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Abstract. We propose and study elements of potential theory for the sub-Laplacian on homogeneous Carnot groups. In

particular, we show continuity of the single layer potential and establish the Plemelj type jump relations for the double
layer potential. As a consequence, we derive the formula for the trace to smooth surfaces of the Newton potential for the

sub-Laplacian. Using this we construct a sub-Laplacian version of Kac’s boundary value problem.

1. Introduction

In last decades the ideas combining the group theory with the analysis of partial differential equations have been a
subject of active research by many authors. For example, nilpotent Lie groups play an important role in deriving sharp
subelliptic estimates for differential operators on manifolds, starting from the seminal paper by Rothschild and Stein [15].
In particular, homogeneous Carnot groups appear in approximations for general Hörmander’s sums of squares of vector
fields on manifolds in view of the Rothschild-Stein lifting theorem [15] (see also [7]). They are also natural models for
sub-Riemannian geometry ([2]). For a pseudo-differential approach to such problems we can refer to [5] on nilpotent, and
to [18] on compact Lie groups, respectively.

In this paper we discuss elements of the potential theory and the theory of boundary layer operators on homogeneous
Carnot groups. The applications briefly described here include the solution to Kac’s boundary value problem and a refined
version of local Hardy’s inequality including boundary terms. The present paper is mainly based on our preprint [16] and
detailed proofs can be found there.

There are several equivalent definitions of homogeneous Carnot groups. Following the definition in [1], a Lie group
G = (RN , ◦) is called homogeneous Carnot group (or homogeneous stratified group) if it satisfies the following conditions
(a) and (b):

(a) For some natural numbers N1 + ...+Nr = N the decomposition RN = RN1 × ...×RNr is valid, and for every λ > 0
the dilation δλ : RN → RN given by

δλ(x) ≡ δλ(x(1), ..., x(r)) := (λx(1), ..., λrx(r))

is an automorphism of the group G. Here x(k) ∈ RNk for k = 1, ..., r.
(b) Let N1 be as in (a) and let X1, ..., XN1

be the left invariant vector fields on G such that Xk(0) = ∂
∂xk
|0 for

k = 1, ..., N1. Then
rank(Lie{X1, ..., XN1

}) = N,

for every x ∈ RN , i.e. the iterated commutators of X1, ..., XN1 span the Lie algebra of G.
The number

Q =
r∑

k=1

kNk.

is called the homogeneous dimension of G. Throughout this paper we assume Q ≥ 3. This is not very restrictive since it
effectively rules out only the spaces R and R2 where the fundamental solution assumes a different form and where most
things are already known. The second order differential operator

(1) L =

N1∑
k=1

X2
k
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is called the (canonical) sub-Laplacian on G. It is known that the sub-Laplacian has a unique fundamental solution ε on
G (see Folland [6]),

Lε = δ,

and ε(x, y) = ε(y−1x) is given in terms of a homogeneous quasi-norm d (L-gauge) in the form

(2) ε(x, y) = βd[d(x, y)]2−Q,

where βd is a positive constant, so the function ε is homogeneous of degree 2−Q. We refer to [5] for further information
on stratified groups.

From now on, let Q ≥ 3 be the homogeneous dimension of G, ∂Ω the piecewise smooth boundary of a bounded domain
Ω in G, and dν the volume element on G. The standard Lebesque measure on RN ' G is the Haar measure for G. Let
〈Xk, dν〉 be the natural pairing between vector fields and differential forms given by

(3) 〈Xk, dν(x)〉 =

N1∧
j=1,j 6=k

dx
(1)
j

r∧
l=2

Nl∧
m=1

θl,m,

with

(4) θl,m = −
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)

m ,

where l = 2, . . . , r, m = 1, . . . , Nl, and a
(l)
k,m is a δλ-homogeneous polynomial of degree l − 1 such that

(5) Xk =
∂

∂x
(1)
k

+

r∑
l=2

Nl∑
m=1

a
(l)
k,m(x(1), ..., x(l−1))

∂

∂x
(l)
m

.

Throughout this paper we assume that the piecewise boundary ∂Ω of a bounded domain Ω is simple, that is, it has no
self-intersections.

2. Single and double layer potentials

On Rn, the basic fundamental building blocks for dealing with boundary value problems in domains are the layer
potentials constructed from the fundamental solution of the Laplacian. In the setting of Carnot groups it is natural to use
the sub-Laplacian. In [9], Jerison used the single layer potential defined by

S0u(x) =

∫
∂Ω

u(y)ε(y, x)dS(y),

which, however, is not integrable over characteristic points. We refer to [14] for examples. On the contrary, the functionals

(6) Sju(x) =

∫
∂Ω

u(y)ε(y, x)〈Xj , dν(y)〉, j = 1, ..., N1,

where 〈Xj , dν〉 is the canonical pairing between vector fields and differential forms, are integrable over the whole boundary
∂Ω ∈ C∞, see Theorem 2.1 with u ≡ 1. Parallel to Sj , it will be natural to use the operator

(7) Du(x) =

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉,

as a double layer potential, where ∇̃ε =
∑N1

k=1(Xkε)Xk, with Xk acting on the y-variable. These potentials possess the
continuity/jump properties that we now describe.

Theorem 2.1. Let u ∈ L∞(∂Ω). Then the single layer potential Sju is absolutely convergent and continuous on G, for
all j = 1, . . . , N1.

We now state the Plemelj type jump relations for the double layer potential D defined in (7).
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Theorem 2.2. Let u ∈ C1(Ω)
⋂
C(Ω), Ω ⊂ G and ∂Ω ∈ C∞. Define

D0u(x0) :=

∫
∂Ω

u(y)〈∇̃ε(y, x0), dν(y)〉, D+u(x0) := lim
x→x0, x∈Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

and

D−u(x0) := lim
x→x0, x/∈Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉,

for x0 ∈ ∂Ω. Then D+u(x0),D−u(x0) and D0u(x0) exist and verify the following jump relations:

D+u(x0)−D−u(x0) = u(x0), D0u(x0)−D−u(x0) = J (x0)u(x0), D+u(x0)−D0u(x0) = (1− J (x0))u(x0),

where the jump value J (x0) is given by the formula

(8) J (x0) =

∫
∂Ω

〈∇̃ε(y, x0), dν(y)〉, x0 ∈ ∂Ω,

in the sense of the (Cauchy) principal value and ∇̃ = ∇̃y is defined by ∇̃ε =
∑N1

k=1 (Xkε)Xk.

3. Kac’s boundary value problem

For 0 < α < 1, Folland and Stein (see [8] and see also [6]) defined the anisotropic Hölder spaces Γα(Ω), Ω ⊂ G, by

Γα(Ω) = {f : Ω→ C : sup
x,y∈Ω

x 6=y

|f(x)− f(y)|
[d(x, y)]α

<∞}.

Let Ω ⊂ G be a bounded domain with a smooth boundary ∂Ω ∈ C∞. Consider the following analogy of the Newton
potential

(9) u(x) =

∫
Ω

f(y)ε(y, x)dν(y), x ∈ Ω, f ∈ Γα(Ω),

where ε(y, x) = ε(x, y) = ε(y−1x, 0) = ε(y−1x) is the fundamental solution (2) of the sub-Laplacian L. The function u is
a solution of Lu = f in Ω.

The aim of this section is to describe a version of Kac’s boundary value problem on the homogeneous Carnot group
G, namely, to find a boundary condition for u such that with this boundary condition the equation Lu = f has a unique
solution in C2(Ω), say, and this solution is the Newton potential (9). This amounts to finding the trace of the integral
operator in (9) on ∂Ω.

A starting point for this analysis is the observation that if f ∈ Γα(Ω) for α > 0 then u defined by (9) is twice differentiable
and satisfies the equation Lu = f . We refer to Folland [6] for this property. These results extend those known for the
Laplacian, in suitably redefined anisotropic Hölder spaces.

Theorem 3.1. Let ε(y, x) = ε(y−1x) be the fundamental solution to L, so that

(10) Lε = δ on G.
Let Ω ⊂ G be a bounded domain with a smooth boundary ∂Ω ∈ C∞. For any f ∈ Γα(Ω), 0 < α < 1, the Newton potential
(9) is the unique solution in C2(Ω) ∩ C1(Ω) of the equation

(11) Lu = f in Ω,

with the boundary condition

(12) (1− J (x))u(x) +

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉 −
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉 = 0, for x ∈ ∂Ω,

where the jump value is given by the formula (8) with ∇̃g =
∑N1

k=1(Xkg)Xk.

It follows from Theorem 3.1 that the kernel ε(y, x) = ε(y−1x), which is a fundamental solution of the sub-Laplacian, is
the Green function of the boundary value problem (11), (12) in Ω. Therefore, the boundary value problem (11), (12) can
serve as an example of an explicitly solvable boundary value problem for the sub-Laplacian in any domain Ω (with smooth
boundary) on the homogeneous Carnot group.

In the case of G = (RN ,+) and the sub-Laplacian L being the Laplacian, the boundary condition (12) appeared in M.
Kac’s work [10] where he called it and the subsequent spectral analysis “the principle of not feeling the boundary”. This
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was further expanded in Kac’s book [11] with several further applications to the spectral theory and the asymptotics of the
Weyl’s eigenvalue counting function. In this direction, there are also systematic study of Kalmenov and the second author
(see, e.g. [12] and [13]). The analogues of the problem (11), (12) for the Kohn Laplacian and its powers on the Heisenberg
group have been recently investigated by the authors in [17], see also [3, 5] for the more general pseudo-differential analysis
in the setting of the stratified and graded Lie groups, as well as [4] for the specific setting of the Heisenberg group.
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