5,t18) + vρ(t6,t18)).
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It remains only to calculate that

α0 · β1 + α1 · β0 =− 1

23 · 3
(a1 − a2 − a3)− 1

24 · 3
(a5 + a6 + a7 + a8)− 1

24
(a9 + a10)

+
1

23 · 3
(a17 − 2a18 − 4a19)− 1

24
(vρ(t1,t5) + vρ(t1,t7) + vρ(t6,t9))

+
1

23
(vρ(t5,t18) + vρ(t6,t18)) + 2a1 · vρ(t6,t9).

Putting these values into (5.1) give the value of a10 · (vρ(t5,t18) + vρ(t6,t18)) as required.

Lemma 5.3.4. Suppose that V is a Majorana algebra as in Proposition 5.3.1. Then

a16 · vρ(t6,t9) =− 1

26 · 3
(5a1 − a2) +

1

23 · 3
(a3 − a4) +

1

26 · 3
(5a16 − a17)− 1

23 · 3
(a18 − a19)

− 1

25
(vρ(t1,t5) + vρ(t1,t7)) +

1

25
(vρ(t5,t16) − vρ(t7,t16)) + a1 · vρ(t6,t9).

Proof. The dihedral algebras 〈〈a6, a10〉〉 and 〈〈a10, a16〉〉 are of types 4A and 2A respectively and

so

α0 := 2a6 + 2a7 −
1

2
a10 + vρ(t6,t9) ∈ V

(a10)
0

β0 := −1

3
(2a6 + 2a7 + a9 + a10) + vρ(t6,t9) ∈ V

(a10)
1
22

α1 := − 1

22
a10 + a16 + a18 ∈ V (a10)

0

β1 := a16 − a18 ∈ V (a10)
1
22

.

Using the inner product values given by rows 6 and 7 of Table 5.2, we calculate that (β0, β1) = 0.

Thus, using the fusion rules,

a10 · ((α0 − β0) · (α1 − β1)) = − 1

22
(α0 · β1 + α1 · β0). (5.2)

We calculate that

(α0 − β0) · (α1 − β1) =− 1

23 · 3
(2a2 − 2a5 − 5a6 − 5a7 − 2a8) +

1

24
(a9 − a10)

+
1

23 · 3
(a16 + 13a18 − 4a19)− 1

22
(vρ(t5,t18) + vρ(t6,t18)) +

1

24
vρ(t6,t9).

Then, using the value of a10 · (vρ(t5,t18) + vρ(t6,t18)) given by Lemma 5.3.3, we calculate that

a10 · ((α0 − β0) · (α1 − β1)) =
1

25 · 3
(5a1 − 2a2 − 2a3 + a4) +

1

26 · 3
(a5 + a6 + a7 + a8)

+
1

26
(a9 + a10)− 1

24 · 3
(2a16 − 3a18) +

1

26
(vρ(t1,t5) + vρ(t1,t7))

+
1

26
vρ(t6,t9) −

1

25
(vρ(t5,t18) + vρ(t6,t18))−

1

2
a1 · vρ(t6,t9).

It remains only to calculate that

α0 · β1 + α1 · β0 =
1

23 · 3
(a2 + a4)− 1

24 · 3
(a5 + a6 + a7 + a8)− 1

24
(a9 + a10)

− 1

23 · 3
(a16 − a17 + 4a18 + 2a19)− 1

24
(vρ(t5,t16) + vρ(t6,t16) + vρ(t6,t9))

+
1

23
(vρ(t5,t18) + vρ(t6,t18)) + 2a16 · vρ(t6,t9).

Putting these values into (5.2) gives the value of a16 · vρ(t6,t9) as required.
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Proof of Proposition 5.3.1. We will show that such a Majorana representation cannot obey ax-

iom M1. Using the inner product values in rows 3, 5 and 6 of Table 5.2 we calculate that

(a3 · a16, vρ(t6,t9)) =
1

23
(a3 − a14 + a16, vρ(t6,t9)) =

5

26 · 3
.

Now, the value of a16 · vρ(t6,t9) is given by Lemma 5.3.4. Using the inner product values in rows

2, 4 and 8 of Table 5.2 we calculate that

(a3, a16 · vρ(t6,t9)) = − 5

28 · 3
.

In particular, (a3 · a16, vρ(t6,t9)) 6= (a3, a16 · vρ(t6,t9)), in contradiction with axiom M1.

5.3.2 The Group 23.23

Let

a := (1, 2)(3, 4), b := (1, 3)(2, 4)(5, 6)(7, 8) , c := (1, 5)(2, 7)

and let G = 〈a, b, c〉 ∼= 23.23.

In the following, we label certain involutions of G as below.

i ti i ti i ti

1 a 10 ca 19 (bc)2

2 ac 11 cb 20 ((bc)2)a

3 acb 12 cab 21 (abc)2

4 acbc 13 ab 22 ((abc)2)a

5 b 14 (ab)c 23 acabcbc

6 bc 15 (ab)ca 24 (acabcbc)a

7 bca 16 (ab)cac 25 (acabcbc)b

8 bcac 17 (ac)2 26 (acabcbc)ab

9 c 18 ((ac)2)b 27 (a · bc)2

Proposition 5.3.5. There are no representations of the form (G,T1, V ) where

T1 := {ti | 1 ≤ i ≤ 16}.

We first give a brief summary of the proof of this result. In Lemma 5.3.6 we give some of the

inner products on the 2-closed part of the algebra. In Lemma 5.3.10 we give some of the inner

products on the 3-closed part of the algebra, using the algebra products given in Lemmas 5.3.7,

5.3.8 and 5.3.9. Finally, Lemma 5.3.11 gives one further algebra product which then allow us to

prove our main result.

In the following, we suppose that there exists such an algebra V and let ai := ψ(ti) for 1 ≤ i ≤ 16.

Lemma 5.3.6. Suppose that V is a Majorana algebra as in Proposition 5.3.5. Then Table 5.3

gives the value of the inner product on certain vectors in the 2-closed part of V .
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i u v (u, v)

1 a1 vρ(t5,t9)
3
23

2 a3 vρ(t1,t9)
1

23·3

3 a5 vρ(t1,t9)
3
25

4 a9 vρ(t1,t6)
1
24

5 a9 vρ(t1,t11)
1

23·3

6 a9 vρ(t5,t10)
1

23·3

7 a9 vρ(t6,t13)
1
24

8 a13 vρ(t1,t11)
3
25

9 a13 vρ(t5,t9)
3
25

10 vρ(t1,t9) vρ(t1,t11)
1
32

11 vρ(t1,t9) vρ(t3,t9)
2
32

12 vρ(t1,t9) vρ(t5,t10)
7

2·32

13 vρ(t1,t14) vρ(t2,t11)
19

23·32

Table 5.3: Some inner product values on the 2-closed part of V for G ∼= 23.23

Proof. In most cases, we use the orthogonality of eigenvectors (Lemma 2.3.4) in order to calculate

these inner product values. As such, we begin by listing some eigenvectors of axes of V . These

eigenvectors can all be deduced from the shape of the algebra and the known eigenvectors of

dihedral algebras.

The following are eigenvectors of a1:

α
(a1)
0 := a3 ∈ V (a1)

0

α
(a1)
1 := −1

2
a1 + 2a11 + 2a12 + vρ(t1,t11) ∈ V

(a1)
0

β
(a1)
0 := −1

3
(a1 + a2 + a9 + a12) + vρ(t1,t9) ∈ V

(a1)
1
22

.

The following are eigenvectors of a10:

α
(a10)
0 := a9 ∈ V (a10)

0

α
(a10)
1 := 2a3 + 2a4 −

1

2
a10 + vρ(t3,t9) ∈ V

(a10)
0

α
(a10)
2 := 2a1 + 2a2 −

1

2
a10 + vρ(t1,t9) ∈ V

(a10)
0

β
(a10)
0 := −1

3
(2a1 + 2a2 + a9 + a10) + vρ(t1,t9) ∈ V

(a10)
1
22

β
(a10)
1 := −1

3
(2a5 + 2a7 + a10 + a12) + vρ(t5,t10) ∈ V

(a10)
1
22

.
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The following are eigenvectors of a11:

α
(a11)
0 := a9 ∈ V (a11)

0

β
(a11)
0 := −1

3
(2a1 + 2a3 + a11 + a12) + vρ(t1,t11) ∈ V

(a11)
1
22

.

Row 1 First,

(a1, a5 · a9) =
1

26
(a1, 3a5 + a6 + 3a9 + a11 − 3vρ(t5,t9)) =

17

211
− 3

26
(a1, vρ(t5,t9)).

Conversely,

(a1 · a5, a9) =
1

23
(a1 + a5 − a13, a9) =

1

28
.

Axiom M1 then implies that (a1, vρ(t5,t9)) = 3
23 , as required.

Row 2 This is given by the equality (α
(a1)
0 , β

(a1)
0 ) = 0.

Row 3 First,

(a5, a1 · a9) =
1

26
(a5, 3a1 + a2 + 3a9 + a10 − 3vρ(t1,t9)) =

17

211
− 3

26
(a5, vρ(t1,t9))

Conversely,

(a5 · a1, a9) =
1

23
(a1 + a5 − a13, a9) =

1

28
.

Axiom M1 then implies that (a5, vρ(t1,t9)) = 3
25 as required.

Row 4 Using row 1 for the value of (a1, vρ(t5,t9)), we calculate that

(a1, a6 · a9) =
1

26
(a1, a5 + 3a6 + 3a9 + a11 − 3vρ(t5,t9)) =

1

210
.

Conversely,

(a1 · a6, a9) =
1

26
(3a1 + a4 + 3a6 + a7 − 3vρ(t1,t6), a9) =

1

28
− 3

26
(a9, vρ(t1,t6)).

Axiom M1 then implies that (a9, vρ(t1,t6)) = 1
24 , as required.

Row 6 This is given by the equality (α
(a11)
0 , β

(a11)
0 ) = 0.

Row 7 This is given by the equality (α
(a10)
0 , β

(a10)
1 ) = 0.

Row 8 Using row 9 for the value of (a13, vρ(t5,t9)), we calculate that

(a13, a6 · a9) =
1

26
(a13, a5 + 3a6 + 3a9 + a11 − 3vρ(t5,t9)) =

1

210
.

Conversely,

(a13 · a6, a9) =
1

26
(3a6 + a7 + 3a13 + a16 − 3vρ(t6,t13), a9) =

1

28
− 3

26
(a9, vρ(t6,t13)).

Axiom M1 then implies that (a9, vρ(t6,t13)) = 1
24 , as required.

Row 9 First,

(a11, a1 · a13) =
1

23
(a11, a1 + a13 − a5) =

1

28
.

Conversely,

(a11 · a1, a13) =
1

26
(3a1 + a3 + 3a11 + a12 − 3vρ(t1,t11), a13) =

17

211
− 3

26
(a13, vρ(t1,t11)).

Axiom M1 then implies that (a13, vρ(t1,t11)) = 3
25 , as required.
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Row 10 First,

(a13, a5 · a9) =
1

26
(a13, 3a5 + a6 + 3a9 + a11 − 3vρ(t5,t9)) =

17

211
− 3

26
(a1, vρ(t5,t9)).

Conversely,

(a13 · a5, a9) =
1

23
(a13 + a5 − a1, a9) =

1

28
.

Axiom M1 then implies that (a13, vρ(t5,t9)) = 3
25 , as required.

Row 11 This is given by the equality (α
(a1)
1 , β

(a1)
0 ) = 0 along with the values of (a2, vρ(t1,t11))

and (a11, vρ(t1,t9)) = (a12, vρ(t1,t9)) = (a9, vρ(t1,t11)) as given by rows 2 and 5 respectively.

Row 12 This is given by the equality (α
(a10)
1 , β

(a10)
0 ) = 0 along with the value of (a3, vρ(t1,t9)) =

(a4, vρ(t1,t9)) = (a1, vρ(t3,t9)) = (a2, vρ(t3,t9)) as given by row 2.

Row 13 This is given by the equality (α
(a10)
2 , β

(a10)
1 ) = 0 along with the values of (a1, vρ(t5,t10)) =

(a2, vρ(t5,t10)), (a5, vρ(t1,t9)) = (a7, vρ(t1,t9)) and (a12, vρ(t1,t9)) as given by rows 1, 3 and 5

respectively.

Row 14 First, using the value of (a15, vρ(t2,t11)) as given by row 8, we calculate that

(a15, a4 · vρ(t2,t11)) = − 1

24
(a15, a2 − 5a4 + 2a11 + 2a12 − 3vρ(t2,t11)) =

3

28
.

Conversely, using the values of (a1, vρ(t2,t11)) and (a14, vρ(t2,t11)) = (a15, vρ(t2,t11)) as given

by rows 2 and 8 respectively, we calculate that

(a15 · a4, vρ(t2,t11)) =
1

26
(a1 + 3a4 + a14 + 3a15 − 3vρ(t1,t14), vρ(t2,t11))

=
37

29 · 3
− 3

26
(vρ(t2,t11), vρ(t1,t14)).

Axiom M1 then implies that (vρ(t1,t14), vρ(t2,t11)) = 19
23·32 , as required.

Lemma 5.3.7. Suppose that V is a Majorana algebra as in Proposition 5.3.5. Then

a3 · (a1 · vρ(t2,t11)) =
1

26 · 3
(a1 − 3a2 + a3 − a4 − 3vρ(t1,t11) + 3vρ(t2,t11)) +

1

22
(a2 · vρ(t1,t11)).

Proof. The dihedral algebras 〈〈a2, a11〉〉, 〈〈a2, a1〉〉 and 〈〈a2, a3〉〉 are of types 4A, 2B and 2B

respectively and so

α0 := −1

2
a2 + 2a11 + 2a12 + vρ(t2,t11) ∈ V

(a2)
0

α1 := a1 ∈ V (a2)
0

α2 := a3 ∈ V (a2)
0

β0 := −1

3
(a2 + a4 + 2a11 + 2a12) + vρ(t2,t11) ∈ V

(a2)
1
22

.

We now use the fusion rules to determine further eigenvectors. We calculate that

α3 := α0 · α1 −
1

24
(3α1 + α2) =

1

24
(2a11 + 2a12 − 3vρ(t1,t11)) + a1 · vρ(t2,t11) ∈ V

(a2)
0

105



and

β1 := α0 · β0 = − 1

24 · 3
(3a1 + a3 + 2a11 + 2a12 − 3vρ(t1,t11)) + a1 · vρ(t2,t11) ∈ V

(a2)
1
22

.

We now use the resurrection principle to find the value of a3 · (a1 · vρ(t2,t11)). Firstly,

a2 · ((α3 − β1) · α2) =
1

24 · 3
a2 · (a1 − 2a3 + a11 + 2a12 − 3vρ(t1,t11))

=
1

28 · 3
(3a2 + a4 + 2a11 + 2a12 − 3vρ(t2,t11))−

1

24
a2 · vρ(t1,t11).

However, using the fusion rules,

a2 · ((α3 − β1) · α2) = − 1

22
β1 · α2

=
1

28 · 3
(a1 + a3 + 2a11 + 2a12 − 3vρ(t1,t11))−

1

22
a3 · (a1 · vρ(t2,t11)).

Equating these two expressions gives the value of a3 · (a1 · vρ(t2,t11)) as required.

Lemma 5.3.8. Suppose that V is a Majorana algebra as in Proposition 5.3.5. Then

a1 · (a1 · vρ(t2,t11)) =
1

25
a1 +

1

22
a1 · vρ(t2,t11).

Proof. The dihedral algebras 〈〈a1, a4〉〉 and 〈〈a1, a11〉〉 are of type 2B and 4A respectively. Thus

from the known eigenvectors of dihedral algebras,

α0 = a4 ∈ V (a1)
0

α1 = −1

2
a1 + 2a11 + 2a12 + vρ(t1,t11) ∈ V

(a1)
0

β0 = −1

3
(a1 + a3 + 2a11 + 2a12) + vρ(t1,t11) ∈ V

(a1)
1
22

.

We now use the fusion rules to determine further eigenvectors. We calculate that

β1 := α0 · β0 = − 1

24 · 3
(a2 + 3a4 + 2a11 + 2a12 − 3vρ(t2,t11)) + a4 · vρ(t1,t11) ∈ V

(a1)
1
22

and

α2 := α0 · α1 =
1

24
(a2 + 2a4 + 2a11 + 2a12 − 3vρ(t2,t11)) + a4 · vρ(t1,t11) ∈ V

(a1)
0 .

We now determine the product a4 · (a4 · vρ(t1,t11)). We do this using the resurrection principle

with α2 and β1. Firstly,

a1 · ((α2 − β1) · α0) = a1 ·
(

1

22 · 3
(a2 + 3a4 + 2a11 + 2a12 − 3vρ(t2,t11)) · α0

)
= a1 ·

(
1

24 · 3
(a2 + 9a4 + 2a11 + 2a12 − 3vρ(t2,t11))

)
=

1

28 · 3
(3a1 + a3 + 2a11 + 2a12 − 3vρ(t1,t11))−

1

24
a1 · vρ(t2,t11).

However, using the fusion rules, we have

a1 · ((α2 − β1) · α0) = a1 · (α2 · α0 − β1 · α0)

= − 1

22
β1 · α0

=
1

28 · 3
(a2 + 9a4 + 2a11 + 2a12 − 3vρ(t2,t11))−

1

22
a4 · (a4 · vρ(t1,t11)).
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Equating these two expressions gives

a4 · (a4 · vρ(t1,t11)) =
1

26 · 3
(3a1 − a2 + a3 − 9a4 − 3vρ(t1,t11) + 3vρ(t2,t11)) +

1

22
a1 · vρ(t2,t11).

Using this, we can now calculate that

β2 := 4α0 · β1 = − 1

24 · 3
(3a1 + a3 + 2a11 + 2a12 − 3vρ(t1,t11)) + a1 · vρ(t2,t11) ∈ V

(a1)
1
22

.

Moreover,

β3 := β2 − 4β0 = β3 = − 1

23 · 3
a1 + a1 · vρ(t2,t11) ∈ V

(a1)
1
22

.

We can then use β3 to calculate the value of a1 · (a1 · vρ(t2,t11)) as required.

Lemma 5.3.9. Suppose that V is a Majorana algebra as in Proposition 5.3.5. Then

a12 · (a1 · vρ(t2,t11)) =
1

27 · 3
(a1 + a2 + a3 + a4 + a11 + 7a12)− 1

28
(vρ(t1,t11) + vρ(t2,t11))

+
1

26
(
(5a1 + 3a3) · vρ(t2,t11) − (4a2 + 4a4) · vρ(t1,t11)

)
.

Proof. The dihedral algebras 〈〈a1, a12〉〉 and 〈〈a2, a12〉〉 are both of type 4A and so

α0 := 2a1 + 2a3 −
1

22
a12 + vρ(t1,t11) ∈ V

(a12)
0

α1 := 2a2 + 2a4 −
1

22
a12 + vρ(t2,t11) ∈ V

(a12)
0

β0 := −1

3
(2a1 + 2a3 + a11 + a12) + vρ(t1,t11) ∈ V

(a12)
1
22

β1 := −1

3
(2a2 + 2a4 + a11 + a13) + vρ(t2,t11) ∈ V

(a12)
1
22

.

From the fusion rules,

a12 · ((α0 − β0) · (α1 + β1)) =
1

22
(α0 · β1 − α1 · β0 − (β0, β1)a12). (5.3)

We calculate that

(α0 − β0) · (α1 + β1) =− 1

22 · 32
(7a1 + a3 + 7a2 + a4)− 1

22
a12 +

1

23 · 3
(7vρ(t1,t11) + vρ(t2,t11))

+
16

3
(a1 · vρ(t2,t11) + a3 · vρ(t2,t11)).

Thus

a12 · ((α0 − β0) · (α1 + β1)) = − 1

24 · 32
(7a1 + a3 + 7a2 + a4)− 1

22 · 32
a11 −

1

2 · 3
a12

+
1

25 · 3
(7vρ(t1,t11) + vρ(t2,t11)) +

16

3
(a12 · (a1 · vρ(t2,t11)) + a12 · (a3 · vρ(t2,t11))).

We now consider the right hand side of (5.3). We calculate that (β0, β1) = − 1
32 using the values

of (a1, vρ(t2,t11)) = (a3, vρ(t2,t11)) = (a2, vρ(t1,t11)) = (a2, vρ(t3,t9)) and (a13, vρ(t1,t11)) as given by

rows 2 and 8 of Table 5.3 respectively.

Moreover,

α0 · β1 − α1 · β0 =− 1

22 · 3
(a1 − a2 + a3 − a4) +

1

23
(vρ(t1,t11) − vρ(t2,t11))

+
8

3
((a1 + a3) · vρ(t2,t11) − (a2 + a4) · vρ(t1,t11))
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i u v (u, v)

1 a1 a1 · vρ(t2,t11) 1
23·3

2 a2 a1 · vρ(t2,t11) 0

3 a3 a1 · vρ(t2,t11) 0

4 a4 a1 · vρ(t2,t11) 0

5 a9 a1 · vρ(t2,t11) 1
26·3

6 a9 a1 · vρ(t5,t9) 3
29

7 a9 a1 · vρ(t5,t10) − 7
29·3

8 a11 a1 · vρ(t2,t11) 1
26

9 a13 a1 · vρ(t2,t11) 1
26·3

10 a14 a1 · vρ(t2,t11) 1
28·3

11 vρ(t1,t9) a1 · vρ(t2,t11) 0

12 vρ(t1,t11) a1 · vρ(t2,t11) − 1
23·3

13 vρ(t2,t11) a1 · vρ(t2,t11) 1
23·3

14 vρ(t3,t9) a1 · vρ(t2,t11) − 1
23·32

15 vρ(t9,t13) a1 · vρ(t2,t11) 7
27·32

16 a1 · vρ(t2,t11) a1 · vρ(t2,t11) 3
28

17 a1 · vρ(t2,t11) a1 · vρ(t3,t9) − 5
28·32

Table 5.4: Some inner product values on the 3-closed part of V for G ∼= 23.23

where all values are given by the known values of the algebra product on dihedral algebras,

except for the products vρ(t1,t11) · vρ(t2,t11) which cancel out.

Putting these values into (5.3) gives

a12 · (a1 · vρ(t2,t11)) + a12 · (a3 · vρ(t1,t11)) =
1

26 · 3
(a1 + a2 + a3 + a4 + a11 + 7a12)

− 1

27
(vρ(t1,t11) + vρ(t2,t11)) +

1

23
((a1 + a3) · vρ(t2,t11) − (a2 + a4) · vρ(t1,t11)).

Finally, we note that (a1 · vρ(t2,t11))t12 = a3 · vρ(t2,t11) so that

a12 · (a1 · vρ(t2,t11) − a3 · vρ(t2,t11)) =
1

25
(a1 · vρ(t2,t11) − a3 · vρ(t2,t11))

which allows us to calculate a12 · (a1 · vρ(t2,t11)) as required.

Lemma 5.3.10. Suppose that V is a Majorana algebra as in Proposition 5.3.5. Then Table 5.4

gives the value of the inner product on certain vectors in the 3-closed part of V .

Proof. We use axiom M1 to recover the inner product values in all cases below.
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Row 1 From row 2 of Table 5.3, (a1, vρ(t2,t11)) = 1
23·3 and so

(a1, a1 · vρ(t2,t11)) = (a1 · a1, vρ(t2,t11)) = (a1, vρ(t2,t11)) =
1

23 · 3
.

Rows 2 - 4 For v ∈ {a2, a3, a4}, v · a1 = 0 and so (v, a1 · vρ(t2,t11)) = (v · a1, vρ(t2,t11)) = 0.

Rows 5 - 7 The value of a1 · a9 is given by the known values of dihedral algebras as

a1 · a9 =
1

26
(3a1 + a2 + 3a9 + a10 − 3vρ(t1,t9)).

Then, using the values of (a1, vρ(t5,t9)) = (a1, vρ(t5,t10)), (a1, vρ(t2,t11)), (a9, vρ(t2,t11)),

(a9, vρ(t5,t9)) = (a9, vρ(t5,t10)) and (vρ(t1,t9), vρ(t2,t11)) as given by rows 1, 2, 5, 6 and 10 of

Table 5.3 respectively, we calculate that

(a9, a1 · vρ(t2,t11)) = (a1 · a9, vρ(t2,t11)) =
1

26 · 3

(a9, a1 · vρ(t5,t9)) = (a1 · a9, vρ(t5,t9)) =
3

29

(a9, a1 · vρ(t5,t10)) = (a1 · a9, vρ(t5,t10)) = − 7

29 · 3
.

Row 8 The value of a1 · a11 is given by the known values of dihedral algebras as

a1 · a11 =
1

26
(3a1 + a3 + 3a11 + a12 − 3vρ(t1,t11)).

Then, using the values of (a1, vρ(t2,t11)) = (a3, vρ(t2,t11)) and (vρ(t1,t11), vρ(t2,t11)) as given

by rows 2 and 11 of Table 5.3 respectively, we calculate that

(a11, a1 · vρ(t2,t11)) = (a1 · a11, vρ(t2,t11)) =
1

26
.

Row 9 The value of a1 · a13 is given by the known values of dihedral algebras as

a1 · a13 =
1

23
(a1 − a5 + a13).

Then, using the values of (a1, vρ(t2,t11)), (a5, vρ(t2,t11)) and (a13, vρ(t2,t11)) as given by rows

2, 3 and 8 of Table 5.3 respectively, we calculate that

(a13, a1 · vρ(t2,t11)) = (a1 · a13, vρ(t2,t11)) =
1

26 · 3
.

Row 10 The value of a1 · a14 is given by the known values of dihedral algebras as

a1 · a14 =
1

26
(3a1 + a4 + 3a14 + a15 − 3vρ(t1,t14)).

Then, using the values of (a1, vρ(t2,t11)), (a14, vρ(t2,t11)) = (a15, vρ(t2,t11)) and (vρ(t2,t11), vρ(t1,t14))

as given by rows 2, 8 and 13 of Table 5.3 respectively, we calculate that

(a14, a1 · vρ(t2,t11)) = (a1 · a14, vρ(t2,t11)) =
1

28 · 3
.

Row 11 The value of a1 · vρ(t1,t9) is given by the known values of dihedral algebras as

a1 · vρ(t1,t9) =
1

24
(5a1 − a2 − 2a9 − 2a10 + 3vρ(t1,t9)).

Then, using the values of (a1, vρ(t2,t11)), (a9, vρ(t2,t11)) = (a10, vρ(t2,t11)) and (vρ(t1,t9), vρ(t2,t11))

as given by rows 2, 5 and 11 of Table 5.3 respectively, we calculate that

(vρ(t1,t9), a1 · vρ(t2,t11)) = (a1 · vρ(t1,t9), vρ(t2,t11)) = 0.
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Row 12 The value of a1 · vρ(t1,t11) is given by the known values of dihedral algebras as

a1 · vρ(t1,t11) =
1

24
(5a1 − a3 − 2a11 − 2a12 + 3vρ(t1,t11)).

Then, using the values of (a1, vρ(t2,t11)) = (a3, vρ(t2,t11)) and (vρ(t1,t11), vρ(t2,t11)) as given

by rows 2 and 11 of Table 5.3 respectively, we calculate that

(vρ(t1,t11), a1 · vρ(t2,t11)) = (a1 · vρ(t1,t11), vρ(t2,t11)) = − 1

23 · 3
.

Row 13 From row 2 of Table 5.3, (a1, vρ(t2,t11)) = 1
23·3 and so

(vρ(t2,t11), a1 · vρ(t2,t11)) = (vρ(t2,t11) · vρ(t2,t11), a1) = (a1, vρ(t2,t11)) =
1

23 · 3
.

Rows 14 From Lemma 5.3.7,

a3 · (a1 · vρ(t2,t11)) =
1

26 · 3
(a1 − 3a2 + a3 − a4 − 3vρ(t1,t11) + 3vρ(t2,t11)) +

1

22
(a2 · vρ(t1,t11)).

Using the value of (a9, vρ(t1,t11)) = (a9, vρ(t2,t11)) as given by row 5 of Table 5.3, as well as

the value of (a9, a2 · vρ(t3,t9)) as given by row 5 of this table, we calculate that

(a9, a3 · (a1 · vρ(t2,t11))) =
1

210

Conversely, using the value of (a5, vρ(t1,t9)) as given by row 3 of Table 5.3 as well as the

values of (a3, a1 · vρ(t2,t11)), (a4, a1 · vρ(t2,t11)) and (a9, a1 · vρ(t2,t11)) = (a10, a1 · vρ(t2,t11)) as

given by rows 3, 4 and 5 respectively of this table, we calculate that

(a9 · a3, a1 · vρ(t2,t11)) =
1

26
(3a3 + a4 + 3a9 + a10 − 3vρ(t3,t9), a1 · vρ(t2,t11))

=
1

210 · 3
− 3

26
(vρ(t3,t9), a1 · vρ(t2,t11)).

Thus (vρ(t3,t9), a1 · vρ(t2,t11)) = − 1
23·32 as required.

Row 15 From Lemma 5.3.9,

a12 · (a1 · vρ(t2,t11)) =
1

27 · 3
(a1 + a2 + a3 + a4 + a11 + 7a12)− 1

28
(vρ(t1,t11) + vρ(t2,t11))

+
1

26
((5a1 + 3a3) · vρ(t2,t11) − 4(a2 + a4) · vρ(t1,t11)).

Using the value of (a13, vρ(t1,t11)) = (a13, vρ(t2,t11)) as given by row 8 of Table 5.3, as

well as the values of (a13, a1 · vρ(t2,t11)) = (a13, a4 · vρ(t1,t11)) and (a13, a3 · vρ(t2,t11)) =

(a13, a2 · vρ(t1,t11)) as given by rows 9 and 10 respectively of this table, we calculate that

(a13, a12 · (a1 · vρ(t2,t11))) =
13

214
.

Conversely,

a12 · a13 =
1

26
(a9 + 3a12 + 3a13 + a14 − 3vρ(t9,t13)).

Using the values of (a9, a1 · vρ(t2,t11)), (a12, a1 · vρ(t2,t11)), (a13, a1 · vρ(t2,t11)) and (a14, a1 ·
vρ(t2,t11)), given by rows 5, 8, 9, and 10 respectively of this table, we calculate that

(a12 · a13, a1 · vρ(t2,t11)) =
53

214 · 3
− 3

26
(vρ(t9,t13), a1 · vρ(t2,t11)).

Thus (vρ(t9,t13), a1 · vρ(t2,t11)) = 7
27·32 as required.

110



Rows 16 and 17 From Lemma 5.3.8,

a1 · (a1 · vρ(t2,t11)) =
1

25
a1 +

1

22
a1 · vρ(t2,t11).

Thus, using the value of (a1, vρ(t2,t11)) as given by row 2 of Table 5.3 as well as the values

of (vρ(t2,t11), a1 · vρ(t2,t11)) and (vρ(t3,t9), a1 · vρ(t2,t11)) from rows 13 and 14 respectively of

this table, we calculate that

(a1 · vρ(t2,t11), a1 · vρ(t2,t11)) = (vρ(t2,t11), a1 · (a1 · vρ(t2,t11))) =
3

28

and

(a1 · vρ(t2,t11), a1 · vρ(t3,t9)) = (vρ(t3,t9), a1 · (a1 · vρ(t2,t11))) = − 5

28 · 32
.

Lemma 5.3.11. Suppose that V is a Majorana algebra as in Proposition 5.3.5. Then

a13 · vρ(t1,t9) =− 1

26
a1 −

1

26 · 3
(a4 + 8a5 − 2a6 − 2a7 − 23a13 + 2a16 + 2a15 − a16)

+
1

26
(vρ(t1,t6) + 3vρ(t1,t9) + vρ(t1,t11) − vρ(t2,t13) − 4vρ(t5,t9) − 4vρ(t5,t10))

+
1

25
(vρ(t9,t13) + vρ(t10,t13)) +

1

2
(a1 · vρ(t5,t9) + a1 · vρ(t5,t10)).

Proof. The dihedral algebras 〈〈a1, a9〉〉 and 〈〈a1, a5〉〉 are of type 4A and 2A respectively and so

α0 := −1

2
a1 + 2(a9 + a10) + vρ(t1,t9) ∈ V

(a1)
0

α1 := − 1

22
a1 + a5 + a13 ∈ V (a1)

0 .

β0 := −1

3
(a1 + a2 + 2a9 + 2a10) + vρ(t1,t9) ∈ V

(a1)
1
22

β1 := a5 − a13 ∈ V (a1)
1
22

.

From the fusion rules,

a1 · ((α0 − β0) · (α1 − β1)) = − 1

22
(α0 · β1 + α1 · β0 − (β0, β1)a1). (5.4)

We calculate that

(α0 − β0) · (α1 + β1) =
1

25 · 3
(−6a1 + a2 + a3 + 4a5 + 8a6 + 8a7 + a8 + 20a9 + 20a10

+ 8a11 + 8a12 + 47a13 + 6vρ(t1,t9) − 3vρ(t2,t5))−
1

22
(vρ(t5,t9) + vρ(t5,t10)).

This then gives

a1 · ((α0 − β0) · (α1 + β1)) =
7

27
a1 +

1

28 · 3
(2a2 + 2a3 + 2a4 + 43a5 + 4a6 + 4a7 + a8 + 4a9

+ 4a10 + 4a11 + 4a12 − 43a13 − a14)− 1

27
(vρ(t1,t6) + vρ(t1,t9) + vρ(t1,t11))

− 1

28
(vρ(t2,t5) − vρ(t2,t13))−

1

22
(a1 · vρ(t5,t9) + a1 · vρ(t5,t10)).

We now consider the right hand side of (5.4). Using the values of (a5, vρ(t1,t9)) and (a13, vρ(t1,t9))

as given by rows 3 and 8 of Table 5.3 respectively, we calculate that (β0, β1) = 0.
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It remains to calculate that

α0 · β1 − α1 · β0 =
1

24
a1 +

1

26 · 3
(2a2 + 2a3 + 27a5 + 8a6 + 8a7 + a8 + 4a9 + 4a10 + 4a11 + 4a12

+ 3a13 − 4a14 − 4a15 + a16) +
1

24
(vρ(t1,t9) − 2vρ(t5,t9) − 2vρ(t5,t10) + vρ(t9,t13) + vρ(t10,t13))

− 1

26
(vρ(t2,t5) + vρ(t2,t13))− 2a13 · vρ(t1,t9).

We can then use these values in (5.4) to give the value of a13 · vρ(t1,t9) as required.

Proof of Proposition 5.3.5. Suppose for contradiction that G does admit such a representation.

We will show that

(a9 · a13, (a1 · vρ(t2,t11))) 6= (a9, a13 · (a1 · vρ(t2,t11))) (5.5)

which is in contradiction with axiom M1.

We start with the left hand side of (5.5). The algebra 〈〈a9, a13〉〉 is of type 4A and contains the

4A axis vρ(t9,t13) and so

a9 · a13 =
1

26
(3a9 + a12 + 3a13 + a14 − 3vρ(t9,t13)).

Using the values of (a9, a1 · vρ(t2,t11)), (a12, a1 · vρ(t2,t11)), (a13, a1 · vρ(t2,t11)), (a14, a1 · vρ(t2,t11))
and (vρ(t9,t13), a1 · vρ(t2,t11)) as given by rows 5, 8, 9, 10 and 15 of Table 5.4 respectively, we

calculate that

(a9 · a13, a1 · vρ(t2,t11)) =
23

214 · 3
.

We now consider the right hand side of (5.5) and begin by calculating the value of a13 · (a1 ·
vρ(t2,t11)). As (a1 · vρ(t2,t11))t13 = a1 · vρ(t3,t9), from Lemma 2.3.3 we have

a1 · vρ(t2,t11) − a1 · vρ(t3,t9) ∈ V
(a13)
1
25

and so

a13 · (a1 · vρ(t2,t11))− a13 · (a1 · vρ(t3,t9)) =
1

25
(a1 · vρ(t2,t11) − a1 · vρ(t3,t9)). (5.6)

We can check using the inner product values in rows 2, 5 and 10 of Table 5.3 and rows 1, 2, 3,

5, 8, 11, 12, 16 and 17 of Table 5.4 that the following is an element of the nullspace of V

n :=− 1

24 · 3
(6a1 + a2 + a3 + 2a9 + 2a10 + 2a11 + 2a12) +

1

24
(vρ(t1,t9) + vρ(t1,t11))

+ a1 · (vρ(t2,t11) + vρ(t3,t9))

and so a13 · n = 0. Note that vρ(t1,t9) − vρ(t1,t11) ∈ V
(a13)
1
25

and so

a13 · (vρ(t1,t9) + vρ(t1,t11)) = a13 · (2vρ(t1,t9) + (vρ(t1,t9) − vρ(t1,t11)))

= 2a13 · vρ(t1,t9) +
1

25
(vρ(t1,t9) − vρ(t1,t11))

where the value of a13 · vρ(t1,t9) is given in Lemma 5.3.11.
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We can now calculate that, for n as above,

a13 · n =− 13

29
a1 −

1

29 · 3
(2a2 + 2a3 + a4 + 16a5 − 2a6 − 2a7)

− 1

27 · 3
(a9 + a10 + a11 + a12 + 4a13 + a14 + a15) +

1

29
vρ(t1,t6)

+
1

28
(vρ(t1,t9) + vρ(t1,t11))−

1

27
(vρ(t5,t9) + vρ(t5,t10) − vρ(t9,t13) − vρ(t10,t13))

+ a13 · (a1 · vρ(t2,t11) + a1 · vρ(t3,t9))

Using this equation with the fact that a13 ·n = 0 gives the value of a13 ·(a1 ·vρ(t2,t11)+a1 ·vρ(t3,t9)).
From (5.6), we have the value of a13 · (a1 · vρ(t2,t11) − a1 · vρ(t3,t9)) and so we can calculate that

a13 · (a1 · vρ(t2,t11)) =
13

210
a1 +

1

210 · 3
(2a2 + 2a3 + a4 − 16a5 − 2a6 − 2a7)

+
1

28 · 3
(a9 + a10 + a11 + a12 + 4a13 + a14 + a15)− 1

210
vρ(t1,t6)

− 1

29
(vρ(t1,t9) + vρ(t1,t11)) +

1

28
(vρ(t5,t9) + vρ(t5,t10) − vρ(t9,t13) − vρ(t10,t13))

+
1

26
(a1 · vρ(t2,t11) − a1 · vρ(t3,t9))−

1

25
(a1 · vρ(t5,t9) + a1 · vρ(t5,t10)).

Finally, we use rows 4 - 7 of Table 5.3 and rows 5 - 8 of Table 5.4 to calculate that

(a9, a13 · (a1 · vρ(t2,t11))) =
35

214 · 3
6= (a9 · a13, a1 · vρ(t2,t11)).

5.4 The main theorem

We can now prove the main results of this work.

Theorem 5.4.1. Suppose that V is a Majorana algebra which obeys axiom M8 and which is

generated by three Majorana axes a0, a1, a2 such that the dihedral algebra 〈〈a0, a1〉〉 is of type 2A.

Then V is must be isomorphic to one of the 34 Majorana algebras whose dimensions are given

in Table 5.1.

Proof. In Theorem 3.2.1, we show that such an algebra must occur as a Majorana representation

of the form (G,T, V ) where G = 〈a, b, c〉 is isomorphic to one of the 26 triangle-point groups in

Table 5.1 and T is such that a, b, c, ab ∈ T .

In Section 5.2, for each of these groups we have classified the possible values for the set T . Then,

for each choice of G and T , we have used the algorithm described in Chapter 4 to classify and

construct all representations of the form (G,T, V ). Their dimensions are given in Table 5.1.

Theorem 5.4.2. Each of the 34 Majorana algebras whose dimensions are given in Table 5.1 is

isomorphic to a subalgebra of the Griess algebra.

Before proving this result, we first recall some important results concerning Majorana represen-

tations and the Griess algebra.
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Definition 5.4.3. A Majorana representation (G,T, V ) is based on an embedding into the

Monster if there exists an injective homomorphism ι : G ↪→M such that ι(T ) ⊆ 2A.

Proposition 5.4.4. Suppose that G is a finite group generated by a G-closed set of involutions T .

Suppose further that there exists an injective homomorphism ι : G ↪→M such that ι(T ) = ι(G)∩
2A. Then the subalgebra V of the Griess algebra that is generated by the 2A axes corresponding

to ι(T ) is a Majorana representation of G of the form (G,T, V ) that obeys axiom M8.

Proof. As the Majorana axioms M1 - M8 are known to hold in the Griess algebra [Iva09, Propo-

sition 8.6.2], V is certainly a Majorana algebra. If ψ is Conway’s bijection [Con84] between the

2A involutions and 2A axes then (G,T, V, ι, ι ◦ ψ) is the required Majorana representation.

In the following, as in [Nor85], we will consider the subgroups in question as subgroups of the

group A12, or in one case as a subgroup of the group 2D5(2) ∼= O−10(2). Both these groups are

known to 2A-embed into the Monster, as described below.

Lemma 5.4.5 ([Nor85], Lemma 6).

1. Let ι be an embedding of A12 into M and suppose that t ∈ A12. Then ι(t) is a 2A involution

of M if and only if t is an involution of A12 of cycle type 22 or 26.

2. Let ι be an embedding of 2D5(2) into M and suppose that t ∈ 2D5(2). Then ι(t) is a

2A involution of M if and only if t is an involution of 2D5(2) and is a product of two

commuting 3-transpositions in the automorphism group of 2D5(2).

Proof of Theorem 5.4.2. For each of the 24 triangle-point groups G = 〈a, b, c〉 given in Table 5.1,

Norton [Nor85, Table 3] gives embeddings ι : G ↪→ M such that ι(a), ι(b), ι(c), ι(ab) ∈ 2A. We

do not assume that this list is exhaustive.

From Proposition 5.4.4, if ι is such an embedding, then the subalgebra of VM of the form

〈〈ψ(ι(G) ∩ 2A)〉〉 must be isomorphic to one of the Majorana algebras whose dimensions are

given in Table 5.1. We therefore need to show that, for each group G = 〈a, b, c〉 given in Table

5.1, the number (up to isomorphism) of Majorana representations of the form (G,T, V ) with

a, b, c, ab ∈ T is equal to the number (up to isomorphism) of subalgebras of VM of the form

〈〈ψ(ι(G) ∩ 2A)〉〉 for the embeddings ι given by [Nor85, Table 3].

For each group in Table 5.1, the corresponding Majorana representations are all of different

dimensions and so must be pairwise non-isomorphic. Moreover, for each group, the number of

embeddings given in [Nor85, Table 3] is equal to the number of Majorana representations given

in Table 5.1. Thus it suffices to check that for each group, the embeddings given in [Nor85,

Table 3] give rise to pairwise non-isomorphic subalgebras of VM.

In the cases where a group admits only one Majorana representation (and equivalently has

only one embedding into M), there is nothing to check and we are done. For the cases where

G ∼= S4 or G is dihedral and the case where G ∼= A5 then the fact that the corresponding

Majorana representations are isomorphic to subalgebras of VM is given by [IPSS10] and [IS12a]
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respectively. The remaining cases are treated below. In each case, for each embedding we state

to which Majorana representation it corresponds.

The group 2×D8. Let G ∼= 2×D8. Then, up to conjugacy, there are three embeddings of G

into M and these are given by rows 4, 7 and 8 of Table 3 in [Nor85]. We label these embeddings

ι1, ι2 and ι3 respectively. Using the generators given in the seventh column of Table 3 of [Nor85],

we calculate that

|ι1(G) ∩ 2A|= 10, |ι2(G) ∩ 2A|= 8 and |ι3(G) ∩ 2A|= 8.

Thus the representation constructed in Proposition 5.2.13 is based on the embedding ι1.

As |ι2(G) ∩ 2A|= |ι3(G) ∩ 2A|, we must check that these two embeddings give non-isomorphic

algebras. Firstly, for all t, s ∈ ι2(G)∩ 2A such that o(ts) = 4, we find that (ts)2 /∈ 2A and so the

corresponding subalgebra of VM contains dihedral algebras of type 4A but none of type 4B.

Conversely, for all t, s ∈ ι3(G) ∩ 2A such that o(ts) = 4, we find that (ts)2 ∈ 2A and so the

corresponding subalgebra of VM contains dihedral algebras of type 4B but none of type 4A. Thus

these two algebras are indeed non-isomorphic and the Majorana representations constructed in

5.2.10 and 5.2.11 are based on the embeddings ι3 and ι2 respectively.

The group 24.2. Let G ∼= 24.2. Then, up to conjugacy, there are two embeddings of G into

M and these are given by rows 17 and 20 of Table 3 in [Nor85]. We label these embeddings ι1

and ι2 respectively. Using the generators given in the seventh column of Table 3 of [Nor85], we

calculate that

|ι1(G) ∩ 2A|= 10 and |ι2(G) ∩ 2A|= 14.

Thus the Majorana representations constructed in Propositions 5.2.17 and 5.2.18 are based on

the embeddings ι1 and ι2 respectively.

The group 2 × S4. Let G ∼= 2 × S4. Then, up to conjugacy, there are two embeddings of G

into M and these are given by rows 11 and 29 of Table 3 in [Nor85]. We label these embeddings

ι1 and ι2 respectively. Using the generators given in the seventh column of Table 3 of [Nor85],

we calculate that

|ι1(G) ∩ 2A|= 16 and |ι2(G) ∩ 2A|= 16.

As |ι1(G) ∩ 2A|= |ι2(G) ∩ 2A|, we must check that these two embeddings truly give different

algebras. Firstly, for all t, s ∈ ι1(G)∩ 2A such that o(ts) = 4, we find that (ts)2 /∈ 2A and so the

corresponding subalgebra of VM contains dihedral algebras of type 4A but none of type 4B.

Conversely, for all t, s ∈ ι2(G) ∩ 2A such that o(ts) = 4, we find that (ts)2 ∈ 2A and so the

corresponding subalgebra of VM contains dihedral algebras of type 4B but none of type 4A. Thus

these two algebras are indeed non-isomorphic and the Majorana representations constructed in

5.2.25 and 5.2.26 are non-isomorphic and are based on the embeddings ι2 and ι1 respectively.
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The group 23.23. Let G ∼= 23.23. Then, up to conjugacy, there are two embeddings of G into

M and these are given by rows 18 and 25 of Table 3 in [Nor85]. We label these embeddings ι1

and ι2 respectively.

We calculate in Proposition 5.2.28 that a triangle-point group G = 〈a, b, c〉 ∼= 23.23 has three

conjugacy classes of size two. We label these classes

C5 := ((ac)2)G, C6 := (bc)2 and C7 := (abc)2.

Moreover, there are two possiblilities for the value of a set T such that (G,T, V ) is a Majorana

representation and a, b, c, ab ∈ T . The smaller of the two, which is of size 18, contains exactly

one of the conjugacy classes C5, C6 and C7. The larger of the two, which is of size 22, contains

all three classes.

The generators of ι1(G) are given in [Nor85] as elements of A12 and so it is straightforward to

calculate that

|ι1(G) ∩ 2A|= 18.

This implies that the Majorana representation constructed in Proposition 5.2.30 is based on the

embedding ι1.

The generators of ι2(G) are given in [Nor85] as elements of 2D5(2) as follows

a := (1 2).(3 4), b := (1 3).(2 4) and c := (4 5).(1 2 3 6 7 8 | 4 5 9 10 11 12).

We can then calculate that

(ac)2 = (1 2).(1 2 5 6 7 8 | 3 4 9 10 11 12)

(bc)2 = (2 4).(1 3 5 6 7 8 | 2 4 9 10 11 12)

(abc)2 = (2 3).(1 4 5 6 7 8 | 2 3 9 10 11 12).

Thus, by Lemma 5.4.5, ι2((ac)2), ι2((bc)2), ι2((abc)2) ∈ 2A and so |ι2(G)∩2A|= 22. This implies

that the Majorana representation constructed in Proposition 5.2.32 is based on the embedding

ι2.

An explanation of the notation of elements of 2D5(2) and full details of the calculations in the

group 2D5(2) ∼= O−10(2) can be found in Appendix A.

Finally, we recall that the Majorana axioms, including M8, are known to hold in the Griess

algebra ([Iva09, Proposition 8.6.2]) and so any subalgebra of the Griess algebra which is generated

by 2A axes is a Majorana algebra which obeys axiom M8. In particular, Theorem 5.4.1 directly

implies the following corollaries.

Corollary 5.4.6. Let V be a subalgebra of the Griess algebra generated by three 2A axes a0, a1

and a2 such that a0 and a1 generate a 2A dihedral algebra. Then V must be isomorphic to one

of the 34 Majorana algebras whose dimensions are given in Table 5.1.

Corollary 5.4.7. Let G be one of the groups L2(11), 24 : D10 and S5. Then, from [Nor85,

Table 3], there are two non-conjugate embeddings ι0 and ι1 of G as a triangle-point group into

M. The subalgebras 〈〈ι0(G) ∩ 2A〉〉 and 〈〈ι1(G) ∩ 2A〉〉 of VM are isomorphic.
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Appendix A

Calculations in 2D5(2)

A.1 The group 2D5(2)

Our main references for this appendix are [Nor85] and [CCN+85]. We consider the group
2D5(2) ∼= O−10(2) and describe in detail various calculations which appear in the proof of Theorem

5.4.1.

These calculations are best performed in the automorphism group of O−10(2) which is isomorphic

to GO−10(2), the group consisting of all 10× 10 matrices over GF (2) preserving a quadratic form

of Witt defect 1.

We first construct the quadratic space upon which this group will act. Take the vector space

V to be the set of all even weight length 12 vectors over GF (2) modulo complementation. We

define an orthogonal form ( , ) on V where for all u, v ∈ V such that u 6= v,

(u, v) =

0 if u+ v is of even weight

1 if u+ v is of odd weight

and

(u, u) =

0 if u is of weight 0 mod 4

1 if u is of weight 2 mod 4.

The set of linear transformations preserving this form will be GO−10(2) = O−10(2).2. In particular,

this group contains transvections of the form

T (x) : v 7→ v + (v, x)x

where x is any vector of norm 1. These transvections form a set of 3-transpositions.

In a slight abuse of notation, we identify the group element T (x) with the vector x. In particular,

if x is of weight 2 with ones in positions i and j then we denote the transvection T (x) by the

pair (i j). In fact, there is a natural embedding of S12 into GO−10(2) such that the permutation
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(i, j) is mapped to the transvection (i j) for all 1 ≤ i < j ≤ 12. Otherwise, if x is of weight 6

then we used bifid notation (a b c d e f | g h i j k l) to denote the transvection T (x).

The following lemma is easy to check using the definitions above.

Lemma A.1.1. Suppose that u, v ∈ V . If (u, v) = 0 then T (u)T (v) = T (u). Otherwise, if

(u, v) = 1, then T (u)T (v) = T (u+ v).

A.2 Calculations for the proof of Theorem 5.4.1

Now, recall from the proof of Theorem 5.4.1 that if

a := (1 2).(3 4), b := (1 3).(2 4) and c := (4 5).(1 2 3 6 7 8 | 4 5 9 10 11 12).

then a, b, c generate 23.23 as a triangle-point group.

We now denote

a1 := (1 2), a2 := (3 4), b1 := (1 3), b2 := (2 4), c1 := (4 5), c2 := (1 2 3 6 7 8 | 4 5 9 10 11 12)

so that a = a1a2, b = b1b2 and c = c1c2.

We pick the following set to be a basis of V :

{(1 i) | 2 ≤ i ≤ 11}.

With respect to this basis, we express the transvections a1, a2, b1, b2, c1, c2 as 10 × 10 matrices

over GF (2), as below.

a1 :=



1 1 1 1 1 1 1 1 1 1

. 1 . . . . . . . .

. . 1 . . . . . . .

. . . 1 . . . . . .

. . . . 1 . . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1



a2 :=



1 . . . . . . . . .

. . 1 . . . . . . .

. 1 . . . . . . . .

. . . 1 . . . . . .

. . . . 1 . . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1


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b1 :=



1 . . . . . . . . .

1 1 1 1 1 1 1 1 1 1

. . 1 . . . . . . .

. . . 1 . . . . . .

. . . . 1 . . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1



b2 :=



. . 1 . . . . . . .

. 1 . . . . . . . .

1 . . . . . . . . .

. . . 1 . . . . . .

. . . . 1 . . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1



c1 :=



1 . . . . . . . . .

. 1 . . . . . . . .

. . . 1 . . . . . .

. . 1 . . . . . . .

. . . . 1 . . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1



c2 :=



1 . 1 1 . . . 1 1 1

. 1 1 1 . . . 1 1 1

. . 1 . . . . . . .

. . . 1 . . . . . .

. . 1 1 1 . . 1 1 1

. . 1 1 . 1 . 1 1 1

. . 1 1 . . 1 1 1 1

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1


Using these matrix representations, we can now check that

(ac)2 = a2 · ca2c12

(bc)2 = b2 · cb2c12

(abc)2 = ba12 · c
b2a1c1
2 .

Finally, using Lemma A.1.1, it is straightforward to calculate that

(ac)2 = (1 2).(1 2 5 6 7 8 | 3 4 9 10 11 12)

(bc)2 = (2 4).(1 3 5 6 7 8 | 2 4 9 10 11 12)

(abc)2 = (2 3).(1 4 5 6 7 8 | 2 3 9 10 11 12).

Thus the elements (ac)2, (bc)2 and (abc)2 are each the product of commuting transvections, as

required in the proof of Theorem 5.4.1.
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