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Abstract. Stencil computations are a key part of many high-performance computing applica-
tions, such as image processing, convolutional neural networks, and finite-difference solvers for partial
differential equations. Devito is a framework capable of generating highly-optimized code given sym-
bolic equations expressed in Python, specialized in, but not limited to, affine (stencil) codes. The
lowering process – from mathematical equations down to C++ code – is performed by the Devito
compiler through a series of intermediate representations. Several performance optimizations are in-
troduced, including advanced common sub-expressions elimination, tiling and parallelization. Some
of these are obtained through well-established stencil optimizers, integrated in the back-end of the
Devito compiler. The architecture of the Devito compiler, as well as the performance optimiza-
tions that are applied when generating code, are presented. The effectiveness of such performance
optimizations is demonstrated using operators drawn from seismic imaging applications.
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1. Introduction. Developing software for high-performance computing requires
a considerable interdisciplinary effort, as it often involves domain knowledge from nu-
merous fields such as physics, numerical analysis, software engineering and low-level
performance optimization. The result is typically a monolithic application where
hardware-specific optimizations, numerical methods, and physical approximations are
interwoven and dispersed throughout a large number of loops, functions, files and mod-
ules. This frequently leads to slow innovation, high maintenance costs, and code that
is hard to debug and port onto new computer architectures. A powerful approach to
alleviate this problem is to introduce a separation of concerns and to raise the level of
abstraction by using domain-specific languages (DSLs). DSLs can be used to express
numerical methods using a syntax that closely mirrors how they are expressed math-
ematically, while a stack of compilers and libraries is responsible for automatically
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creating the optimized low-level implementation in a general purpose programming
language such as C++. While the focus of this paper is on finite-difference (FD) based
codes, the DSL approach has already had remarkable success in other numerical meth-
ods such as the finite-element (FE) and finite-volume (FV) method, as documented
in Section 2.

This work describes the architecture of Devito, a system for automated stencil
computations from a high-level mathematical syntax. Devito was developed with an
emphasis on FD methods on structured grids. For this reason, Devito’s underlying
DSL has many features to simplify the specification of FD methods, as discussed
in Section 3. The original motivation was to solve large-scale partial differential
equations (PDEs) in the context of seismic inverse problems, where FD solvers are
commonly used for solving wave equations as part of complex workflows (e.g., data
inversion using adjoint-state methods and backpropogation). Devito is equally useful
as a framework for other stencil computations in general; for example, computations
where all array indices are affine functions of loop variables. The Devito compiler
is also capable of generating arbitrarily nested, possibly irregular, loops. This key
feature is needed to support many complex algorithms that are used in engineering and
scientific practice, including applications from image processing, cellular automata,
and machine-learning.

One of the design goals of Devito was to enable high-productivity, so it is fully
written in Python, with easy access to solvers, optimizers, input and output, and the
wide range of other libraries in the Python ecosystem. At the same time, Devito
transforms high-level symbolic input into optimized C++ code, resulting in a perfor-
mance that is competitive with hand-optimized implementations. While the examples
presented in this paper focus on using Devito from a Python application, exploiting
the full potential of on-the-fly code generation and just-in-time (JIT) compilation,
a practical advantage of generating C++ as an intermediate step is that it can be
also used to generate libraries for legacy software, thus enabling incremental code
modernisation.

Compared to other DSL frameworks that are used in practice, Devito uses com-
piler technology, including several layers of intermediate representations, to perform
optimizations in multiple passes. This allows Devito to perform more complex op-
timizations, and to better optimize the code for individual target platforms. The
fact that these optimisations are performed programmatically facilitates performance
portability across different computer architectures [28]. This is important, as indus-
trial codes are often used on a variety of platforms, including clusters with multi-core
CPUs, GPUs, and many-core chips spread across several compute nodes as well as
various cloud platforms. Devito also performs high-level transformations for floating-
point operation (FLOP) reduction based on symbolic manipulation, as well as loop-
level optimizations as implemented in Devito’s own optimizer, or using a third-party
stencil compiler such as YASK [40]. The Devito compiler is presented in detail in
Sections 4, 5 and 6.

After the presentation of the Devito compiler, we show test cases in Section 7
that are inspired by real-world seismic-imaging problems. The paper finishes with
directions for future work and conclusions in Sections 8 and 9.

2. Related work. The objective of maximizing productivity and performance
through frameworks based upon DSLs has long been pursued. In addition to well-
known systems such as MathematicaR© and MatlabR©, which span broad mathematical
areas, there are a number of tools specialized in numerical methods for PDEs, some
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dating back to the 1970s [6, 34, 7, 35].

2.1. DSL-based frameworks for partial differential equations. One note-
worthy contemporary framework centered on DSLs is FEniCS [22], which allows
the specification of weak variational forms, via UFL [2], and finite-element meth-
ods, through a high-level syntax. Firedrake [30] implements the same languages as
FEniCS, although it differs from it in a number of features and architectural choices.
Devito is heavily influenced by these two successful projects, in particular by their
philosophy and design. Since solving a PDE is often a small step of a larger workflow,
the choice of Python to implement these software provides access to a wide ecosystem
of scientific packages. Firedrake also follows the principle of graceful degradation, by
providing a very simple lower-level API to escape the abstraction when non-standard
calculations (i.e., unrelated to the finite-element formulation) are required. Likewise,
Devito allows injecting arbitrary expressions into the finite-difference specification;
this feature has been used in real-life cases, for example for interpolation in seismic
imaging operators. On the other hand, a major difference is that Devito lacks a for-
mal specification language such us UFL in FEniCS/Firedrake. This is partly because
there is no systematic foundation underpinning FD, as opposed to FE which relies
upon the theory of Hilbert spaces [5]. Yet another distinction is that, for performance
reasons, Devito takes control of the time-stepping loop. Other examples of embedded
DSLs are provided by the OpenFOAM project, with a language for FV [13], and by
PyFR, which targets flux reconstruction methods [36].

2.2. High-level approaches to finite differences. Due to its simplicity, the
FD method has been the subject of multiple research projects, chiefly targeting the
design of effective software abstraction and/or the generation of high performance code
[14, 3, 16, 21]. Devito distinguishes itself from previous work in a number of ways
including: support for the principle of graceful degradation for when the DSL does not
cover a feature required by an application; incorporation of a symbolic mathematics
engine; using actual compiler technology rather than template-based code generation;
adoption of a native Python interface that naturally allows composition into complex
workflows such as optimisation and machine-learning frameworks.

At a lower level of abstraction there are a number of tools targeting “stencil”
computation (FD codes belong to this class), whose major objective is the generation
of efficient code. Some of them provide a DSL [40, 31, 43, 29], whereas others are
compilers or user-driven code generation systems, often based upon a polyhedral
model, such as [4, 18]. From the Devito standpoint, the aim is to harness these
tools – for example by integrating them, to maximize performance portability. As a
proof of concept, we shall discuss the integration of one such tool, namely YASK [40],
with Devito.

2.3. Devito and seismic imaging. Devito is a general purpose system, not
restricted to specific PDEs, so it can be used for any form of the wave equation.
Thus, unlike software specialized in seismic exploration, like IWAVE [32] and Mada-
gascar [12], it suffers neither from the restriction to a small set of wave equations and
discretizations, nor from the lack of portability and composability typical of a pure
C/Fortran environment.

2.4. Performance optimizations. The Devito compiler can introduce three
types of performance optimizations: FLOPs reduction, data locality, and parallelism.
Typical FLOPs reduction transformations are common sub-expressions elimination,
factorization, and code motion. A thorough review is provided in [11]. To different
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…
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Python/…

Fig. 1: The typical usage of Devito within a larger application.

extent, Devito applies all of these techniques (see Section 5.1). Particularly relevant
for stencil computation is the search for redundancies across consecutive loop iter-
ations [9, 10, 20]. This is at the core of the strategy described in Section 6, which
essentially extends these ideas with optimizations for data locality. Typical loop trans-
formations for parallelism and data locality [17] are also automatically introduced by
the Devito compiler (e.g., loop blocking, vectorization); more details will be provided
in Sections 5.2 and 5.3.

3. Specification of a finite-difference method with Devito. The Devito
DSL allows concise expression of FD and general stencil operations using a mathe-
matical notation. It uses SymPy [27] for the specification and manipulation of stencil
expressions. In this section, we describe the use of Devito’s DSL to build PDE solvers.
Although the examples used here are for FD, the DSL can describe a large class of op-
erations, such as convolutions or basic linear algebra operations (e.g., chained tensor
multiplications).

3.1. Symbolic types. The key steps to implement a numerical kernel with De-
vito are shown in Figure 1. We describe this workflow, as well as fundamental features
of the Devito API, using the acoustic wave equation, also known as d’Alembertian or
Box operator. Its continuous form is given by:

m(x, y, z)
d2u(x, y, z, t)

dt2
−∇2u(x, y, z, t) = qs,

u(x, y, z, 0) = 0,

du(x, y, z, t)

dt
|t=0 = 0,

(3.1)

where the variables of this expression are defined as follows:
• m(x, y, z) = 1

c(x,y,z)2 , is the parametrization of the subsurface with c(x, y, z) being

the speed of sound as a function of the three space coordinates (x, y, z);
• u(x, y, z, t), is the spatially varying acoustic wavefield, with the additional dimen-

sion of time t;
• qs is the source term, which is a point source in this case.

The first step towards solving this equation is the definition of a discrete computa-
tional grid, on which the model parameters, wavefields and source are defined. The
computational grid is defined as a Grid(shape) object, where shape is the number
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of grid points in each spatial dimension. Optional arguments for instantiating a Grid

are extent, which defines the extent in physical units, and origin, the origin of the
coordinate system, with respect to which all other coordinates are defined.

The next step is the symbolic definition of the squared slowness, wavefield and
source. For this, we introduce some fundamental types.
• Function represents a discrete spatially varying function, such as the velocity. A
Function is instantiated for a defined name and a given Grid.
• TimeFunction represents a discrete function that is both spatially varying and

time dependent, such as wavefields. Again, a TimeFunction object is defined on
an existing Grid and is identified by its name.
• SparseFunction and SparseTimeFunction represent sparse functions, that is

functions that are only defined over a subset of the grid, such as a seismic point
source. The corresponding object is defined on a Grid, identified by a name, and
also requires the coordinates defining the location of the sparse points.
Apart from the grid information, these objects carry their respective FD dis-

cretization information in space and time. They also have a data field that contains
values of the respective function at the defined grid points. By default, data is ini-
tialized with zeros and therefore automatically satisfies the initial conditions from
equation 3.1. The initialization of the fields to solve the wave equation over a one-
dimensional grid is displayed in Listing 1.

Listing 1 Setup Functions to express and solve the acoustic wave equation.

1 >>> from devito import Grid , TimeFunction , Function , SparseTimeFunction
2 >>> g = Grid(shape =(nx ,), origin =(ox ,), extent =(sx ,))
3 >>> u = TimeFunction(name="u", grid=g, space_order =2, time_order =2) # Wavefield
4 >>> m = Function(name="m", grid=g) # Physical parameter
5 >>> q = SparseTimeFunction(name="q", grid=g, coordinates=coordinates) # Source

3.2. Discretization. With symbolic objects that represent the discrete velocity
model, wavefields and source function, we can now define the full discretized wave
equation. As mentioned earlier, one of the main features of Devito is the possibility
to formulate stencil computations as concise mathematical expressions. To do so, we
provide shortcuts to classic FD stencils, as well as the functions to define arbitrary
stencils. The shortcuts are accessed as object properties and are supported by Time-

Function and Function objects. For example, we can take spatial and temporal
derivatives of the wavefield u via the shorthand expressions u.dx and u.dt (Listing 2).

Listing 2 Example of spatial and temporal FD stencil creation.

1 >>> u.dx
2 -u(t, x - h_x)/(2* h_x) + u(t, x + h_x)/(2* h_x)
3 >>> u.dt
4 -u(t - dt, x)/(2*dt) + u(t + dt, x)/(2*dt)
5 >>> u.dt2
6 -2*u(t, x)/dt**2 + u(t - dt, x)/dt**2 + u(t + dt, x)/dt**2

Furthermore, Devito provides shortcuts for common differential operations such
as the Laplacian via u.laplace. The full discrete wave equation can then be imple-
mented in a single line of Python (Listing 3).

To solve the time-dependent wave equation with an explicit time-stepping scheme,
the symbolic expression representing our PDE has to be rearranged such that it yields
an update rule for the wavefield u at the next time step: u(t + dt) = f(u(t), u(t −
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Listing 3 Expressing the wave equation.

1 >>> wave_equation = m * u.dt2 - u.laplace
2 >>> wave_equation
3 (-2*u(t, x)/dt**2 + u(t - dt, x)/dt**2 + u(t + dt, x)/dt**2)*m(x) + 2*u(t, x)/h_x

**2 - u(t, x - h_x)/h_x **2 - u(t, x + h_x)/h_x**2

dt))). Devito allows to rearrange the PDE expression automatically using the solve

function, as shown in Listing 4.

Listing 4 Time-stepping scheme for the acoustic wave equation. region=INTERIOR

ensures that the Dirichlet boundary conditions at the edges of the Grid are satisfied.

1 >>> from devito import Eq , INTERIOR , solve
2 >>> stencil = Eq(u.forward , solve(wave_equation , u.forward), region=INTERIOR)
3 >>> stencil
4 Eq(u(t + dt, x), -2*dt**2*u(t, x)/(h_x **2*m(x)) + dt**2*u(t, x - h_x)/(h_x **2*m(x)

) + dt**2*u(t, x + h_x)/(h_x **2*m(x)) + 2*u(t, x) - u(t - dt , x))

Note that the stencil expression in Listing 4 does not yet contain the point
source q. This could be included as a regular Function which has zeros all over the
grid except for a few points; this, however, would obviously be wasteful. Instead,
SparseFunctions allow to perform operations, such as injecting a source or sampling
the wavefield, at a subset of grid points determined by coordinates. In the case in
which coordinates do not coincide with grid points, bilinear (for 2D) or trilinear (for
3D) interpolation are employed. To inject a point source into the stencil expression,
we use the inject function of the SparseTimeFunction object that represents our
seismic source (Listing 5).1

Listing 5 Expressing the injection of a source into a field.

1 >>> injection = q.inject(field=u.forward , expr=dt**2 * q / m)
2 >>> injection
3 [Eq(u[t + 1, INT(floor((-o_x + q_coords[p_q , 0])/h_x))], dt **2*(1 - FLOAT(-h_x*INT

(floor((-o_x + q_coords[p_q , 0])/h_x)) - o_x + q_coords[p_q , 0])/h_x)*q[time ,
p_q]/m[INT(floor((-o_x + q_coords[p_q , 0])/h_x))] + u[t + 1, INT(floor((-o_x +
q_coords[p_q , 0])/h_x))]),

4 Eq(u[t + 1, INT(floor((-o_x + q_coords[p_q , 0])/h_x)) + 1], dt**2* FLOAT(-h_x*INT(
floor((-o_x + q_coords[p_q , 0])/h_x)) - o_x + q_coords[p_q , 0])*q[time , p_q
]/( h_x*m[INT(floor((-o_x + q_coords[p_q , 0])/h_x)) + 1]) + u[t + 1, INT(floor
((-o_x + q_coords[p_q , 0])/h_x)) + 1])]

The inject function takes the field being updated as an input argument (in this
case u.forward), while expr=dt**2 * q / m is the expression being injected. The
result of the inject function is a list of symbolic expressions, similar to the stencil

expression we defined earlier. As we shall see, these expressions are eventually joined
together and used to create an Operator object – the solver of our PDE.

3.3. Boundary conditions. Simple boundary conditions (BCs), such as Dirich-
let BCs, can be imposed on individual equations through special keywords (see List-
ing 4). For more exotic schemes, instead, the BCs need to be explicitly written (e.g.,
Higdon BCs [15]), just like any of the symbolic expressions defined in the Listings

1More complicated interpolation schemes can be defined by precomputing the grid points cor-
responding to each sparse point, and their respective coefficients. The result can then be used to
create a PrecomputedSparseFunction, which behaves like a SparseFunction at the symbolic level.
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above. For reasons of space, this aspect is not elaborated further; the interested
reader may refer to [26].

3.4. Control flow. By default, the extent of a TimeFunction in the time dimen-
sion is limited by its time order. Hence, the shape of u in Listing 1 is (time order +
1, nx) = (3, nx). The iterative method will then access u via modulo iteration, that
is u[t%3, ...]. In many scenarios, however, the entire time history, or at least periodic
time slices, should be saved (e.g., for inversion algorithms). Listing 6 expands our
running example with an equation that saves the content of u every 4 iterations, up
to a maximum of save = 100 time slices.

Listing 6 Implementation of time sub-sampling.

1 >>> from devito import ConditionalDimension
2 >>> ts = ConditionalDimension(’ts’, parent=g.time_dim , factor =4)
3 >>> us = TimeFunction(name=’us ’, grid=g, save =100, time_dim=ts)
4 >>> save = Eq(us, u)

In general, all equations that access Functions (or TimeFunctions) employing
one or more ConditionalDimensions will be conditionally executed. The condition
may be a number indicating how many iterations should pass between two executions
of the same equation, or even an arbitrarily complex expression.

3.5. Domain, halo, and padding regions. A Function internally distin-
guishes between three regions of points.
Domain Represents the computational domain of the Function and is inferred from

the input Grid. This includes any elements added to the physical domain
purely for computational purposes, e.g. absorbing boundary layers.

Halo The grid points surrounding the domain region, i.e. “ghost” points that are
accessed by the stencil when iterating in proximity of the domain boundary.

Padding The grid points surrounding the halo region, which are allocated for perfor-
mance optimizations, such as data alignment. Normally this region should be
of no interest to a user of Devito, except for precise measurement of memory
allocated for each Function.

4. The Devito compiler. In Devito, an Operator carries out three fundamen-
tal tasks: generation of low-level code, JIT compilation, and execution. The Operator
input consists of one or more symbolic equations. In the generated code, these equa-
tions are scheduled within loop nests of suitable depth and extent. The Operator also
accepts substitution rules (to replace symbols with constant values) and optimization
levels for the Devito Symbolic Engine (DSE) and the Devito Loop Engine (DLE). By
default, all DSE and DLE optimizations that are known to unconditionally improve
performance are automatically applied. The same Operator may be reused with dif-
ferent input data; JIT-compilation occurs only once, triggered by the first execution.
Overall, this lowering process – from high-level equations to dynamically compiled
and executable code – consists of multiple compiler passes, summarized in Figure 2
and discussed in the following sections (a minimal background in data dependence
analysis is recommended; the unfamiliar reader may refer to a classic textbook such
as [1]).

4.1. Equations lowering. In this pass, three main tasks are carried out: in-
dexification, substitution, and domain-alignment.
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Equations lowering
Input Equations → Lowered Equations

Invariants extraction

Aliases detection

Factorization

Common sub-expressions elimination 

Local analysis

Symbolic optimization [DSE]
Clusters → Clusters

IET construction 
Clusters → IET [abstract syntax tree]

IET optimization [DLE/YLE]
IET → IET

Synthesis
IET → CGen AST → C/C++ string 

Clustering
Lowered Equations → Clusters

Declarations

Instrumentation for profiling 

Header files, globals, macros, …

Enforcement of iteration direction

Grouping

JIT Compilation
C/C++ string → kernel.c → kernel.so

IET analysis 
IET → IET

SIMD vectorization

Loop blocking

Shared-memory (hierarchical) parallelism

Low-level optimization
(e.g., sw prefatching)

Fig. 2: Compiler passes to lower symbolic equations into shared objects through an
Operator.

• As explained in Section 3, the input equations typically involve ore or more indexed
Functions. The indexification consists of converting such objects into actual ar-
rays. An array always keeps a reference to its originating Function. For instance,
all accesses to u such as u[t, x + 1] and u[t + 1, x− 2] would store a pointer to the
same, user-defined Function u(t, x). This metadata is exploited throughout the
various compilation passes.
• During substitution, the user-provided substitution rules are applied. These may

be given for any literal appearing in the input equations, such as the grid spacing
symbols. Applying a substitution rule increases the chances of constant folding,
but it makes the Operator less generic. The values of symbols for which no
substitution rule is available are provided at execution time.
• The domain-alignment step shifts the array accesses deriving from Functions hav-

ing non-empty halo and padding regions. Thus, the array accesses become logically
aligned to the equation’s natural domain. For instance, given the usual Function
u(t, x) having two points on each side of the x halo region, the array accesses u[t, x]
and u[t, x + 2] are transformed, respectively, into u[t, x + 2] and u[t, x + 4]. When
x = 0, therefore, the values u[t, 2] and u[t, 4] are fetched, representing the first and
third points in the computational domain.

4.2. Local analysis. The lowered equations are analyzed to collect information
relevant for the Operator construction and execution. In this pass, an equation is
inspected “in isolation”, ignoring its relationship with the rest of the input. The
following metadata are retrieved and/or computed:
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• input and output Functions;
• Dimensions, which are topologically ordered based on how they appear in the

various array index functions; and
• two notable Spaces: the iteration space, ISpace, and the data space, DSpace.

A Space is a collection of points given by the product of n compact intervals on
Z. With the notation d[om, oM ] we indicate the compact interval [dm + om, dM +
oM ] over the Dimension d, in which dm and dM are parameters (specialized only
at runtime), while om and oM are known integers. For instance, [x[0, 0], y[−1, 1]]
describes a rectangular two-dimensional space over x and y, whose points are given
by the Cartesian product [xm, xM ] × [ym − 1, yM + 1]. The ISpace and DSpace are
two special types of Space. They usually span different sets of Dimensions. A DSpace

may have Dimensions that do not appear in an ISpace, in particular those that are
accessed only via integer indices. Likewise, an ISpace may have Dimensions that are
not part of the DSpace, such as a reduction axis. Further, an ISpace also carries, for
each Dimension, its iteration direction.

As an example, consider the equation stencil in Listing 4. Immediately we see
that input = [u,m], output = [u], Dimensions = [t, x]. The compiler constructs the
ISpace [t[0, 0]+, x[0, 0]∗]. The first entry t[0, 0]+ indicates that, along t, the equation
should run between tm + 0 and tM + 0 (extremes included) in the forward direction,
as indicated by the symbol +. This is due to the fact that there is a flow dependence
in t, so only a unitary positive stepping increment (i.e., t = t + 1) allows a correct
propagation of information across consecutive iterations. The only difference along
x is that the iteration direction is now arbitrary, as indicated by ∗. The DSpace is
[t[0, 1], x[0, 0]]; intuitively, the entry t[0, 1] is used right before running an Operator

to provide a default value for tM – in particular, tM will be set to the largest possible
value that does not cause out-of-domain accesses (i.e., out-of-bounds array accesses).

4.3. Clustering. A Cluster is a sequence of equations having (i) same ISpace,
(ii) same control flow (i.e., same ConditionalDimensions), and (iii) no dimension-
carried “true” anti-dependences among them.

As an example, consider again the setup in Section 3. The equation stencil cannot
be “clusterized” with the equations in the injection list as their ISpaces are different.
On the other hand, the equations in injection can be grouped together in the same
Cluster as (i) they have same ISpace [t[0, 0]∗, pq[0, 0]∗], (ii) same control flow, and
(iii) there are no true anti-dependences among them (note that the second equation
in injection does write to u[t+ 1, ...], but as explained later this is in fact a reduction,
that is a “false” anti-dependence).

4.3.1. Iteration direction. First, each equation is assigned a new ISpace,
based upon a global analysis. Any of the iteration directions that had been marked as
“arbitrary” (∗) during local analysis may now be enforced to forward (+) or backward
(−). This process exploits data dependence analysis.

For instance, consider the flow dependence between stencil and the injection equa-
tions. If we want u to be up-to-date when evaluating injection, then we eventually
need all equations to be scheduled sequentially within the t loop. For this, the ISpaces
of the injection equations are specialized by enforcing the direction forward along the
Dimension t. The new ISpace is [t[0, 0]+, pq[0, 0]∗].

Algorithm 1 illustrates how the enforcement of iteration directions is achieved in
general. Whenever a clash is detected (i.e., two equations with ISpace [d[0, 0]+, ...]
and [d[0, 0]−, ...]), the original direction determined by the local analysis pass is kept
(lines 11 and 13), which will eventually lead to generating different loops.

9



Algorithm 1: Clustering: enforcement of iteration directions (pseudocode).

Input: A sequence of equations E.
Output: A sequence of equations E ′ with altered ISpace.
// Map each dimension to a set of expected iteration directions

1 mapper ← detect flow directions(E);
2 for e in E do
3 for dim, directions in mapper do
4 if len(directions) == 1 then

// No ambiguity

5 forced[dim] ← directions.pop();

6 else if len(directions) == 2 then
// No ambiguity as long as one of the two items is /Any/

7 try
8 directions.remove(Any);
9 forced[dim] ← directions.pop();

10 except
11 forced[dim] ← e.directions[dim];

12 else
13 forced[dim] ← e.directions[dim];
14 end if

15 end for
16 E ′.append(e. rebuild(directions=forced))

17 end for
18 return E ′

4.3.2. Grouping. This step performs the actual clustering, checking ISpaces
and anti-dependences, as well as handling control flow. The procedure is shown in
Algorithm 2; some explanations follow.

Algorithm 2: Clustering: grouping expressions into Clusters (pseudocode)

Input: A sequence of equations E.
Output: A sequence of clusters C.

1 C ← ClusterGroup();
2 for e in E do
3 grouped ← false;
4 for c in reversed(C) do
5 anti, flow ← get dependences(c, e);
6 if e.ispace == c.ispace and anti.carried is empty then
7 c.add(e);
8 grouped ← true;
9 break;

10 else if anti.carried is not empty then
11 c.atomics.update(anti.carried.cause);
12 break;

13 else if flow.cause.intersection(c.atomics) then
// cannot search across earlier clusters

14 break;

15 end for
16 if not grouped then
17 C.append(Cluster(e));
18 end if

19 end for
20 C ← control flow(C);
21 return C

• Robust data dependence analysis, capable of tracking flow-, anti-, and output-

10



dependencies at the level of array accesses, is necessary. In particular, it must
be able to tell whether two generic array accesses induce a dependence or not.
The data dependence analysis performed is conservative; that is, a dependence is
always assumed when a test is inconclusive. Dependence testing is based on the
standard Lamport test [1]. In Algorithm 2, data dependence analysis is carried
out by the function get dependences.
• If an anti-dependence is detected along a Dimension i, then i is marked as atomic

– meaning that no further clustering can occur along i. This information is also
exploited by later Operator passes (see Section 4.5).

• Reductions, and in particular increments, are treated specially. They represent a
special form of anti-dependence, as they do not break clustering. get dependen-
ces detects reductions and removes them from the set of anti-dependencies.
• Given the sequence of equations [E1, E2, E3], it is possible that E3 can be grouped

with E1, but not with its immediate predecessor E2 (e.g., due to a different
ISpace). However, this can only happen when there are no flow or anti-dependen-
ces between E2 and E3; i.e. when the if commands at lines 10 and 13 are not
entered, thus allowing the search to proceed with the next equation. This opti-
mization was originally motivated by gradient operators in seismic imaging kernels.
• The routine control flow, omitted for brevity, creates additional Clusters if

one or more ConditionalDimensions are encountered. These are tracked in a
special Cluster field, guards, as also required by later passes (see Section 4.5).

4.4. Symbolic optimization. The DSE – Devito Symbolic Engine – is a macro-
pass reducing the arithmetic strength of Clusters (e.g., their operation count). It con-
sists of a series of passes, ranging from standard common sub-expression elimination
(CSE) to more advanced rewrite procedures, applied individually to each Cluster.
The DSE output is a new ordered sequence of Clusters: there may be more or fewer
Clusters than in the input, and both the overall number of equations as well as
the sequence of arithmetic operations might differ. The DSE passes are discussed in
Section 5.1. We remark that the DSE only operates on Clusters (i.e., on collections
of equations); there is no concept of “loop“ at this stage yet. However, by altering
Clusters, the DSE has an indirect impact on the final loop-nest structure.

4.5. IET construction. In this pass, the intermediate representation is low-
ered to an Iteration/Expression Tree (IET). An IET is an abstract syntax tree in
which Iterations and Expressions – two special node types – are the main actors.
Equations are wrapped within Expressions, while Iterations represent loops. Loop
nests embedding such Expressions are constructed by suitably nesting Iterations.
Each Cluster is eventually placed in its own loop (Iteration) nest, although some
(outer) loops may be shared by multiple Clusters.

Consider again our running acoustic wave equation example. There are three
Clusters in total: C1 for stencil, C2 for save, and C3 for the equations in injection.
We use Algorithm 3 – an excerpt of the actual cluster scheduling algorithm – to
explain how this sequence of Clusters is turned into an IET. Initially, the schedule
list is empty, so when C1 is handled two nested Iterations are created (line 15),
respectively for the Dimensions t and x. Subsequently, C2’s ISpace and the current
schedule are compared (line 5). It turns out that t appears among C2’s guards, hence
the for loop is exited at line 12 without inspecting the second and last iteration.
Thus, index = 1, and the previously built Iteration over t is reused. Finally,
when processing C3, the for loop is exited at the second iteration due to line 6, since
pq! = x. Again, the t Iteration is reused, while a new Iteration is constructed for
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Algorithm 3: An excerpt of the cluster scheduling algorithm, turning a list (of Clusters) into a
tree (IET). Here, the fact that different Clusters may eventually share some outer Iterations is
highlighted.

Input: A sequence of Clusters C.
Output: An Iteration/Expression Tree.

1 schedule ← list();
2 for c in C do
3 root ← None;
4 index ← 0;
5 for i0, i1 in zip(c.ispace, schedule) do
6 if i0 != i1 or i0.dimension in c.atomics then
7 break;

8 end if
9 root ← schedule[i1];

10 index ← index + 1;
11 if i0.dim in c.guards then
12 break;
13 end if

14 end for
15 〈build as many Iterations as Dimensions in c.ispace[index:] and nest them inside root〉;
16 〈update schedule〉;
17 〈...〉
18 end for

the Dimension pq. Eventually, the constructed IET is as in Listing 7.

Listing 7 Graphical representation of the IET produced by the cluster scheduling
algorithm for the running example.

1 for t = t_m to t_M:
2 |-- for x = x_m to x_M:
3 | |-- <Eq(u[t+1,x], ...)>
4 |
5 |-- if t % 4 == 0
6 | |-- for x = x_m to x_M:
7 | |-- <Eq(us[t/4, x], ...)>
8 |
9 |-- for p_q = p_q_m to p_q_M:

10 |-- <Eq(u[t+1,f(p_q)], ...)>
11 |-- <Eq(u[t+1,g(p_q)], ...)>

4.6. IET analysis. The newly constructed IET is analyzed to determine Itera-
tion properties such as sequential, parallel, and vectorizable, which are then
attached to the relevant nodes in the IET. These properties are used for loop optimiza-
tion, but only by a later pass (see Section 4.7). To determine whether an Iteration

is parallel or sequential, a fundamental result from compiler theory is used –
the i-th Iteration in a nest comprising n Iterations is parallel if for all depen-
dences D, expressed as distance vectors D = (d0, ..., dn−1), either (d1, ..., di−1) > 0 or
(d1, ..., di) = 0 [1].

4.7. IET optimization. This macro-pass transforms the IET for performance
optimization. Apart from runtime performance, this pass also optimizes for rapid
JIT compilation with the underlying C compiler. A number of loop optimizations are
introduced, including loop blocking, minimization of remainder loops, SIMD vector-
ization, shared-memory (hierarchical) parallelism via OpenMP, software prefetching.
These will be detailed in Section 5. A backend (see Section 4.9) might provide its own
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loop optimization engine.

4.8. Synthesis, dynamic compilation, and execution. Finally, the IET
adds variable declarations and header files, as well as instrumentation for performance
profiling, in particular, to collect execution times of specific code regions. Declara-
tions are injected into the IET, ensuring they appear as close as possible to the scope
in which the relative variables are used, while honoring the OpenMP semantics of pri-
vate and shared variables. To generate C code, a suitable tree visitor inspects the IET
and incrementally builds a CGen tree [19], which is ultimately translated into a string
and written to a file. Such files are stored in a software cache of Devito-generated
Operators, JIT-compiled into a shared object, and eventually loaded into the Python
environment. The compiled code has a default entry point (a special function), which
is called directly from Python at Operator application time.

4.9. Operator specialization through backends. In Devito, a backend is
a mechanism to specialize data types as well as Operator passes, while preserving
software modularity (inspired by [25]).

One of the main objectives of the backend infrastructure is promoting software
composability. As explained in Section 2, there exist a significant number of interest-
ing tools for stencil optimization, which we may want to integrate with Devito. For
example, one of the future goals is to support GPUs, and this might be achieved by
writing a new backend implementing the interface between Devito and third-party
software specialized for this particular architecture.

Currently, two backends exist:
core the default backend, which relies on the DLE for loop optimization.
yask an alternative backend using the YASK stencil compiler to generate optimized

C++ code for IntelR© XeonR© and IntelR© Xeon PhiTM architectures [40].
Devito transforms the IET into a format suitable for YASK, and uses its API
for data management, JIT-compilation, and execution. Loop optimization is
performed by YASK through the YASK Loop Engine (YLE).

The core and yask backends share the compilation pipeline in Figure 2 until the loop
optimization stage.

5. Automated performance optimizations. As discussed in Section 4, De-
vito performs symbolic optimizations to reduce the arithmetic strength of the expres-
sions, as well as loop transformations for data locality and parallelism. The former are
implemented as a series of compiler passes in the DSE, while for the latter there cur-
rently are two alternatives, namely the DLE and the YLE (depending on the chosen
execution backend).

Devito abstracts away the single optimizations passes by providing users with a
certain number of optimization levels, called “modes“, which trigger pre-established
sequences of optimizations – analogous to what general-purpose compilers do with,
for example, -O2 and -O3. In Sections 5.1, 5.2, and 5.3 we describe the individual
passes provided by the DSE, DLE, and YLE respectively, while in Section 7.1 we
explain how these are composed into modes.

5.1. DSE - Devito Symbolic Engine. The DSE passes attempt to reduce the
arithmetic strength of the expressions through FLOP-reducing transformations [11].
They are illustrated in Listings 8-11, which derive from the running example used
throughout the article. A detailed description follows.
• Common sub-expression elimination (CSE). Two implementations are avail-

able: one based upon SymPy’s cse routine and one built on top of more basic
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SymPy routines, such as xreplace. The former is more powerful, being aware
of key arithmetic properties such as associativity; hence it can discover more re-
dundancies. The latter is simpler, but avoids a few critical issues: (i) it has a
much quicker turnaround time; (ii) it does not capture integer index expressions
(for increased quality of the generated code); and (iii) it tries not to break factor-
ization opportunities. A generalized common sub-expressions elimination routine
retaining the features and avoiding the drawbacks of both implementations is still
under development. By default, the latter implementation is used when the CSE
pass is selected.

Listing 8 An example of common sub-expressions elimination.

1 >>> 9.0*dt*dt*u[t, x + 1] - 18.0* dt*dt*u[t][x + 2] + 9.0*dt*dt*u[t, x + 3]
2 temp0 = dt*dt
3 9.0* temp0*u[t, x + 1] - 18.0* temp0*u[t][x + 2] + 9.0* temp0*u[t, x + 3]

• Factorization. This pass visits each expression tree and tries to factorize FD
weights. Factorization is applied without altering the expression structure (e.g.,
without expanding products) and without performing any heuristic search across
groups of expressions. This choice is based on the observation that a more ag-
gressive approach is only rarely helpful (never in the test cases in Section 7),
while the increase in symbolic processing time could otherwise be significant. The
implementation exploits the SymPy collect routine. However, while collect

only searches for common factors across the immediate children of a single node,
the DSE implementation recursively applies collect to each Add node (i.e., an
addition) in the expression tree, until the leaves are reached.

Listing 9 An example of FD weights factorization.

1 >>> 9.0* temp0*u[t, x + 1] - 18.0* temp0*u[t][x + 2] + 9.0* temp0*u[t, x + 3]
2 9.0* temp0 *(u[t, x + 1] + u[t, x + 3]) - 18.0* temp0*u[t][x + 2]

• Extraction. The name stems from the fact that sub-expressions matching a
certain condition are pulled out of a larger expression, and their values are stored
into suitable scalar or tensor temporaries. For example, a condition could be
“extract all time-varying sub-expressions whose operation count is larger than a
given threshold”. A tensor temporary may be preferred over a scalar temporary if
the intention is to let the IET construction pass (see Section 4.5) place the pulled
sub-expressions within an outer loop nest. Obviously, this comes at the price of
additional storage. This peculiar effect – trading operations for memory – will be
thoroughly analyzed in Sections 6 and 7.

Listing 10 An example of time-varying sub-expressions extraction. Only sub-
expressions performing at least one floating-point operation are extracted.

1 >>> 9.0* temp0*(u[t, x + 1] + u[t, x + 3]) - 18.0* temp0*u[t][x + 2]
2 temp1[x] = u[t, x + 1] + u[t, x + 3]
3 9.0* temp0*temp1[x] - 18.0* temp0*u[t][x + 2]

• Detection of aliases. The Alias-Detection Algorithm implements the most ad-
vanced DSE pass. In essence, an alias is a sub-expression that is redundantly com-
puted at multiple iteration points. Because of its key role in the Cross-Iteration
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Redundancy-Elimination algorithm, the formalization of the Alias-Detection Al-
gorithm is postponed until Section 6.

Listing 11 An example of alias detection.

1 >>> 9.0* temp0*u[t, x + 1] - 18.0* temp0*u[t][x + 2] + 9.0* temp0*u[t, x + 3]
2 temp[x] = 9.0* temp0*u[t, x]
3 temp[x + 1] - 18.0* temp0*u[t][x + 2] + temp[x + 3]

5.2. DLE - Devito Loop Engine. The DLE transforms the IET via classic
loop optimizations for parallelism and data locality [17]. These are summarized below.
• SIMD Vectorization. Implemented by enforcing compiler auto-vectorization

via special pragmas from the OpenMP 4.0 language. With this approach, the
DLE aims to be performance-portable across different architectures. However,
this strategy causes a significant fraction of vector loads/stores to be unaligned
to cache boundaries, due to the stencil offsets. As we shall see, this is a primary
cause of performance loss.
• Loop Blocking. Also known as “tiling”, this technique implemented by replacing
Iteration trees in the IET. The current implementation only supports blocking
over fully-parallel Iterations. Blocking over dimensions characterized by flow- or
anti-dependences, such as the time dimension in typical explicit finite difference
schemes, is instead work in progress (this would require a preliminary pass known
as loop skewing; see Section 8 for more details). On the other hand, a feature of
the present implementation is the capability of blocking across particular sequences
of loop nests. This is exploited by the Cross-Iteration Redundancy-Elimination
algorithm, as shown in Section 6.3. To determine an optimal block shape, an
Operator resorts to empirical auto-tuning.
• Parallelism. Shared-memory parallelism is introduced by decorating Iterations

with suitable OpenMP pragmas. The OpenMP static scheduling is used. Nor-
mally, only the outermost fully-parallel Iteration is annotated with the parallel
pragma. However, heuristically nested fully-parallel Iterations are collapsed if
the core count is greater than a certain threshold. This pass also ensures that all
array temporaries allocated in the scope of the parallel Iteration are declared as
private and that storage is allocated where appropriate (stack, heap).
Summarizing, the DLE applies a sequence of typical stencil optimizations, aiming

to reach a minimum level of performance across different architectures. As we shall
see, the effectiveness of this approach, based on simple transformations, deteriorates
on architectures strongly conceived for hierarchical parallelism. This is one of the main
reasons behind the development of the yask backend (see Section 4.9), described in
the following section.

5.3. YLE - YASK Loop Engine. “YASK” (Yet Another Stencil Kernel) is an
open-source C++ software framework for generating high-performance implementa-
tions of stencil codes for IntelR© XeonR© and IntelR© Xeon PhiTM processors. Previous
publications on YASK have discussed its overall structure [40] and its application to
the IntelR© Xeon PhiTM x100 family (code-named Knights Corner) [37] and IntelR©

Xeon PhiTM x200 family (code-named Knights Landing) [38, 33] many-core CPUs.
Unlike Devito, it does not expose a symbolic language to the programmer or create
stencils from finite-difference approximations of differential equations. Rather, the
programmer provides simple declarative descriptions of the stencil equations using
a C++ or Python API. Thus, Devito operates at a level of abstraction higher than
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that of YASK, while YASK provides performance portability across Intel architectures
and is more focused on low-level optimizations. Following is a sample of some of the
optimizations provided by YASK:2

• Vector-folding. In traditional SIMD vectorization, such as that provided by
a vectorizing compiler, the vector elements are arranged sequentially along the
unit-stride dimension of the grid, which must also be the dimension iterated over
in the inner-most loop of the stencil application. Vector-folding is an alternative
data-layout method whereby neighboring elements are arranged in small multi-
dimensional tiles. Figure 3 illustrates three ways to pack eight double-precision
floating-point values into a 512-bit SIMD register. Figure 3a shows a traditional
1D “in-line” layout, and 3b and 3c show alternative 2D and 3D “folded” lay-
outs. Furthermore, these tiles may be ordered in memory in a dimension indepen-
dent of the dimensions used in vectorization [37]. The combination of these two
techniques can significantly increase overlap and reuse between successive stencil-
application iterations, reducing the memory-bandwidth demand. For stencils that
are bandwidth-bound, this can provide significant performance gains [37, 33].
• Software prefetching. Many high-order or staggered-grid stencils require many

streams of data to be read from memory, which can overwhelm the hardware
prefetchers. YASK can be directed to automatically generate software prefetch
instructions to improve the cache hit rates, especially on Xeon Phi CPUs.
• Hierarchical parallelism. Dividing the spatial domain into tiles to increase tem-

poral cache locality is a common stencil optimization as discussed earlier. When
implementing this technique, sometimes called “cache-blocking”, it is typical to
assign each thread to one or more small rectilinear subsets of the domain in which
to apply the stencil(s). However, if these threads share caches, one thread’s data
will often evict data needed later by another thread, reducing the effective capacity
of the cache. YASK addresses this by employing two levels of OpenMP paralleliza-
tion: the outer level of parallel loops are applied across the cache-blocks, and an
inner level is applied across sub-blocks within those tiles. In the case of the Xeon
Phi, the eight hyper-threads that share each L2 cache can now cooperate on filling
and reusing the data in the cache, rather than evicting each other’s data.
YASK also provides other optimizations, such as temporal wave-fron tiling, as

well as MPI support. These features, however, are not exploited by Devito yet. The
interested reader may refer to [38, 39].

To obtain the best of both tools, we have integrated the YASK framework into
the Devito package. In essence, the Devito yask backend exploits the intermediate
representation of an Operator to generate YASK kernels. This process is based upon
sophisticated compiler technology. In Devito v3.1, roughly 70% of the Devito API is
supported by the yask backend3.

6. The Cross-Iteration Redundancy-Elimination Algorithm. Aliases, or
“cross-iteration redundancies” (informally introduced in Section 5.1), in FD operators
depend on the differential operators used in the PDE(s) and the chosen discretization
scheme. From a performance viewpoint, the presence of aliases is a non-issue as long
as the operator is memory-bound, while it becomes relevant in kernels with a high
arithmetic intensity. In Devito, the Cross-Iteration Redundancy-Elimination (CIRE)
algorithm attempts to remove aliases with the goal of reducing the operation count. As

2Not all YASK features are currently used by Devito.
3At the time of writing, reaching feature-completeness is one the major on-going development

efforts
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a. 1× 1× 8 1D fold b. 1× 2× 4 2D fold c. 2× 2× 2 3D fold

Fig. 3: Various folds of 8 elements [37]. The smaller diagram in the upper-left of each
sub-figure illustrates a single SIMD layout, and the larger diagram shows the input
values needed for a typical 25-point stencil, as from an 8th-order finite-difference ap-
proximation of an isotropic acoustic wave. Note that the 1×1×8 1D fold corresponds
to the traditional in-line vectorization.

shown in Section 7, the CIRE algorithm has considerable impact in seismic imaging
kernels. The algorithm is implemented through the orchestration of multiple DSE
and DLE/YLE passes, namely extraction of candidate expressions (DSE), detection
of aliases (DSE), loop blocking (DLE/YLE).

6.1. Extraction of candidate expressions. The criteria for extraction of can-
didate sub-expressions are:
• Any maximal time-invariant whose operation count is greater than Thr0 = 10

(floating point arithmetic only). The term “maximal” means that the expression
is not embedded within a larger time-invariant. The default value Thr0 = 10,
determined empirically, provides systematic performance improvements in a series
of seismic imaging kernels. Transcendental functions are given a weight in the
order of tens of operations, again determined empirically.
• Any maximal time-varying whose operation count is greater than Thr1 = 10. Such

expressions often lead to aliases, since they typically result from taking spatial and
time derivatives on TimeFunctions. In particular, cross-derivatives are a major
cause of aliases.
This pass leverages the extraction routine described in Section 5.1.

6.2. Detection of aliases. To define the concept of aliasing expressions, we
first need to formalize the notion of translated operands. Here, an operand is regarded
as the arithmetic product of a scalar value (or “coefficient”) and one or more indexed
objects. An indexed object is characterized by a label (i.e., its name), a vector of n
dimensions, and a vector of n displacements (one for each dimension). We say that
an operand o1 is translated with respect to an operand o0 if o0 and o1 have same
coefficient, label, and dimensions, and if their displacement vectors are such that one
is the translation of the other (in the classic geometric sense). For example, the
operand 2 ∗ u[x, y, z] is translated with respect to the operand 2 ∗ u[x+ 1, y + 2, z + 3]
since they have same coefficient (2), label (u), and dimensions ([x, y, z]), while the
displacement vectors [0, 0, 0] and [1, 2, 3] are expressible by means of a translation.

Now consider two expressions e0 and e1 in fully-expanded form (i.e., a non-nested
sum-of-operands). We say that e0 is an alias of e1 if the following conditions hold:
• the operands in e0 (e1) are expressible as a translation of the operands in e1 (e0);
• the same arithmetic operators are applied to the involved operands.
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For example, consider e = u[x] + v[x], having two operands u[x] and v[x]; then:
• u[x-1] + v[y-1] is not an alias of e, due to a different dimension vector.
• u[x] + w[x] is not an alias of e, due to a different label.
• u[x+2] + v[x] is not an alias of e, since a translation cannot be determined.
• u[x+2] + v[x+2] is an alias of e, as the operands u[x + 2] and v[x + 2] can be

expressed as a translation of u[x] and v[x] respectively, with T (od) = od + 2 and
od representing the displacement vector of an operand.
The relation “e0 is an alias of e1” is an equivalence relation, as it is at the same

time reflexive, symmetric, and transitive. Thanks to these properties, the turnaround
times of the Alias-Detection Algorithm are extremely quick (less than 2 seconds run-
ning on an IntelR© XeonR© E5-2620 v4 for the challenging tti test case with so=16,
described in Section 7.2), despite the O(n2) computational complexity (with n repre-
senting the number of candidate expressions, see Section 6.1).

Algorithm 4 highlights the fundamental steps of the Alias-Detection Algorithm.
In the worst case scenario, all pairs of candidate expressions are compared by ap-
plying the aliasing definition given above. Aggressive pruning, however, is applied
to minimize the cost of the search. The algorithm uses some auxiliary functions:
(i) calculate displacements returns a mapper associating, to each candidate, its
displacement vectors (one for each indexed object); (ii) compare ops(e1, e2) eval-
uates to true if e1 and e2 perform the same operations on the same operands; (iii)
is translated(d1, d2) evaluates to true if the displacement vectors in d2 are pairwise-
translated with respect to the vectors in d1 by the same factor. Together, (ii) and
(iii) are used to establish whether two expressions alias each other (line 8).

Eventually, m sets of aliasing expressions are determined. For each of these sets
G0, ..., Gm−1, a pivot – a special aliasing expression – is constructed. This is the key
for operation count reduction: the pivot pi of Gi = {e0, ..., ek−1} will be used in place
of e0, ..., ek−1 (thus obtaining a reduction proportional to k). A simple example is
illustrated in Listing 11.

Algorithm 4: The Alias-Detection Algorithm (pseudocode).

Input: A sequence of expressions E.
Output: A sequence of Alias objects A.

1 displacements ← calculate displacements(E);
2 A ← list();
3 unseen ← list(E);
4 while unseen is not empty do
5 top ← unseen.pop();
6 G = Alias(top);
7 for e in unseen do
8 if compare ops(top, e) and is translated(displacements[top], displacements[e]) then
9 G.append(e);

10 unseen.remove(e);

11 end if

12 end for
13 A.append(G)

14 end while
15 return A

Several optimizations for data locality, not shown in Algorithm 4, are also applied.
The interested reader may refer to the documentation and the examples of Devito v3.1
for more details; below, we only mention the underlying ideas.
• The pivot of Gi is constructed, rather than selected out of e0, ..., ek−1, so that
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it could coexist with as many other pivots as possible within the same Cluster.
For example, consider again Listing 11: there are infinite possible pivots temp[x

+ s] = 9.0*temp0*u[t, x + s], and the one with s = 0 is chosen. However,
this choice is not random: the Alias-Detection Algorithm chooses pivots based
on a global optimization strategy, which takes into account all of the m sets of
aliasing expressions. The objective function consists of choosing s so that multiple
pivots will have identical ISpace, and thus be scheduled to the same Cluster

(and, eventually, to the same loop nest).
• Conservatively, the chosen pivots are assigned to array variables. A second opti-

mization pass, called index bumping and array contraction in Devito v3.1, attempts
to turn these arrays into scalar variables, thus reducing memory consumption.
This pass is based on data dependence analysis, which essentially checks whether
a given pivot is required only within its Cluster or by later Clusters as well. In
the former case, the optimization is applied.

6.3. Loop blocking for working-set minimization. In essence, the CIRE
algorithm trades operation for memory – the (array) temporaries to store the aliases.
From a run-time performance viewpoint, this is convenient only in arithmetic-intensive
kernels. Unsurprisingly, we observed that storing temporary arrays spanning the
entire grid rarely provides benefits (e.g., only when the operation count reductions
are exceptionally high). We then considered the following options.

1. Capturing redundancies arising along the innermost dimension only. Thus,
only scalar temporaries would be necessary. This approach presents three
main issues, however: (i) only a small percentage of all redundancies are
captured; (ii) the implementation is non-trivial, due to the need for circular
buffers in the generated code; (iii) SIMD vectorization is affected, since inner
loop iterations are practically serialised. Some previous articles followed this
path [9, 10].

2. A generalization of the previous approach: using both scalar and array tempo-
raries, without searching for redundancies across the outermost loop(s). This
mitigates issue (i), although the memory pressure is still severely affected.
Issue (iii) is also unsolved. This strategy was discussed in [20].

3. Using loop blocking. Redundancies are sought and captured along all avail-
able dimensions, although they are now assigned to array temporaries whose
size is a function of the block shape. A first loop nest produces the array tem-
poraries, while a subsequent loop nest consumes them, to compute the actual
output values. The block shape should be chosen so that writes and reads to
the temporary arrays do not cause high latency accesses to the DRAM. An
illustrative example is shown in Listing 12.

The CIRE algorithm uses the third approach, based on cross-loop-nest blocking.
This pass is carried out by the DLE, which can introduce blocking over sequences of
loops (see Section 5.2).

7. Performance evaluation. We outline in Section 7.1 the compiler setup,
computer architectures, and measurement procedure that we used for our performance
experiments. Following that, we outline the physical model and numerical setup that
define the problem being solved in Section 7.2. This leads to performance results,
presented in Sections 7.3 and 7.4.

7.1. Compiler and system setup. We analyse the performance of generated
code using enriched roofline plots. Since the DSE transformations may alter the
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Listing 12 The loop nest produced by the CIRE algorithm for the example in List-
ing 11. Note that the block loop (line 2) wraps both the producer (line 3) and
consumer (line 5) loops. For ease of read, unnecessary information are omitted.

1 for t = t_m to t_M:
2 for xb = x_m to x_M , xb += blocksize:
3 for x = xb to xb + blocksize + 3, x += 1
4 temp[x] = 9.0* temp0*u[t, x]
5 for x = xb to xb + blocksize; x += 1:
6 u[t+1,x,y] = ... + temp[x + 1] - 18.0* temp0*u[t][x + 2] + temp[x + 3] + ...

operation count by allocating extra memory, only by looking at GFlops/s performance
and runtime jointly can a quality measure of code syntheses be derived.

For the roofline plots, Stream TRIAD was used to determine the attainable mem-
ory bandwidth of the node. Two peaks for the maximum floating-point performance
are shown: the ideal peak, calculated as

#[cores] ·#[avx units] ·#[vector lanes] ·#[FMA ports] · [ISA base frequency]

and a more realistic one, given by the LINPACK benchmark. The reported runtimes
are the minimum of three runs (the variance was negligible). The model used to
calculate the operational intensity assumes that the time-invariant Functions are
reloaded at each time iteration. This is a more realistic setting than a “compulsory-
traffic-only” model (i.e., an infinite cache).

We had exclusive access to two architectures: an IntelR© XeonR© Platinum 8180
(formerly code-named Skylake) and an IntelR© Xeon PhiTM 7250 (formerly code-
named Knights Landing), which will be referred to as skl8180 and knl7250. Thread
pinning was enabled with the program numactl. The IntelR© compiler icc version

18.0 was used to compile the generated code. The experiments were run with Devito
v3.1 [41]. The experimentation framework with instructions for reproducibility is
available at [42]. All floating point operations are performed in single precision, which
is typical for seismic imaging applications.

Any arbitrary sequence of DSE and DLE/YLE transformations is applicable to an
Operator. Devito, provides three preset optimization sequences, or “modes”, which
vary in aggressiveness and affect code generation in three major ways:
• the time required by the Devito compiler to generate the code,
• the potential reduction in operation count, and
• the potential amount of additional memory that might be allocated to store (scalar,

tensor) temporaries.
A more aggressive mode might obtain a better operation count reduction than a non-
aggressive one, although this does not necessarily imply a better time to solution as
the memory pressure might also increase. The three optimization modes – basic,
advanced, and aggressive– apply the same sequence of DLE/YLE transformations,
which includes OpenMP parallelism, SIMD vectorization, and loop blocking. How-
ever, they vary in the number, type, and order of DSE transformations. In particular,
basic enables common sub-expressions elimination only;
advanced enables basic, then factorization, extraction of time-invariant aliases;
aggressive enables advanced, then extraction of time-varying aliases.
Thus, aggressive triggers the full-fledged CIRE algorithm, while advanced uses
only a relaxed version (based on time invariants). All runs used loop tiling with a
block shape that was determined individually for each case using auto-tuning. The
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auto-tuning phase, however, was not included in the measured experiment runtime.
Likewise, the code generation phase is not included in the reported runtime.

7.2. Test case setup. In the following sections, we benchmark the performance
of operators modeling the propagation of acoustic waves in two different models:
isotropic and Tilted Transverse Isotropy (TTI, [44]), henceforth isotropic and tti,
respectively. These operators were chosen for their relevance in seismic imaging tech-
niques [44].

Acoustic isotropic modeling is the most commonly used technique for seismic
inverse problems, due to the simplicity of its implementation, as well as the compar-
atively low computational cost in terms of FLOPs. The tti wave equation provides
a more realistic simulation of wave propagation and accounts for local directional
dependency of the wave speed, but comes with increased computational cost and
mathematical complexity. For our numerical tests, we use the tti wave equation as
defined in [44]. The full specification of the equation as well as the finite difference
schemes and its implementation using Devito are provided in [24, 23]. Essentially,
the tti wave equation consists of two coupled acoustic wave equations, in which
the Laplacians are constructed from spatially rotated first derivative operators. As
indicated by Figure 4, these spatially rotated Laplacians have a significantly larger
number of stencil coefficients in comparison to its isotropic equivalent which comes
with an increased operational intensity.

The tti and isotropic equations are discretized with second order in time and
varying space orders of 4, 8, 12 and 16. For both test cases, we use zero initial condi-
tions, Dirichlet boundary conditions and absorbing boundaries with a 10 point mask
(Section 3.5). The waves are excited by injecting a time-dependent, but spatially-
localized seismic source wavelet into the subsurface model, using Devito’s sparse point
interpolation and injection as described in Section 3.1. We carry out performance mea-
surements for two velocity models of 5123 and 7683 grid points with a grid spacing
of 20 m. Wave propagation is modeled for 1000 ms, resulting in 327 time steps for
isotropic, and 415 time steps for tti. The time-stepping interval is chosen accord-
ing to the Courant-Friedrichs-Lewy (CFL) condition [8], which guarantees stability
of the explicit time-marching scheme and is determined by the highest velocity of the
subsurface model and the grid spacing.

Fig. 4: Stencils of the acoustic Laplacian for the isotropic (left) and tti (right) wave
equations and so=16. The anisotropic Laplacian corresponds to a spatially rotated
version of the isotropic Laplacian. The color indicates the distance from the central
coefficient.
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7.3. Performance: acoustic wave in isotropic model. This section illus-
trates the performance of isotropic with the core and yask backends. To relieve
the exposition, we show results for the DSE in advanced mode only; the aggressive

has no impact on isotropic, due to the memory-bound nature of the code [23].
The performance of core on skl8180, illustrated in Figure 5a (yask uses slightly

smaller grids than core due to a flaw in the API of Devito v3.1, which will be fixed
in Devito v3.2), degrades as the space order (henceforth, so) increases. In particular,
it drops from 59% of the attainable machine peak to 36% in the case of so=16. This
is the result of multiple issues. As so increases, the number of streams of unaligned
virtual addresses also increases, causing more pressure on the memory system. IntelR©

VTune
TM

revealed that the lack of split registers to efficiently handle split loads was
a major source of performance degradation. Another major issue for isotropic

on core concerns the quality of the generated SIMD code. The in-line vectorization
performed by the auto-vectorizer produces a large number of pack/unpack instructions
to move data between vector registers, which introduces substantial overhead. IntelR©

VTune
TM

also confirmed that, unsurprisingly, isotropic is a memory-bound kernel.
Indeed, switching off the DSE basically did not impact the runtime, although it did
increase the operational intensity of the four test cases.

The performance of core on knl7250 is not as good as that on skl8180. Figure 5b
shows an analogous trend to that on skl8180, with the attainable machine peak
systematically dropping as so increases. The issue is that here the distance from the
peak is even larger. This simply suggests that core is failing at exploiting the various
levels of parallelism available on knl7250.

The yask backend overcomes all major limitations to which core is subjected.
On both skl8180 and knl7250, yask outperforms core, essentially since it does not
suffer from the issues presented above. Vector folding minimizes unaligned accesses;
software prefetching helps especially for larger values of so; hierarchical OpenMP
parallelism is fundamental to leverage shared caches. The speed-up on knl7250 is
remarkable, since even in the best scenario for core (so=4), yask is roughly 3×
faster, and more than 4× faster when so=12.

7.4. Performance: acoustic wave in tilted transverse isotropy model.
This sections illustrates the performance of tti with the core backend. tti cannot
be run on the yask backend in Devito v3.1 as some fundamental features are still
missing; this is part of our future work (more details in Section 8).

Unlike isotropic, tti significantly benefits from different levels of DSE optimiza-
tions, which play a key role in reducing the operation count as well as the register
pressure. Figure 6 displays the performance of tti for the usual range of space orders
on skl8180 and knl7250, for two different cubic grids.

Generally, tti does not reach the same level of performance as isotropic. This
is not surprising given the complexity of the PDEs (e.g., in terms of differential oper-
ators), which translates into code with much higher arithmetic intensity. In tti, the
memory system is stressed by a considerably larger number of loads per loop iteration
than in isotropic. On skl8180, we ran some profiling with IntelR© VTune

TM
. We

determined that one of the major issues is the pressure on both L1 cache (lack of split
registers, unavailability of “fill buffers” to handle requests to the other levels of the
hierarchy) and DRAM (bandwidth and latency). Clearly, this is only a summary from
some sample kernels – the actual situation varies depending on the DSE optimizations
as well as the so employed.

It is remarkable that on both skl8180 and knl7250, and on both grids, the
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(a) skl8180, core, 7683 grid points.
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(b) knl7250, core, 7683 grid points.
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(c) skl8180, yask, 7483 grid points.
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(d) knl7250, yask, 7483 grid points.

Fig. 5: Performance of isotropic on multiple Devito backends and architectures.

cutoff point beyond which advanced results in worse runtimes than aggressive is
so=8. One issue with aggressive is that to avoid redundant computation, not only
additional memory is required, but also more data communication may occur through
caches, rather than through registers. In Figure 12, for example, we can easily deduce
that temp is first stored, and then reloaded in the subsequent loop nest. This is an
overhead that advanced does not pay, since temporaries are communicated through
registers, for as much as possible. Beyond so=8, however, this overhead is overtaken
by the reduction in operation count, which grows almost quadratically with so, as
reported in Table 1.

Table 1: Operation counts for different DSE modes in tti

so basic advanced aggressive

4 299 260 102
8 857 707 168
12 1703 1370 234
16 2837 2249 300

The performance on knl7250 is overall disappointing. This is unfortunately
caused by multiple factors – some of which already discussed in the previous sec-
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tions. These results, and more in general, the need for performance portability across
future (IntelR© or non-IntelR©) architectures, motivated the ongoing yask project. Here,
the overarching issue is the inability to exploit the multiple levels of parallelism typ-
ical of architectures such as knl7250. Approximately 17% of the attainable peak is
obtained when so=4 with advanced (best runtime out of the three DSE modes for
the given space order). This occurs when using 5123 points per grid, which allows
the working set to completely fit in MCDRAM (our calculations estimated a size of
roughly 7.5GB). With the larger grid size (Figure 6d), the working set increases up
to 25.5GB, which exceeds the MCDRAM capacity. This partly accounts for the 5×
slow down in runtime (from 34s to 173s) in spite of only a 3× increase in number of
grid points computed per time iteration.
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(a) skl8180, 5123 grid points.
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(b) skl8180, 7683 grid points.
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(c) knl7250, 5123 grid points.
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Fig. 6: Performance of tti on core for different architectures and grids.

8. Further work. While many simulation and inversion problems such as full-
waveform inversion only require the solver to run on a single shared memory node,
many other applications require support for distributed memory parallelism (typically
via MPI) so that the solver can run across multiple compute nodes. The immediate
plan is to leverage yask’s MPI support, and perhaps to include MPI support into core

at a later stage. Another important feature is staggered grids, which are necessary for
a wide range of FD discretization methods (e.g. modelling elastic wave propagation).
Basic support for staggered grids is already included in Devito v3.1, but currently
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only through a low-level API – the principle of graceful degradation in action. We
plan to make the use of this feature more convenient.

As discussed in Section 7.4, the yask backend is not feature-complete yet; in
particular, it cannot run the tti equations in the presence of array temporaries.
As tti is among the most advanced models for wave propagation used in industry,
extending Devito in this direction has high priority.

There also is a range of advanced performance optimization techniques that we
want to implement, such as “time tiling” (i.e., loop blocking across the time dimen-
sion), on-the-fly data compression, and mixed-precision arithmetic exploiting appli-
cation knowledge. Finally, there is an on-going effort towards adding an ops [31]
backend, which will enable code generation for GPUs and also supports distributed
memory parallelism via MPI.

9. Conclusions. Devito is a system to automate high-performance stencil com-
putations. While Devito provides a Python-based syntax to easily express FD ap-
proximations of PDEs, it is not limited to finite differences. A Devito Operator

can implement arbitrary loop nests, and can evaluate arbitrarily long sequences of
heterogeneous expressions such as those arising in FD solvers, linear algebra, or in-
terpolation. The compiler technology builds upon years of experience from other
DSL-based systems such as FEniCS and Firedrake, and wherever possible Devito
uses existing software components including SymPy and NumPy, and YASK. The
experiments in this article show that Devito can generate production-level code with
compelling performance on state-of-the-art architectures.
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