
1

Model Order Reduction of Wind Farms:
Linear Approach

Husni Rois Ali, Linash P. Kunjumuhammed, Senior Member IEEE, Bikash C. Pal, Fellow, IEEE,
Andrzej G Adamczyk Member, IEEE, and Konstantin Vershinin Member, IEEE

Abstract—This paper presents three types of linear model
order reduction (MOR) technique, namely singular value de-
composition (SVD)-based, Krylov-based, and modal truncation-
based type applied to large-scale wind farm models. The first
type includes a Balanced Truncation (BT) and Alternating
Direction Implicit (ADI)-based BT method, while the second
type encompasses a Rational Krylov (RK), and Iterative Rational
Krylov Algorithm (IRKA) method. In the third type, a Subspace
Accelerated MIMO Dominant Pole Algorithm (SAMDP) method
is used. The effectiveness of these methods are tested on practical-
sized wind farms with 90, 120 and 210 doubly-fed induction
generators (DFIGs). Merits and demerits of each method are
discussed in detail. The reduced order model (ROM) of wind
farm is validated against the full order model (FOM) in term of
frequency domain indices and waveform agreement at the point
of common coupling (PCC).

Index Terms—wind farm model order reduction, Balanced
Truncation, Alternating Direction Implicit-based BT, Rational
Krylov, Iterative Rational Krylov Algorithm, Subspace Acceler-
ated MIMO Dominant Pole Algorithm (SAMDP).

I. INTRODUCTION

OVER the past twenty years, there has been phenomenal
growth in installed capacity of wind power worldwide

[1]. Such growth has not been possible without meeting
various challenges. Most often these problems are related to
grid interconnection, so analysis of wind farm connected to
external grids are required to understand such problems and
seek appropriate solutions.

A detailed dynamic model of a typical wind turbine genera-
tor (WTG) may be described using about 20 differential equa-
tions. Inevitably, representation of a medium size wind farm
consisting of about 100 WTGs in power system study requires
thousands of differential equations. With the inclusion of
collector system component dynamics such as cable sections
and transformers, the overall model order becomes extremely
large to handle in power system simulation studies. However,
such detailed representation poses computational burden for
typical power system simulation software, preventing the study
of behaviour of wind farms connected to a power system
virtually infeasible. Hence, a reduced model of wind farm,
which can capture important dynamics of the high order
system, is of importance for power system study. In addition to
computational issue, for control engineers, reducing dynamic
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model of complex systems has become an integral part of
controller design [2]. A complex model leads to not only
a complex controller design but also a high cost and also
poor reliability. With a reduced order wind farm model, a
simple controller design can be easily pursued. For developers
and WTG manufacturers, this reduced model of WF is also
useful to demonstrate and validate stability of their system and
equipment while safe guarding their intellectual properties.

In order to obtain the reduced order model of wind farms,
the aggregation-based method, which was originally used in
synchronous machines model, is by far the most popular
method [3], [4], [5]. The method can be further divided into
the single-machine and multiple-machine aggregation. In the
former method [3], it is assumed that the whole wind farm
operates at uniformly in wind speed and power output terms;
thus an aggregated WTG is sufficient to represent the dynamics
of wind farms. Since wind farms are normally situated across
a very large area, this assumption can be hardly fulfilled due
to the wake effects, size of each WTG, etc. Consequently,
the single-machine aggregation cannot accurately represent
the dynamics of a wind farm. To overcome this problem,
the multi-machine representation is used. In this method, the
WTGs are grouped according to the similarity of operating
condition, known as a coherent group, and the generators with
a similar operating condition are represented by an equivalent
model [4], [5]. Despite its popularity in the literature, multi-
machine aggregation has several weaknesses: 1) The operating
condition of wind farm is continuously changing, as a result a
coherent group of WTGs may contain different set of gener-
ators, 2) Unlike synchronous generators where the concept of
coherent group is well defined by the rotor angle, in WTGs,
this is not easy due to the weak connection between rotor
angle and WTG’s output power.

In this paper, the application of linear reduced order model
(ROM) techniques, which do not rely on identification of
coherent group of WTGs, is demonstrated on practical-sized
wind farm models [6]. The methods include Balanced Trun-
cation (BT) [7], Alternating Direction Implicit (ADI)-based
BT [8], [9], [10], Rational Krylov (RK) [8], [11], Iterative
Rational Krylov Algorithm (IRKA) [12], [13] and Subspace
Accelerated MIMO Dominant Pole Algorithm (SAMDP) [14].
To the knowledge of the authors, the last four methods are
the first of their kind in wind farm MOR. Applicability and
effectiveness of these five methods are compared and con-
trasted. The reduced order models are validated by comparing
eigenvalues, bode plots and dynamic response waveform with
those from the the full order model (FOM).
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Fig. 1: Wind farm connected to grid

II. APPROACH FOR WIND FARM MODEL ORDER
REDUCTION

The basic layout of a 120×5 MW wind farm used in this
research is shown in Fig. 1. This layout will be modified in
Section V to investigate the reliability of MOR techniques
for different sizes of test systems. In Fig. 1, triangles indicate
DFIG type WTG. The model is divided into two wind farms,
namely Wind Farm 1 and 2, where each has several strings
of WTGs connected to a wind farm transformer (WFT). The
WFTs are connected to Voltage Source Converter (VSC)-
HVDC using three high voltage cables (HVCs). The DC-
link of the HVDC that connects wind farm to main grid is
not considered in this work. The dynamic model of a DFIG
uses a 22nd order model. The converter controllers use a
vector control approach to allow independent control of torque
and reactive power [15]. Each collector system component is
represented using a fourth order model [6].

The system is modelled using Matlab/Simulink R© and lin-
ear representation is obtained using the command linearise.
The order of system is 3874 with 1673 conjugate pairs of
eigenvalue. The frequency of the modes ranges from 1.7 Hz to
3.5×104 Hz. The lower frequency modes are related to DFIG’s
mechanical system, while the higher frequency modes are due
to a capacitor-inductor combination in the collector system.
The model contains four critical modes listed in Table I. Using
the q−axis of PCC voltage and d−axis of converter voltage as
the input and output, respectively, these modes are evident as
significant peaks in the Bode plot magnitude given in Fig. 2.
Further, a nonlinear time domain simulation is performed by
applying a 1% step change in the PCC reference voltage at
t = 0.3 s. Fig 3 shows the responses of PCC active power and
voltage, which are dominated by the critical modes.

To perform MOR, the wind farm system is partitioned
into two areas [16], namely, study-area and external-area as
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Fig. 2: Bode magnitude plot for full order model of the wind farm
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Fig. 3: Response due to a fault at PCC voltage reference

illustrated in Fig. 4. The wind farm with the collector systems
is considered as the external-area, and the study-area includes
only the VSC controller and impedance. The external-area
is linearised and subsequently reduced using the methods
presented in Section III. The ROM is reconnected to study
area, and its response is compared to the response of wind
farm FOM using the following three criteria:

1) The critical modes of both systems are compared.
2) The Bode plot of both systems is compared specifically

around the frequency of critical modes.
3) The PCC power and voltage of both system are com-

pared using Mean Square Error (MSE),

MSE =

( N∑
n=1

T∑
t=1

(yn,t − ŷn,t)2/NT

)1/2

(1)

where y and ŷ denote output of the FOM and ROM,
respectively. N is the number of outputs to be compared,
and T is total number of time steps.

III. MODEL ORDER REDUCTION METHODS

To obtain a linear model, the nonlinear model in Fig. 1 is
linearised around an operating condition x(0), y(0) and u(0),

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (2)
where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n, and D ∈ Rk×m

are the state, input, output, and feedforward matrices, respec-
tively, while x(t) ∈ Rn, y(t) ∈ Rk, and u(t) ∈ Rm denote
state, output, and input vectors, respectively. In the wind farm
system studied, matrix D is zero. The transfer function of (2)
is expressed as,

G(s) =

[
A B
C D

]
= C(sI −A)−1B +D (3)

G(s) is controllable if for an initial states x(−∞), there is
input u(t) that brings the initial states x(−∞) to x(0). This is

TABLE I
CRITICAL MODES OF FULL ORDER SYSTEM

Mode Frequency
(Hz)

Damping
(%)

Dominant states

M1 315 2.9 VPCC, IVSC, VHVC, IWFT
M2 220 5.1 VPCC, IVSC, VHVC, IWFT
M3 49.36 2.6 IVSC
M4 10.33 4.2 IVSC, IWFT, VPCC, VSC controller states
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Fig. 4: Model order reduction approach

equivalent to controllability Gramian P defined by (4) being
positive definite,

P =

∫ ∞
0

e−AtBBT e−A
T tdt (4)

P is the solution to the Lyapunov equation,
AP +ATP +BBT = 0 (5)

Further by assuming that x(−∞) = 0, P is related to the
energy to control states,

‖u(t)‖22 = x(0)TP−1x(0) (6)

If the SVD is performed on P , small singular values corre-
spond to the states which are difficult to control.

Similar to controllability, G(s) is observable if given the
values of u(t) and y(t) for any t ≥ 0, it is possible to
determine a unique initial state x(0) [17]. This can be checked
by using observability Gramian defined as,

Q =

∫ ∞
0

eA
T tCTCAAtdt (7)

If Q is positive-definite, then the system is observable. Q is
the solution to the Lyapunov equation,

ATQ+QA+ CTC = 0 (8)
It is related to the energy observation of states. Suppose that

an autonomous system is released from initial states x(0), the
energy of y(t) can be computed using,

‖y(t)‖22 = x(0)TQx(0) (9)

If SVD is performed on Q, small singular values are related
to the states which are difficult to observe.

To obtain ROM of G(s), the state variables x(t) ∈ Rn is
projected into a new set of state variables x̂(t) ∈ Rr with
r << n by using a projection matrix V ∈ Rn×r

x(t) ≈ V x̂(t) (10)
It is often imposed that the error of this approximation must be
perpendicular to a subspace W ∈ Rn×r, where WTV = Ir.
The ROM is obtained through substituting (10) into (2) and
pre-multiplying the result with WT ,

ˆ̇x(t) = Âx̂(t) + B̂u(t), y(t) = Ĉx̂(t) + D̂u(t) (11)

where: Â = WTAV , B̂ = WTB, Ĉ = CV , D̂ = D.
In subsequent sections, five different methods to obtain Ĝ(s)
from G(s) will be discussed.

A. Balanced truncations (BT)

As previously stated, the small singular values of P and
Q correspond to the states which are difficult to control and
observe, respectively. These states do not participate signifi-
cantly in the input-output behavior and as a result they can be
eliminated. However, the states which are difficult to observe
do not necessarily concur with the states which are difficult
to control [2]. Thus, a coordinate transformation is required

to transform G(s) into a new coordinate system G̃(s),

G̃(s) =

[
Ã B̃

C̃ D̃

]
=

[
T−1AT T−1B
CT D

]
(12)

In this new coordinate system, the controllability and observ-
ability Gramian are equivalent,

TPTT = T−TQT−1

P̃ = Q̃ = ΣH = diag(σ1, · · · σn), σ1 ≥ · · · ≥ σn
(13)

The term σi are known as Hankel singular values (HSV).
The HSV represent the energy of states connecting inputs and
outputs and it is normally arranged in descending order. The
transformation matrix T used in (12) is given by

T = RTUΣ1/2, T−1 = RUΣ−1/2 (14)
where R is the Cholesky factor of P and Σ is the singular

values of RQRT given by,
P = RTR, RQRT = UΣ2UT (15)

The balance system G̃(s) can be partitioned according to
partition of ΣH ,

ΣH =

[
ΣH1

ΣH2

]
(16)

ΣH1 represents HSVs with significantly large magnitudes.
This partition yields,

G̃(s) =

 Ã11 Ã12 B̃1

Ã21 Ã22 B̃2

C̃1 C̃2 D̃

 (17)

The ROM Ĝ(s) is obtained by preserving sub-matrices as
follows,

Ĝ(s) =

[
Ã11 B̃1

C̃1 D̃

]
(18)

It has been shown in [2] that if ΣH1 and ΣH2 have no
common terms or entries, then (18) is always stable with the
error bound expressed by,∥∥∥G(s)− Ĝ(s)

∥∥∥
∞
≤ 2(σr+1 σr+1 · · ·σn) (19)

This is known as the twice sum of a tail rule [18], which
states that accuracy of the ROM in (18) increases when more
HSVs are included.

B. Alternating Directions Implicit (ADI)-based BT

The BT presented in the previous section has been widely
used for reducing the order of dynamic systems. Unfortunately,
as presented in Section IV, its application is restricted to small
to medium-sized systems due to the fact that the cost of solving
two Lyapunov equations in (5) and (8) is prohibitive. To deal
with this problem, an Alternating Direction Implicit (ADI)-
based algorithm is proposed to reduce the complexity of BT by
solving Lyapunov equation iteratively, which allows extension
of BT for wind farm systems.

The ADI iteration was originally used to solve a system of
linear equations as given in Appendix A. To solve Lyapunov
equation using ADI, (37) can be directly applied to (5) and
(8). As these equations are dual, it will only be illustrated for
(5). To conform with the ADI procedure, (5) is rewritten as
AP +ATP = −BBT . Hence, ADI iteration for this equation
is,

(A+ αiIn)Pi− 1
2

= −Pi−1(AT − αiIn)−BBT

(A+ αiIn)PTi = −PTi− 1
2
(AT − αiIn)−BBT

(20)

Combining two equations above into single equation yields,
Pi = (A+ αiIn)−1(A− ᾱiIn)Pi−1(A− ᾱiIn)T (A+ αiIn)−T

− Re(αi)(A+ αiIn)−1BBT (A+ αiIn)−T

(21)
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Using (21) with the proper shift parameters αi, P can be
found efficiently. Further, realizing the fact that in BT, the
aim is to calculate a low-rank factorization of P i.e. R as in
15, it is possible to modify (21) to directly calculate R [19].
Assuming that R0 = 0 and RiR

T
i = Pi, then (21) can be

rewritten as,
R1 =

√
−Re(α1)(A+ α1In)−1B

Ri =
[√
−Re(α1)(A+ α1In)−1B, (A+ αiIn)−1(A− ᾱiIn)Ri−1

]
(22)

The shift parameters used in (37)-(21) are obtained from
the solution of a min-max problem,

αi = min
αi∈C<0,
i=1,...,J

max
λ∈Λ(A)

=

J∏
i=1

|αi − λ|2

|αi + λ|2 (23)

Several methods are available to solve this [20], [21]. One
of the challenges is to calculate the spectrum of A as for
a large system calculating this spectrum is computationally
expensive. In this research, the heuristic approach proposed in
[20] is followed. The spectrum of A is approximated by using
Arnoldi iteration and then (23) is solved heuristically.

C. Rational Krylov (RK)

The method presented in this section is based on moment
matching via Krylov subspace, which is specifically known as
Rational Krylov (RK). As shown in Section IV, selecting a
set of interpolation points, denoted as σi, is crucial for the
accuracy of RK. These points are often selected from the
mirror image of dominant poles [13]. Given a single-input
single-output (SISO) system with the transfer function in (3),
it can be expanded around infinity (σ ≈ ∞),

G(s) =

∞∑
i=1

mis
−i,with mi = CAi−1B (24)

The term mi is known as ith moment of the transfer
function. In more general cases, G(s) may be also expanded
at σ 6=∞,

G(s) =

∞∑
i=0

mi(s− σ)i

with mi(σ) = CA−(i+1)B, for σ = 0 or

mi(σ) = C(σI −A)−(i+1)B, for σ 6= 0 or ∞

(25)

Approximation of G(s) by Ĝ(s) is carried out by preserving
k moments of the original system such that mi = m̂i, i =
1, 2, ...k. The term m̂i denotes the moments of Ĝ(s). In the
RK, the moments are not computed explicitly to avoid the
risk of numerical non-convergence because of ill-conditioning.
Moment matching is instead performed via projection onto a
Krylov subspace, which is defined as,
Kq(A,B) = span

{
B, AB, A2B, · · · , Aq−1B

}
(26)

If V and W in (11) are selected to span a certain Kylov
subspace, then the moments of FOM mi are automatically
preserved in the ROM. The preservation are selected from [8],
[11]:

1) If span(V ) = Kq1(A,B) and span(W ) =
Kq2(AT , CT ), then Ĝ(s) preserves q1 + q2 moments
of G(s) at infinity.

2) If span(V ) = Kq1(A−1, A−1B) and span(W ) =
Kq1(A−T , A−TCT ), then Ĝ(s) preserves q1 + q2 mo-
ments of G(s) at zero.

3) If span(V ) = Kq1((A − σI)−1, (A − σI)−1B) and
span(W ) = Kq1((A − σI)−T , (A − σI)−TCT ), then
Ĝ(s) preserves q1 + q2 moments of G(s) at σ.

4) If σ in point 2) and 3) is multi-point i.e. σ = [σ1, ..., σi],
by taking V and W as a union of Krylov subspaces
corresponding to each σi, then Ĝ(s) preserves q1 + q2
moments of G(s) at σi. This is known as generalized
Krylov subspaces.

Although the discussion above assumes that the system is
SISO, it can be extended to multi-input multi-output (MIMO)
system by using block Krylov subspace. This approach is
nonetheless only applicable for systems with minimum num-
ber of inputs and outputs. Furthermore, it is to be noted if
the power of A is continuously multiplied by B as in (26),
the resulting vectors will eventually converge to the dominant
eigenspace of A. This condition is undesirable due to the fact
that the new vector becomes closely parallel to the previous
vectors. Consequently, Kj is ill-conditioned. To deal with this
condition, the Krylov vector is orthogonalised against previous
vectors using Arnoldi and Lanczos methods.

D. Iterative Rational Krylov Algorithm (IRKA)

The operating condition of a system often continuously
changes, which may accordingly alter the dominant modes.
Hence, interpolation point selection of RK becomes difficult.
This section presents an Iterative Rational Krylov Algorithm
(IRKA) which can overcome this problem. The IRKA also
uses a tangential interpolation method as proposed in [22] to
handle MIMO systems.

Suppose G(s) is a MIMO system and a set of z interpolation
points with associated right and left tangential directions
{σi, ri, li}, i = 1, . . . z are given. If V and W are selected
such that,

(σiI −A)−1Bri = span(V )

(σiI −A)−1CT li = span(W )
(27)

then Ĝ(s) interpolates G(s) tangentially at σi and satisfies
the following conditions [22], [23],

lTi G(σi) = lTi Ĝ(σi), G(σi)ri = Ĝ(σi)ri,

lTi G
′
(σi)ri = lTi Ĝ

′
(σi)ri, ∀i = 1, 2, . . . , z

(28)

Equation (28) shows that the IRKA uses a more relaxed
condition than exact interpolation in the RK. The remaining
problem is how to select {σi, ri, li} appropriately. The IRKA
selects {σi, ri, li} to minimise H2 norm error between G(s)
and Ĝ(s),

min
∥∥∥G(s)− Ĝ(s)

∥∥∥2

2
(29)
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Let G(s) be expressed in terms of pole-residue representa-
tion,

G(s) =

n∑
i=1

cib
T
i

s− λi
=

Ri
s− λi

(30)

where AXv = Xvdiag(λ1, ..., λn), ci = CXvei, and
bi = (eTi Y

vB)T with Y v = Xv−1. Columns of Xv and
Y v are constructed from the right and left eigenvectors of λ,
respectively. A triplet {λi, xvi , yvi } is commonly referred as an
eiganpair. Ri is known as the residue of λi. The IRKA tries
to find Ĝ(s),

Ĝ(s) =

r∑
i=1

ĉib̂
T
i

s− λ̂i
=

R̂i

s− λ̂i
(31)

which satisfies (29). The first order optimality conditions for
this problem is proposed in [24]. If Ĝ(s) is the solution of
(29), then the following conditions hold,

ĉTi G(−λ̂i) = ĉTi Ĝ(−λ̂i), G(−λ̂i)b̂i = Ĝ(−λ̂i)b̂i
ĉTi G

′
(−λ̂i)b̂i = ĉTi Ĝ

′
(−λ̂i)b̂i, ∀i = 1, . . . , r

(32)

where λ̂i are poles of Ĝ(s) with associated residues ĉi, b̂i.
Therefore, equation (32) suggests that the interpolations points
should be selected from mirror image the eigenvalues of ROM,
while the corresponding tangential directions are selected from
the associated left and right eigenvector.

E. Modal Truncation

In the IRKA, one tries to find R̂i and λ̂i in (31), so that
(29) is minimised. On the other hand, the modal truncation
constructs a ROM so that (31) preserves r most dominant
eigenvalues of (30). In this way, system stability is always
guaranteed to be preserved. One way to define dominant
modes is through the corresponding residue Ri of λi. A mode
λi is called dominant if it has a large ratio of ‖Ri‖2 /|Re(λi)|;
thus, the modal truncation selects the r largest ratio.
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Fig. 8: Time domain comparison of complete system: FOM vs ROM by BT

When the modal truncation is applied to a large-scale
system, the calculation of all eigenpairs {λi, xvi , yvi } and
then selection of dominant modes based on the ratio of
‖Ri‖2 /|Re(λi)| become extremely expensive. To overcome
this, the eigenpairs {λi, xvi , yvi } should be calculated one-at-a-
time until r eigenpairs are found. In [14], a new method known
as a Subspace Accelerated MIMO Dominant Pole Algorithm
(SAMDP) has been successfully used to extract dominant
modes of large power system models. This method starts
from an initial value of a pole and performs iterations until a
pole with largest ratio of ‖Ri‖2 /|Re(λi)| is found. During
the iteration, the corresponding right and left eigenvectors
are also calculated. Once this pole has been found, it is
deflated to prevent the iterations to converge to the same pole.
This process is repeated until r eigenpairs are found. Having
completed this process, the right and left eigenvectors are put
into columns of V and W , respectively, as follows,

W =

yv1
∣∣∣∣∣ · · ·

∣∣∣∣∣ yvr
 , V =

xv1
∣∣∣∣∣ · · ·

∣∣∣∣∣ xvr
 (33)

The ROM is obtained by applying V and W to the FOM
as in (11).

IV. WIND FARM MODEL ORDER REDUCTION

A. Reduced order model using BT

Prior to reducing the system using the BT, the external-area
needs to be linearised. This produces a linear system with an
order of 3868. Furthermore, it has two inputs (d and q-axis
PCC voltage) and also two outputs (d and q-axis PCC current).
The study-area, by contrast, is retained using nonlinear model.

The order of reduced model is easily determined through
inspection of HSV plot shown in Fig. 5. There are significant
drops in the magnitudes after the 6th, 18th and 33rd HSV, and
they indicate as appropriate orders of reduced system. The
Bode plots from Vqref

pcc to Idpcc for these three ROMs are
compared with that of the FOM of external-area in Fig.6.
It is evident that the 6th order system is able to capture the
peak at frequency 47.9 Hz, whereas it performs very poorly
for other frequency range. Increasing order to 18th and further
to 33rd can significantly enhance the accuracy of ROM. This
is consistent with the theory of the twice sum of the tail rule
of BT in (19).

It is important to pause here and discuss stability preserva-
tion of BT. As previously discussed, the ROM obtained from
BT preserves stability of the FOM if ΣH1 and ΣH2 in (16)
have no common terms or entries. In other words, the stability
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TABLE II
PERFORMANCE OF ALL METHODS

Model Order Elapsed
time (s)

Extraction
time(s)

MSE PPCC MSE VPCC

Full nonlinear 3874 78.18 - - -
Full linear 3874 68.54 - - -
BT 39 0.27 433 3.77×10−4 2.96×10−5

ADI 39 0.30 19.18 4.80×10−5 2.05×10−6

RK 42 0.44 0.32 4.3×10−3 9.9×10−4

IRKA 42 0.23 7.41 1.45×10−5 1.52×10−5

SAMDP 307 5.10 31.17 2.42×10−4 1.61×10−5

is always preserved when the HSVs are distinct. It can be
observed that in case of wind farm model used in this study,
the HSVs are always unique. Although Fig. 5 shows that some
HSVs appear to be the same, in fact they slightly differ. Hence,
this makes it possible to always obtain a stable ROM of wind
farm using BT. This is also supported by a large number of
experiments. For further analysis, the 33rd order is selected.

In order to study the complete system, the 33rd order is
reconnected to the study-area and the combined system is
then compared to the FOM in term of Bode plot, eigenvalue
plot, and waveform agreement. The Bode plots from Vdref

pcc
to Vqpcc are given in Fig. 7a and it is clear that they match
very accurately. The same information is also conveyed by the
eigenvalue plot in Fig. 7b in which the four critical modes can
be accurately retained in the ROM. Further, multiple modes
at the frequency close to 50 Hz of the FOM are replaced
only by just two modes in the ROM. To investigate waveform
agreement at the PCC, the study-area is perturbed with a
1% step change in the PCC reference voltage at t = 0.3 s.
The responses of power and voltage waveform for both full
and reduced order are depicted in Fig. 8, which indicates the
ROM is able to mimic the oscillations of FOM very accurately.
The corresponding MSE of power and voltage given in Table
II demonstrates accuracy of the ROM. Further, Table II also
shows comparison of the elapsed time in order to perform a
one second simulation. As anticipated, for the same simulation
duration, the 33rd order system only requires 0.27s, while the
nonlinear FOM and linear FOM require 78.18s and 68.54s,
respectively.

However, to solve the Lyapunov equations in the BT proves
computationally prohibitive for large-scale systems. For the
application in wind farm MOR exercise, this computational
cost is even more expensive than simulating the full order
system for one second as illustrated in Table II. This shows
that a special method is required to calculate the solution of
Lyapunov equation more efficiently, enabling extension of BT
to the high order model of wind farm.
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Fig. 9: HSV plot of external area using ADI
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Fig. 10: Bode plot of external-area from Vqref
pcc to Idpcc: FOM vs ROM by

ADI.

B. Reduced order model using ADI-based BT

The bottleneck of BT is solving the Lyapunov equations.
To overcome this, an Alternating Direction Implicit (ADI)
iteration is used to solve these equations. A set of shift pa-
rameters need to be carefully selected to ensure a satisfactory
performance of the ADI method. In this paper, the heuristic
approach proposed in [20] is adopted due to its simplicity
and Matlab implementation is given in [25]. Since calculating
the spectrum of A is computationally prohibitive for large
systems, the method estimates these values using the Arnoldi
iteration. The spectrum with large magnitudes is determined by
performing Arnoldi for 100 iterations, while the spectrum with
small magnitudes is calculated by running the same algorithm
for 50 iterations and then calculating inverse of the result.
The final spectrum, λ, is union of the results from these two
processes, but choosing only the values with negative real
part. The shift parameters, αi, is then selected from this final
estimation by solving (23) heuristically. The number of shift
parameters is set to be 40.

Having obtained the shift parameters, the ADI algorithm is
run for 500 iteration. Since there are fewer number of shift
parameters than the number of iterations, the shift parameters
are used in a cycle. The estimated HSV of the external-area is
given in Fig. 9. Although the magnitude is different from the
exact HSV in Fig. 5, the same orders as in the case of BT, 6,
18, and 33, are selected for the sake of fair comparison. The
corresponding HSV is given in Fig. 9. The Bode plots from
Vqref

pcc to Idpcc of these three ROMs are compared to that of the
FOM of external-area in Fig. 10. The 6th order system is only
able to capture the peak of full order system at frequency of
47.9 Hz. By increasing the order to 18 and 33, more accurate
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Fig. 12: Time domain comparison of complete system: FOM vs ROM by ADI

result can be attained. Further analysis is carried out only to the
33rd reduced order system. The Bode and eigenvalue plots of
the 33rd ROM when connected to the study-area are validated
against the FOM and the results are given in Fig. 11. It is
obvious that the critical modes are preserved in the ROM.
This result is also consistent with the time domain simulation
when the study area is perturbed by the same fault as in the
case of BT. Fig. 12 shows that the ROM behaves very similar
to the FOM. The MSE of power and voltage at the PCC as
given in Table II.

With regard to stability preservation, although to the knowl-
edge of the authors, there is no guarantee of stability preserva-
tion using the ADI method, authors have never found a case in
this research where the ROM of wind farm is unstable. Even if
a small number of Arnoldi iterations and shift parameters are
used, a stable ROM has always been obtained. For instance,
when the number of Arnoldi iterations are set to be 10 and
5, while the number of shift parameters are set to be 5, the
reduced models with order 6, 18, and 33 are all stable.

The performance comparison above clearly indicates that
the ADI based BT is able to attain comparable accuracy to the
results of BT. However, the main advantage of ADI iteration
is the ability to solve Lyapunov equations efficiently for large
scale systems; thus giving rise to a significant reduction in
extraction time as given in Table II.

C. Reduced order model using RK

In the RK, it is necessary to provide a set of interpolation
points where the moments of FOMs are preserved. It has been
suggested in [13] that one can choose the interpolation points
from the mirror image of poles of G(s), specially those with
the highest residue. For the wind farm model used in this
paper, those poles are given in Table. I.

Three scenarios of moment matching shown in Table. III are
considered to examine the influence of interpolation points on
RK accuracy. The first scenario, RK1, aims to match moments
at two critical modes, namely, M3 and M4. In the RK2, more
points are added to match the moments of high order system at
all critical modes M1-M4. Finally in RK3, a similar scenario
to RK2 is considered with addition of some points, which are
not the dominant modes, to enhance accuracy of the ROM

TABLE III
INTERPOLATION POINT SCENARIO FOR RK

Scenario Order Interpolation points
RK1 8 8.17 ± 310.17i (P1), 2.72 ± 64.94i (P2)
RK2 20 P1, P2, 58.50 ± 1979.16i (P3), 70.83 ± 1379.46i (P4)
RK3 36 0,±1i, ±10i, ±40i, P1, P2, P3, P4
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Fig. 13: Bode plot of external-area from Vqref
pcc to Idpcc: FOM vs ROM by

RK
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Fig. 14: Frequency domain comparison of complete system: FOM vs ROM
by RK

at low frequency. These scenarios are carefully selected to
preserve the stability of the external-area as it is well-known
that the RK does not preserve stability. Although it is found in
this paper that selecting interpolation points from a subset of
the negative poles of G(s) often produces a stable ROM, this
approach sometimes produces an unstable reduced system. For
example, if the interpolation point are 2.72±64.94i (M2) and
70.83± 1379.46i (M4), the ROM has two unstable modes.

The Bode plots from Vqref
pcc to Idpcc of the RK1-RK3

are compared to that of the FOM of external-area in Fig.
13. Although the both RK1 and RK2 are able to produce
accurate Bode plot response at the preselected points, they
are erroneous at low frequency range. With the incorporation
of interpolation points at low frequency, RK3 produces more
accurate results. This shows that the choice of interpolation
points significantly affects accuracy of the ROM. For further
analysis, RK3 is selected.

The Bode and eigenvalue plots when the RK3 is reconnected
to the study-area are shown in Fig. 14. Both plots indicate
that the ROM is generally able to capture the critical modes of
FOM. However, it can be seen that there are small errors in the
Bode plot. Further, the time domain simulation is performed
by using the same scenario of fault as in the previous sections
and the responses of power and voltage at PCC are given in
Fig. 15. It is likely that the errors previously shown in the Bode
plot might influence accuracy of time-domain simulation. The
MSE for both power and voltage at PCC is slightly larger
than in the previous cases as indicated in Table. II. Finally, it
remains to be seen that the main advantage of RK as shown in
Table II is a significant reduction in the extraction time, which
accounts only for 0.32 s.
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Fig. 15: Time domain comparison of complete system: FOM vs ROM by RK
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Fig. 16: Bode plot of external-area from Vqref
pcc to Idpcc: FOM vs ROM by

IRKA

D. Reduced order model using IRKA

The performance of RK methods is determined by selection
of the interpolation points, which is often difficult to do. This
is exacerbated by the fact that the operating condition of
wind farms continuously changes, which in turn affects the
dominant modes. With the aim to overcome these difficulties,
the iterative rational Krylov algorithm (IRKA) is proposed to
reduce the model of wind farm. In this way, a set of initial
interpolation points with corresponding tangential directions
are updated until an optimal point, which solves (29), is found.

To demonstrate the effectiveness of IRKA, three ROMs,
namely, IRKA1, IRKA2, and IRKA3 are considered. These
models have the same order as RK1, RK2 and RK3, respec-
tively. The interpolation points with the corresponding right
and left tangential directions for these models are selected
randomly. Using these random parameters, the IRKA is able to
converge within 16, 81, and 23 iterations and requires elapsed
time of 2.51s, 19.41s, and 7.41s for IRKA1, IRKA2, and
IRKA3, respectively. There are two stopping criteria adopted
in this study, namely, the H2-norm for interpolation points
and reduced system. If any of these criteria falls below the
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Fig. 17: Frequency domain comparison of complete system: FOM vs ROM
by IRKA

tolerance, then the IRKA iteration stops. The final error for the
interpolation points and system are 2.0×10−4 and 2.1×10−3

for IRKA1, 8.8 × 10−3 and 8.5 × 10−4 for IRKA2, and 2.6
and 8.7×10−4 for IRKA3. The Bode plots from Vqref

pcc to Idpcc
for these ROMs are compared to that of the FOM of external-
area in Fig. 16, which in general shows superior performance
of the IRKA to the RK. It is also obvious that the IRKA3
produces more accurate results than IRKA1 and IRKA2. For
further analysis, only the IRKA3 is considered.

The response of complete ROM with IRKA3 is compared
to the responses of FOM. The Bode and eigenvalue plots are
given in Fig. 17 and it shows generally better performances
of IRKA than RK. This result is also compatible with the
time-domain simulation when the system is subjected by the
same disturbance as in the previous sections. The power and
voltage responses at the PCC are given in Fig. 18 with the
corresponding MSE equal to 1.45×10−5 and 1.52×10−5,
respectively, as shown in Table II. It is to be noted that in
term of stability preservation, to the knowledge of authors, the
IRKA essentially does not preserve stability of the FOM. This
is observed from a large number of experiments that unstable
ROMs are sometimes generated from a stable FOM.

E. Reduced order model using Modal Truncation
In this section, application of the SAMDP method to obtain

ROM of the wind farm is investigated. Different from the pre-
vious methods, it is found that the SAMDP cannot be applied
directly to the original linearised model of the external-area.
It is because there is a problem with eigenvalue condition-
ing. This can be studied through the condition number of the
eigenvector matrix, i.e.

cond(Xv) = ‖Xv‖2
∥∥∥Xv−1

∥∥∥
2

= ‖Xv‖2 ‖Y
v‖2 (34)

The original matrix has this number around 1250, which in-
dicates that the eigenvalues are very sensitive to any changes
in elements of A, for instance due to rounding error. As the
SAMDP calculates explicitly the eigenpair {λi, xi, yi}, this
method cannot converge unless cond(Xv) is reduced. To do
this, a similarity transform is performed,

Asim = T−1AT (35)

where Asim has equal row and column norm whenever pos-
sible. This is carried out by using a Matlab’s command bal-
ance. Performing this step, cond(Xv) decreases significantly
to 803.80, which in turn enables the SAMDP to converge.

Three scenarios are considered to test the performance of
SAMDP, namely SAMDP1 (18 dominant modes), SAMDP2
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Fig. 18: Time domain comparison of complete system: FOM vs ROM by
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Fig. 19: Bode plot of external-area from Vqref
pcc to Idpcc: FOM vs ROM by

SAMDP

-40

-20

0

20

10-1 100 102

-90
0

90

Full
Reduced

Frequency  (Hz)

   
   

   
   

   
 M

ag
 (

dB
);

 P
ha

se
 (

de
g)

(a) Bode plot from Vdref
pcc to Vqpcc

-80 -60 -40 -20 0
Real axis

0

100

200

300

Im
ag

in
ar

y 
ax

is
 (

H
z) Full

Reduced

(b) Eigenvalue plot
Fig. 20: Frequency domain comparison of complete system: FOM vs ROM
by SAMDP

(40 dominant modes), and SAMDP3 (180 dominant modes).
The orders of these models are 36, 74, 301 for SAMDP1-
SAMDP3, respectively and an initial value of the pole is set
to be 1i for all cases. The Bode plot from Vqref

pcc to Idpcc for
these models are compared with that of the FOM of external-
area in Fig. 19. It is obvious that to improve accuracy of
SAMDP, higher number of poles need to be incorporated.
Notice that SAMDP requires significantly higher order than
the other methods in order to obtain comparable accuracy. It
is due to the fact that the SAMDP gives a high priority to the
modes whose residues are high. However, it is true that these
modes might not be always important for system dynamics;
hence selecting these modes does not always improve accuracy
of the ROM. Another reason is that the SAMDP extracts all
poles which are close each other. The SAMDP3 is selected for
further analysis. Fig 20 shows the performance of SAMDP
in frequency domain. It is obvious that both the Bode and
eigenvalue plot are able to capture the responses of FOM.
This translates into time domain performance as illustrated in
Fig. 21, where very small errors are observed in the waveform
of power and voltage at the PCC. The values of MSE for these
plots are given in Table II. Further increase the order should
minimise the error further.

There are two important technical details to be discussed.
Firstly, the SAMDP is able to efficiently extract 180 modes
within only 31.17 s, see Table II. Secondly, due to the fact
that the SAMDP extracts the poles of FOM one-at-a-time,
stability of ROM is always guaranteed whenever the FOM is
stable, which is confirmed by experiments.

V. ROM OF DIFFERENT ORDER OF WIND FARM MODELS

This section presents performance of the MOR methods on
different wind farm models. Two new wind farm models are

0.4 0.6 0.8 1
Time (s)

2.86

2.88

2.9

2.92

2.94

2.96

2.98

R
ea

l p
ow

er
 (

p.
u.

)

Full
Reduced

(a) Active power at PCC

0.4 0.6 0.8 1
Time (s)

1.134

1.136

1.138

1.14

1.142

V
ol

ta
ge

 (
p.

u.
)

Full
Reduced

0.28 0.3 0.32 0.34 0.36
Time (s)

1.134

1.136

1.138

1.14

1.142

V
ol

ta
ge

 (
p.

u.
)

Full
Reduced

(b) Voltage at PCC
Fig. 21: Time domain comparison of complete system: FOM vs ROM by
SAMDP

TABLE IV
MOR ON DIFFERENT WIND FARM MODELS

Method Performance System 1 (2902) System 2 (3874) System 3 (6770)

BT

Order 39 39 51
Extraction 186.42 s 433.00 s 2168.55 s
MSE PPCC 8.35×10−6 3.77×10−4 2.33×10−4

MSE VPCC 1.39×10−6 2.96×10−4 1.14×10−5

MSE Bode 5.29×10−4 8.10×10−3 5.20×10−3

ADI

Order 39 39 51
Extraction 14.53 s 19.18 s 32.19 s
MSE PPCC 8.38×10−6 4.80×10−5 2.20×10−4

MSE VPCC 1.40×10−6 2.05×10−6 1.14×10−5

MSE Bode 5.30×10−4 6.14×10−4 5.20×10−3

RK

Order 38 42 28
Extraction 0.23 s 0.32 s 0.31 s
MSE PPCC 4.02×10−4 4.30×10−3 3.60×10−2

MSE VPCC 7.78×10−6 9.90×10−4 1.80×10−3

MSE Bode 2.90×10−2 2.60×10−2 2.50×10−1

IRKA

Order 38 42 28
Extraction 6.67 s 7.41 s 77.33 s
MSE PPCC 1.74×10−5 1.45×10−5 7.10×10−3

MSE VPCC 1.80×10−6 1.52×10−5 4.20×10−3

MSE Bode 5.90×10−4 2.20×10−3 1.60×10−2

SAMDP

Order 110 307 339
Extraction 10.13 s 31.17 s 61.90 s
MSE PPCC 7.18×10−4 2.42×10−4 8.80×10−4

MSE VPCC 2.54×10−5 1.61×10−5 6.03×10−5

MSE Bode 3.60×10−2 1.30×10−3 3.10×10−3

obtained from the modification of the wind farm shown in Fig.
1. Firstly, the Wind Farm 2 of Fig. 1 is removed, which yields
a new wind farm with an order of 2902. This wind farm has
a total of 90 DFIGs and is referred as System 1. Secondly,
the Wind Farm 1 of Fig. 1 is duplicated, resulting in a new
system with a total of 210 DFIGs and an order of 6770. This
system is termed as System 3. The original wind farm model
consisting of 90 DFIGs is referred as System 2.

Table IV shows performances of the five methods on the
System 1, System 2, and System 3. Note that the results for
System 2 are presented again here for the sake of clarity. It is
obvious that the BT consistently has the highest computation
time for all systems. The increase in computational time of
BT is at a rate of around O(n3), which stems from solving
the Lyapunov equations. This practically limits the use of
BT for wind farm MOR. The introduction of ADI method
to solve these equations reduces the computational time to
approximately O(n) as evident from Table IV. The accuracy
of ADI in all cases is practically similar to that of BT. It is
also confirmed that unstable ROMs calculated from ADI are
never found in all wind farm models.

Table IV also indicates that the IRKA outperforms the RK in
both time and frequency domain for all test systems, but the
IRKA requires significantly higher computational time than
the RK. This observation is more pronounced as the system
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size increases. The computational time of RK in all cases
is less than 0.4 s. But, it is to be noted that the RK often
produced unstable ROMs and stability preservation becomes
more difficult for larger systems. In particular for System 3,
the ROM are unstable for many cases and only the reduced
model with an order of 28 is stable. For the IRKA, stability
for System 3 is essentially also not always preserved. Finally,
in order to achieve comparable accuracy to other methods, the
SAMDP constantly requires higher order that other methods
and always produces stable ROMs.

VI. CONCLUSIONS

This paper describes linear MOR techniques for wind farm
systems, namely BT, ADI-based BT, RK, IRKA, and SAMDP.
The models are practically-sized wind farm systems with 90,
120, and 210 DFIGs. Due to solving Lyapunov equations, the
application of BT to the wind farm model is computationally
expensive. With the aim of reducing the computational time,
the ADI-based BT solves Lyapunov iteratively. This method
can attain accuracy of BT at much lower computational cost.
In RK, the moments of full order system are retained in the
reduced order system at a set of pre-specified interpolation
points. These points determine the accuracy of the reduced
order model and therefore should be chosen carefully at mirror
image of the dominant modes. As the operating condition
of wind farms changes, the interpolation points need to be
changed accordingly, making this a very difficult task to do.
To overcome these problem, the IRKA iteratively calculates
a set of initial interpolation points to minimise error between
FOM and ROM. Finally, the SAMDP is able to extract the
poles of FOM one-at-a-time to construct the ROM, but it
strongly depends on the eigenvalue conditioning on systems
matrices. Although the comparison between full and reduced
order model in term of Bode plot, eigenvalue plot, and and
waveform at the PCC show that all methods can provide an
acceptable reduced order model, it seems that IRKA is the
most suitable method for large-scale wind farm applications.
This is due to the fact that IRKA is able to provide a very
accurate model within reasonable extraction time and order.
Furthermore, IRKA is also less sensitive to initial parameter
set up.

APPENDIX A
SOLVING LINEAR EQUATIONS USING ADI ITERATION

let’s define a linear system of equations [19],
Ax = b (36)

with A being a symmetric positive definite matrix. Matrix A
can be factorized as a sum of two positive definite matrices, L
and R. As a result, (36) can be rewritten as Lx+Rx = b. This
equation can be solved using ADI iteration by performing the
following routines,

(L+ αiIn)xi− 1
2

= (αiIn −R)xi−1 + b

(R+ αiIn)xi = (αiIn −R)xi− 1
2

+ b
(37)

where αi are ADI shift parameters. A careful selection of
these parameter is critical for ADI iteration to converge to the
solution x.
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