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Summary

In this thesis I describe the development, implementation and characterisation of a

source of wavelength-tunable few-femtosecond laser pulses in the deep ultraviolet

spectral region for use in time-resolved experiments. I also propose and model an

extension of this source capable of simultaneously generating a single-cycle driving

pulse for extreme nonlinear optics as well as a few-femtosecond ultraviolet pulse.

Building on advances in the field of femtochemistry, ultrafast science is moving

towards ever shorter timescales and more complex systems. One of the key building

blocks for the next generation of experiments studying ultrafast dynamics in molecules

will be the availability of few-femtosecond pulses to directly address electronic reso-

nances whose corresponding photon energy lies in the vacuum and deep ultraviolet

spectral regions.

By harnessing the capabilities of soliton self-compression in novel micro-structured

waveguides, we have generated pulses in the deep ultraviolet with energies of hundreds

of nanojoules. The delivery of these pulses to an experiment as well as the measurement

of their temporal profile pose significant challenges due to the dispersive properties

of optical materials in the ultraviolet. We have developed an in-vacuum device for

ultrafast pulse characterisation, and by directly coupling the waveguide to vacuum we

were able to measure distortion-free pulses with durations below 10 fs at a range of

different central wavelengths.

Numerical modelling of a scaled-up version of the apparatus shows that the self-

compressed driving pulse in the ultraviolet pulse generation process can maintain its

shape when delivered directly to vacuum. The single-cycle pulse duration makes it

an ideal driver for extreme nonlinear optics and the generation of isolated attosecond

pulses in the soft X-ray spectral region.
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1. Introduction

At many points in the history of science, momentous progress was made possible

by new methods of measurement. The telescope advanced the field of astronomy by

bringing the night sky that much closer, while the microscope has been fundamental to

both biology and medicine since its invention. Fast-forward a few centuries, and the

use of lasers has revolutionised measurement by providing precise rulers both in space

and time.

Arguably, the history of ultrafast time-resolved measurements begins with the efforts

of Eadward Muybridge who, in 1878, determined that all four of a horse’s feet leave

the ground at one point of a galloping gait. This was the first recorded use of the

freeze-frame technique to measure the details of a process that is too fast for the human

senses to follow. Since then, high-speed photography has been used to slow down a

great variety of phenomena in all areas of science and technology.

In all fast measurements, there are two different ways to achieve the desired time

resolution. The first, and most commonly used, is to use a very fast shutter on the

detector – in the case of high-speed photography, a camera. By only collecting light for

a very short amount of time, the scene is frozen in place at that moment. The second

method is to keep the shutter open and instead let the illumination be the fast event –

that is, to use a flash. If the scene is sufficiently dark outside the illumination time, this

also yields a frozen image.

In going beyond the timescales accessible using camera shutters, which are limited

to exposure times of hundreds of microseconds (1 µs = 10−6 s), it is the second of these

two approaches that has been most successful. The speed record for measurements was

first pushed below a microsecond by discharge flash lamps, and then further to the
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picosecond (1 ps = 10−12 s) and femtosecond (1 fs = 10−15 s) range by the development

of pulsed lasers.

With the advent of ultrafast light sources, the timescales of the atomic and molecular

dynamics involved in chemical reactions came within reach, leading to rapid advances

in the field of femtochemistry [1]. Besides going well beyond the speed of events

usually described as fast – such as horses, speeding bullets, and explosions – this area

of physics is concerned with movement on atomic length scales. Processes such as the

ejection of an electron from an atom or molecule, the making and breaking of chemical

bonds, and the reorganisation of charge following an excitation all occur at extremely

small scales in both time and space, and thus in the realm of quantum physics.

The new frontier in ultrafast measurement is the behaviour of electrons inside

the molecules and atoms themselves, as part of chemical reactions as well as other

phenomena, such as light harvesting. This requires even better time resolution of a few

femtoseconds or less.

Ultrafast dynamics and the need for time-resolved measurements

The presence of behaviour on ultrafast timescales in quantum systems is largely a

consequence of the superposition of states with different energies. This can be seen

by considering the time-dependent Schrödinger equation, which describes general

quantum systems at non-relativistic velocities:

− ih̄∂tΨ(R, t) =
[

1
2

p̂2 + V(R, t)
]

Ψ(R, t) , (1.0.1)

where Ψ(R, t) is the wavefunction, t is time, R is a generalised coordinate for the

system, p̂ is the momentum operator, and V(R, t) is the potential. If the potential is

independent of time or if the dependence on time is slow, the wavefunction can be

written as a sum over the energy eigenstates1:

Ψ(R, t) = ∑
n

anψn(R)e−iEnt/h̄ , (1.0.2)

1This sum becomes an integral when continuum states are considered as well, however the central points

can be illustrated without them.

2
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where n is the principal quantum number, an is a weighting coefficient, and En is the

energy corresponding to the nth eigenstate’s spatial wavefunction ψn(R), which satisfies

the time-independent Schrödinger equation:[
1
2

p̂2 + V(R)

]
ψn(R, t) = Enψn(R) . (1.0.3)

Each state thus evolves with a frequency given by its energy. Therefore, if Ψ is

comprised of several eigenstates, that is, if several of the coefficients an are non-zero, the

overall state will exhibit dynamics at timescales set by the energy separation between

its component eigenstates. As with a superposition of electromagnetic waves, more

complex dynamics are created when a larger number of individual states are present in

the wavefunction.

In many cases, the states in the superposition can be distinguished and their character-

istics analysed by static spectroscopic methods. A simple example is the measurement

of the excited state lifetime, for instance after excitation with light. For each excited state

that is populated, the lifetime is encoded in the width in frequency of the fluorescence

emitted when the system decays back to the ground state. When the system is in a

superposition, the component states simply appear as different peaks in the fluores-

cence spectrum, and their lifetimes can be measured in the same way. This means

that even for energy separations of a few electron volts, which lead to dynamics on

few-femtosecond timescales, a time-resolved measurement is not necessarily required

to investigate the behaviour of the system in question.

There are, however, situations in which such a static measurement cannot yield the

desired information. The most obvious example is that of dark states. If the system is

in such a state, it cannot decay by emitting a single photon, nor can it be promoted to a

higher-lying state by absorbing one, since no electric dipole transitions are allowed; the

dipole matrix element with all other states is zero [2]. It follows that such states do not

appear in static fluorescence or absorption spectroscopy measurements.

Dark states and the dynamics of non-radiative transitions connected with them can

play an important role in physical processes. One particularly illuminating example

is that of ultraviolet (UV) absorption in DNA and RNA. To avoid damage, the energy

3
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absorbed in these systems is internally converted in a non-radiative way in a very short

time [3]. The dynamics of this process were investigated using experiments in which

the RNA base uracil was excited with a short pulse of UV light, subsequently ionised

by a strong laser pulse, and the relative yield of the resulting molecular fragments

recorded as a function of delay between excitation and fragmentation [4]. In this way,

the time-dependent population and thus decay rates of several states could be extracted,

one of which is a dark state.

On picosecond and femtosecond timescales, time-resolved measurements have been

used extensively to go beyond the limitations of static spectroscopy [1]. Beside the

invisible presence of dark states, other issues that can be addressed in this fashion are

those that make an absorption or emission spectrum difficult to interpret. For instance,

the appearance of several spectral lines that overlap can preclude the extraction of

line widths. More fundamentally, there are some processes in which the evolution

of a particular excited state does not follow a simple exponential decay, so that the

connection between lifetime and line width breaks down. One example is Auger decay

of an ionised atom or molecule; here, several decay channels are partially mutually

coherent, and the resulting interference leads to a more complex structure in the

decay [5].

The common feature among these examples of time-resolved measurements is that

the absolute value of the absorption or emission spectrum created by a process does not

contain sufficient information. To characterise the dynamics, the phase of the spectrum

has to be measured. In the absence of detectors that can access the relevant timescales

directly, the only way to do this is to use two events. One event starts the process,

and another investigates the state of the system some time later. By performing a

time-integrated (i.e, phase-insensitive) measurement repeatedly while varying the delay

between the two events, the dynamics of the process – or equivalently, the spectral

phase – can be reconstructed. The event forming the “starting gun” is often termed the

pump and the second event the probe, and consequently this type of measurement is

known as a pump-probe experiment.

4
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Several different methodologies exist for ultrafast measurements. Collecting the

products of ionisation-induced molecular fragmentation, as already mentioned above,

is one such method. Another very commonly used technique is that of time-resolved

absorption spectroscopy, also known as transient absorption spectroscopy. Here, ab-

sorption spectra are taken at different delays after an initial excitation event, building

up a picture of the dynamics [6]. Since the processes most commonly investigated using

transient absorption spectroscopy result from the vibrational and rotational degrees of

freedom of a molecule, the relevant transitions can be addressed using UV, visible and

infrared light.

The study of ultrafast dynamics is progressing to ever faster processes, and thus to

the behaviour of electrons rather than molecular rotation and vibration. The laser wave-

length required to “speak to” the molecule for the excitation becomes more and more

important as the relevant absorption resonances spread further apart and shift towards

the deep ultraviolet (DUV) (200 nm to 300 nm) or even vacuum ultraviolet (100 nm to

200 nm). A tunable source of sufficiently short pulses in this spectral region is therefore

very desirable. At the same time, the utility of transient absorption spectroscopy is

greatly enhanced by moving to the X-ray spectral region, where absorption is due

to resonances with deeply bound electrons, forming an excellent probe of individual

atoms in a molecule. This, too, requires new tools and light sources.

Shorter pulses at shorter wavelengths

The generation of short pulses at the relevant wavelengths is one of the biggest obstacles

to applying the ideas of ultrashort measurement to processes involving electronic

excitation. As already mentioned, the required time resolution is of the order of a few

femtoseconds or even below a femtosecond. No laser sources can currently access this

regime directly, so pulse compression techniques form the foundational technology in

this field.

Although extreme time resolution can be achieved by using pulse-compression

techniques, they still need to overcome a second hurdle: the restriction of laser emission

5
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to the gain bands of available laser media leaves many regions of the electromagnetic

spectrum inaccessible. Frequency conversion of laser light by way of nonlinear optical

processes has conquered many parts of the visible (400 nm to 700 nm) and near-infrared

(700 nm to 2500 nm) spectral regions. However, the deep and vacuum ultraviolet

remain difficult to reach, especially when both a short pulse as well as good conversion

efficiency are required in addition to the ability to tune the wavelength of the pulse.

The goal of the work for this thesis was to address the challenge of generating and

delivering bright, tunable and short pulses across the deep ultraviolet while using the

minimum amount of laser pulse energy possible. The approach we used to achieve

this goal is based on recent developments in the field of nonlinear optics in gas-filled

hollow-core waveguides [7,8]. The unique combination of a high damage threshold and

broadband low-loss guidance at small core sizes in hollow-core photonic crystal fibres

has allowed many phenomena of nonlinear fibre optics, including the self-compression

of laser pulses and the creation of ultraviolet secondary pulses, to be extended to

unprecedented intensities. With the gas species and pressure offering a degree of

control over the dispersive and nonlinear properties of the waveguide, the potential

for broadband deep-UV pulse generation was realised soon after this type of fibre was

first created [9, 10]. After introducing the relevant concepts as well as the experimental

context and requirements in chapters 2 and 3, I describe the design and implementation

of an apparatus to harness this capability in chapter 4.

The other main aim of the work presented here was to measure the generated pulses

in near-identical conditions to an experiment. This is only possible in vacuum, both

because of the dispersive properties of optical materials and air in the ultraviolet and be-

cause soft X-ray pulses, the other half of the planned experiment, are strongly absorbed

in all gases. Previous measurements of UV pulses generated in this manner were done

in air and included other elements that stretched the pulses [11]. While numerical

back-propagation showed that short pulses were generated in the waveguide, so far

the delivery of a few-femtosecond pulse to an experiment has not been demonstrated.

As a result of the vacuum requirement, the UV pulse generation had to take place in

6
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the presence of a pressure gradient in the waveguide, a situation that has only been

examined cursorily so far [10]. The pulse characterisation is detailed in chapter 5.

Finally, as a view towards the future of ultrafast light sources, in chapter 6 I propose

and model a variation of the UV pulse generation scheme that allows for the simul-

taneous creation of two ultrashort pulses in different spectral regions at even higher

pulse energy. The proposed source is predicted to be capable of improving upon the

state of the art for both highly energetic few-femtosecond UV pulses and sub-cycle

long-wavelength drivers for the generation of soft X-ray attosecond pulses.

Contributions

All work in this thesis was performed collaboratively. All photonic crystal fibre used in

the experiments as well as the gas cells holding that fibre were designed and produced at

the Max Planck Institute for the Science of Light in Erlangen, Germany. I developed the
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2.1. Fundamentals of ultrafast optics

The work in this thesis deals primarily with events on timescales only accessible by use

of ultrashort laser pulses and with the characteristics of these pulses. To enable the

discussion of ultrafast phenomena in later chapters, here I will introduce the formal

description of ultrashort laser pulses and their interaction with matter at low intensities.

High-intensity phenomena are discussed in sections 2.2 and 2.3.

2.1.1. Formal description of ultrashort laser pulses

The propagation of ultrashort laser pulses is governed by the equations of classical

electromagnetism, known as Maxwell’s equations. To illustrate the formal description

of ultrashort laser pulses, it is useful to initially restrict the discussion to propagation

in vacuum or dielectric materials, so that there are no free charges and currents. The

magnetic field is then uniquely determined by the electric field, and it is sufficient

to discuss only the latter. The electric field in a dielectric is governed by the three-

dimensional electromagnetic wave equation [12]:

∇2E − 1
c2

∂2E
∂t2 = µ0

∂2P
∂t2 , (2.1.1)

where E(r, t) is the electric field as a function of spatial coordinate r and time t, similarly

P(r, t) is the polarisation induced in the medium, ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is the Laplace

operator, µ0 is the magnetic permeability of vacuum, and c is the speed of light in

vacuum. Bold symbols indicate vector quantities. To further simplify the following

discussion, we assume that the field is linearly polarised, so that we can use the

scalar field E and polarisation P . Unless the field is very strong, the polarisation is

proportional to the field and given by

P = ε0χ(1)E , (2.1.2)

where ε0 is the electric permittivity of vacuum and χ(1) is the linear electric susceptibility

of the medium [13]. Since the polarisation P encapsulates the response of bound charges

in the medium, this is equivalent to approximating the potential surrounding these

10
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charges as harmonic, so that their displacement is always proportional to the applied

force. Using this approximation leads to the simpler wave equation in linear media:

∇2E − n2

c2
∂2E
∂t2 = 0 , (2.1.3)

where n =
√

1 + χ(1) is the refractive index.

Since the electric field E(t) is a real-valued quantity, it can be written in terms of a

complex analytic field E(t) as

E(x, y, z, t) =
1
2
(E(x, y, z, t) + E(x, y, z, t)∗) = Re{E(x, y, z, t)} . (2.1.4)

Using the analytic field greatly simplifies algebraic manipulation, and can be done

without loss of information. In the time-frequency Fourier domain, it is equivalent

to discarding negative frequency information, which is redundant because of the

Hermitian symmetry of the Fourier transform of a real signal.

The wave equation can be solved by separating variables into space and time coordi-

nates, yielding plane wave solutions for the field E:

E(x, y, z, t) = ei(kxx+ky+kzz−ωt) = ei(k·r−ωt) , (2.1.5)

where k j is the component of the wave vector k in direction j with j = x, y, z. Thus the

magnitude of k is given by

k ≡ |k| =
√

k2
x + k2

y + k2
z , (2.1.6)

and it is related to the angular frequency ω by ω = c
n k and to the wavelength λ by

k = 2πn/λ. The wave vector k has an intuitive physical interpretation as the direction

in which the plane wave component identified by k moves in space. In general the

electric field can be written as a superposition of such plane waves:

E(r, t) =
∫

a(k) ei(k·r−ωt) dk , (2.1.7)

where a(k) is the complex amplitude of the plane wave with wave vector k and the

integral extends over all of k-space.

11
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By considering the transverse (x and y) spatial and temporal Fourier transform of

the field E(kx, ky, z, ω) in a reference plane, usually chosen as z = 0, and comparing

it to the expression in eq. (2.1.7), it can be shown that it is related to the field in any

z-plane by

E(kx, ky, z, ω) = E(kx, ky, z = 0, ω)eikzz . (2.1.8)

Therefore the field at any point in space can be obtained from

E(x, y, z, ω) = F−1
kx ,ky

[
Fx,y [E(x, y, 0, ω)] eikzz

]
, (2.1.9)

where Frj and F−1
k j

denote the Fourier transform along coordinate rj and inverse Fourier

transform along reciprocal coordinate k j, respectively:

E(rj, . . .) =
1√
2π

∫ ∞

−∞
E(k j, . . .) eik jrj dk j = F−1

k j

[
E(k j, . . .)

]
(2.1.10)

E(k j, . . .) =
1√
2π

∫ ∞

−∞
E(rj, . . .) e−ik jrj drj = Frj

[
E(rj, . . .)

]
. (2.1.11)

The Fourier transform propagation relationship eq. (2.1.9) is especially intuitive for

laser beams, for which it is easy to define a propagation direction z. To obtain the

field of the laser in some plane, all that is required is to decompose the field at z = 0

into its transverse plane wave components by a Fourier transform and propagate each

component independently according to its value of the longitudinal wave vector kz

given by kz =
√

k2 − k2
x − k2

y. We can therefore consider only the transverse field

E(x, y, t) in a plane of interest when discussing the characteristics of a laser pulse,

safe in the knowledge that we can easily find the field further along the beam path

if required. Note that the choice of z as the propagation direction is arbitrary; any

orientation of the coordinate system will yield the same result.

The field E(x, y, t) describes an arbitrarily simple or complicated electric field distri-

bution and its evolution in time. However, for many laser pulses, the dependence on

time and space can be treated approximately independently, so that the field can be

written as a product of spatial and temporal factors:

E(x, y, t) = E(x, y)E(t) . (2.1.12)

12



2. General Background 2.1. Fundamentals of ultrafast optics

As long as this partition is valid, that is, in the absence of space-time coupling, or when

considering only a single point in space, we can meaningfully discuss the field as a

function of time only.

The time-only field E(t) is commonly represented in the frequency domain as E(ω),

which is related to E(t) by the Fourier transform:

E(t) =
1√
2π

∫ ∞

−∞
E(ω)e−iωt dω = F−1

ω [E(ω)] (2.1.13)

E(ω) =
1√
2π

∫ ∞

−∞
E(t)eiωt dt = Ft [E(t)] . (2.1.14)

The field in the frequency domain is furthermore most often written in polar notation,

E(ω) = A(ω)eiφ(ω) , (2.1.15)

which defines the spectral amplitude A(ω) and the spectral phase φ(ω), which are both

real-valued quantities.

The connection between the time and frequency domains implies that the extent

of a laser pulse in time and frequency, that is, its duration ∆t and bandwidth ∆ω,

respectively, are related via the bandwidth theorem:

∆ω∆t ≥ K , (2.1.16)

where the value of K depends on the shape of the pulse, and also on the definition

of ∆t and ∆ω. The most common measure in ultrafast optics is the full width at half

maximum (FWHM) of the intensity and spectral energy density, which are proportional

to |E|2 and |A(ω)|2, respectively. For very complicated pulses, e.g. those with many

pre- and post-pulses, this definition becomes less useful. Unless otherwise stated, all

pulse durations given in this thesis are defined as the FWHM of the intensity.

The pulse in the time domain can also be written in polar notation similar to

eq. (2.1.15). However, the phase of E(t) will contain a strong linear component, which

corresponds to the central frequency of the pulse. It is therefore useful to partition the

pulse into an envelope and carrier:

E(t) = E0(t) e−iφ(t) e−iω0t , (2.1.17)

13



2.1. Fundamentals of ultrafast optics 2. General Background

where E0(t) and φ(t) are both real-valued quantities and vary slowly over the duration

of the pulse, and E0(t) > 0. The (negative) time derivative of the total phase φt =

ω0t + φ(t) gives the instantaneous frequency. Therefore the time derivative of φ(t)

is the variation of the carrier frequency around ω0 over the course of the pulse. By

removing the fast-oscillating carrier frequency term in eq. (2.1.17), the baseband signal of

the pulse is obtained. In the frequency domain, this is centred on ω = 0 instead of ω0.

The slowly varying parts of the pulse are also often combined into a single complex

envelope A(t), which is the central quantity of interest in propagation methods using

the slowly evolving envelope approximation (see section 3.2).

2.1.2. Polynomial phases

In most cases, the interaction between light and matter depends on the frequency of the

light. It is therefore often very useful to use E(ω) instead of E(t) when discussing or

analysing light-matter interactions. To describe the characteristics of an ultrafast laser

pulse in the frequency domain, the spectral phase φ(ω) is often expanded in a Taylor

series around a central frequency ω0:

φ(ω) =
∞

∑
n=0

1
n!

∂nφ(ω)

∂ωn

∣∣∣∣
ω0

(ω−ω0)
n =

∞

∑
n=0

1
n!

φn(ω0) (ω−ω0)
n , (2.1.18)

where we have defined the nth order phase φn(ω) ≡ ∂n
ωφ(ω).

These phases carry intuitive meaning. The 0th-order phase φ0(ω0) is usually called

the carrier-envelope phase (CEP) and gives the offset between the peak of the electric

field and that of the envelope of the pulse. φ1(ω0) is the group delay at the central

frequency and simply encodes the arrival time of the whole pulse1. If all other φn(ω0)

are zero, the pulse is said to be at the Fourier transform limit (FTL). Transform-limited

pulses have the shortest duration for a given spectral amplitude A(ω). The 2nd-order

phase φ2(ω0), known as group delay dispersion (GDD), is the lowest-order term that

influences the shape of the pulse envelope in the time domain. φ2(ω) is the derivative

1With some added group delay φ1, the pulse in the domain becomes E′(t) = F−1
ω

[
E(ω)eiφ1(ω−ω0)

]
=

e−iω0φ1 E(t− φ1) by the shifting property of the Fourier transform, i.e., it is simply shifted.
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Figure 2.1.: Demonstration of three important orders of polynomial phase. In each case

the transform-limited pulse is a Gaussian envelope with a carrier frequency

corresponding to a wavelength of 800 nm and a FWHM duration of 2.5 fs.

Left: the difference between a CEP of π/2 (solid) and 0 (dashed). Centre:

the pulse with 10 fs2 of GDD added. Right: the pulse with 10 fs3 of TOD

added.

with respect to frequency of the group delay φ1(ω), so if the GDD is non-zero, the

group delay is frequency-dependent and different frequencies arrive at different times.

The pulse is therefore longer than its FTL, and furthermore the instantaneous frequency

of the field changes over the course of the pulse. This variation of the instantaneous

frequency is known as chirp. Note that in the case of φ2 > 0, higher frequency (blue)

light arrives after lower frequency (red) light, and vice versa in the case of φ2 < 0.

The next term in the Taylor series is third-order dispersion (TOD). This causes further

stretching of the pulse and leads to the formation of pre- or post-pulses depending on

the sign of φ3(ω0). Higher-order phases are often present, especially for complicated

pulses. However, their interpretation is much less straightforward.

2.1.3. Dispersion

An important consideration when working with ultrafast laser pulses is how they are

affected by propagation through material, for instance optical elements, the air in the
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2.1. Fundamentals of ultrafast optics 2. General Background

laboratory or other gases. As shown in eqs. (2.1.2) and (2.1.3), at low intensity this is

determined by the refractive index n. However, in the interest of illustrating the central

points, eq. (2.1.2) omits a crucial fact. The response of the material to incident radiation

as encoded in the linear susceptibility is not instantaneous, so χ(1) is time-dependent:

χ(1) = χ(1)(t). To take into account the response as induced by the electric field at each

point in time, the (analytic) polarisation P is calculated as

P(t) = ε0

∫ t

−∞
χ(1)(t− t′)E(t′)dt′ . (2.1.19)

Since this is a convolution2 of the response function χ(1)(t) with the electric field

E(t), the convolution theorem means that it is a multiplication when expressed in the

frequency domain:

P(ω) = ε0χ(1)(ω)E(ω) . (2.1.20)

Consequently, the refractive index n = n(ω) is also frequency-dependent, a fact that is

commonly referred to as dispersion. Using the formalism developed in section 2.1.1, we

can easily compute the effect of dispersion has on an ultrafast laser pulse as it traverses

a medium. For simplicity, we consider only the on-axis component of the laser beam,

that is, the one for which kx = ky = 0 and therefore kz = k. Applied to the propagation

through a slab of material of length L with a refractive index n(ω), eq. (2.1.8) then

becomes

E(L, ω) = E(0, ω) eik0Ln(ω) (2.1.21)

where k0 = ω/c is the magnitude of the wave vector in vacuum. Comparison to

eq. (2.1.15) shows that propagation in this manner simply adds to the spectral phase

φ(ω) a contribution k0Ln(ω). This means that propagation of a pulse through several

dispersive elements can easily be described by simply adding their phase contributions

one by one, and furthermore that the order in which they are traversed is irrelevant.

It is often useful to employ the same expansion to the on-axis wave vector as to the

phase φ(ω), so that individual polynomial phase terms can be added directly. The

2Due to causality, χ(1)(t) = 0 for t < 0. Therefore, the upper limit of the integral in eq. (2.1.19) can be

extended to infinity.
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2. General Background 2.1. Fundamentals of ultrafast optics

on-axis wave vector is commonly given the symbol β(ω), and its expansion reads:

β(ω) =
∞

∑
n=0

1
n!

∂nβ(ω)

∂ωn

∣∣∣∣
ω0

(ω−ω0)
n =

∞

∑
n=0

1
n!

βn(ω0) (ω−ω0)
n , (2.1.22)

where, similarly to before, βn(ω) = ∂n
ωβ(ω). The coefficients βn are closely connected

to those of the spectral phase, φn. For instance, β1 is simply the group delay per unit

length, whose inverse is called the group velocity vg, β1 = v−1
g . Consequently, β2 is GDD

per unit length, and is known as group velocity dispersion (GVD).

The GVD β2 presents one of the biggest practical challenges in ultrafast optics. This

is because for the vast majority of optical glasses, β2 is positive for frequencies in the

visible spectral region and up to wavelengths of around 1500 nm3 [14]. This is known

as normal or positive dispersion. Therefore, once a laser pulse has positive φ2, it is very

difficult to remove this phase contribution and re-compress the pulse back towards the

FTL.

To introduce anomalous (negative) dispersion, one option is to use geometrical dis-

persion, such as in grating and prism compressors [15]. Another method is to use

dispersive mirrors, also known as chirped mirrors. These are coated with dielectric

layers in such a way that longer wavelengths penetrate deeper into the coating before

being reflected, thus delaying them relative to shorter wavelengths and inducing nega-

tive GDD. Owing to their complex structure, these optics are very expensive and their

surface quality can be poor [15]. The difficulty of compensating GDD is one of the

central reasons that ultrafast optics is done nearly exclusively with reflective elements,

since the GDD induced by a reflection is negligible compared to transmission through

a bulk optic.

It is important to note that the refractive index is not necessarily a purely real quantity,

with any imaginary part representing absorption in the medium. Adding an imaginary

component i α(ω)
/

2 to n(ω) in eq. (2.1.21) leads to

E(L, ω) = E(0, ω) eiLβ(ω)e−
1
2 α(ω)L, (2.1.23)

3The opposite is true for frequencies further in the infrared.
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2.1. Fundamentals of ultrafast optics 2. General Background

which means that the intensity of the pulse decreases as

I(L, ω) = I(0, ω) e−α(ω)L . (2.1.24)

For transmission of a laser pulse through glass, α is usually small enough to neglect.

However, strong variations of α with frequency can lead to significant reshaping of

the spectral amplitude of the laser pulse, and therefore change the temporal profile as

well.
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2. General Background 2.2. Nonlinear optics

2.2. Nonlinear optics

In the discussion in section 2.1, we explicitly assumed that the electric field was weak,

leading to linear optical propagation. One consequence of the strictly linear polarisation

is that no new frequencies can be created, since linear optics only describes phase shifts

and attenuation of already existing frequency components. To convert light from one

frequency to another, nonlinear optics have to employed.

2.2.1. Nonlinear polarisation

If a strong electric field is applied to a dielectric medium, the effect is analogous to

that of a spring being pushed or pulled with great force. As bound charges are driven

further away from their equilibrium distribution, it becomes less and less accurate

to approximate the potential surrounding them as harmonic. Instead of the simple

proportionality of eq. (2.1.2), the polarisation is then given by a more general function

of the electric field. Since the nonlinear contributions are usually much weaker than

the linear one, this function is commonly expressed as a power series in the field E :

P(t) = ε0

∫ t

−∞
χ(1)(t− t′)E(t′)dt′ + χ(2)E(t)2 + χ(3)E(t)3 + · · · , (2.2.1)

where χ(2) and χ(3) are the second and third-order susceptibilities, respectively. We

will limit our discussion to these two nonlinear orders, since higher orders are usually

very weak. Furthermore, we will only discuss the electronic nonlinear response which

is extremely fast, with response times well below a femtosecond [16], and we can

therefore treat χ(2) and χ(3) as time-independent. While other parts of the medium

response exhibit nonlinearity with longer response times, for instance the vibrational

and rotational Raman effects [13], they are not important for the techniques and effects

discussed in this thesis.

It is necessary here to use the real field E once again, since the real part of a product

of two complex quantities is not simply the product of the real parts, and so EN 6= EN .

We can express the nonlinear polarisation as an analytic quantity, however. To see this,
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2.2. Nonlinear optics 2. General Background

we express the real driving field E in eq. (2.2.1) with the analytic field E as in eq. (2.1.4):

P2(t) = ε0χ(2)
[

1
2
(E(t) + E(t)∗)

]2

(2.2.2)

=
ε0χ(2)

4

(
|E(t)|2 + E(t)2

)
+ c.c. . (2.2.3)

Comparing this expression to eq. (2.1.4), the analytic second-order polarisation P2 is

found as

P2(t) =
ε0χ(2)

2

(
|E(t)|2 + E(t)2

)
. (2.2.4)

Proceeding similarly for the third-order polarisation P3(t), we arrive at

P3(t) =
ε0χ(3)

4

(
3|E(t)|2E(t) + E(t)3

)
. (2.2.5)

The strength of the nonlinear response varies from material to material, and depends on

pressure in the case of gases. This is captured in varying magnitudes of the nonlinear

susceptibilities χ(2) and χ(3). If χ(2) is non-zero, this implies that the response of the

medium is asymmetric, i.e. P(−E) 6= −P(E). This can only occur in materials that

are non-centrosymmetric in nature. Most materials are centrosymmetric, including all

gases and liquids, and only some crystals exhibit a non-zero value of χ(2). Third-order

effects, on the other hand, can be observed in all materials [13]. It is important to

note that the nonlinear susceptibility is generally not a scalar quantity, but a tensor.

This is especially critical for the second-order susceptibility χ(2), since it only arises in

necessarily anisotropic crystals. In short, this leads to the effective nonlinearity changing

as the angle between the field polarisation and the crystal axis (or axes) varies [17].

The effects of the nonlinear response depend on whether the driving field is composed

of a single pulse or several. We will first consider the effects of nonlinear interaction on

a single laser pulse, and subsequently on combinations of laser pulses.

2.2.2. Harmonic generation and single-pulse Kerr effect

The first term in eq. (2.2.4) represents a constant offset of the charge density in the

material for a plane wave, and a slowly varying one for a single laser pulse. This
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2. General Background 2.2. Nonlinear optics

is known as optical rectification. While it has applications in the generation of THz

radiation [18], it is not important for the work in this thesis and we will not discuss

it further. The effects of the second terms in eqs. (2.2.4) and (2.2.5) can be seen by

considering one plane wave component: since(
e−iωt

)N
= e−iNωt , (2.2.6)

the polarisation contains plane wave components at N times the original frequency. This

process is referred to as harmonic generation, specifically second harmonic generation

(SHG) for N = 2 and third harmonic generation (THG) for N = 3.

For a broadband pulse, something very similar occurs. Considering the pulse in

the time domain as an envelope and a carrier as shown in eq. (2.1.17), the harmonic

generation terms lead to

Pn(t) =
(

E0(t) e−iφ(t) e−iω0t
)N

= E0(t)Ne−iNφ(t)e−iNω0t . (2.2.7)

This is simply a pulse at N times the original frequency. However, since the amplitude

envelope E0(t) is also raised to the power N, the pulse of the harmonic is shorter

than that of the driving field. Correspondingly, the frequency bandwidth increases4.

Harmonic generation was the first nonlinear optical frequency conversion mechanism to

be discovered [19], and it drives some of the most prominent applications of nonlinear

optics.

The nonlinear refractive index

The effects of the first term in the third-order response in eq. (2.2.5) are somewhat less

straightforward. The crucial fact is that while it involves the third power of the field

overall, it is not shifted in frequency. This part of the third-order polarisation oscillates

at the original frequency, and can therefore influence the driving pulse itself. This is

known as the Kerr effect.

4This can be understood as the result of the convolution of the pulse in frequency space with itself N − 1

times, each time broadening the spectrum and shifting it by ω0.
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Going back to the electromagnetic wave equation (in its analytic form),

∇2E− 1
c2

∂2E
∂t2 = µ0

∂2P
∂t2 , (2.2.8)

and introducing the polarisation P consisting only of the linear part and the Kerr effect,

P = Pl + PKerr = ε0χ(1)E +
3
4

ε0χ(3)|E|2E , (2.2.9)

we find that there is an additional contribution to the refractive index n as defined in

eq. (2.1.3), since there is another term present that multiplies E. Note that we have

ignored dispersion (that is, the time dependence of χ(1)) to keep the expressions simple,

however the result is the same when we include it. The effective refractive index is given

by

neff =

√
1 + χ(1) +

3
4

χ(3)|E|2 (2.2.10)

=

√
n2 +

3
4

2
cε0

χ(3) I , (2.2.11)

where we have used the fact that the intensity of the field is given by I = cε0|E|2/2 [12].

Since the nonlinear response of the medium will generally be much weaker than the

linear one, we can approximate the square root to first order:

neff ≈ n +
3

4cε0n2 χ(3) I = n + n2 I , (2.2.12)

which defines the nonlinear refractive index n2. The Kerr effect thus leads to an increase

of the refractive index in proportion to the intensity of the field. Since the intensity of a

laser pulse varies over time as well as across the laser beam profile, this can significantly

reshape a pulse both in time and in space.

Self-focusing

As demonstrated in section 2.1.1, a laser pulse accumulates phase as it propagates in z,

given by φ = k z, with k = k0n where k0 = ω/c. For an intense laser pulse, the refractive

index varies across the (non-uniform) beam profile, so that the phase φ has a spatial

dependence as

φ(x, y) = k0z neff(x, y) = k0z[n + n2 I(x, y)] . (2.2.13)
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For the vast majority of materials, n2 is positive. Furthermore, for most laser beams

the intensity is highest in the centre and drops off towards the edges. The effective

refractive index is therefore larger in the centre of the beam. Contrasting this with

propagation in vacuum, it is equivalent to a situation in which the centre of the beam

passes through a slab of material (with n > 1) which is thicker in the centre than at the

edges. Such an object is usually referred to as a converging lens. The Kerr effect leads

to the laser beam self-focusing inside the nonlinear material. Moreover, the intensity of

the laser beam increases as the beam size decreases. Nonlinear effects therefore become

even stronger, leading to more rapid self-focusing in a runaway process, which can lead

to beam breakup and material damage.

This has wide-ranging implications for the design of lasers and other optical systems.

The design principle of chirped-pulse amplification systems, for instance, is based on the

need to avoid catastrophic damage to the laser optics through nonlinear self-focusing

when amplifying a laser pulse. The Kerr effect also means that a short high-energy

laser pulse cannot be transmitted through thick optics such as lenses, and reflective

optics have to be used instead.

Self-phase modulation

In the time domain, the presence of the Kerr effect means that the effective refractive

index varies over the course of the laser pulse. As with self-focusing, the effects of

this can be illustrated by calculating the accumulated phase. Considering only the

time-dependent field at different planes along z, the pulse after transmission of some

distance L through a nonlinear material is given by

E(z, t) = E(0, t) eik0neffL = E0(t) e−i[ω0t+φ(t)] eik0L[n+n2 I(t)] . (2.2.14)

As described in section 2.1.1, the negative time derivative of the total phase gives the

instantaneous frequency:

ω(t) = −∂φt

∂t
= ω0 +

∂φ

∂t
− k0Ln2

∂I(t)
∂t

, (2.2.15)
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Figure 2.2.: Frequency shift δωnl (in units of the fundamental frequency ω0) induced

by self-phase modulation (SPM) for a Gaussian pulse of 30 fs FWHM du-

ration centred at 790 nm and a peak intensity of 3.5× 1012 W cm−2 after

propagating through 1 mm of material with a nonlinear refractive index

n2 of 3× 10−16 cm2 W−1, a typical value for optical glass. The dashed line

shows the linear approximation according to eq. (2.2.18).

which shows that the nonlinear interaction changes the instantaneous frequency by an

amount

δωnl(t) = −k0Ln2
∂I(t)

∂t
. (2.2.16)

The rising (or leading) edge of a laser pulse is thus red-shifted, whereas the falling

(or trailing) edge is blue-shifted. This effect is known as self-phase modulation (SPM).

For an unchirped pulse, this means that the bandwidth of the pulse expands while the

temporal profile remains the same. Figure 2.2 shows the frequency shift δωnl(t) for

a pulse with a Gaussian profile in time. While the overall shift is not linear – which

would correspond to purely quadratic spectral phase, and is easiest to compensate –

the shift around the peak of the pulse can be approximated as such. This can be seen

by considering times close to the peak of the pulse, where the Gaussian profile can be
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Figure 2.3.: Spectrum of a Gaussian pulse after undergoing SPM in the same conditions

as in fig. 2.2. The dashed line shows the spectrum of the initial pulse (scaled

down for visibility). The effect of self-steepening is visible in the asymmetry

of the spectrum.

expressed as a Taylor expansion to first order:

I(t) = I0 e−(t/τ)2
≈ I0

[
1−

(
t
τ

)2
]

, (2.2.17)

where τ is the Gaussian half-width pulse duration, so that the frequency shift is given

by

δωnl(t) ≈ 2I0k0Ln2
t

τ2 , (2.2.18)

which is linear in time.

The spectral broadening effect of SPM is the foundation of many pulse compression

schemes, since a larger bandwidth allows for a shorter minimum pulse duration.

Importantly, after undergoing SPM the pulse is positively chirped, so that anomalous

dispersion has to be added to compress the newly broadened spectrum into a shorter

pulse. As mentioned in section 2.1.3, this is often challenging, requiring the use of

special optics.

A typical spectrum of a Gaussian pulse after undergoing SPM is shown in fig. 2.3.

The oscillatory structure is due to the fact that the same value of δωnl(t) occurs at two
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different times t as can be seen in in fig. 2.2. There are thus two components of the

pulse at the same frequency but different phases, and the interference between these is

seen as fringes in the frequency domain.

Given the symmetric spectral intensity distribution of the initial Gaussian pulse, it

would be natural to expect the spectrum to remain symmetric after SPM. The evident

asymmetry is caused by an effect usually called self-steepening. The intensity dependent

refractive index shifts not only the instantaneous frequency, but also the group velocity

of the pulse. The group velocity, being inversely proportional to the refractive index, is

lower for higher intensities since n2 > 0 for most materials. The peak of the pulse in

the time domain therefore moves at a slower speed than the wings, and the trailing

edge of the pulse becomes steeper as a consequence. This asymmetry is reflected in the

spectral domain. Since SPM blue-shifts the trailing edge of the pulse, self-steepening

leads to stronger spectral broadening in this part of the spectrum, so that the total

spectral energy density extends further towards higher frequencies but is larger at

lower frequencies. A more thorough treatment of self-steepening in waveguides can be

found in section 3.2.

2.2.3. Frequency mixing and cross-pulse Kerr effect

If the driving field consists of several pulses, the nonlinear polarisation has dramatic

effects. Whereas in linear optics each frequency component propagates independently,

nonlinear optics leads to the mixing of frequencies. This is already evident in the

temporal compression of a laser pulse upon harmonic generation. However, considering

multiple pulses in the driving field explicitly illustrates the power of nonlinear optics

in creating light at a desired frequency.

Sum and difference frequency generation

A field consisting of two pulses with different frequencies ω1 and ω2, with ω1 > ω2,

can be expressed in the time domain as

E(t) = A1(t) e−iω1t + A2(t) e−iω2t , (2.2.19)
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where A1(t) and A2(t) are the slowly varying complex envelopes of the two pulses.

The second-order polarisation according to eq. (2.2.4) (but omitting the common factor

of ε0χ(2)/2) is then given by

P2(t) =|A1|2 + |A2|2 + A1 e−i2ω1t + A2 e−i2ω2t

+ 2A1A∗2 e−i(ω1−ω2)t + 2A1A2 e−i(ω1+ω2)t ,
(2.2.20)

where we have taken the complex conjugate of one of the cross-terms to combine the

expressions5. The first four terms are the same as for the single-pulse case, representing

optical rectification and second harmonic generation, respectively. The cross-terms,

on the other hand, represent pulses at the difference and sum of the two original

frequencies. Appropriately, these effects are known as difference frequency generation

(DFG) and sum frequency generation (SFG).

Cross-phase modulation and four-wave mixing

Calculating the third-order polarisation induced by two pulses according to eq. (2.2.5)

yields 12 terms. These can be categorised depending on their central oscillation

frequencies. Firstly, all terms from the single-pulse case are reproduced, once for each

pulse. Secondly, there are two terms that mix the amplitudes, but not frequencies, of

the two fields:

P1→2 = 6 |A1|2A2e−iω2t (2.2.21)

P2→1 = 6 |A2|2A1e−iω1t . (2.2.22)

These terms describe cross-phase modulation (XPM), which is the result of the nonlinear

shift to the refractive index induced by the respective other pulse. Note that the

coefficient before these terms is twice that of SPM. Therefore, for a given intensity, the

effect of a second pulse is stronger than that of a pulse on itself. This is an important

consideration in ultrafast measurement.

The remaining terms in the nonlinear polarisation contain oscillations at frequencies

2ω1±ω2 and 2ω2±ω1. Note that since the interaction is of third order, the most general

5This does not change the real field P since Re[A] = Re[A∗] and Re[A + B] = Re[A] + Re[B].
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case involves the mixing of three different waves at frequencies ω1, ω2 and ω3, and the

resulting polarisation contains terms at all combinations of ω4 = ±ω1 ±ω2 ±ω3. The

effect described by these terms is thus known as four-wave mixing (FWM), since four

fields are involved – three inputs and one output.

2.2.4. Phase-matching

The discussion of nonlinear frequency mixing effects so far has been based purely on the

terms present in the nonlinear polarisation. This gives an overview of which frequency

conversion processes are possible given a set of interacting pulses and a nonlinearity

of a given order. However, we have only treated one point in space. To illustrate how

propagation affects the situation, we can examine the process of difference frequency

generation as an example.

Considering the total electric field as a superposition of several collinear discrete

frequency components for simplicity, each component Ej at frequency ωj is given by

Ej(t) = Aj ei(k jz−ωjt) , (2.2.23)

with k j = n(ωj)ωj/c. Together, all of these terms have to obey the nonlinear wave

equation eq. (2.2.9). Since we are only considering discrete frequency components, the

wave equation can be split into several equations, one for each field at frequency ωj

with only the parts of the polarisation P which also oscillate at ωj on the right hand side.

For DFG between two fields at ω1 and ω2, such that ω3 = ω1 −ω2, the corresponding

term of P is

Pdfg =
1
2

ε0χ(2) 2A1A∗2ei[(k1−k2)z−(ω1−ω2)t] . (2.2.24)

There are corresponding terms for the inverse process, as well as for SFG between

the two fundamental fields E1 and E2 and other combinations of all fields present.

Considering solely on-axis propagation along z, only the derivatives with respect to

z and t remain in the wave equation. Furthermore, upon inserting E3 into the wave

equation, we can neglect the term proportional to ∂2
z A3, making the approximation that

the amplitude of E3 varies slowly with z. The result is that the evolution of A3 with z is
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given by

∂A3

∂z
= i

µ0ε0

2
ω2

3
k3

χ(2)A1A∗2 ei(k1−k2−k3)z (2.2.25)

= i
χ(2)

2c2
ω2

3
k3

A1A∗2 ei∆kz , (2.2.26)

where we have defined the wave-vector mismatch ∆k ≡ k1 − k2 − k3. This is known

as a coupled wave equation, because it expresses the coupling between the various

fields present. It can be integrated along z directly, assuming that A1 and A2 stay

approximately constant. This is known as the no-depletion approximation, and is valid as

long as the total amount of energy converted to the field E3 remains small [13]. If we

consider the evolution of the DFG field from z = 0 to some length L (e.g. the thickness

of a nonlinear medium), we obtain

A3(L) = i
χ(2)

2c2
ω2

3
k3

A1A∗2
∫ L

0
ei∆kzdz (2.2.27)

= i
χ(2)

2c2
ω2

3
k3

A1A∗2 L ei∆kL sinc
(

∆kL
2

)
, (2.2.28)

where sinc(x) = sin(x)
/

x . The intensity of the component at ω3 is therefore given by

I3 ∝ |A3|2 ∝ I1 I2L2 sinc2
(

∆kL
2

)
. (2.2.29)

The presence of the factor L2 signifies that this expression describes coherent build-up

of the DFG signal. The two fundamental intensities I1 and I2 play equal roles, which

can be an important advantage in pulse measurement – if one of the two pulses is very

weak, the nonlinear signal can be increased by raising the intensity of the other. The

last factor is known as the phase-matching factor or the phase-matching efficiency η and is

caused by the dispersion of the medium.

As can be seen in fig. 2.4, the phase-matching term is maximum at ∆k = 0 and lower

everywhere else. For efficient frequency conversion, the phase-matching condition is

therefore given by

k3 = k1 − k2 . (2.2.30)

There are two ways of understanding this criterion. In terms of the propagating

electromagnetic waves, ∆k can be seen as the difference in phase velocity between the
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Figure 2.4.: The phase-matching efficiency η = sinc2
(

∆kL
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)
as a function of ∆k for

different medium lengths L.

polarisation P3 that is induced at each plane in z and the already existing field E3 from

previous planes. A non-zero ∆k thus implies that these two do not propagate in phase,

so that they do not always interfere constructively. Instead of a monotonic build-up of

intensity, the intensity I3 of the DFG signal oscillates between 0 and some fixed value

with a period dependent on the magnitude of the wave-vector mismatch.

The second way of understanding the phase-matching condition is through the

photon picture of electromagnetic fields. Viewing the DFG process as the “subtraction”

of a photon of energy h̄ω2 from one energy h̄ω1 to yield a photon of energy h̄ω3,

momentum conservation demands that the total momentum before and after the

process is the same. Since the momentum of a photon is h̄k, the phase-matching

condition arises from this consideration in the same form.

Non-collinear phase-matching

In practice, it is often difficult and even unwanted to arrange the beams involved in a

frequency mixing process in a collinear geometry, so beams are often crossed at an angle

in the nonlinear medium. In this case, the propagation of all fields in three dimensions

must be considered, and thus vector phase-matching equations must be used. For

example, the phase-matching condition for any process mixing two fundamental fields
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then reads:

k3 = ±k1 ± k2 , (2.2.31)

where the signs are determined by the specific process under consideration. This

implies that in addition to the longitudinal phase-matching discussed above, transverse

phase-matching is also required. In the transverse plane, there is an additional freedom

in the angle of the third beam relative to the two fundamentals. The transverse phase-

matching condition therefore determines the angle at which this beam propagates. This

is most easily understood in the photon picture, in which the vector momentum of a

photon is correspondingly h̄k – the total momentum must be conserved, so that the

propagation direction of the mixing signal is determined simply the sum (or difference)

of the transverse components of the fundamentals. Note that the longitudinal wave

vectors are also changed when beams cross at an angle. This changes the longitudinal

phase-matching condition significantly if the crossing angle is large.

Birefringent phase-matching

Given that for most optically transparent materials the refractive index in the optical

part of the electromagnetic spectrum monotonically increases with frequency [13], it

is generally not possible to achieve phase-matching for any desired combination of

wavelengths. This is easiest to see in the case of second harmonic generation, where

ω2 = 2ω1 and the phase-matching condition (in the collinear case for simplicity) is

k2 = 2k1. This reduces to n(ω2) = n(ω1), which is impossible to satisfy in a dispersive

material except at very particular wavelengths. This problem can be overcome by

exploiting birefringence, however.

In a birefringent material, the refractive index varies with the polarisation direction

of the electric field due to an anisotropy in the linear susceptibility. The anisotropy can

be caused by the structure of the material itself [12], an applied external field [13], or

mechanical stress on the bulk material [20]. In general, this is formally expressed by

using the susceptibility tensor, but a simpler way is to instead use principal refractive

indices.
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Figure 2.5.: Birefringent type I phase-matching for SHG at 790 nm in a beta barium bo-

rate (BBO) crystal. The black solid line shows the ordinary refractive index

n̄o(λ) and the coloured lines the extraordinary refractive index ne(λ, θ) for

8 different angles between 25° and 35°. The dashed horizontal line shows

the refractive index at the fundamental wavelength of 790 nm, demonstrat-

ing that by choosing the correct crystal angle, it can be matched to the

refractive index at the second harmonic wavelength of 395 nm (marked

with the vertical dashed line).

Most crystals used for nonlinear optics are uniaxial6, meaning that two elements of

the diagonalised susceptibility tensor are equal [12]. Such a crystal has two principal

refractive indices, the ordinary index n̄o(ω) and the extraordinary index n̄e(ω). A

field polarised along the ordinary or extraordinary axis of the crystal experiences the

respective refractive index. If the field polarisation lies between the two axes, the

refractive index is instead given by [20]

ne(ω, θ) =

[
cos2(θ)

n̄2
o(ω)

+
sin2(θ)

n̄2
e(ω)

]− 1
2

, (2.2.32)

where θ is the angle between the propagation direction and the single symmetry axis of

the crystal, so that the ordinary refractive index n̄o(ω) is recovered at θ = 0. Figure 2.5

shows the effect of this angle-dependent refractive index in a common nonlinear process;

6One exception is lithium triborate (LBO), which is biaxial and also commonly used.
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Figure 2.6.: Phase-matching efficiency ηshg according to eq. (2.2.29) for SHG at 790 nm

when using a BBO crystal of four different lengths at an angle of θ = 29.55°,

which is the type I phase-matching angle.

SHG at the central wavelength of a titanium-doped sapphire (Ti:Sa) laser in a beta

barium borate (BBO) crystal. The extra degree of freedom that birefringence offers

allows for index-matching between the fundamental and the second harmonic, so the

nonlinear process is phase-matched. In practice, the correct phase-matching angle

is usually achieved by cutting the crystal such that the phase-matching condition is

fulfilled at normal incidence to the medium, however other angles can be obtained by

rotating the crystal.

The phase-matching scheme shown here is commonly referred to as type I or o-o-e

phase-matching, since the fields at the longer wavelength are in the ordinary wave (po-

larised along the ordinary axis) [21]. In type II or o-e-e phase-matching, the polarisations

of the two fundamental fields are different; this is usually achieved by simply rotating

the crystal around the beam axis [13].

Broadband phase-matching

The phase-matching efficiency curves in fig. 2.6 also make an important point about the

mixing of broadband fields. While the coupled wave equation eq. (2.2.25) was given

for monochromatic fields, the process of mixing ultrafast pulses can only be accurately
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described using the full continuous-frequency nonlinear wave equation. Then, the

nonlinear polarisation in the frequency domain is proportional to the convolution (for

a χ(2) nonlinearity) or double convolution (for χ(3)) of the driving field with itself.

Therefore each frequency component mixes with all other frequency components of the

pulse.

This can be understood qualitatively by imagining a continuum of coupled wave

equations, one for each combination of frequencies from the fundamental and mixed

fields. The phase-matching condition eq. (2.2.31) then has to hold for each combina-

tion. Given that each field will contain many frequencies and therefore wave-vectors,

simultaneous phase-matching at all of them is impossible. In this case, the width of

the phase-matching efficiency curve gives a measure of the bandwidth of the process.

Since this width decreases for a longer medium (in fact, it is inversely proportional

to L), there is a trade-off between peak efficiency of the frequency mixing process

(proportional to L2) and the bandwidth that can be converted.

Figure 2.6 shows the phase-matching efficiency for same process shown in fig. 2.5,

using the type I phase-matching angle for SHG at 790 nm, which is 29.55°. As the

crystal length increases, the bandwidth decreases significantly, demonstrating that very

thin (< 20 µm) crystals have to be used to efficiently up-convert the entire bandwidth of

short pulses. Note that the curve is not symmetric around the central wavelength. This

is because BBO (and most other materials) are less dispersive for longer wavelengths,

as seen in fig. 2.5 by the lower gradient of the refractive index.

2.2.5. Photoionisation by strong fields

At very high field intensities, it is no longer only the response of bound electrons that

affects the propagation of laser pulses. A very strong field can liberate electrons from

their binding potential entirely, even when the frequency of the laser pulse is far away

from any ionisation resonance. Within the realm of photoionisation by strong fields,

two limiting cases can be distinguished: that of multi-photon ionisation, and that of

tunnel-ionisation. The difference between the two lies mainly in just how intense the
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Figure 2.7.: Illustration of the two limiting regimes of non-resonant photoionisation

by strong fields. In multi-photon ionisation (left), the process can be

considered as the simultaneous absorption of several photons from the

laser field, promoting an electron from the ground state (with its energy

shown in red) to the continuum. In tunnel-ionisation (right), on the other

hand, the field is strong enough to bend the Coulomb potential into a

barrier, through which an electron can tunnel to freedom.

laser field is.

Multi-photon ionisation occurs when the field is strong enough that there is a

significant probability of an atom absorbing multiple light quanta simultaneously. If

the sum of the energies of these photons is equal to or above the ionisation potential

of the atom, an electron is freed from the system and can escape (see fig. 2.7). The

likelihood of this process decreases dramatically for long-wavelength driving fields,

since each individual photon has much less energy. For these cases, tunnel-ionisation

dominates.

Tunnel-ionisation requires an even more intense field, such that the field strength

is comparable to that of the field between an electron and the nucleus of the atom; a

typical value for this field strength is 1 V Å
−1

. In this case, the coulombic potential

binding the electron is distorted significantly by the addition of a linear component (see
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fig. 2.7)7. As a consequence, the binding potential energy surface turns into a barrier on

one side of the atom, and there is a finite probability of an electron tunnelling through

this barrier and leaving the atom.

The importance of photoionisation for ultrashort pulse propagation in particular

stems from two facts, namely its influence on the refractive index of the medium

and the strong sub-cycle confinement of this change. The presence of free electrons

changes the refractive index of the medium in an intensity-dependent manner similar

to the Kerr effect, though with the opposite sign. This can be seen by considering the

classical equation of motion of a free electron in an electric field, arbitrarily chosen to

be polarised in the x direction [20]:

me∂2
t x = −eE(t) (2.2.33)

where x is the displacement of the electron and me and e are its mass and charge,

respectively. Note that since we are considering the effect on femtosecond laser

pulses, we can ignore any relaxation or damping, both of which occur on much longer

timescales [22]. For a single plane wave, so that E(t) = A e−iωt, the displacement is

given by

x(t) = − e
meω2 E(t) . (2.2.34)

The resulting polarisation is proportional to the displacement x, the charge e, and the

electron density ρe:

Pe(t) = eρex(t) = − ρee2

meω2 E(t) = −ε0
ω2

p

ω2 E(t) , (2.2.35)

where ωp is the plasma frequency:

ωp =

√
e2ρe

ε0me
. (2.2.36)

7The approximation of the laser field as constant across the atom, known as the dipole approximation, is

acceptable for wavelengths longer than the scale of the atom; this is the case for photon energies up to

the soft X-ray regime.
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Since the polarisation is proportional to the field, it contributes to the effective refractive

index in a similar way to the Kerr effect. The effective index in this case is given by

neff =

√
1 + χ(1) −

ω2
p

ω2 . (2.2.37)

As long as only a small fraction of the medium is ionised, the plasma frequency is

much lower than optical frequencies; for example, an ionisation fraction of 1 %8 at a gas

pressure of 10 atmospheres leads to a plasma frequency of ωp = 0.09 rad fs−1, whereas

the frequency of a laser at 790 nm wavelength is ω = 2.4 rad fs−1. The contribution of

the plasma to the refractive index is therefore small, and it can be approximated as

neff ≈ n−
ω2

p

2ω2 . (2.2.38)

Importantly, since the ionisation rate and thus the electron density ρe increases with

intensity, the refractive index is lower for higher intensities, counteracting the self-

focusing caused by the Kerr effect. This is known as plasma defocusing, and is an

important effect in extreme nonlinear optics [24].

In the time domain, the effect of the plasma cannot be described as simply opposite

to that of the third-order nonlinearity. A femtosecond laser pulse is so short that no

electrons have time to recombine with their parent atoms. Therefore, the electron

density only ever rises over the course of the pulse. Instead of the symmetric red- and

blue-shifting of SPM, the pulse is thus purely blue-shifted.

The rate at which a strong field ionises a medium is the subject of decades of

research, particularly in the tunnel-ionisation regime [25–28]. In general, the only way

to calculate the time-dependent electron density for an arbitrary laser pulse is to solve

the time-dependent Schrödinger equation numerically. However, the computational

complexity makes this infeasible for all but the simplest systems, and even then it is far

too time-consuming to be useful for the modelling of macroscopic phenomena such as

ultrashort pulse propagation. Several approximate models for the tunnel-ionisation rate

8An ionisation fraction of 1 %, while low, is already substantially higher than what is achieved in most

experiments involving gas-based nonlinear optics [23].
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have been developed, based on an early quasi-static approach known as the Keldysh

model [25]. The Ammosov-Delone-Krainov (ADK) model extends the Keldysh model

by considering the structure of hydrogen-like atoms, and it is commonly used because

of its relative simplicity [26]. The ADK ionisation rate is given by

w(t) = An∗, l∗ Bl,|m|
Ip

h̄

(
2
√

me(2Ip)
3/2

eh̄E(t)

)C

exp

[
−2
√

me(2Ip)
3/2

3eh̄E(t)

]
, (2.2.39)

where An∗, l∗ and Bl,|m| are dimensionless functions of the effective orbital quantum

number n∗, the effective angular momentum quantum number l∗, the angular momen-

tum quantum number l and the magnetic quantum number m, C = 2n∗ − |m| − 1, Ip is

the ionisation potential of the medium, and h̄ is the reduced Planck’s constant. Further

extensions of this model are the Perelomov-Popov-Terent’ev (PPT) model, which takes

into account the long-range Coulomb potential of the atom [27], and the Yudin-Ivanov

model, which considers sub-cycle non-adiabatic effects [28]. Although these are more

accurate approximations, they are also significantly more difficult to implement and

computationally expensive.
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2.3. High-harmonic generation

The fundamental limit for the generation of sub-femtosecond pulses is that this timescale

is below the cycle time of light at the majority of common laser wavelengths; at

800 nm, the most common wavelength used in ultrafast experiments, the oscillation

period of the electric field is 2.7 fs. Sub-femtosecond pulses with a spectrum spanning

the ultraviolet to infrared spectral regions have been created by extreme nonlinear

spectral broadening and subsequent multi-channel compression [16]. However, the most

successful technique to generate such short pulses is high-harmonic generation (HHG).

Contrary to what the name suggests, this is not simply an extension of the processes

of second and third harmonic generation discussed in section 2.2.2 to higher energies.

Instead it is more closely related to, and in fact dependent upon, strong-field ionisation.

As described in section 2.2.5, electrons can be liberated from an atom by tunnel

ionisation if the field strength is sufficient. This forms the first step in the semi-classical

three-step model of HHG [29]. The second step was also already alluded to in the

discussion of the free-electron polarisation: a free electron exhibits oscillatory motion

in the presence of the laser field. This means that after ionisation, the newly freed

electron is accelerated away from the ion. When the field reverses polarity, the effect is

inverted and the electron instead moves back towards its parent ion. There is then a

small probability that the electron recombines with the ion to form a neutral atom once

again, emitting a photon in the process. The energy of this photon is larger than that of

the driving photons by at least the ionisation potential. Due to the acceleration in the

field, however, the electron impacts the atom with significant additional kinetic energy,

so a photon at an even higher frequency is created.

Importantly, simultaneous HHG processes in many atoms in an ensemble are phase-

locked by their synchronisation to the laser field. In combination with the fact that

the process at each atom is coherent, this means that the light source formed by the

ensemble of radiating atoms is coherent as well. Harmonic radiation can therefore build

up coherently in the same way as described for low-order processes in section 2.2.4,

provided that phase-matching between the driving field and the harmonics is achieved
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[30]. The synchronisation to the laser field has the additional effect of creating a

spatially as well as temporally coherent beam.

The chances of the whole process - ionisation, acceleration, recombination – occurring

are very low indeed, leading to very small amounts of energy being converted to high

harmonics. One reason for this is that the liberated electron is only properly treated

as a quantum particle, and thus as a wavepacket. This wavepacket broadens as the

electron propagates away from and back to the atom due to the dispersion inherent

to the Schrödinger equation – electrons with more energy travel faster. The transverse

spreading of the wavepacket means that the overlap between the returning electron

wavepacket and the state it came from is reduced [31]. This, in combination with other

factors, leads to typical conversion efficiencies in HHG of below 10−6 and as low as

10−9 [32].

The kinetic energy of the electron recombining with its parent ion is determined by

the intensity of the laser field and how much time it spends being accelerated; this

time, in turn, depends on when exactly it is born into the continuum. As a result, the

photon energy spectrum created by the HHG process in a single atom is a continuous

distribution extending all the way from low-order harmonics to the highest possible

energy. This maximum energy is given by

Emax = Ip + 3.17 Up , (2.3.1)

where Ip is once again the ionisation potential of the atom and Up is the ponderomotive

energy, which is the average kinetic energy of an electron in a laser field [29]. This is

given by

Up =
e2A2

4meω2
0

(2.3.2)

where A is the field amplitude and ω0 its frequency.

However, if the pulse driving the process is longer than a few cycles of the driving

field, so that several cycles are strong enough to cause tunnel ionisation and HHG, a

continuous spectrum is not observed. HHG processes occur once for every half-cycle of

the field and the resulting bursts of light interfere with each other. Because harmonics
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Figure 2.8.: Schematic representation of a typical multi-cycle HHG spectrum. The

perturbative regime describes the response of bound electrons and thus

low-order harmonic generation. The plateau is an extended region over

which the intensity of harmonic emission changes relatively little, before

the harmonic yield drops off rapidly near the cutoff.

emitted with the field at one polarity have the opposite phase to those at the other

polarity, destructive interference occurs whenever the harmonic frequency is an even

multiple of the driving frequency; the harmonic fields at these frequencies accumulate

multiples of 2π in phase between half-cycles, so that the additional phase flip from the

polarity causes them to cancel. Thus only odd-integer multiples of the driving field

frequency appear in a typical harmonic spectrum, a schematic representation of which

is shown in fig. 2.8.

In the time domain, the harmonic radiation generated by a multi-cycle pulse is a

train of pulses spaced by half the period of the driving field. Because tunnel-ionisation

is limited to times when the field strength is near its peak, each pulse is very short,

commonly below one femtosecond [33]. A train of such pulses, however, is of limited

use as an attosecond probe, since there is no way to distinguish the contributions to the

signal from different individual pulses; the time resolution is thus set by the envelope

of the driving pulse.

There are several ways to instead generate isolated attosecond pulses using HHG
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[34–37]. The method used in our laboratory is known as amplitude gating [38]; it consists

of simply using a very short pulse to drive HHG. In such a few-cycle pulse, the pulse

duration is comparable to the cycle time of the field. The field amplitude thus varies

rapidly over the course of the field, and only a single half-cycle is strong enough to

generate harmonics at the highest energies [38]. While the weaker half-cycles still

generate a train of pulses, spectral filtering of the region around the harmonic cutoff

will result in a single attosecond pulse.

Soft X-ray attosecond pulses

Attosecond pulses generated with driving lasers operating at 800 nm have been used

in a variety of experiments both on atomic and molecular systems [39–41]. However,

the maximum cutoff energy achievable in this way is limited, with most 800 nm HHG

sources capable of reaching photon energies of around 150 eV but no higher [42].

Although the contribution of the ponderomotive energy in eq. (2.3.1) suggests that the

cutoff can be moved to higher energies by increasing the intensity and thus the field

amplitude, this cannot be scaled arbitrarily.

As the intensity and thus field amplitude is increased, the total ionisation fraction of

the generation medium rises at the same time as the harmonic cutoff energy, because

a stronger field leads to more rapid field ionisation. The plasma contribution to the

refractive index then leads to an insurmountable phase mismatch between the driving

field and the harmonics, precluding efficient build-up of the signal [43]. At the extreme

intensities required to push the cutoff much beyond 150 eV, the ground state of the

atom is furthermore depleted significantly. As a consequence, a returning electron finds

that very little remains of the state it was ionised from; simply put, there is no hole for

it to fall back into. Harmonic generation is therefore switched off almost entirely [44].

The need to avoid this regime of poor phase-matching and ground-state depletion is

the chief reason that HHG with 800 nm driving pulses cannot reach very high photon

energies while generating enough flux for an experiment. For example, at a driving

wavelength of 790 nm the intensity required for a harmonic cutoff at 150 eV in a neon
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target is ca. 7× 1014 W cm−2. This intensity is sufficient to cause significant ionisation

in a neon atom [43], and thus the cutoff cannot easily be pushed to higher energies. The

problem is reduced when HHG is driven with a few-cycle pulse, since cycles preceding

the main peak do not contribute much to the overall ionisation, however this does not

fundamentally change the limitations.

This energy restriction has consequences for the applicability of conventional high-

harmonic sources. Since radiation at these photon energies is very strongly absorbed

in almost all materials, only gas-phase samples and the surfaces of condensed-phase

materials can be investigated [39]. For the study of biological or bio-chemical processes,

this is a significant disadvantage, since the relevant samples are often most easily

prepared in solution or in solid form. The region of interest especially for transient

absorption spectroscopy of these kinds of samples is the water window (see fig. 2.9a).

This is the photon energy range between the K-shell absorption edges of carbon, at

284 eV, and that of oxygen, at 540 eV, both of which lie in the soft X-ray (SXR) part

of the electromagnetic spectrum. In the water window, water and other carbon-free

solvents are nearly transparent, allowing the study of samples in solution as well as

thin films of solid materials.

The only remaining parameter in eq. (2.3.1) to increase the harmonic cutoff photon

energy into the water window is the driving wavelength. By increasing this (and

thus decreasing ω0), the cutoff can be extended without overly ionising the medium

[42, 46, 47]. Since the ponderomotive energy scales with the square of the wavelength,

using a driving pulse at a wavelength in the short-wavelength infrared (SWIR) spectral

region, for instance 1800 nm, can lead to a maximum photon energy of several hundred

electron volts. This can be understood intuitively by considering that the electron can

spend more time being accelerated away from and then back towards the parent ion,

raising its maximum kinetic energy. The cost of this approach, however, is a very severe

drop in conversion efficiency from the already weak pulses obtained at 800 nm.

There are several reasons for the poor scaling of the conversion efficiency. One of

the most important ones is the same as the reason for the increased cutoff: the time
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Figure 2.9.: (a) Absorption cross sections (on an arbitrary but common scale) of water

and carbon in the SXR spectral region, calculated from the atomic scattering

factors [45]. The oxygen K edge is visible in the absorption of water at

540 eV.

(b) Schematic of a possible DUV-SXR pump-probe experiment. At some

time t0, the DUV pulse excites a valence electron, and the SXR pulse probes

the state population and coherence at some later time t1.

spent outside the ion. The longer this is, the more time the electron wavepacket has to

disperse. Since the excursion time is proportional to the period of the field and thus

the wavelength λ0, the wavepacket spread in each dimension is proportional to λ0 as

well, reducing the overlap of the returning electron with its ground state by a factor of

λ−3
0 [31].

When other effects, such as the scaling of the recombination matrix element, are

included, the reduction in flux is in fact dramatically worse – as strong as λ−9
0 [48]. As

a consequence, it is vital that the phase-matching conditions are optimised to achieve

maximum overall conversion efficiency, and furthermore that the highest possible pulse

energy is used to drive the process. Phase-matching in this regime is achieved by using

high-pressure gas targets and very high intensities, and the resulting reshaping of the
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laser pulse by plasma effects plays an important role [49].

Time-resolved XANES

The choice of the water window as the photon energy range for the probe pulse has so

far only been justified by its applicability to condensed-phase targets. What remains is

the question of what information is contained in the absorption spectrum.

Thankfully, the study of X-ray absorption spectra is a well-developed field. The

concept most pertinent to the study of few-femtosecond electronic dynamics using

soft X-ray attosecond pulses is X-ray absorption near-edge structure (XANES). In this

technique, the features in the absorption spectrum around an X-ray absorption edge

are investigated as a signature of both the state occupancy and shape of the potential in

the atom creating the edge [50]. In a time-resolved experiment, tracking the change in

these absorption features after photoexcitation can yield extensive information about,

for instance, the formation and disappearance of electron-hole pairs [51, 52].

Since X-ray absorption edges such as the carbon K edge arise from the promotion of

a deeply bound core electron to a high-lying state or the continuum, a time-resolved

XANES experiment offers spatial as well as temporal resolution; core electrons are

strongly localised to their parent atom and their corresponding X-ray absorption

features therefore encode the dynamics local to that atom. In a molecule with, for

instance, a single carbon atom, the carbon K edge XANES signal therefore probes a

very spatially localised part of the molecule.

Figure 2.9b shows a simplified schematic of a time-resolved XANES experiment. A

valence electron in a molecule is promoted to a superposition of higher-lying states

by a pump pulse at time t0. The hole it leaves behind creates a new feature in the

X-ray absorption spectrum, but only for as long as the hole survives. At some time

t1 later, a soft X-ray pulse probes the state by promoting a core electron to the hole

if possible. Taking the XANES spectra shown in fig. 2.10 as an example, a valence

excitation may create an additional absorption feature below the sulphur L edge, so

around 160 eV, or the carbon K edge, so around 280 eV, depending on how the hole is
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Figure 2.10.: Near-edge X-ray absorption spectra at the sulphur L2,3 edge (left) and

carbon K edge (right) in a polythiophene film acquired with the high-

harmonic supercontinuum source in our laboratory, which was developed

by Allan Johnson [53]. The dots show the individual data points and the

solid lines show the data after nearest-neighbour smoothing. Different

peaks in the absorption spectrum near the edge correspond to the transi-

tion of a core electron to different states, and the slower features above the

edge contain information about the environment of the atom.

localised. By measuring the strength of the absorption feature as a function of delay

between the pump and probe pulses, the dynamics of the excited electron and the hole

can be tracked. Electron correlations can furthermore shift other absorption features,

yielding another signal channel, however such shifts are more difficult to detect.

Light source requirements

Time-resolved XANES is well-placed to be a very powerful technique in ultrafast

measurement, however it places great demands on the light sources for the experiment.

Since attosecond pulse generation via HHG is extremely inefficient, especially when

using the long driving wavelengths required to reach the X-ray regime, achieving the

maximum driving pulse energy possible is absolutely critical.
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The system used to generate SXR attosecond pulses in the Laser Consortium at

Imperial College is based on a heavily modified commercial laser system (Red Dragon,

KM Labs). The laser system generates pulses at 790 nm central wavelength with a

FWHM duration of 30 fs and up to 8.3 mJ of pulse energy at a repetition rate of 1 kHz.

To create the long-wavelength driving pulse required for SXR generation, around 8 mJ

of this laser output is used as the input for a commercial tunable optical parametric

amplifier (OPA) (HE-TOPAS, Light Conversion). In the OPA, white-light generation by

very strong SPM creates a broadband seed pulse which can be spectrally selected and

amplified, resulting in a tunable pulse. The amplification creates two pulses further in

the infrared, with the pulse at the shorter wavelength conventionally called the signal,

and the one at the longer wavelength the idler.

The SXR generation apparatus uses the idler, which is generated with a central

wavelength of around 1750 nm. The pulse created in the OPA is somewhat longer

than the laser pulses, around 35 fs to 40 fs. It is passed through a pulse compressor

consisting of a gas-filled hollow capillary to expand the spectrum via SPM and a pair

of glass wedges to induce the necessary anomalous GDD9, after which its duration is

around 10 fs. At this wavelength, this corresponds to around 1.6 cycles, short enough

for the generation of isolated attosecond pulses.

Owing to its operating principle, the conversion efficiency to the idler in the OPA

is not very high. Commonly, the idler pulse contains only about 1.4 mJ of energy, less

than 20 % of the input. This is further reduced by about 50 % in the pulse compressor.

As a result, the pulse driving SXR generation usually has an energy of 600 µJ to 700 µJ.

While this is sufficient to generate harmonics across the water window in a suitably

optimised target [49, 53], achieving this energy is crucial; a reduction of even 5 % in

laser output from its nominal performance precludes operation of the SXR source. It is

this inefficiency and the resulting restriction that make an efficient source of ultrashort

DUV pulses so critical for a successful experiment involving SXR attosecond pulses.

One important question to be addressed when designing an experiment is the

9Recall that most optical glass is anomalously dispersive at this wavelength.
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necessary energy for both pulses involved. In the type of experiment discussed so

far, the lower limit on the SXR flux is set by the need to detect it after transmission

through a sample. Our SXR source has already been used to perform static XANES

measurements at the sulphur L and carbon K edges in a target consisting of a thin film

of photoactive polymer (see fig. 2.10) [53] and of the oxygen K edge in a Mylar film [49],

demonstrating that is bright enough in principle for time-resolved measurements.

The energy requirements on the DUV pulse are harder to estimate, since they are

extremely variable depending on the target. The absorption cross-section of valence-

electron resonances in small molecules the deep and vacuum UV can range from

10−19 cm2 to 10−16 cm2 per molecule [54, 55]. Even for otherwise identical experimental

conditions, this results in a change of over three orders of magnitude in the required

pulse energy. The situation is further complicated by the fact that only those molecules

in the focus of the SXR pulse contribute to the transient absorption signal. Given the

very short wavelength, this focus is very likely to be smaller than that of the DUV pulse,

increasing the total amount of DUV energy required.

For a rough estimate, expertise from the femtochemistry community is very useful.

Typical values for the pulse energy in a transient absorption experiment at visible and

infrared wavelengths lie in the range of 10 nJ to 1 µJ, which is sufficient to excite around

10 % of molecules in most experiments [6]. Given that valence-electronic resonances are

often stronger (i.e., cause more absorption), this can serve as a conservative estimate. It

should be noted, however, that these are values for the energy in the target, rather than

at generation. Should significant losses be incurred between the two, more energy has

to be generated.
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2.4. Frequency-resolved optical gating

The vast majority of time-resolved measurements in science are performed using some

kind of gate, that is, an event with a timescale significantly faster than that of the process

under study. The most common example of this is a flash as used in photography. In

electronics, this is commonly the sampling clock in a digital oscilloscope, which causes

voltage readings to be carried out at a rapid pace. The limit on the time resolution

in this case is set by the response time of electronic circuitry as well as available

photodetectors, and lies in the range of tens of picoseconds. To measure ultrashort laser

pulses, different methods are therefore required. For laser pulses as short as several

hundred femtoseconds, a streak camera can be used to measure the intensity envelope

directly [56]. In this case, the gate is provided by the fast movement of a mirror or

electro-optic equivalent, which causes different time-slices of the pulse to be directed to

spatially separated parts of a detector.

When faced with the task of measuring short femtosecond or even attosecond pulses,

such a strategy cannot be used, because a sufficiently fast gate does not exist: ultrashort

laser pulses are the shortest controlled events ever created in a laboratory [57]. No

faster event is therefore available to sample the waveform of an ultrashort pulse, and

other methods are required. All available techniques used to measure ultrashort laser

pulses make use of two or more10 such pulses and some nonlinear interaction between

them to gain information about the temporal shape of a pulse.

The use of a nonlinearity is not merely a convenient way to implement ultrashort

pulse measurement, it is a fundamental requirement. The effect of linear optical

interaction can be expressed as a product of terms in the frequency domain, as shown

in section 2.1.3 for the example of propagation through material. Since the order

of linear operations is irrelevant, the linear response of any optical system can be

encapsulated in its response function H(ω), the formal properties of which have been

investigated in detail in the field of signal processing theory [59]. The electric field of

10The exception to this is the dispersion scan method, which only requires the test pulse. However, it can

only be used when the GDD of the pulse can be scanned through 0. [58]
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the laser pulse at the end of the system is then obtained by simply multiplying the

input by the response function. Given the lack of sufficiently fast photodetectors, any

linear optical measurement can at most produce the time-integrated (or equivalently,

frequency-integrated) intensity of the field, so any such measurement can be described

as

S =
∫ ∞

−∞
|H(ω)E(ω)|2dω , (2.4.1)

where S is the signal acquired in the measurement. This kind of measurement is

therefore insensitive to the phase of E(ω), yielding, for instance, the power spectrum

|A(ω)|2 (if H(ω) = δ(ω−ω0) with ω0 variable) or the total energy (if H(ω) = 1). The

spectral phase can only be measured if the response is nonlinear.

This section introduces the most common ultrashort pulse characterisation scheme,

frequency-resolved optical gating (FROG), two variants of which were implemented in

the course of the work for this thesis. Detailed descriptions of these can be found in

section 4.3.3 and chapter 5.

2.4.1. General description

In its simplest form, FROG is best explained as a frequency-resolved measurement of

the autocorrelation of the unknown pulse (the test pulse). The autocorrelation, in turn,

is arguably the simplest measurement of the profile of an ultrashort pulse.

In the context of ultrashort pulses, the term autocorrelation most often refers to the

second-order intensity autocorrelation S(τ), which is essentially the convolution of the

pulse intensity with itself [60]:

S(τ) =
∫ ∞

−∞
|Et(t)Et(t− τ)|2 dt =

∫ ∞

−∞
It(t)It(t− τ)dt , (2.4.2)

where Et(t) is the electric field of the test pulse and It(t) its intensity (neglecting

constants). S(τ) is particularly easy to obtain using nonlinear optics by measuring the

total power in the sum-frequency signal of a pulse with a delayed replica of itself as a

function of that delay. Writing the driving field in the nonlinear medium for such an

50



2. General Background 2.4. Frequency-resolved optical gating

arrangement as a function of both time t and delay τ,

E(t, τ) = Et(t) + Et(t− τ) , (2.4.3)

the second-order nonlinear polarisation (omitting the optical rectification term) is then

given by

P2(t, τ) =
1
4

ε0χ(2) [Et(t)2 + Et(t− τ)2 + 2Et(t)Et(t− τ)
]

. (2.4.4)

As shown in section 2.2.3, the first two terms in the nonlinear polarisation repre-

sent the second harmonic of the two delayed replicas. The third term represents the

sum-frequency generation process between them, and its intensity, proportional to

|Et(t)Et(t− τ)|2, has the same form as the integrand in eq. (2.4.2). It is therefore suffi-

cient to measure total power in the sum-frequency signal between two replicas of the

test pulse as a function of the delay between them to obtain the intensity autocorrelation,

as long as the phase-matching conditions are appropriate (see section 2.4.2).

The autocorrelation contains information about the pulse. If it is known that the

pulse has a particular shape, then the autocorrelation yields its duration. Furthermore,

the root mean square (RMS) widths of S(τ) and It(t) are related unambiguously, since

the definition of the RMS width is independent of pulse shape. However, it is not

possible to fully reconstruct the field as a function of time including the phase [60].

There are an infinite number of pulse profiles Et(t) which will result in the same

autocorrelation trace S(τ), because the problem of gaining phase information from the

intensity-only autocorrelation (known as the one-dimensional phase retrieval problem) is

under-constrained. Thankfully, there is a simple way of adding enough information

to the measurement for the phase retrieval to succeed, and that is to measure not the

time-integrated energy of the autocorrelation, but instead its spectral energy density.

This is the concept of FROG [61].

To spectrally resolve the sum-frequency part of the second-order polarisation eq. (2.4.4)

is to Fourier transform it before measuring the intensity, and yields a signal which is

dependent on both delay and frequency:

S(ω, τ) =

∣∣∣∣∫ ∞

−∞
Et(t)Et(t− τ)eiωtdt

∣∣∣∣2 . (2.4.5)
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The fundamental difference between this and the autocorrelation is that by adding the

second dimension to the data, the problem of finding the underlying field Et(t) turns

into the two-dimensional phase retrieval problem, which can be solved as long as there

is some additional constrain on the solution [62]. In the case of FROG, the additional

constraint is given by knowledge of the process that creates the signal S(ω, τ). Here, it

is the form of the second-order polarisation eq. (2.4.4). It should be noted, however,

that sum-frequency generation is far from the only process capable of producing FROG

traces. A frequency-resolved third-order autocorrelation, for example, is also a FROG

measurement. In fact, the first demonstrated FROG measurement was carried out using

polarisation gating, a consequence of the Kerr effect when two pulses with different

polarisations interact [61]. Any instantaneous nonlinearity can be used, and it is only

the particular form of the integrand in eq. (2.4.5) which changes [63]. In order for the

measurement to be meaningful, however, it is important for several conditions to be

met, and furthermore a practical solution to the phase retrieval problem posed by the

FROG trace has to be found.

2.4.2. Practical limitations and conditions

The simplest yet most important condition on any attempted FROG measurement is that

the nonlinear interactions need to be phase-matched [64]. As detailed in section 2.2.4,

it is impossible to achieve perfect phase-matching across a large bandwidth, with

the conversion efficiency dropping as the wave vector mismatch ∆k increases. If the

phase-matching bandwidth is insufficient, the phase-matching efficiency reshapes the

FROG trace. It is possible to treat the effect of phase-matching as a simple spectral filter

and correct for it [65]. This is an approximation, though one that is very often used,

since including the full two-dimensional phase-matching function can substantially

slow down the phase retrieval. Another way of circumventing this problem is to use a

sufficiently thin nonlinear medium, so that phase-matching effects are negligible. For

very short pulses this becomes challenging since the total signal generated scales with

the square of the medium length, however it is often the only available option. A thick
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medium may not yield any detectable signal in parts of the pulse spectrum due to the

narrow phase-matching window, so that a simple correction factor cannot be used.

Spectral reshaping of the FROG signal occurs because of other reasons, too. The

overall ω2-dependence of the harmonic signal as seen in eq. (2.2.25) similarly becomes

more important as the test pulse bandwidth increases. The frequency-dependent

transmission or reflection of the optics in the apparatus also plays a role, as does the

spectral sensitivity of the spectrometer. These are much simpler to account for, however,

as they depend purely on the wavelength of the signal, and not that of the interacting

pulses.

In most beam geometries used for FROG, the two (or three) copies of the test pulse

cross at an angle in the nonlinear medium [60]. In addition to being easier to construct,

this makes it possible to spatially separate the signal beam created in the medium from

the incident beams, since transverse phase-matching will cause it to travel in a different

direction. This removes a potential source of background from the signal. In the case

of SHG FROG, the second harmonic of the two pulse replicas has the same central

frequency as the signal and would thus overlap with it in a spectrometer; a similar

problem is present for variants of FROG which do not change the central frequency. The

non-collinear geometry creates its own problems, however. Since the pulses impinge

on the nonlinear medium at an angle, one edge of each beam will reach the medium

before the other, and which side hits first or last is reversed between the two pulses.

The delay between the pulses is therefore not constant across the face of the medium.

The amount of time by which the extreme edges of the beam are delayed relative to

each other (at nominal zero delay, i.e., when the centres of the beams overlap in time)

is easily found from the geometry of the situation, and given by

∆τ =
2d
c

tan
(

θ

2

)
, (2.4.6)

where d is the beam diameter in the medium, θ is the crossing angle between the beams,

and c is the speed of light in vacuum [60]. For a beam focused to a spot of 50 µm

diameter, a crossing angle of 1° is sufficient to cause a spread of around 2 fs in delay

across the beam profile. While this can be significant compared to the pulse duration,
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the impact on the measured pulse is not as dramatic: the blurring and the real pulse

duration add in quadrature, so that 2 fs of blurring is very small for all but the shortest

pulses. This can be shown analytically for a pulse that has a Gaussian shape in both

time and space [64].

If required, there are two ways of alleviating this problem. The first is to simply

choose as small a crossing angle as possible, though this can only reduce the amount of

delay blurring to around one optical cycle of the field [60]. The second is to re-image the

interaction region in the nonlinear medium onto the entrance slit of the spectrometer

with a magnification such that only the centre of the signal beam enters the detector.

While this reduces the amount of signal collected, it very easily removes temporal

blurring.

Instead of reducing the problem of temporal blurring, another option is to use it.

Since the smearing leads to a mapping from space to delay in the medium, imaging

this plane onto an imaging spectrograph can yield a FROG trace in a single shot. This

is a commonly used pulse characterisation technique, however it is significantly more

complicated to set up in practice than a multi-shot, scanning FROG device [60].

2.4.3. FROG trace reconstruction

The final task in any FROG measurement is to solve the phase retrieval problem, a

process often called reconstruction. This is impossible to do in a single step, given that

eq. (2.4.5) cannot be solved analytically to yield the test pulse field Et(t). Instead, an

iterative algorithm has to be employed which makes use of the two constraints of the

measurement; the measured trace on the one hand, and the underlying mathematical

form of the interaction on the other [60]. Several different algorithms exist, which

mostly differ in how they apply the mathematical-form constraint at every iteration,

whereas the data constraint is used in the same way. All FROG algorithms start with an

initial guess for the test pulse field, update it using the constraints, and then generate

a FROG trace from it. These steps are repeated until the difference between this

reconstructed and the measured trace converges to a minimum value. This difference
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is commonly measured using the RMS error between the two traces, also known as the

FROG error:

∆ =

√
1
N ∑

i,j

[
(Srec(ωi, τj)− µ Smeas(ωi, τj)

]2 , (2.4.7)

where N is the total number of points in the FROG trace, ωi are the frequency samples,

τj the delay samples, and Smeas(ωi, τj) and Srec(ωi, τj) are the measured and recon-

structed FROG traces, respectively [60]. The factor µ is chosen to minimise the error

and is given by [58]

µ =
∑i,j Smeas(ωi, τj)Srec(ωi, τj)

∑i,j S2
meas(ωi, τj)

. (2.4.8)

Applying the data constraint is quite simple. From the current guess for Et(t), the

complex-valued FROG trace amplitude σ(ω, τ) is generated, which is the FROG trace

before taking the absolute value:

σ(ω, τ) =
∫ ∞

−∞
Et(t)Et(t− τ)eiωtdt . (2.4.9)

The magnitude of this quantity is then replaced by the square root of the measured

trace S(ω, τ):

σ′(ω, τ) =
σ(ω, τ)

|σ(ω, τ)|

√
S(ω, τ) . (2.4.10)

In the simplest FROG reconstruction algorithm, the form constraint is then applied by

Fourier transforming σ′(ω, τ) along the frequency axis to obtain σ′(t, τ) and integrating

this over the delay τ; since the test pulse Et(t) can be factored out of this integral,

the result will be proportional to it. This then forms the updated guess, and the next

iteration starts. Unfortunately, this basic algorithm often fails in the presence of noise,

and is generally slow to converge.

A more reliable method is given by the method of generalised projections [66]. The

main difference to the basic algorithm is that instead of generating the updated guess

for Et(t) by simply integrating, a generalised projection onto the set of all possible

σ′(ω, τ) that satisfy the form constraint is carried out. This yields an updated guess

which fulfils the form constraint exactly. It can also be shown that the process of

replacing the amplitude as shown in eq. (2.4.10) is a generalised projection onto the set

of all waveforms which satisfy the data constraint [67].
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While the method of generalised projections is much more robust to noise and

works in a greater variety of circumstances, it is relatively slow, since it involves the

computation of gradients in as many dimensions as there are frequency samples in the

FROG trace [66]. A faster implementation of a similar idea is the principal components

generalised projection algorithm (PCGPA) [68]. By noting that a FROG trace can be

obtained by the outer product of two vectors representing the two pulses interacting

in the medium, the phase retrieval problem becomes tractable using singular value

decomposition (SVD) techniques. Further simplification by replacing the accurate, but

computationally expensive full SVD with the power method results in an algorithm

that is fast enough to allow for real-time measurements of ultrashort pulses [69, 70].

Due to its relatively simple operating principle and a well-developed range of

variations, FROG has become the most commonly used technique for the measurement

of ultrashort laser pulses. Two different FROG set-ups were used in the work for this

thesis; one to measure the pulse driving the frequency conversion to the DUV, and one

to measure its output pulses.
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3. Ultrashort Pulses in Waveguides

The multitude of nonlinear optical effects introduced in section 2.2 have found applica-

tions in many areas of science and technology. As shown in section 2.2.4, the refractive

index profile of the nonlinear material can be as important as the order and strength of

the nonlinearity in achieving efficient frequency conversion. In order to fully realise

the potential of nonlinear optics, it is therefore important to be able to use the whole

spectrum of materials as the medium, from dilute gases to liquids and solids. Using a

gas as the nonlinear medium additionally offers the ability to adjust the strength of the

nonlinearity by changing the gas pressure.

One of the most successful strategies in accessing this range of possible materials is

the use of guided light instead of free-space propagation. Optical waveguides can be

made out of solid materials, or they can have hollow cores which can then be filled

with different liquids or gases to serve as the nonlinear medium. Fibres furthermore

allow very long interaction lengths in the range of metres, enabling the use of materials

with relatively weak higher-order susceptibilities while still achieving strong nonlinear

effects. This is in contrast to the most common geometry in nonlinear optics experiments

of focusing a laser beam into a nonlinear medium, where the interaction length is

often shorter than the Rayleigh length of the focus, commonly in the range of tens to

hundreds of micrometres.

I will review the mechanism by which both solid and hollow optical waveguides

confine light, with particular focus on the two types of hollow-core waveguide used

in the work for this thesis. I will also develop the theoretical background of nonlinear

pulse propagation in these types of waveguides, including both the full (single-mode)

propagation equation and an approximate version which is useful for qualitative
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understanding and analytical insight. This enables the discussion of the theory of

soliton self-compression, which is the basic mechanism underlying the DUV generation

scheme implemented in the work for this thesis.
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3.1. Propagation in Fibres and Hollow Capillaries

The first and by far the most common type of optical waveguide, conventional optical

fibre consists of a solid core with circular cross-section surrounded by a solid cladding

with a different refractive index. Its main application is in telecommunications, however

it is ubiquitous in both scientific and commercial contexts.

The guiding mechanism in this so-called step-index fibre is appropriately known

as index guiding and is easily understood from a ray-optical point of view in terms of

total internal reflection. Total internal reflection occurs whenever a ray impinges on

an interface between materials at an angle such that its refracted angle according to

Snell’s law becomes larger than 90°. This means that the ray cannot propagate in the

other material and it is reflected instead [71]. One can imagine the guiding of light

inside a step-index fibre as the repeated total internal reflection of rays on the interface

between the core and the cladding. Since total internal reflection is only possible when

a ray approaches the interface from inside the material with larger refractive index, the

refractive index of the cladding must be smaller than that of the core.

To facilitate the comparison with other guiding mechanisms, it is also useful to

analyse a step-index fibre using wave optics. Here, the first important fact is that

the largest value that any component ki of the wave vector k can take is ki = |k| =

nω/c . The second is that at an interface in the transverse plane of the waveguide,

the longitudinal component of wave vector kz cannot change due to the symmetry of

the situation – there is no refractive index change in the longitudinal direction [72].

Any plane wave component of the field for which kz > ncladω/c can therefore not

propagate in the cladding and is confined to the core. As in the ray-optical picture this

necessitates nclad < ncore for any light to be confined.

Hollow capillaries

The requirement that the cladding index be smaller than the core index rules out total

internal reflection as a guiding mechanism for any structure with a hollow core, since
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the refractive index of glass and other solid materials is much larger than that of a gas,

even at high pressures. However, it is still possible to guide light in a hollow capillary,

that is, a waveguide consisting of a circular hollow core surrounded by a dielectric such

as glass [73]. Again it is useful to consider this situation from different perspectives.

To understand confinement in a hollow core in ray optics, the critical piece is a

mechanism to replace total internal reflection. This is provided by glancing reflection,

i.e. the fact that at very shallow angles of incidence, a large proportion of light is

reflected at the interface between any two media with a large difference in refractive

index, irrespective of the sign of the difference. While this provides a route towards

light confinement, it also points to one of the drawbacks of capillary waveguides – since

only most, rather than all, of the light is reflected at the interface, transmission through

capillaries is very lossy compared to step-index fibres.

A wave-optical treatment of a capillary waveguide begins very similarly to the general

derivation outlined in section 2.1, which is to say with Maxwell’s equations. Solving

Maxwell’s equations taking into account a capillary’s refractive index profile yields the

modes of the waveguide. In the case of free space propagation discussed in section 2.1.1,

the modes were simply plane waves. The geometry of a capillary makes cylindrical

coordinates (radial coordinate r, the azimuthal angle θ and the longitudinal direction

z) the natural choice. The natural basis functions in this coordinate system are Bessel

functions, and in free space any combination of these is a valid solution to the wave

equation.

A mode of the capillary is a particular linear combination of basis functions which

satisfies the boundary conditions arising from the refractive index profile and results in

a single propagation constant, which is to say that the spatial profile of a mode does

not change as it propagates. The (linear) evolution of the field in a specific waveguide

mode, commonly labelled by an integer m, along the z direction can be expressed as

Em(r, θ, z, ω) = am(ω) em(r, θ) eiβm(ω)z, (3.1.1)

where am(ω) is the (complex) spectral amplitude at frequency ω, em(r, θ) is the trans-

verse mode profile in mode m and βm(ω) is the propagation constant for that mode.
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The frequency dependence of βm is known as modal dispersion. The total field in the

waveguide is then a sum over modes:

E(r, θ, z, ω) = ∑
m

Em(r, θ, z, ω). (3.1.2)

The form of the modes is given by the waveguide geometry, i.e., its refractive index

profile, which enters the mathematical treatment as the boundary conditions on the

magnetic and electric fields.

In a capillary, many different modes exist which differ in their transverse intensity

profile as well as their polarisation direction, in addition to their propagation constant.

However, a large proportion of possible modes are excluded in real-world applications

by the laser beam that is coupled into the waveguide. Which modes are excited is

determined by decomposing the field at the entrance face of the capillary into the modes

of the waveguide. For the idealised case of a perfectly linearly polarised Gaussian laser

beam, the field at the entrance face of the waveguide is cylindrically symmetric and

linearly polarised. Therefore it only couples to modes which share those characteristics.

The class of modes that satisfy this condition is that of the hybrid modes, often labelled

HEn [73]. They are known as hybrid modes since the longitudinal field Ez is non-zero,

in contrast to the transverse electric or transverse magnetic modes – there are no modes in

which both the electric and magnetic field are transverse as they are in free space. The

transverse scalar field of the hybrid modes (dropping the polarisation vector) takes a

particularly simple form:

em(r, θ) = J0 (k⊥,mr) , (3.1.3)

where J0(x) is the 0th order Bessel function of the first kind, 0 ≤ r ≤ a with a the

waveguide core radius, and k⊥,m is a constant which, in analogy to the case of plane

waves, is often called the transverse wave vector1.

1This can be understood by noting that a higher value of k⊥,m leads to a higher number of subsidiary

peaks in the field distribution within the waveguide core, which corresponds to a higher spatial

frequency. This is analogous to a higher value of k for plane waves, which directly represents the

(angular) spatial frequency.
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Figure 3.1.: The intensity profile |e(r, θ)|2 of the first three hybrid modes in a hollow

capillary on a false colour scale. The grey circles signify the boundary of the

core. The increasing number of subsidiary peaks is clearly visible, which

corresponds to a higher spatial frequency and larger magnitude of k⊥.

It is important to note that the modes as shown in eq. (3.1.3) are derived using several

approximations, which are often collectively referred to as the Marcatili model or the

capillary model [73]. One of the approximations is that the field vanishes at the edge of

the waveguide core, where r = a. This restricts the possible values of k⊥,m:

em(r = a, θ) = J0 (k⊥,ma) = 0

=⇒ k⊥,m =
um

a
,

(3.1.4)

where um is the mth root of J0(x). The modes of a capillary are thus truncated Bessel

functions. Figure 3.1 shows the transverse intensity profile of the first three hybrid

modes in a capillary, corresponding to the first three roots of J0(x). With this simple

expression for the transverse wave vector, we can derive the propagation constant β for

each mode of the capillary: in the core of the waveguide, the magnitude of the wave

vector, k(ω), is simply ωn(ω)/c, where n(ω) is the frequency-dependent refractive

index in the core. Expanding k2 in terms of the transverse wave vector k⊥ and the
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propagation constant β(ω) = kz(ω) yields the propagation constant:

k2 =
ω2

c2 n(ω)2 = k2
⊥ + β(ω)2

=⇒ βm(ω) =
ω

c

√
n(ω)2 − c2u2

m
a2ω2 .

(3.1.5)

In an evacuated capillary, n(ω) = 1, whereas with a gas fill it is simply the refractive

index of the gas. This means that it is not only the nonlinearity that is tunable via the

gas pressure and species, but also the dispersion of the waveguide.

Importantly, the GVD of an evacuated capillary is always anomalous. This can be

seen by expanding the square root in eq. (3.1.5) to first order:

βm(ω) ≈ ω

c

(
1− c2u2

m
2a2ω2

)
, (3.1.6)

so that the GVD is given by

β2,m =
∂2βm

∂ω2 ≈ −
cu2

m
a2ω3 . (3.1.7)

For large core diameters, this effect is quite weak, and the normal dispersion aris-

ing from any gas fill can easily be larger than the anomalous contribution from the

waveguide. If the core is only a few tens of µm in diameter, however, the waveguide

dispersion can be very strong and the total dispersion remain anomalous even with

high-pressure gas fills.

A more thorough derivation of the capillary modes and β(ω) also yields the imagi-

nary part of the propagation constant, i.e. the loss, which is given by2

αm(ω) =
c2u2

m
a3ω2

ν2 + 1√
ν2 − 1

, (3.1.8)

where ν is the ratio of the refractive index of the cladding to that of the core [73].

Importantly, the loss scales as λ2/a3, so it increases very rapidly with decreasing core

diameter, but smaller cores can be used for shorter wavelengths. If significant losses

2Note that in this expression, α is a factor of 2 larger than given in the original work by Marcatili and

Schmeltzer [73]. This is because in that work, α is defined to be the attenuation coefficient for the field

as E(z) ∝ exp{−αz}.
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are to be avoided, this limits the maximum intensity inside the core for a given pulse

energy and duration.

The loss is much higher for larger modal indices m, so that higher-order modes

are attenuated much more rapidly than the lowest one. The guiding mechanism of

glancing reflection explains why this is the case: as detailed above, the transverse wave

vector k⊥ is larger for higher-order modes. In the ray picture, this means that the light

approaches the core-cladding interface at a steeper angle, which leads to larger losses

through refraction. The effect of this mode-dependent loss is that a capillary acts as a

spatial filter. If the spatial profile of the beam is distorted at the input of the capillary,

this will translate into the presence of higher-order modes. This is because the coupling

efficiency between the incoming beam and each mode of the fibre is determined by an

overlap integral [74]:

ηm =

[∫ ∞
0

∫ 2π
0 E(r, θ)e∗m(r, θ) rdrdθ

]2

∫ ∞
0

∫ 2π
0 |em(r, θ)|2 rdrdθ

∫ ∞
0

∫ 2π
0 |E(r, θ)|2 rdrdθ

, (3.1.9)

where em(r, θ) is the field profile of the mth mode and E(r, θ) is the field profile of the

incoming beam at the entrance face of the fibre. Perfect coupling into the fundamental

mode is therefore only possible if the beam has exactly the correct shape. Since higher-

order modes are attenuated, however, the spatial profile of the output will consist

mostly of the fundamental mode, effectively removing the distortions from the beam.

Both this and another implementation of spatial filtering are essential elements of the

work done for this thesis (see section 4.3).

Apart from the adjustable nonlinearity and dispersion that comes with guidance in a

hollow core, capillary waveguides offer other important advantages over conventional

optical fibre. The first is that their dispersion is significantly reduced, even when

compared to dispersion-compensated fibre [75]. Furthermore, the guiding bandwidth

for all modes is many times larger. While multi-mode optical fibres can guide very

broadband light, the presence of many different modes leads to strong inter-modal

dispersion and interference. In contrast, every mode in a hollow capillary can contain

effectively the entirety of the optical part of the electromagnetic spectrum, though
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subject to the frequency-dependent loss. This is especially important when using very

short pulses, whose bandwidth can span over an octave in frequency. Lastly, it is

essentially impossible to guide pulses with high peak powers in any fibre with a solid

core. Because of the strong nonlinearity of glass as compared to gas or vacuum [76],

self-focusing quickly leads to catastrophic damage to the solid core of a standard fibre.

For high-power applications, a hollow core is therefore essential.

The main drawback of a hollow capillary waveguide is its relatively large loss,

even assuming a perfectly straight capillary. Whereas solid-core fibre can be bent

significantly while maintaining very good guidance, capillaries suffer twofold from

even a small deviation: the loss increases rapidly with decreasing bend radius [73], and

the waveguide modes become coupled, meaning that energy is transferred between

them. Therefore great care must be taken to keep capillaries straight.

Hollow-core photonic crystal fibres

The limitations of both traditional solid-core fibre as well as hollow capillaries have

inspired research into a great range of novel waveguide geometries. The first demon-

stration of light guidance in a micro-structured fibre, commonly known as photonic

crystal fibre (PCF), was in 1996 [77]. While the guidance mechanism in this first type

of PCF is very similar to that in a step-index fibre, the novelty lies in the underlying

reason for the refractive index difference between the core and the cladding. Instead of

employing a lower-index material, the cladding is made by creating holes in a regular

pattern around the (solid) core. Thus the average, or effective, refractive index of the

cladding region is lowered, and the fibre can guide light via index guiding.

A more radical departure from the index-guiding mechanism is offered by photonic

band gap (PBG) fibre [78]. This type of fibre guides light in a hollow core, but does not

rely on a difference in average refractive index, as all other types of fibres discussed

so far do. Light is confined to the core by the presence of a photonic band gap, which

is analogous to the concept of a band gap in solid-state physics: whereas electronic

band gaps are formed by the Bragg reflection of the electron wavefunction off of atomic
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(a) (b)

Figure 3.2.: Scanning electron micrographs of the cross-section of a typical PBG fibre

(a) and a kagomé-style anti-resonant PCF (b). Adapted with permission

from reference [7], Optical Society.

centres in a crystalline material, a photonic band gap is due to Bragg reflection of the

electric field by a periodic arrangement of refractive index changes [79] (see fig. 3.2a).

In the cladding region, light at certain frequencies can not propagate, and therefore it

remains in the core.

The particular pattern forming the photonic crystal in the cladding can vary sub-

stantially, with different structures optimising different parameters [80]. This type

of waveguide offers true guidance of light in a hollow core, in contrast to the weak

grazing-incidence confinement in a capillary. This means that bending losses are much

less extreme [81]. However, the guiding bandwidth is primarily determined by the

width of the band gaps, which limits PBG fibres to a maximum bandwidth of a few

hundred nanometres [82].

For applications requiring transmission over very large bandwidths in a hollow core,

which includes the generation of deep-UV pulses, the use of anti-resonant PCF is very

advantageous. These fibres typically consist of a hollow core surrounded by a lattice

of thin silica struts (see fig. 3.2b). The term refers to the guiding mechanism, which is

based on anti-resonant reflection of light by the cladding structure. In contrast to PBG

fibres, where the confinement is due to the overall structure of the cladding region,

in anti-resonant fibres it is the geometry of the individual struts that determine the

66



3. Ultrashort Pulses in Waveguides 3.1. Propagation in Fibres and Hollow Capillaries

location and width of confinement spectral regions, as well as the propagation loss [83].

The confinement mechanism is analogous to reflection by a Fabry-Perot cavity. There,

waves that have been reflected by the cavity boundaries different numbers of times

interfere with each other. This leads to near-perfect transmission through the cavity

whenever the optical path difference between reflections is an integer multiple of the

wavelength. Conversely, other wavelengths are reflected efficiently, and this is known

as anti-resonant reflection.

The width of the transmission resonances as well as the reflectivity at anti-resonant

wavelengths is determined by the finesse of the cavity, which in the absence of loss is

purely a function of the reflectivity of the cavity ends: the higher the reflectivity, the

narrower the resonances and the higher the total reflectivity of the cavity away from

the resonances. The wavelengths at which resonance occurs are set by the round-trip

phase, which in turn depends on the refractive index inside the cavity as well as its

length [12].

Fabry-Perot cavities exist in two main forms. They can either consist of two end-

mirrors with free space between them, or be contained entirely inside a slab of dielectric

material, often called an etalon, with the Fresnel reflection at the two interfaces forming

the cavity ends. While often considered as a transmissive frequency filter, an etalon can

also be seen as a mirror with a reflectivity dependent on the finesse of the cavity, and

zero reflectivity at the resonances. In the case of anti-resonant PCF, it is this second

incarnation of a Fabry-Perot cavity that is very informative. The thin glass struts around

the waveguide’s core effectively form etalons which extend along the axial direction,

i.e., along the direction of propagation. It is thus the core walls themselves, rather than

the overall structure, that contribute to the guiding mechanism.

While the reflectivity of glass at normal incidence is very low, at grazing incidence it

increases dramatically3. The grazing-incidence finesse of the thin Fabry-Perot cavities

surrounding the waveguide core, and consequently their reflectivity, can therefore

be very high. This kind of waveguide can be seen as a modified capillary in which

3Recall that this is how hollow capillaries confine light.
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Figure 3.3.: A simple model for the reflectivity of the Fabry-Perot etalon formed by the

cladding of an anti-resonant waveguide. The longitudinal and transverse

wave vectors are calculated from the Marcatili model, and the phase dif-

ference calculated using the refractive index of silica and the transverse

wave vector [83, 84]. The reflectivity of the cavity ends is taken as the

glancing-incidence Fresnel reflectivity at the vacuum-silica interface. The

black solid line shows the reflectivity of a 250 nm long cavity, and the black

dashed line the same but with the Fresnel reflectivity reduced by a factor

of 0.7, showing the effect of lowering the finesse of the cavity. The red line

shows the reflectivity of a 350 nm long cavity, demonstrating the shift of

the guidance bands in anti-resonant PCF with changing strut thickness.

the cladding is formed not of solid glass but of Fabry-Perot etalons, increasing the

reflectivity of the core-cladding interface at off-resonant (or anti-resonant) frequencies.

The resulting wavelength-dependent reflectivity as calculated using a very simple

model is shown in fig. 3.3.

As a result of the increased reflectivity, propagation losses in anti-resonant PCF

are generally much lower than in capillaries, especially when the core diameter is

small; using eq. (3.1.8), the loss at 790 nm in a perfectly straight capillary of 50 µm core

diameter can be calculated as around 37.5 dB m−1, whereas an anti-resonant fibre may

have a loss below 1 dB m−1 [85]. In addition, bend-losses are present but, for many
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common anti-resonant structures, significantly less severe than for capillaries, making

them easier to use in practice [86].

However, this significant enhancement of the guiding properties when using anti-

resonant reflection comes at a price. As with any Fabry-Perot cavity, the cladding

structure has resonance wavelengths at which it transmits light very efficiently. Close

to these cladding resonances, anti-resonant PCF does not guide light. The resonances are

visible in fig. 3.3 as narrow dips in the reflectivity. By changing the thickness of the

cladding struts, the resonances can be shifted in wavelength to lie outside the regions

where confinement is required. However, since this involves chemically etching the

fibre or fabricating a different fibre altogether [87], it is substantially harder to switch

between different wavelength regions than when using a capillary. Furthermore, the

cladding struts have to be very thin, around hundreds of nanometres, for the fibre to

exhibit very broadband guiding, because the distance in frequency between cladding

resonances increases with decreasing strut thickness [83,88]. This makes manufacturing

anti-resonant fibre challenging in general.

Anti-resonant PCF, like PBG fibre, exists in several different forms. The first such

fibre manufactured is known as kagomé PCF, since the pattern formed by its glass

struts resembles a Japanese basket-weaving pattern of the same name [89]. It is

characterised by a Star-of-David pattern in the cladding structure (see fig. 3.2b). Other

structures with very similar guiding properties are possible, some of which are easier

to manufacture than the kagomé variant. The common feature among them is that the

core is surrounded by very thin walls to create the anti-resonant effect [90].

The similarity between anti-resonant guiding and confinement in a capillary has an

important, somewhat unexpected consequence: away from the cladding resonances,

the dispersion characteristics of anti-resonant fibre are very well approximated by the

capillary model eq. (3.1.5) [83]. While empirical corrections can be made to correct

for errors in the approximation at long wavelengths [91], all the general features of

the model apply except for the propagation loss, facilitating comparisons to capillary

waveguides.
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Figure 3.4.: The GVD β2 as a function of wavelength in a capillary or anti-resonant PCF

with a core diameter of 33 µm filled with argon gas to 8 different pressures

from 0 bar to 5 bar.

The scaling of the anomalous GVD with the core diameter shown in eq. (3.1.7)

is of particular importance. Since the superior loss characteristics of anti-resonant

waveguides makes the use of relatively small core diameters feasible, it enables the

propagation of laser pulses in strongly anomalously dispersive hollow-core waveguides.

Moreover, the exact amount of dispersion can be tuned by filling the fibre with gas

(see fig. 3.4). In combination with the nonlinearity offered by such a gas fill, which is

also enhanced by the smaller core diameter and higher intensity, this paves the way

for precisely controlled nonlinear dynamics, the basis of the deep-UV pulse generation

mechanism discussed in this thesis (see section 3.3).
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3.2. Nonlinear optics in hollow-core fibres

On a microscopic scale, the nonlinear optical effects introduced in section 2.2 are present

in the same way for light confined in a waveguide. However, the long interaction length

as well as the particular spatio-temporal and dispersion characteristics open up a new

range of effects which cannot be easily observed using free-space nonlinear optics.

In order to understand and model these effects, it is useful to derive a propagation

equation, which can be used to numerically model the nonlinear processes inside

a hollow-core fibre with high accuracy [7, 92–94]. With some approximations, the

propagation equation can be further simplified to create a model which captures many

of the phenomena discussed in this thesis on a more intuitive level.

The forward Maxwell equation

Only one additional approximation is required for the scalar nonlinear electromagnetic

wave equation to become useful to numerically model the nonlinear dynamics in gas-

filled hollow-core fibres. By choosing a direction of propagation (commonly z) and

neglecting all waves that move opposite, it becomes possible to use a moving frame of

reference for the propagation equation. This greatly reduces the computational cost of

solving the equation, since only a small window of time that travels with the pulse has

to be considered [94].

Starting from the scalar wave equation including the linear and nonlinear polarisation,

∇2
⊥E + ∂2

zE− 1
c2 ∂2

t E = µ0∂2
t (Pl + Pnl) , (3.2.1)

where ∇2
⊥ = ∂2

x + ∂2
y is the transverse Laplacian, we first Fourier transform in time as

well as both transverse coordinates x and y, and introduce the linear polarisation as in

eq. (2.1.20). By further defining the refractive index as in eq. (2.1.3), we arrive at

∂2
zE(kx, ky, z, ω)− k2

⊥E(kx, ky, z, ω) + k2(ω)E(kx, ky, z, ω) = − ω2

ε0c2 Pnl(kx, ky, z, ω) ,

(3.2.2)

where k2 = ω2/c2n2(ω) as before and k2
⊥ = k2

x + k2
y. Similar to eq. (3.1.5), we can define
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the forward wave vector (i.e., the propagation constant) as

β = kz =
√

k2 − k2
⊥ , (3.2.3)

and thus the wave equation becomes(
∂2

z + β2) E(kx, ky, z, ω) = − ω2

ε0c2 Pnl(kx, ky, z, ω) . (3.2.4)

To isolate the forward-propagating part of the solution, we re-write the factor ∂2
z + β2

as (∂z + iβ)(∂z − iβ). If we then assume that the solution E(ω) can be written as the

superposition of forward- and backward-propagating parts [94]:

E(ω) = A+eiβz + A−e−iβz , (3.2.5)

and further that the backward wave is much weaker than the forward one, that is,

|A+| � |A−|, then we can approximate the z-derivative using only the forward part.

Therefore, the second-order derivative with respect to z disappears:

∂2
z + β2 ≈ 2iβ(∂z − iβ) = 2iβ∂z + 2β2 , (3.2.6)

which leads to the forward Maxwell equation (FME):

∂zE(kx, ky, z, ω) = iβE(kx, ky, z, ω) +
iω2

2ε0c2β
Pnl(kx, ky, z, ω) . (3.2.7)

While this way of rejecting the backward wave is intuitive, it is not mathematically

rigorous. A more complete derivation can be found in the literature [93]. It should be

noted that since the second-order derivative is neglected, this procedure is equivalent

to the slowly evolving wave approximation. The connection lies in the fact that a

backwards-travelling component would lead to fast-varying oscillations in the field due

to forward-backward interference. A slowly evolving wave therefore necessarily travels

predominantly in one direction. We can now transform to a frame of reference that

moves with the group velocity of the pulse, vg = β−1
1 :

t→ t− β1z (3.2.8)

E(ω)→ E(ω)eiβ1zω (3.2.9)

∂zE(ω)→ ∂zE(ω)eiβ1zω + iβ1ωE(ω)eiβ1zω , (3.2.10)
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where eq. (3.2.9) is simply a consequence of the shifting property of the Fourier

transform. With this transformation, the FME becomes

∂zE(kx, ky, z, ω) = i
(

β− ω

vg

)
E(kx, ky, z, ω) +

iω2

2ε0c2β
Pnl(kx, ky, z, ω) . (3.2.11)

For propagation in free space or a waveguide, each transverse spatial frequency (kx, ky)

has its corresponding propagation constant β as given by eq. (3.2.3). In a waveguide,

however, the values that k⊥ can take are restricted by their corresponding to discrete

modes. Therefore, eq. (3.2.11) effectively splits into a discrete set of equations coupled

by the nonlinear polarisation, with one equation for each mode and the corresponding

value of β given by eq. (3.1.5).

In any case, using the FME requires calculating the nonlinear polarisation in recipro-

cal transverse and frequency space, Pnl(kx, ky, z, ω). Both in free space and waveguides,

this is most easily achieved by calculating Pnl in real space and time and then Fourier

transforming in time as well as projecting onto the spatial basis functions. In the case

of free space propagation, the latter is equivalent to the transverse Fourier transform.

For a waveguide, it is instead the projection onto the modes of the waveguide, and the

dependence on k⊥ turns into a modal index:

P(m)
nl (z, ω) =

∫ a

0

∫ 2π

0
Pnl(r, θ, z, ω)ê∗m(r, θ) rdr dθ . (3.2.12)

Here, we have switched to cylindrical coordinates again as the natural basis for a

hollow-core waveguide, and êm(r, θ) is the transverse field profile of the mth mode as in

eq. (3.1.1), normalised to form an orthonormal set with the other modes:∫ a

0

∫ 2π

0
ê∗m(r, θ)ên(r, θ) rdr dθ = δmn , (3.2.13)

where δmn is the Kronecker delta. The nonlinear interaction as encapsulated in Pnl

is the only part of the system of equations that couples the modes of the waveguide;

that is, without the nonlinearity, there is no transfer of energy from one mode of the

waveguide to another. At moderate intensities, the nonlinear contribution to the overall

polarisation of the medium is small. In that case, very little energy is transferred to

higher-order modes (assuming only the fundamental mode is present at the entrance
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of the waveguide), and their contribution to the nonlinear polarisation can be safely

ignored, leading to substantial computational speed-up.

For the Kerr effect, the nonlinear polarisation Pnl takes a particular functional form

in that it only involves the third power of the electric field (see section 2.2.1). Therefore,

the spatial projection in eq. (3.2.12) results in a constant factor multiplying the nonlinear

polarisation. This factor can be eliminated by re-scaling the electric field E, leaving us

with the single-mode FME:

∂zE(z, ω) = i
(

β(ω)− ω

vg

)
E(z, ω) +

iω2

2ε0c2β(ω)
Pnl(z, ω) , (3.2.14)

where β(ω) is the propagation constant of only the fundamental mode (and thus

depends only on frequency), and Pnl(z, t) can be calculated as a function of only time

(and not space) and Fourier transformed to yield Pnl(z, ω). Importantly, because the

field E has been re-scaled to incorporate the constant resulting from the projection to

the fundamental mode, the total power in the field is given by

W(t) =
ε0c
2

Aeff|E(t)|2 , (3.2.15)

where Aeff is the effective area, which is purely a function of the modal field distribution

[71]. For a detailed derivation of the single-mode equation and the necessary re-scaling

of the electric field leading to the definition of the effective area, see appendix A.

The nonlinear Schrödinger equation

While it accurately reflects the nonlinear dynamics in a hollow-core waveguide with

very few approximations, the FME offers very little intuition or analytical insight.

To gain these, it is necessary to add further assumptions and approximations. The

resulting equation, known as the nonlinear Schrödinger equation (NLSE), can be used

to explicitly derive many of the phenomena which were explored and utilised during

the work for this thesis. It should be noted that starting from the FME is not the most

common way of deriving the NLSE, nor is the derivation presented here completely

rigorous. However, it directly shows the connection between the more fundamental
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propagation equation and the analytical model. More complete treatments can be

found in the literature [71, 93, 94].

The first approximation on the way to the NLSE is to only consider the Kerr effect

and ignore any harmonic generation processes. As a consequence, we can express

Pnl(ω) relatively simply, and the FME (in the laboratory frame) reads:

∂zE(ω) = iβ(ω)E(ω) +
iω2

2ε0c2β(ω)

3
4

ε0χ(3)Ft

[
|E(t)|2E(t)

]
(ω) . (3.2.16)

Instead of the field E(t), we consider the complex power envelope A(t) by transforming

to a frame rotating at the central frequency ω0 and integrating over the transverse plane.

Due to the rescaling of the field when deriving the single-mode FME, this integral

involves the effective area (see appendix A). The field after the frame transformation

and transverse integration is thus given by

A(t) =
√

ε0c
2

Aeff eiω0t E(t) , (3.2.17)

where ω0 is the central frequency of the field. |A(t)|2 is thus the time-dependent power

of the pulse. In the frequency domain, this leads to

E(ω) =
( cε0

2
Aeff

)− 1
2
A(ω−ω0) . (3.2.18)

The FME thus becomes

∂z A(ω−ω0) = iβ(ω)A(ω−ω0)

+
( cε0

2
Aeff

)−1 iε0ω2n2n2

2cβ(ω)
Ft

[
|A(t)|2A(t)

]
(ω−ω0) ,

(3.2.19)

where we have introduced the nonlinear refractive index n2 = 3/4
(
ε0cn2)−1

χ(3), and

the Fourier transform in the last term is now evaluated at ω−ω0 due to the shifting

property.

The next approximation is to Taylor expand the propagation constant β to second

order around ω0 as detailed in section 2.1.3:

β(ω) ≈ β0 + β1 (ω−ω0) +
1
2

β2 (ω−ω0)
2 . (3.2.20)
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In the nonlinear term, we can instead approximate β(ω) to be the wave vector in

the core, β(ω) ≈ nω/c. By using the baseband frequency ω̃ = ω − ω0, we can then

re-write the propagation equation as

∂z A(ω̃) = iβ0A(ω̃) + iβ1ω̃A(ω̃) + i
β2

2
ω̃2A(ω̃)

+ i
n2

Aeff

n
c
(ω̃ + ω0)Ft

[
|A(t)|2A(t)

]
(ω̃) ,

(3.2.21)

where we have used the fact that many of the constants cancel. After the rotating frame

in time, we also transform to a rotating frame along the propagation direction:

A(ω̃)→ A(ω̃)eiβ0z (3.2.22)

∂z A(ω̃)→ [iβ0A(ω̃) + ∂z A(ω̃)] eiβ0z , (3.2.23)

which removes the term proportional to β0. Furthermore, we use the retarded time as

in eqs. (3.2.8) to (3.2.10) to remove the term proportional to β1:

t→ t− β1z (3.2.24)

A(ω̃)→ A(ω̃)eiβ1zω̃ (3.2.25)

∂z A(ω̃)→ [iβ1ω̃A(ω̃) + ∂z A(ω̃)] eiβ1zω̃ . (3.2.26)

This leaves us with an equation involving only GVD and the nonlinear term:

∂z A(ω̃) = i
β2

2
ω̃2A(ω̃) + i

n2

Aeff

n
c
(ω̃ + ω0)Ft

[
|A(t)|2A(t)

]
(ω̃) . (3.2.27)

Any terms proportional to ω̃ will have the same effect as the group velocity represented

by β1, since β1 is the linear term in the Taylor expansion of β(ω). The term ω̃|A|2 is

therefore the nonlinear shift to the group velocity, leading to self-steepening, whereas

the term ω0|A|2 is the shift to the phase, leading to self-phase modulation.

Fourier transforming to the time domain, the terms involving ω̃ and ω̃2 turn into

first- and second-order derivatives with respect to time4. Furthermore, for sufficiently

narrow-band pulses, so that ω̃ � ω0, we can ignore the frequency dependence of the

4With the Fourier transform as defined in eq. (2.1.14), Ft[∂t f (t)](ω) = −iωFt[ f (t)](ω).
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refractive index for the nonlinear term, leading to

∂z A(t) = −i
β2

2
∂2

t A(t) + i
n2

Aeff

n0

c
(ω0 + i∂t)|A(t)|2A(t) (3.2.28)

= −i
β2

2
∂2

t A(t) + iγ
(

1 +
i

ω0
∂t

)
|A(t)|2A(t) , (3.2.29)

where n0 is the refractive index at the central frequency, and in the second line we have

introduced the nonlinear coefficient γ = A−1
eff k0n2 with k0 = ω0n0/c. For long pulses,

we can ignore self-steepening, which in the time domain is represented by the term

involving the first derivative. This approximation breaks down when the pulse becomes

short, even if the peak power is the same. With this final approximation, we arrive at

the NLSE:

i
∂A
∂z
− β2

2
∂2A
∂t2 + γ|A|2A = 0 . (3.2.30)

Note that without the nonlinear term, this equation is indeed formally identical to the

free-particle Schrödinger equation as used in quantum mechanics, albeit with position

and time swapped.

By approximating the dispersion relation β(ω) and considering only a subset of

possible nonlinear processes, we have found a propagation equation which can be

expressed succinctly in the time domain without the need for convolution integrals. This

makes the NLSE much more useful in qualitative or analytical analysis. In particular,

the NLSE has analytical solutions representing solitons, which describe the process

underlying the DUV pulse generation described in this thesis (see section 3.3).
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3.3. Soliton self-compression

An intense laser pulse propagating in a gas-filled capillary or fibre will be reshaped

by several effects. In most circumstances, the dominant ones are dispersion and the

Kerr effect. While THG will occur as well, it is usually not phase-matched and its

overall influence is small. As mentioned in section 2.2.2, the spectral broadening caused

by SPM due to the Kerr effect can be used to temporally compress pulses, as long as

the positive chirp introduced during the broadening can be compensated [95]. This

technique is widely used, including in the work for this thesis (see section 4.3.1). In

many cases, the dispersion of the waveguide is ignored. This is because SPM pulse

compression is most often carried out using capillary waveguides, which necessitates

a large (> 200 µm) core diameter to reduce propagation losses, leading to very weak

dispersion.

In a smaller waveguide obeying the capillary model, such as anti-resonant fibre, the

dispersion is strongly anomalous. This means that as the pulse spectrum broadens, the

positive chirp due to SPM is counteracted by the dispersion of the waveguide. Since a

broader spectrum can support a shorter pulse, and the waveguide dispersion moves

the pulse closer to the FTL, the pulse self-compresses as it propagates. Furthermore, a

shorter pulse has a higher peak power, so that the strength of the nonlinear interaction

increases, leading to even faster spectral expansion. The relative strengths of the disper-

sive and nonlinear influences on the pulse determine the end result; if the anomalous

dispersion is much stronger than the positive chirp induced by the nonlinearity, it will

dominate and the pulse will stretch, whereas the opposite case will lead to spectral

expansion without self-compression5. It is in the intermediate region, with the non-

linearity and linear dispersion of similar magnitude, where self-compression and the

phenomena related to it can occur.

The above description of self-compression may appear to contain a contradiction:

the influence of the nonlinear interaction increases as the pulse compresses due to the

rising peak power, but the anomalous dispersion is a constant of the waveguide (as

5The latter is the parameter region in which traditional hollow fibre pulse compression operates.

78



3. Ultrashort Pulses in Waveguides 3.3. Soliton self-compression

long as the gas pressure is constant), so it stands to reason that eventually, the SPM

chirp will outstrip the linear dispersion and the SPM-dominant of the two limiting

scenarios is reached. However, the quantities that need to be compared are the relative

phase shifts per unit length in the same domain, i.e., either in time or frequency. For

a Gaussian pulse with a half width of τ, the nonlinear temporal phase shift after a

distance L due to SPM is given by (see eqs. (2.2.14) to (2.2.18))

φnl(t, L) = Lβ0n2 I(t) ≈ Lβ0 I0n2

(
1− t2

τ2

)
, (3.3.1)

so its magnitude becomes larger as the pulse duration τ decreases and the peak intensity

I0 increases correspondingly. The temporal phase shift caused by dispersion, on the

other hand, is

φgvd(t, L) =
Lβ2t2

τ4 + (Lβ2)2 , (3.3.2)

which also increases for shorter pulses (for a derivation of eq. (3.3.2) see appendix A).

This is because for a shorter pulse, the extreme edges of the frequency spectrum of the

pulse are further apart, so that for a constant β2 the GVD-induced delay between them

is larger. Thus, the dispersion can continue to compete with the nonlinear chirp even

after some self-compression has taken place.

Given the positive feedback mechanism of self-compression, the naı̈ve assumption

would be that it leads to an infinitely short pulse. While this is physically infeasible

for many reasons – higher-order dispersion and the fibre guiding bandwidth, among

others – it does not appear even in a simplified model such as the NLSE, which ignores

those constraints. To better understand the evolution of a pulse as it self-compresses, it

is useful to analyse the situation using the NLSE, which reduces the situation to only

the influences of SPM and GVD.

What is needed initially is a more quantitative way of comparing the influence of

dispersion and SPM. To this end, we can re-scale the time coordinate in the NLSE by the

initial pulse duration T0 and use the normalised time t̃ = t/T0 , as well as normalising

the pulse by its initial peak power P0 through A(z, t) =
√

P0 U(z, t), yielding

i
∂U
∂z
− β2

2T2
0

∂2U
∂t̃2 + P0γ|U|2U . (3.3.3)
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From this, we can identify two different characteristic length scales which depend on

the pulse parameters P0 and T0, the dispersion length Ld and the nonlinear length Lnl,

given by

Ld =
T2

0
|β2|

, Lnl =
1

γP0
. (3.3.4)

The NLSE for anomalous dispersion (β2 < 0) then reads

i
∂U
∂z

+
1

2Ld

∂2U
∂t̃2 +

1
Lnl

|U|2U . (3.3.5)

The physical meaning of Ld and Lnl is that the shorter the respective length, the faster

the corresponding effect influences the pulse as it propagates along the fibre. Note that

for a constant pulse energy, P0 and T0 are not independent; for simple pulse shapes they

are in fact inversely proportional to each other. The two limiting cases of dominating

SPM or GVD can be identified by one of the characteristic lengths being much larger

than the other.

As mentioned before, the NLSE can be solved analytically. This is done using the

inverse scattering transform [96, 97]. In the solution, a critical parameter is the ratio of

the nonlinear and dispersion lengths,

Ld

Lnl

=
γP0T2

0
|β2|

= N2 , (3.3.6)

since its square root N determines the number of bound solutions, that is, those that

remain the same for all points along z. More precisely, it is the integer content of N, so

that always bNe bound solutions exist, where b...e denotes the nearest-integer function.

It is these solutions that represent solitons. If Lnl > 4Ld, no solitons exist, because

dispersion stretches the pulse before significant SPM can occur [98]. A fundamental

soliton is formed when the dispersion and nonlinear lengths are near-equal or equal so

that bNe = 1, and there is only one bound solution to the normalised equation. The

pulse then takes a particularly simple form:

A(1)
s (z, t) =

√
P0 sech

(
t

T0

)
ei 1

2 γP0z =
√

P0 sech
(

t
T0

)
eiβsz . (3.3.7)

Since P0 and T0, while not independent, can vary jointly, there is a continuum of

possible fundamental solitons with different peak powers and pulse widths. However,

80



3. Ultrashort Pulses in Waveguides 3.3. Soliton self-compression

−2 0 2

Time t̃

0.0

0.5

1.0

1.5

2.0
D

is
ta

nc
e

z/
z 0

N=1

−2 0 2

Time t̃

N=2

−2 0 2

Time t̃

N=3

Figure 3.5.: Evolution of the fundamental (N = 1) and first two higher-order (N = 2, 3)

solitons in normalised time t̃ and propagation direction z/z0 for two soliton

periods z0, with the false-colour scale showing the intensity of the pulse.

Note that since different soliton orders N correspond do different pulse

widths T0, the corresponding real time axis changes between plots, as does

the soliton period z0.

none of them can describe the process of self-compression, since they are stationary;

the intensity envelope of the pulse does not change as it propagates. Instead, self-

compression is related to higher-order solitons. The initial field of this class of pulses is

given by

A(N)
s (0, t) = N

√
P0 sech

(
t

T0

)
(3.3.8)

when N is an integer. The subsequent evolution is significantly more complex than

for the fundamental soliton. Instead of retaining a constant shape and accumulating

a simple phase per unit length, the pulse profile undergoes periodic reshaping (see

fig. 3.5). The period of the evolution is determined by the dispersion length as

z0 =
π

2
Ld . (3.3.9)

Since the behaviour of a higher-order soliton when compared with the fundamental

one is determined by N, it is often referred to as the soliton order or soliton number.

Importantly, the initial evolution of a higher-order soliton consists of self-compression,
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with a higher soliton number corresponding to more rapid contraction and a shorter

minimum pulse duration. The behaviour of these pulses shows clearly that even in the

presence of only SPM and GVD, self-compression does not lead to an infinitely short

pulse. However, two important issues have to be addressed: Firstly, so far we have only

considered the situation of integer N. In practice, most pulses launched into a fibre will

have a non-integer value for N as calculated by eq. (3.3.6). Secondly, pure higher-order

solitons are created only when the pulse at the beginning of the fibre has a sech(t)

shape as shown in eq. (3.3.8). Laser pulses are often approximated as Gaussian pulses

instead, and real pulses are rarely very close to even that idealisation, often containing

pre- or post-pulses as well as long pedestals.

The answers to the two questions above are related in that they both involve the

evolution of pulses which do not fulfil the conditions for a pure soliton to be formed.

This situation can be analysed using the direct scattering transform, whose inverse is

the inverse scattering transform. For the simpler case of a pulse with an initial sech(t)

profile in time but non-integer N, the result is that the field splits into two components:

a soliton of order bNe and a weak non-solitonic pulse often referred to as the linear,

or dispersive, component, since its intensity is insufficient to cause significant SPM,

so it is stretched by GVD and walks off due to its differing group velocity [98]. As a

consequence, the pulse appears to radiate away some energy and assume the pulse

width and power corresponding to the closest soliton, streching or compressing in time

until its soliton number is an integer.

When the pulse is of a different shape, something very similar occurs, except that in

addition to width and power changes and the appearance of weak dispersive radiation,

the shape of the pulse also changes and asymptotically approaches that of the nearest

soliton [98]. To determine which soliton that is, the soliton number has to be calculated.

Since eq. (3.3.6) involves the parameters T0 and P0 as related to the sech(t) pulse shape,

an analogous definition has to be found for other pulse shapes. In practice, and for

reasonably simple input pulse shapes, it is often sufficient to simply find the intensity

FWHM duration of the initial pulse and use this as the FWHM duration T(fwhm)
0 for
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the “equivalent” sech2(t) intensity profile, which is related to T0 by

T(fwhm)
0 = 2T0 cosh−1

(√
2
)
≈ 1.763 T0 . (3.3.10)

Using this together with the peak power P0 yields an estimate for N [71].

The underlying reason for this asymptotic behaviour as well as the periodic evolu-

tion of higher-order solitons can be found in the direct scattering transform analysis.

Through this lens, any input pulse propagated with the NLSE can be decomposed into

bNe fundamental solitons (since bNe determines the number of bound solutions to the

NLSE) as well as a radiative part. Any pulse with N > 1, integer or not, consists of

several fundamental solitons, whose phase velocities are different. For non-integer N

or shapes different from a sech pulse, the amplitude of the radiative part is non-zero.

The simplest example of this superposition principle is the pure first higher-order

soliton, for which N = 2. Its initial pulse profile, A(2)
s (0, t) is simply the sum of two

fundamental solitons:

A(2)
s (0, t) = 2

√
P0 sech

(
t

T0

)
= 2A(1)

s (0, t) . (3.3.11)

Due to the nonlinear nature of the propagation, this superposition then causes the

pulse evolution shown in fig. 3.5. The periodic structure is thus the result of a nonlinear

interference effect. For this reason, the direct scattering transform is sometimes referred

to as the nonlinear Fourier transform [98].
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3.4. Dispersive wave emission

The NLSE forms an analytical model in which solitons emerge as the fundamental

building blocks for the nonlinear evolution of the laser pulse in a fibre. However, this

model neglects a number of effects that will occur in a real fibre, chief among which is

higher-order dispersion. Others are the fibre loss, self-steepening, and THG, as well as

plasma effects and the potential presence of any higher-order modes and the coupling

between them. Adding any combination of these to the model results in a group of

propagation equations, all of which are usually referred to as the generalised nonlinear

Schrödinger equation (GNLSE). The GNLSE can not be solved analytically, and the

exact solutions representing solitons are no longer valid, but many qualitative features

that result from soliton propagation remain.

For the process of DUV emission by self-compressing pulses, the critical addition

is third-order dispersion, because it enables phase-matching between the soliton and

other parts of the spectrum [99]. The GNLSE including TOD can be found by simply

adding the third-order term to the expansion of the wave vector in eq. (3.2.20) and

proceeding in the same way, which yields

i
∂A
∂z
− β2

2
∂2A
∂t2 + i

β3

6
∂3A
∂t3 + γ|A|2A = 0 . (3.4.1)

For very weak pulses, the nonlinear term can be neglected. This describes linear waves,

such as the radiative part of the field found for non-solitonic initial pulses in the NLSE.

Their propagation is simply governed by the linear wave vector; this can be shown by

inserting a plane wave as a trial solution into the GNLSE without the nonlinear term:

Al = ei(βlz−ω̃t) , (3.4.2)

which yields the linear wave vector βl,

βl(ω̃) =
β2

2
ω̃2 +

β3

6
ω̃3 , (3.4.3)

as is expected from the derivation of the NLSE and GNLSE. In fig. 3.6, the wave vector

β in a capillary or anti-resonant fibre for a particular combination of parameters is
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Figure 3.6.: The wave vector in the retarded frame βret for the fundamental mode in

a 33 µm core diameter fibre filled with argon gas to a pressure of 4 bar,

calculated using the capillary model eq. (3.1.5). The red and yellow lines

show approximations to βret using 2nd and 3rd-order Taylor expansions

around 790 nm, respectively. The black dashed line shows the soliton

wave vector βs for a 15 fs pulse of 2 µJ energy centred at 790 nm, which

corresponds to N = 10.5.

shown, transformed to the retarded frame used in the NLSE by

βret(ω) = β(ω)− (ω−ω0)β1 − β0 , (3.4.4)

where ω0 is the central frequency of the initial pulse. Also shown are the second and

third-order Taylor approximations around ω0, the latter being equivalent to the linear

wave vector βl in the GNLSE as given by eq. (3.4.3).

Because the soliton wave vector βs as calculated from the nonlinear coefficient and

the peak power according to eq. (3.3.7) is always positive (n2 > 0 and thus γ > 0)

and β2 negative, there is no frequency at which βs = β(ω) if only GVD is considered.

Phase-matching could occur for normal dispersion, however in that case there can be

no soliton dynamics. In contrast, when TOD is included, its influence dominates for

frequencies far away from the expansion frequency ω0, and the linear and nonlinear
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wave vectors intersect. The phase-matching condition

βs = βl(ω̃)

⇐⇒ 1
2

γ P0 =
β2

2
ω̃2 +

β3

6
ω̃3 (3.4.5)

therefore has a solution [99,100]. The soliton can transfer energy efficiently to the phase-

matched frequency, since the two fields remain in phase and coherent build-up can take

place. This is the fundamental process underlying the DUV generation implemented in

the work for this thesis. Because the phase-matching occurs between the soliton and a

dispersive pulse, that is, the nonlinear phase shift of the phase-matched pulse is not

considered, the process is called dispersive wave emission (DWE).

Tunability of the dispersive wave

For low soliton numbers, the nonlinear phase shift βs is small, so that it is sometimes

neglected, leading to a very simple phase-matching condition:

ω̃d = −3β2

β3
. (3.4.6)

For a more accurate estimate, the root of the polynomial equation eq. (3.4.5) can be

approximated using Newton’s method, which results in [99]

ω̃d = −3β2

β3
+

γP0β3

3β2
2

. (3.4.7)

It should be pointed out that by the definition of ω̃, this is the frequency shift relative

to the soliton at which the dispersive wave phase-matches. Furthermore, since β2 must

be negative for this process to occur and β3 is positive for the majority of materials

including gases, ω̃d is positive. The dispersive wave is therefore emitted at a higher

frequency than the soliton, which is why it can be used to generate pulses in the DUV.

This condition is based on the assumption that the soliton wave vector can be

calculated using eq. (3.3.7) even for higher-order solitons. That is an approximation,

since the phase evolution for solitons with N > 1 is significantly more complex than

this, and a simple propagation constant cannot be defined. Most importantly, the peak
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power and thus the nonlinear contribution to the wave vector increases as the pulse

self-compresses. Nevertheless, this form of the phase-matching equation reflects many

qualitative features of dispersive wave emission, such as the blue-shift observed with

higher pump powers. By numerically solving eq. (3.4.5), the phase-matched frequency

can be determined even more accurately. However, a consistent blue-shift remains when

simulations or experiments are compared to the analytical phase-matching calculation

due to the highly nonlinear phase evolution of the higher-order soliton [101].

Estimates of the dispersive wave frequency in a real fibre exhibiting all orders of

dispersion can be improved further by matching not the Taylor-expanded wave vector

βl(ω̃), but instead the full wave vector β(ω̃), to βs; that is, by solving the phase-

matching equation β(ω̃) = βs. The resulting difference can be seen from fig. 3.6, where

the intersection points with βs of the approximate and full linear wave vectors are

different by almost 150 nm. Similar to the more simplified case, however, a blue-shift

remains which can only be fully addressed by numerical modelling or experiment [101].

The phase-matching for the dispersive wave involves both the nonlinear phase of

the soliton and the linear dispersion, and the dispersive wave frequency can conse-

quently be tuned by changing either of these. However, almost all of the available

experimental parameters influence both the linear and nonlinear contributions. For

instance, increasing the core diameter of the fibre reduces the nonlinear coefficient γ as

well as the anomalous contribution on the waveguide dispersion, while a higher gas

pressure leads to more normal dispersion and a larger γ. The total input pulse energy

is one of very few parameters that influence only one quantity in the phase-matching

equation, namely the peak power P0. However, it also has a strong effect on the length

scale over which the self-compression process occurs, and this can adversely affect the

pulse duration of the dispersive wave by adding dispersion (see section 4.2.2).

In practice, the easiest way of tuning the dispersive wave frequency is therefore the

gas pressure, despite its influence on several parameters. The effect of changing gas

pressure is shown in figs. 3.7a and 3.7b for a particular combination of parameters. A
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Figure 3.7.: Tunability of the dispersive wave. (a) The wave vector in the retarded

frame βret for the fundamental mode in a capillary with core diameter

33 µm filled with argon to 8 different pressures from 0 bar to 6 bar. (b) The

wavelength at which DWE occurs as predicted by eq. (3.4.5) in the same

fibre as a function of argon pressure for an input pulse at 790 nm with 4

different energies from 1 µJ to 10 µJ, assuming a FWHM pulse duration of

15 fs and including the influence of gas pressure on both the dispersion and

nonlinear coefficient γ.

higher pressure leads to phase-matching at longer wavelengths for the dispersive wave,

whereas higher pulse energies lead to shorter wavelengths. Importantly, with different

combinations of gas pressure and input pulse energy, the entire range from 175 nm to

300 nm can be reached.

Soliton fission

Higher-order dispersion also changes the evolution of the soliton itself. As long as

the pulse is relatively long, its bandwidth is small and the influence of TOD is small

enough for soliton dynamics to appear, despite the fact that the GNLSE does not admit
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exact soliton solutions. When the pulse approaches the point of maximum compression,

however, its bandwidth expands sufficiently for TOD to disturb it significantly. As

a result, the periodic behaviour that would appear in the case of a pure soliton is

interrupted. Instead of compressing, then simply stretching in time and contracting in

frequency, the pulse splits in a process known as soliton fission [102]. The pulses that

appear behave much like fundamental solitons in that they neither stretch nor expand

as they propagate, and the number of pulses created is equal to the order of the soliton

they originate from. They can be interpreted as the fundamental solitons which formed

the original pulse [98].

Soliton fission plays an important role in the dynamics of DWE as well, since it

terminates the process. Soliton fission occurs at the point of maximum temporal

compression, and correspondingly maximum bandwidth. Therefore, the pulse breaks

up as the dispersive wave is generated, and the distance over which it is emitted is

shorter than in the absence of soliton fission. Furthermore, the relative importance

of TOD and GVD depends on the bandwidth of the pulse, so that a soliton whose

shortest duration is smaller will break up sooner; it reaches the point at which TOD

becomes important further before its maximum compression. The shortest duration

scales inversely with the soliton order, as does the propagation distance after which the

first compression point is reached. This is because for N > 1 the nonlinear length is

N times shorter than the dispersion length, so the effect of SPM is stronger than that

of GVD, leading to more and faster spectral expansion and a larger bandwidth at the

point of maximum compression. The distance after which soliton fission occurs can be

estimated by

Lf =
Ld

N
=
√

LdLnl =

√
T2

0
γ|β2|P0

, (3.4.8)

and is known as the soliton fission length [103].

That the fission length should scale inversely with the soliton order can be understood

by considering the evolution of higher-order solitons as shown in fig. 3.5. Although the

soliton period z0 only depends on the dispersion length, and thus does not necessarily

change with the soliton order, the structure within a soliton period evolves faster for
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higher soliton orders. Since soliton fission occurs at the point of maximum pulse

compression, and the length after which this happens becomes shorter as N rises, a

soliton breaks up faster the higher its order.

An important feature of the dispersion length is that of all the fibre and pulse

parameters, it scales most strongly with the pulse duration. A shorter pulse therefore

requires a shorter waveguide. This is especially important when a short pulse is to be

generated in the dispersive wave; if the point of soliton fission is very early, the DWE

pulse is stretched by propagation in the remaining fibre.
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Pulses

Using the range of nonlinear optical effects introduced in section 2.2, many frequency

conversion schemes are possible and have been developed. While very short DUV

pulses have been generated with low efficiency [104], the combined goal of tunable

and efficient frequency conversion to short pulses in this wavelength range is very

challenging. In particular, spectral tunability of very short DUV pulses remained out of

reach until recently.

The simplest frequency conversion process, harmonic generation, limits the achiev-

able frequencies to multiples of the driving frequency. More flexibility and shorter

ultimate wavelengths can be achieved by using FWM techniques [105, 106] as well as

SFG [107, 108], but still the input and output frequencies have to be commensurate.

Tunability in the converted frequency is thus only possible by changing the driving

frequency or frequencies, which requires a tunable laser.

One exception to this rule is formed by tunable OPAs like the one used for infrared

pulse generation in our laboratory. Although the direct amplification process can only

result in wavelengths longer than the initial driver, with the achievable range limited

by phase-matching, frequency up-conversion within or after the parametric amplifier

can yield tunable sources in many spectral regions [109]. Especially for the generation

of DUV pulses, however, this approach is extremely inefficient due to the number of

nonlinear conversion steps involved.

Additionally, very short DUV pulses can only be created by these processes if a

nearly equally short pulse is used to drive them. The bandwidth of the initial pulse

and the finite phase-matching bandwidth of any process furthermore limit the pulse
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duration that can be obtained without reducing the conversion efficiency to very low

values.

Dispersive wave emission overcomes several of these issues. Most importantly, a DUV

pulse generated in this way can be several times shorter than the driving pulse [10, 11].

In combination with reasonable conversion efficiencies ranging from 1 % to 10 % and

the inherent tunability [10, 87], this makes DWE a uniquely capable source. Several

practical issues have to be overcome, however, with the most important one being the

delivery of these short pulses to an experiment without stretching them.
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4.1. Dispersive waves as a DUV source

For dispersive wave emission to be useful as a source in time-resolved experiments,

it needs to be able to generate pulses that are both short in duration and sufficiently

energetic. Similar to harmonic generation and other more commonly used effects, there

are two components of the frequency conversion that determine the achievable pulse

duration and energy; these are the phase-matching bandwidth and the mechanism

by which energy is transferred from the driving pulse to the new wavelength. Both

of these components work somewhat differently in dispersive wave emission than in

other phenomena, however.

The dispersive wave is not generated by a direct nonlinear frequency conversion

process in the same way as, for instance, harmonic generation or sum-frequency fields.

This means that the nonlinear response does not immediately create a component at

the dispersive wave frequency, with phase-matching determining whether efficient

conversion can take place. Instead, phase-matching allows coherent build-up of the

part of the pulse spectrum that extends to the dispersive wave frequency.

This mechanism is most clearly understood by considering the spectrum as a series

of discrete frequency components; the SPM experienced by the pulse is then equivalent

to cascading FWM interactions between all of these components, with new frequency

components either side of the original set of frequencies allowing the generation of

ever further-removed sidebands and thus broadening the spectrum into a wide comb

as the field propagates [110]. Once the comb extends to the dispersive wave frequency,

phase-matching leads to the coherent build-up of any components generated there.

Crucially, even though the dispersive-wave component is the result of a cascade of

FWM interactions, the phase-matching condition for this process is identical to that of

the (non-existent) direct process [111].

This mechanism of transferring energy from the pump to the dispersive waves has

important implications for the efficient generation of DUV pulses. In particular, the

amount of energy transferred to the dispersive wave is set by how much of the original

pulse energy is shifted to that frequency by SPM. Strongly asymmetric broadening is
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therefore advantageous. This is in contrast to, for example, harmonic generation, where

it is only the strength of the nonlinearity in combination with the interaction length

that sets the efficiency at the phase-matched frequency.

Asymmetry in SPM-induced spectral expansion is caused by self-steepening (see

section 2.2.2), since it breaks the time symmetry. Self-steepening, in turn, is more

pronounced for shorter input pulses since their bandwidth is larger (see section 3.2). The

conversion efficiency is thus higher when using a shorter input pulse [7]. Decreasing the

initial pulse duration has additional benefits. Since the soliton fission length decreases

proportional to T0, a shorter fibre can be used, which reduces propagation losses before

the point of DUV, further increasing the overall efficiency. Furthermore, the soliton

number N decreases for a shorter pulse, even if the total pulse energy is maintained.

Previous numerical work has shown that this significantly improves the quality of the

pulse created in DWE, resulting in less structure in the output spectra and higher pulse

contrast in the time domain [7].

Similarly to the conversion efficiency, the duration of the pulse generated in the

dispersive wave is influenced by a different combination of factors when compared

to other frequency conversion mechanisms. As shown in section 2.2.4, a common

assumption in harmonic generation or frequency mixing schemes is that the driving

field remains largely the same throughout the process. This is partly motivated

simply by the usefulness of the resulting analytical phase-matching equation [13]. The

interaction medium is also usually treated as unchanging, with the dispersion setting

the phase-matching bandwidth and the effective nonlinearity and interaction length

determining the energy conversion.

For the use of DWE to generate DUV pulses for time-resolved experiments, these

assumptions are not appropriate. Most importantly, the driving pulse is reshaped

during the nonlinear interaction, and the emission of a DUV pulse is contingent on this

reshaping being very strong. While the driving pulse characteristics at the beginning

of the fibre, in combination with the fibre parameters, can give reasonable estimates

of the DUV wavelength, nothing in the analysis presented so far can be used to make
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statements about the phase-matching bandwidth.

The reasoning that led to the phase-matching efficiency function in eq. (2.2.29) can

be applied to the dispersive wave, and the approximations involved – that only small

amounts of energy are converted and that the two fields are collinear – are sound. It

should therefore be possible to calculate the phase-matching bandwidth. However,

both of the two key ingredients present a challenge.

The wave vector mismatch ∆k can be obtained from the soliton characteristics and

the linear dispersion, but the large discrepancy between the resulting prediction of

the phase-matching wavelength and numerical or experimental data implies that it is

not an accurate reflection of the actual conditions at the point of DUV emission. The

interaction length, on the other hand, is essentially impossible to define. With soliton

fission, higher-order dispersion and potentially ionisation all gaining in importance

just as the driving pulse bandwidth increases sufficiently to allow for DWE, there is no

straightforward way to determine how long the soliton exists before it breaks up and

energy transfer ceases.

If the gas pressure in the fibre is not constant along its length, this furthermore

invalidates the assumption that the medium does not change during the frequency

conversion process. The dynamics surrounding the point of dispersive wave emission

are therefore even more complicated, and analysing the system in terms of its initial

conditions becomes less accurate. In combination, these issues mean that a more

accurate numerical model is required.
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4.2. Numerical modelling

To better understand the dynamics underlying soliton formation and DWE in real

systems and explore the parameter space accessible in experiments, it is necessary to go

beyond the NLSE and GNLSE and simulate the situation with as few approximations

as possible. To do this, I have implemented a numerical solver for the single-mode

FME in a hollow waveguide, including the effects of the third-order nonlinearity as

well as photoionisation. The single-mode FME, explicitly including the loss, reads:

∂zE(z, ω) = i
(

β(ω) +
i
2

α(ω)− ω

vg

)
E(z, ω) +

iω2

2ε0c2β(ω)
Pnl(z, ω) . (4.2.1)

While numerical calculations as well as measurements of the propagation loss exist for

some fibres [7,86], the loss in an anti-resonant fibre is low, so that it can be approximated

as a constant without affecting the propagation dynamics too much. Note that this

is decidedly not the case for hollow capillaries, where the loss has to be calculated

using eq. (3.1.8). The propagation constant β(ω) can be obtained from the capillary

model using eq. (3.1.5). The cladding resonances can be included using an empirical

model [112] if more precise agreement with experiment for a particular fibre is desired,

however for general modelling this is not necessary.

4.2.1. Implementation

A first-order ordinary differential equation (ODE) like the FME can be solved nu-

merically using many different methods [113, 114]. A very intuitive approach for a

propagation equation is to “march” the electric field of the laser pulse forward in space

in discrete steps, updating it at each step using the nonlinear and linear polarisation

terms. This is where the moving reference frame introduced in section 3.2 is very

useful.

The basic problem when numerically solving the FME is that the nonlinear polarisa-

tion is most easily evaluated in the time domain, while the linear propagation is more

easily carried out in the frequency domain. In the respective other domain, each of these

involve one or more convolution operations, which are much more computationally
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expensive than multiplication. The simple solution to this problem is to evaluate the

nonlinear polarisation Pnl(z, t) in the time domain and subsequently Fourier transform

it to obtain Pnl(z, ω).

The numerical solver for the FME uses a Runge-Kutta algorithm to march the solution

for the electric field forward along the fibre. All Runge-Kutta methods are based on

sub-dividing the discretisation step into smaller distances and evaluating the derivative

(in this case, the right-hand side of the FME) at each of these points, using the result

of a first-order Taylor approximation as the initial value for the function at the first

sub-step [114]. As in all such methods, the size of the steps is critical for the accuracy of

the model. While simply choosing a very small step size will ensure that the solution is

accurate, this can make the numerical propagation unnecessarily slow. To avoid this, I

use the Dormand-Prince method, which includes an estimate of the local truncation error

(the error resulting from using a discrete step) at very little additional computational

cost. The step size is then adjusted such that the error remains below a certain tolerance,

if necessary by repeating iterations after decreasing the step size [115].

When applied directly to the FME, the Dormand-Prince method makes no use of the

fact that the FME in the absence of nonlinear interactions,

∂zE(z, ω) = i
(

β(ω) +
i
2

α(ω)− ω

vg

)
E(z, ω) , (4.2.2)

has an analytical solution:

E(z2, ω) = E(z1, ω) ei[β(ω)+ i
2 α(ω)−v−1

g ω](z2−z1) , (4.2.3)

so if the field at any point in the fibre, E(z1, ω), is known, then the field at any

other point can be obtained in a single step. A common way of including this fact

in a numerical simulation is to use a split-step method, in which the linear and

nonlinear parts of the equation are treated separately [113]. However, this cannot

be done in conjunction with the Dormand-Prince method, since the splitting itself is

an approximation that places constraints on the step size; there is no way of telling

whether the adaptively chosen step size is sufficiently small for the split-step to remain

97



4.2. Numerical modelling 4. Generation of Bright Ultrashort DUV Pulses

accurate without testing different step sizes, negating the benefit of the embedded error

estimate.

The linear part of the equation can be taken into account by using it as a pre-conditioner

to the equation, which includes the linear propagation in the field itself [116]. This

means that the Dormand-Prince method is used to solve not the FME itself, but instead

the pre-conditioned equation:

∂zĒ(z, ω) =
iω2

2ε0c2β(z, ω)
P̄nl[Ē(z, ω)] . (4.2.4)

The pre-conditioned field Ē(z, ω) is given by

Ē(z, ω) = exp
{
−
∫ z

0
L(z′)dz′

}
E(z, ω) , (4.2.5)

where L(z) is the linear operator in the FME,

L(z) = i
(

β(z, ω) +
i
2

α(ω)− ω

vg(z)

)
, (4.2.6)

and we have retained any potential dependence on z caused by a pressure gradient

changing β(ω) and vg along the waveguide. P̄nl is given by

P̄nl[Ē(z, ω)] = exp
{
−
∫ z

0
L(z)dz′

}
Pnl

[
exp

{∫ z

0
L(z)dz′

}
Ē(z, ω)

]
. (4.2.7)

In this way, the linear propagation is included in the pre-conditioned field Ē(z, ω)

and the benefits of the embedded error estimation can be used together with the

analytical solution to one part of the equation. This method was originally developed

for numerical solutions of the time-dependent Schrödinger equation [116] and later

adapted for use in nonlinear optical pulse propagation [117]. For a derivation of the

pre-conditioned equation, see appendix A.

To investigate the dynamics of soliton self-compression and DWE in detail, it is

sometimes necessary to obtain values for the field E(t) at very closely spaced points

along z. This slows down the numerical solver if the distance between the desired

points is smaller than the step size determined from the local error estimation. To

retain the speed benefits of the adaptive step sizing, the step size should not be forced

to be smaller than necessary. This can be done by computing the dense samples using
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a Runge-Kutta triple, also known as an interpolant [118, 119]. In this method, a third

Runge-Kutta method is embedded in the Dormand-Prince algorithm, providing values

of the solution at points between the propagation steps without requiring further

evaluations of the (computationally expensive) nonlinear polarisation term.

Calculation of PNL

The self-compression dynamics that occur in anti-resonant fibres can lead to extremely

short pulses, and thus high intensities, leading to strong-field ionisation. A realistic

model therefore has to take into account the response of both bound and free electrons.

The nonlinear polarisation is calculated in the time domain and given by

Pnl(t) = P3(t) + Pe(t) (4.2.8)

where P3(t) is the third-order nonlinear response of the medium, and Pe(t) is the

polarisation due to free electrons created by photoionisation. The third-order response,

as introduced in section 2.2.1, is given by

P3(t) =
1
4

ε0χ(3)
[
3|E(t)|2 + E(t)2

]
E(t) . (4.2.9)

The crucial parameter here is the third-order susceptibility χ(3). It is calculated from

the gas density and the third-order hyperpolarisability of the gas, values for which are

available in the literature [120, 121].

The free-electron term, on the other hand, is not as easily obtained. The most

common model for the effect of plasma in ultrafast pulse propagation methods is a

semi-classical one, which treats the ionisation event through one of the approximate

ionisation rates introduced in section 2.2.5, and the subsequent motion of electrons with

classical mechanics; the polarisation is then obtained from the resulting current [122].

Given an ionisation rate w(E) (the solver uses the ADK rate), the free-electron density

ρe(t) can be calculated as

ρe(t) = ρ0

[
1− exp

{
−
∫ t

−∞
w
[
E(t′)

]
dt′
}]

, (4.2.10)
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with ρ0 the gas density, as long as only neutral and singly ionised atoms are considered.

In the semi-classical model, the free-electron polarisation is then given by

Pe(t) =
∫ t

−∞

Ip

E(t′)
dρe

dt′
dt′ +

e2

me

∫∫ t

−∞
ρe(t′)E(t′)dt′dt′ , (4.2.11)

where Ip is the ionisation potential of the gas, e is the elementary charge, and me is the

mass of the electron. The first term in eq. (4.2.11) represents the energy imparted on

the electrons by the field and thus leads to energy loss. The second term represents

the effect of the plasma on the phase of the field. Note that this second term is the

same as the simpler expression for the free-electron polarisation for a single plane wave

in eq. (2.2.35); when written in the frequency domain, the double integral over time

becomes division by a factor of −ω2. Additionally, in eq. (4.2.11) the electron density is

now explicitly time-dependent.

One important complication when including the effect of photoionisation is that

the single-mode FME treats the spatial profile of the nonlinear polarisation with the

assumption that only third-order effects are present. This assumption enables the

projection onto the fundamental mode to be carried out analytically. The significantly

more complex form of the free-electron term, on the other hand, does not allow this.

Therefore, the single-mode FME as presented here treats the free-electron polarisation

Pe(t) as if its time dependence is given by eq. (4.2.11), but its spatial dependence is

the same as that of the third-order polarisation P3. This is a significant additional

approximation, however it dramatically speeds up computation and is acceptable as

long as ionisation effects are not very strong [123].

Sampling for the nonlinear response

The output spectrum of a typical DWE process leading to DUV emission from an

anti-resonant fibre may extend from below 200 nm to above 2000 nm, so the sampling

frequency in the simulation must be sufficient to represent these frequencies accurately.

At the same time, the time window must be large enough to contain all components of

the field that are of interest; if the pulse stretches significantly or several components
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with different group velocities are created, this must be taken into account. The

minimum number of sampling points needed to satisfy these constraints as well as the

Nyquist-Shannon sampling theorem [59] is given by

N =
∆t∆ω

2π
, (4.2.12)

where ∆t and ∆ω are the required window widths in time and frequency, respectively.

Note that while real-valued signals need to be sampled at a rate of twice the highest

frequency of interest, for the analytic field E the frequency window width is equal to

the highest frequency of interest, ∆ω = ωmax, since the analytic signal only contains

positive frequencies. This does not lead to any increase in efficiency, however, since the

complex-valued field E takes up twice as much memory as the real field E .

The sampling criterion eq. (4.2.12) is insufficient for propagation involving a third-

order nonlinearity and ionisation. Because the free-electron polarisation must be

calculated using the real electric field E(t) [122], the analytic field must first be converted

to the real field by adding the complex conjugate. The conjugate contains negative

frequencies, so the frequency axis has to be extended to do this.

In addition, the nonlinear polarisation contains components outside of the frequency

window. This is easiest to see for the third-order polarisation, which contains frequency

components extending to three times the highest frequency in the window due to the

THG term. While the components outside of the window of interest are unimportant

by definition, they can only be removed by first extending the frequency axis to 3ωmax

(in both the positive and negative directions), calculating the polarisation P3, and then

discarding the added parts. For high intensities, the exponential scaling of the ionisation

rate with the field strength may add even higher frequencies. Discarding the high-

frequency components, rather than simply permanently extending the frequency axis

and attenuating them, has the advantage of reducing the computation time required for

the linear propagation, which has to be carried out at each sub-step of the Dormand-

Prince method for the pre-conditioned FME.
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Figure 4.1.: Evolution in the frequency (left) and time (right) domains of a pulse under-

going self-compression leading to the emission of a dispersive wave (DW).

In this example, a 15 fs pulse at 790 nm with 1.25 µJ energy is launched

into a 10 cm long fibre with a core diameter of 33 µm filled with argon to a

pressure of 5 bar. The colour scale is logarithmic in the frequency-domain

plot and linear in the time-domain plot.

4.2.2. General features of dispersive wave emission

A particular advantage of numerically modelling the DUV generation process is that

it offers a view of the whole process along the waveguide, rather than just the input

and the output. A typical example of self-compression and dispersive wave emission

is shown in fig. 4.1. Initially, the pulse evolves in a very similar manner to that

of a higher-order soliton as shown in fig. 3.5, in that it is compressed in time and

correspondingly its bandwidth expands. The moment the frequency spectrum extends

to the DUV, however, both higher-order dispersion and the resulting phase-matching

to the dispersive wave become important. The dispersive wave appears around 238 nm,

and simultaneously the main pulse begins to break up in soliton fission. The point

at which this occurs, around 5 cm along the fibre, agrees very well with the fission
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length as calculated using the GNLSE model for these parameters, which is 5.1 cm. The

wavelength at which DWE occurs, however, is not accurately predicted, with the simple

model yielding a phase-matched wavelength of 277 nm.

The time-domain plot shows another important feature of the dispersive wave, which

is that the group velocity of the DUV pulse is different to that of the soliton. This can

be seen by the weaker pulse appearing around 5 cm moving off towards later times as

it propagates, meaning it falls behind the main pulse. The same is true of the soliton

that remains after fission, however its group velocity is closer to that of the initial pulse.

As a consequence of the temporal walk-off between the DUV pulse and the soliton,

the spectrum of the dispersive wave does not change appreciably after about 6 cm of

propagation; the DUV pulse itself is not intense enough to cause a significant nonlinear

response. The pulse does accumulate phase, however, specifically it is stretched by

dispersion. At the point of soliton fission and DWE, the DUV pulse has a duration of

only 4.4 fs. At the end of the fibre, this has increased to 16.4 fs. To preserve a short

pulse, the fibre can be cut to the correct length such that DWE occurs near the end of

the fibre.

The tunability of the dispersive wave is shown in fig. 4.2. While the DWE wavelength

is shorter than the prediction from the analytical model at all pressures, the trend

of higher pressures leading to longer wavelengths for the dispersive wave is clearly

evident.

4.2.3. Pressure gradients

For the delivery of a pulse created by DWE in a fibre to an experiment without

additional dispersion, it is necessary to keep the exit of the fibre under vacuum (see

section 5.2). As a result, the gas pressure along the fibre is not constant. The pressure

distribution in the fibre can be derived from the condition that the flow rate be the

same everywhere, yielding [124]

p(z) = p0

√
1− z

L
, (4.2.13)
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Figure 4.2.: Output spectra created by launching the same pulse as shown in fig. 4.1 into

a 15 cm long, 33 µm diameter fibre filled with argon to different pressures

between 3 bar and 6 bar.

where z is the distance along the fibre, L is the length of the fibre, p0 is the pressure

at the fibre entrance, and we have assumed that the pressure at the exit is negligibly

small. The shape of this pressure distribution is shown fig. 4.3a. The pressure is a

critical parameter influencing the dispersion of the gas-filled waveguide as well as the

nonlinearity, and thus the soliton dynamics and the phase-matching conditions for

DWE change as the pulse propagates. The total dispersion at the soliton wavelength

is negative, so the dispersion length decreases as the pressure drops; the dispersion

is becoming more negative and |β2| increases. The effect on the nonlinear length is

the opposite, as the nonlinear coefficient γ is proportional to the pressure through the

nonlinear susceptibility χ(3). As a result, the soliton number is reduced as the pulse

propagates (see fig. 4.3b).

A lower pressure also leads to a shorter phase-matching wavelength for the dispersive

wave, in line with the results from a static pressure (fig. 4.2). The effect is slightly

reduced by the fact that the nonlinear phase-shift is also reduced, which adds a red-shift
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Figure 4.3.: (a) Pressure distribution along the fibre in the case of a negative pressure

gradient, normalised to the pressure at the fibre entrance.

(b) Effect of the pressure gradient on the wavelength of the dispersive wave

(left, black axis) and the soliton number (right, red axis) for the same pulse

and fibre used in figs. 4.1 and 4.2 with the entrance of the fibre at 6 bar.

to the dispersive wave. This variation in the phase-matching condition means that the

wavelength of the dispersive wave now depends on where in the fibre it is generated. If

the point of maximum self-compression is close to the entrance of the fibre, the pressure

is high and the dispersive wave appears at a longer wavelength. Conversely, slower

self-compression leads to a shorter UV wavelength.

However, the changing phase-matching condition leads to a more stable situation

when a variation of the driving pulse energy is considered. As shown in fig. 4.4, the

blue-shifting effect of the higher nonlinear phase shift for larger input pulse energies

is reduced somewhat by the concurrent increase in pressure at the point of DWE.

The input energy therefore has less of an effect on the wavelength of the dispersive

wave [10].

In terms of the overall features, such as the energy at which DWE first occurs as well
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Figure 4.4.: Output spectra for different input energies in the same fibre as in fig. 4.2,

filled with a static pressure of 5 bar (left) and a negative pressure gradient

with an initial pressure of 7.5 bar (right).

as its general spectral location, the two situations shown in fig. 4.4 are quite similar.

The relationship between the two gas pressures for which this agreement is observed is

not arbitrary. Consider the total nonlinear phase accumulated along the fibre,

φnl =
∫ L

0
P0 γ(z)dz . (4.2.14)

With γ proportional to the nonlinear refractive index n2 and thus the third-order

susceptibility χ(3), which in turn is proportional to the pressure, the integrand effectively

has the same form as the pressure in eq. (4.2.13).

Demanding that the total nonlinear phase shift be equal for the case of a pressure

gradient and a static pressure then reduces to finding the average value of
√

z in the

interval from z = 0 to z = 1, which is 2/3. Therefore, by increasing the pressure by a

factor of 3/2 as compared to a static fill, the same general features should be obtained

with a pressure gradient, as is indeed the case. The equivalence is only approximate,

since the variable dispersion also has an effect on the evolution of the pulse, and is not

included in this consideration. However, it can serve as a guide as to how much the

fill pressure has to be increased in order to obtain, for instance, a dispersive wave at
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Figure 4.5.: Evolution of the same pulse as in fig. 4.1 but launched into a fibre that is

filled with a negative pressure gradient from 7.5 bar to vacuum.

approximately the same wavelength.

The dynamics inside the fibre are also very similar if this condition is fulfilled.

Figure 4.5 shows the evolution of the same pulse as in fig. 4.1, but this time launched

into a fibre filled with a negative pressure gradient. Most of the overall features remain,

including the spectral location of the dispersive wave and the distance after which

soliton fission occurs. The spectrum has more structure, however. This is likely due

to the appearance of other dispersive waves emitted by the soliton remaining after

soliton fission. The presence of multiple pulses in the same spectral region then leads

to interference fringes in the frequency domain.

One important consequence of the pressure gradient is that the DUV pulse stretches

significantly less after it is created. In the example shown here, the initial pulse is 3.8 fs

long and only stretches to 6.5 fs by the time it reaches the end of the fibre. It is thus

much easier to retain a short pulse when using a pressure gradient.

The correspondence between a static fill and a pressure gradient is only this clear

if the point of soliton fission is relatively close to the beginning of the fibre. With this
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Figure 4.6.: Same as fig. 4.5 but for a fibre of half the length.

point near the fibre exit, the pressure is very different between the two cases, and the

phase-matching conditions are altered significantly. As in the case of a static fill, it is

beneficial to choose parameters that place the point of DUV generation close to the

exit of the fibre, so the influence of the pressure gradient has to be taken into account

carefully.

For a pressure gradient, the length of the fibre has more of an influence than for a

static fill. The shorter the fibre, the faster the change in pressure, and the greater the

change in the nonlinear and dispersion lengths as the pulse propagates. The effect

of this is shown in fig. 4.6. In contrast to the longer fibre, the overall evolution is

much cleaner, with less structure in both the infrared and the ultraviolet parts of the

output spectrum. Correspondingly, the output pulses are also of significantly higher

quality. Since the point of maximum self-compression is at a very low pressure and

consequently weak higher-order dispersion, soliton fission does not occur. The infrared

part of the spectrum forms a single pulse of sub-2 fs duration, albeit with a large

pedestal. This situation, where the self-compressed driving pulse remains intact, forms

the basis of the two-pulse source proposed in chapter 6.
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The lower pressure at the point where the DUV pulse first appears results in a

shorter wavelength – 4 cm into the fibre, the pressure has dropped to 3.5 bar, markedly

lower than the 5 bar used in the static fill example. The rate at which the pressure

drops is also much faster near the end of the fibre than in the middle (see fig. 4.3a)

and as a consequence the phase-matched wavelength in the DUV changes while the

dispersive wave is being generated. This is visible in the spectral shift as the DUV

pulse propagates, with its central wavelength changing by over 20 nm from around

240 nm to below 220 nm. The shifting phase-matching conditions furthermore increase

the bandwidth of the dispersive wave: in the example shown it exits the fibre with a

duration of 2.6 fs, shorter than even the fully compressed DUV pulse in the example of

a static fill.

As with all numerical modelling of complex systems or dynamics, it is very difficult

to achieve the exact same results in an experiment as on a computer. Beside the

approximations inherent to the propagation equation, there are also uncertainties

in the material characteristics used in the simulation. Chief among these are the

refractive index of the filling gas [125] and the nonlinear susceptibility [121], the values

of which play critical roles in the model. The use of approximate ionisation rates is

another limitation, albeit it an unavoidable one. This is unlikely to impact the results

significantly, since plasma effects play only a minor role for the parameters considered

here; the ionisation fraction does not exceed 10−4 in any of simulations shown.

A more important factor is the shape of the input pulse. In all simulations shown so

far, the input pulse was taken to have an ideal Gaussian shape. This makes definition of

the pulse duration and changing the input pulse characteristics straightforward. To test

what influence a more realistic pulse profile has, fig. 4.7 shows the comparison between

using an idealised pulse and the input pulse to the fibre used in the experiment (for

details of the pulse measurement, see section 4.3.3). Because the measured pulse is

somewhat longer and has some post-pulse structure, the total pulse energy has to be

increased to achieve DUV generation. Beside this, however, the pulse evolves in a very

similar way to the idealised situation. It stands to reason that this would not be the
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Figure 4.7.: Pulse evolution for the same fibre and gas fill as in fig. 4.6, with an ideal

Gaussian pulse of 15 fs duration and 1.25 µJ energy as the input (left) and

the measured driving pulse scaled to 1.9 µJ energy (right).

case for very complicated or strongly chirped input pulses, however neither of those

cases are relevant for the work in this thesis.
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4.3. Experimental implementation

The experimental apparatus has several tasks, with the first part mostly related to

shaping the laser beam and pulse to optimise the DUV generation conditions, as well

as ensuring long-term stability of the source and protecting the anti-resonant fibre

from laser damage. After this, the pump pulse is coupled into the PCF and the output

analysed. Here I will describe in detail how each part of the apparatus fulfils its

function.

4.3.1. Pre-compression

As mentioned in section 2.3, the majority of the laser output, around 8 mJ, is used for

the source of attosecond SXR pulses, with only a small amount of energy available to

drive the DUV generation process. Transmitting a short high-energy pulse through

the substrate of a beamsplitter would lead to self-focusing of the beam, so instead a

dielectric mirror with a reflectivity of 95 % (Eksma Optics) is used to split the beam,

with the transmitted beam forming the driving pulse for subsequent DUV generation.

Some energy is split off of this beam for laser diagnostics using Fresnel reflection at

near-normal incidence on a wedged piece of Fused Silica (Thorlabs). As a result, the

driving pulse has passed through 8 mm of glass (the substrate of the 95 % beamsplitter

is 3 mm thick and the wedged splitter 5 mm) in addition to ca. 4 m of air path before

it reaches the beginning of the DUV generation apparatus. This means that it is not

perfectly compressed. The dispersion present in the pulse cannot be compensated

using the grating compressor in the laser system since the tunable optical parametric

amplifier is also very sensitive to the spectral phase of its input pulse. Given that both

generation schemes are required simultaneously for a pump-probe experiment, this

fixes the compressor setting.

As shown in section 3.4, a shorter pulse is beneficial for the DWE process, leading to

higher conversion efficiency and a cleaner spectrum in the dispersive wave. Therefore

it is useful to compress the laser pulse beyond its initial FTL before using it to drive
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DWE.

The pulse compression proceeds in several stages. First, the GDD already present in

the pulse is removed by reflecting the beam off of 6 dispersion-compensating mirrors,

which induce −45 fs2 of GDD per reflection. To expand the spectrum and enable

further compression, the beam is then coupled into a 1 m long hollow capillary of

250 µm inner diameter using an f = 1 m mirror. The capillary is filled with argon

using a positive pressure gradient: the exit is held at 250 mbar, while the entrance is

evacuated. To reduce the effect of vibrations caused by the vacuum pump, the last

30 cm of the connection to the gas cell holding the capillary entrance consist of flexible

tubing with an outer diameter of 6 mm. Nevertheless, the pumping speed is sufficient

(and the flow rate through the capillary low enough) to keep the entrance at a pressure

below 1 mbar. This removes self-focusing and ionisation-induced defocusing at the

entrance and thus improves the coupling efficiency and mode quality [126].

The GVD at 790 nm of such a large-core capillary is only−8.2 fs2 m−1 when evacuated

and −3.4 fs2 m−1 when filled with 250 mbar of argon. The dispersion length for a 30 fs

pulse is therefore more than 35 m even in the evacuated capillary. The nonlinear length

must be much shorter than this for significant spectral broadening to take place over

the capillary length of 1 m, so self-compression does not occur; the capillary forms the

first half of a traditional hollow-fibre pulse compressor, the second half consisting of

dispersive mirrors.

To increase the stability and repeatability of the compression, the gas cells holding

the capillary itself are fixed to the optical table, so that it forms a permanent reference.

Alignment is carried out using the last two mirrors before the entrance window, which

are housed in motorised mounts (Newport). After the second one of these, Fresnel

reflection from a 1 mm thick piece of calcium fluoride (CaF2) at an angle of 45° picks

off a small part of the pulse. This weak beam is split further by reflection from another

piece of CaF2. The more energetic transmitted part is used to re-image the plane of the

spherical mirror onto the chip of a camera (Logitech) with a magnification of 0.1 using

an f = 100 mm lens, while another camera is placed in the focal plane of the weaker
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Figure 4.8.: Schematic of the hollow capillary apparatus for pre-compression of the

driving pulse. The ”position” lens and camera image the beam in the plane

of the f = 1 m in-coupling mirror. The ”pointing” camera is situated in the

focal plane of the in-coupling mirror and thus measures the pointing of the

beam. This is information is then used to stabilise the alignment into the

capillary with the two motorised mirrors (MM). After recollimation by an

f = 50 cm mirror, the beam is split, with part of the energy used for the

DUV generation and part for the characterisation (see chapter 5). DCM:

dispersion-compensating mirror

reflected part.

Together, the camera images completely identify the position and pointing of the

laser beam as it impinges on the entrance face of the capillary. This allows for active

stabilisation. Once the input to the waveguide is aligned the first time, the correspond-

ing camera images are saved. By comparing subsequent images to these references,

an error signal is calculated, which is used as the input to a proportional-integral-

differential (PID) algorithm controlling the movement of the steering mirrors. The

comparison is done by calculating the cross-correlation between the references and

later images and finding its peak location, a method which is robust to noise and small

changes in the beam profile [127]. I have written software which carries out the data

acquisition as well as the PID control in real time (the typical frame rate is 8 Hz) and

includes a graphical user interface for ease of use, based on an earlier version created by
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Figure 4.9.: Spectrum of the laser pulse after spectral expansion in the hollow capillary.

A 3 pixel wide boxcar smoothing filter has been applied to the data to

reduce random noise from the spectrometer and make the overall shape of

the spectrum more obvious. The dashed line shows the type I SHG phase-

matching efficiency ηshg on an arbitrary scale for a 10 µm BBO crystal at

θ = 29.55° (see fig. 2.6), as used in the pump pulse measurement (see

section 4.3.3).

Dane Austin. The active stabilisation can correct for slow drifts caused by temperature

fluctuations or air currents automatically, allowing for long-term use of the apparatus

without manual intervention.

The beam at the output of the capillary is re-collimated with an f = 500 mm spherical

mirror. Its spectrum is shown in fig. 4.9 and yields an FTL pulse duration of 11.2 fs.

Some of the pulse exiting the capillary is split off by a 65 % beamsplitter, with the

majority of the energy being used for the DUV generation, and the smaller part as the

second pulse in the DUV pulse characterisation apparatus (see chapter 5). The total

pulse energy after the capillary is around 160 µJ. This corresponds to a transmission

through the waveguide of ca. 60 %.

For the DUV generation, the positive GDD induced by the SPM and the exit window

of the gas cell is compensated by reflection off of further chirped mirrors. In a

conventional hollow-fibre compression system, the mirror set usually over-corrects
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(adds more negative GDD than necessary for compression) and a pair of glass wedges

is used to fine-tune the spectral phase of the pulse. In the present apparatus, the pulse

has to pass through several transmissive optics before it is coupled into the PCF for

DUV generation (see section 4.3.2). This additional dispersion has to be compensated,

and the beam therefore reflects off of the chirped mirrors 18 times, with each reflection

adding ca. −45 fs2 of GDD. The reflectivity of the dispersive mirrors is ca. 97 %; this

reduces the pulse energy from around 100 µJ to 60 µJ.

4.3.2. Spatial filtering and coupling

While the mode-dependent loss of the capillary (see section 3.1) lets it act like a spatial

filter by itself, the beam profile at the exit is not perfect. This is partly due to residual

higher-order modes and the imperfect straightness of the capillary itself as well as

astigmatism induced by the spherical re-collimating mirror. Most importantly, however,

the surface quality of dispersion-compensating mirrors is poor when compared to,

for instance, steering mirrors, and consequently the beam profile after compression is

afflicted by small-scale distortions (see fig. 4.10). To improve the spatial profile of the

beam, it passes through a pinhole-based spatial filter.

The principle of spatial filtering is based on the Fourier transform property of

focusing optics: in the paraxial approximation, the intensity profile in the focal plane

of a beam is equal to that of its two-dimensional transverse Fourier transform with

the coordinates scaled by the focal length and wavelength [72]. Therefore, small-scale

spatial distortions, which correspond to high transverse spatial frequencies, will appear

in the focal plane as components far away from the centre of the focal spot.

By placing a hard aperture in the focal plane, these components can be eliminated,

and the beam in the far-field will emerge without the distortions. As the Fourier

transform relationship holds, this is equivalent to blurring the far-field beam profile by

a two-dimensional convolution with the (appropriately scaled) Fourier transform of the

aperture function1. The amount of filtering is set by the ratio of the focal spot size to

1In the case of a circular pinhole, this blurring function is the Airy pattern. [72]
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Figure 4.10.: Transverse profile of the beam in a plane ca. 8 cm downstream of the

spatial filter pinhole, with the pinhole removed (left) and inserted (right).

As well as showing a cleaner overall profile, the beam is larger since the

pinhole crops the focal spot to a smaller size. The circular diffraction

patterns near the centre of the beam are caused by dust on the attenuators

before the detector.

the pinhole size. Since the pinhole is removing energy from the pulse, there is also a

trade-off between transmission through the filter and the quality of the resulting beam.

If the spatial filter is implemented using only transmissive optics, it confers another

advantage. Contrary to reflective optics (i.e., mirrors), any movement of a transmissive

optic caused by air currents or accidental impact is not magnified by the subsequent

propagation distance – a small tilt of a mirror may move a laser beam by many times

the amount the mirror moved if it propagates a large distance. By building the spatial

filter completely in-line using lenses, and afterwards re-imaging the pinhole directly

onto the entrance of the PCF, unintended movement occurs only before the pinhole,

rather than between the spatial filter and the PCF. Misalignment due to any movement

will not cause damage to the delicate cladding structure of the anti-resonant waveguide

as the misaligned beam will be blocked by the pinhole.

To harness this advantage, the spatial filter is located just before the beam is coupled
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Figure 4.11.: Schematic of the DUV generation apparatus. DCM: dispersion-

compensating mirror; NDF: neutral density filter; HWP: half-wave plate;

Pol: polariser.

into the PCF. After the dispersive mirrors, the beam traverses a tunable attenuator

formed of a variable neutral density filter wheel (Thorlabs) as well as a half-wave plate

(B.Halle) and thin-film polariser (Eksma) combination. The half-wave plate is mounted

in a motorised rotation stage (Thorlabs) which allows precise and repeatable scanning

of the pulse energy. To reduce the total amount of GDD induced, the polariser is used

in reflection, and as a consequence the beam is vertically polarised after the attenuator.

The filter wheel functions as added attenuation during alignment; the extinction ratio

of the polariser is insufficient to reduce the initial pulse energy of over 50 µJ to a level

that is safe for alignment into the PCF.

The three-dimensional translation stages holding the spatial filter pinhole, fibre-

coupling lens and input gas cell (Elliot Scientific) are mounted such that their optical

axes are parallel by using a straight edge. The beam is then aligned onto this common

optical axis using the steering mirrors before the first lens by mounting apertures on

the stages. To enable the use of pressure gradients, the PCF is glued into both gas cells.

The spatial filter is formed of an f = 175 mm plano-convex focusing lens (Thorlabs),

a diamond pinhole of 40 µm diameter (Fort Wayne Wire Dies) in its focal plane, and an

f = 200 mm plano-convex re-collimating lens (Thorlabs). The beam is then re-focused

to couple into the PCF by an f = 100 mm plano-convex lens (Thorlabs). An image of
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Figure 4.12.: Left: Coupling efficiency ηm for the three lowest-order modes in a capillary

as a function of the ratio between input spot size w and the core radius

a. The peak efficiency for the fundamental mode is 98 % and occurs at

w/a = 0.64.

Right: Image of the focus in the plane of the entrance face of the PCF.

the focus is shown in fig. 4.12.

In principle, it is possible to combine the latter two lenses and directly re-image

the pinhole plane onto the PCF entrance face, reducing the amount of dispersion to

be compensated. However, this has the disadvantage that the focal spot size and the

distance between the pinhole and the PCF are coupled. The particular arrangement

necessary for direct coupling to vacuum (see section 5.2) means that the fibre itself

cannot move once it is installed. Thus, whenever the entrance face of the fibre is moved

(for instance by cleaving), the entire spatial filter system would have to be moved as

well. With a collimated beam between the two lenses, this is not the case.

Using two lenses has the further advantage of providing two degrees of freedom for

changing the focal spot size; this is critical when coupling the beam into the fibre. For

a Gaussian beam impinging on the fibre in perfect alignment (that is, without any tilt

and with the beam waist at the fibre entrance), the field profile at the entrance face is

given by

E(r, θ) = E0 e−(r/w)2
, (4.3.1)
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Figure 4.13.: Optical layout of the SHG FROG used to measure pulses at 790 nm. A1:

entrance aperture; τ: delay stage; FM: focusing mirror; L: re-imaging lens;

A2: aperture to remove the fundamentals and their second harmonics.

where w is the 1/e2 radius of the beam waist. The coupling efficiency for a waveguide

following the capillary model according to eq. (3.1.9) then reduces to

ηm =
4
[∫ a

0 J0(umr/a) e−(r/w)2
rdr
]2

w2
∫ a

0 J2
0(umr/a) rdr

. (4.3.2)

This depends critically on the ratio between the core radius a and the beam waist radius

w, as shown in fig. 4.12. It is therefore very important to match the spot size of the

incoming beam as closely as possible to the optimal value. Note that while this is also

very important for the larger hollow capillary, any higher-order modes present at the

entrance are attenuated in that case, leading to nearly single-mode output. This does

not happen in anti-resonant fibre, so that more care must be taken not to excite any

higher-order modes.

4.3.3. Pump pulse measurement

In order to optimise the pulse compression and to verify that a compressed pulse is

used to drive the DUV generation process, I have constructed a scanning SHG FROG
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device for the pump pulse. It is designed to perform the measurement with no phase

added prior to the nonlinear interaction, resulting in a faithful representation of the

pulse in the FROG trace.

The optical layout of the device is shown in fig. 4.13. The pulse is split with wavefront

division by reflection off of a half mirror, with one half of the beam passing the edge

and the other being reflected. One replica then passes through a delay-line formed of a

retro-reflecting pair of mirrors on a motorised delay stage (Thorlabs). The two arms are

recombined on parallel beam paths by respectively passing and reflecting off of another

half mirror before being focused into the nonlinear medium2, a 10 µm thick BBO crystal

on a 1 mm thick substrate (Lightkey Technology), by an f = 150 mm spherical mirror.

The crystal is cut at θ = 29.2°, which is the type I phase-matching angle for 800 nm,

however with a small rotation of the crystal the correct angle of 29.55° can be obtained.

Of the resulting three beams, the two fundamentals and their co-propagating second

harmonics are removed by a variable aperture (Thorlabs), which is mounted as close

as possible to the re-imaging element, an f = 75 mm lens (Thorlabs). This is because

it is in this plane that the beams are furthest apart and thus easiest to separate. The

remaining beam, which contains the FROG signal, is then analysed by a spectrometer

(Ocean Optics) with a response window from 190 nm to 1100 nm, more than wide

enough to capture the entirety of the trace. Acquisition of a FROG trace consists of

scanning the delay using the motorised delay stage and acquiring spectra at each delay.

Note that after the nonlinear interaction has taken place, only the power spectrum

of the signal pulse is important for the measurement, so the use of a transmissive

(and thus dispersive) imaging element is not an issue, as long as its transmissivity is

sufficiently uniform across the bandwidth of the FROG signal.

The crossing angle between the two pulse replicas is approximately 1°. The amount

of temporal smearing induced by this depends on the size of the focal spot in the crystal

2Spatial overlap was ensured by first placing a camera in the focal plane. The crystal was then placed

in the focal plane of the beams by scanning it along the propagation direction and maximising the

amount of SHG signal.
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Figure 4.14.: Left: measured FROG trace of the pulse at the entrance of the hollow

capillary after thresholding, on a logarithmic colour scale to make low-

intensity parts of the signal visible. The trace consists of 115× 115 points.

At each delay sample, the signal acquired is the average of 100 laser shots

(the average of 10 acquisitions of 10 ms duration). Right: reconstructed

trace after 200 iterations of the PCGPA.

as well as the magnification onto the detector, with the latter setting the upper bound.

Since the input beam size and aperture setting can vary between measurements of the

pulse at different points in the apparatus, it is safest to calculate the maximum smearing.

The entrance slit of the spectrometer is 25 µm wide and the lens is 20 cm away from

the crystal plane. Since the spectrometer is positioned in the image plane of the lens3,

the magnification can be calculated as M = 0.6 using the thin lens formula [128]. The

spectrometer thus captures light from a spot in the crystal 42 µm across, resulting in

a maximum temporal blurring according to eq. (2.4.6) of 2.4 fs. For a 15 fs pulse, this

means the measurement will overestimate the pulse duration by around 190 as, which

is small enough to be ignored.

Since there are two nonlinear processes involved in the DUV generation – spectral

3To establish this, the beam size at the spectrometer slit was measured at several distances from the lens

by scanning the whole spectrometer across the beam using a translation stage and recording the signal

strength. The imaging plane is then where the spot size is minimal.
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Figure 4.15.: Input pulse at the entrance of the capillary as measured using the SHG

FROG apparatus, represented in both the time and frequency domains.

Left: the power spectrum (black) and spectral phase (red) of the pulse

as reconstructed from the FROG measurement, and the independently

measured power spectrum (purple dashed). Right: time-dependent inten-

sity (black) and temporal phase (red) as well as the intensity profile of

the transform-limited pulse (purple dashed) using the power spectrum as

reconstructed from the FROG measurement.

expansion in the large capillary and DWE in the anti-resonant PCF – there are two

points where the pulse should be compressed for optimal conditions; these are at the

entrance of the capillary and the PCF, respectively. The pulse is therefore measured at

both of these points. To get the most accurate measurement, as much of the dispersion

affecting the pulse in practice should be included. Therefore, the pulse is picked off as

close as possible to the entrance of the capillary and PCF, respectively.

For the capillary, a mirror is inserted after the piece of CaF2 serving as a diagnostic

pick-off. Since the beam is converging at this point, it is re-collimated after coming

to a focus using a concave spherical mirror and subsequently steered into the FROG

apparatus. Similarly, a mirror is inserted after the last focusing lens before the PCF

entrance and the beam re-collimated. In both cases, the only dispersive element not

taken into account is the respective entrance window to the gas cell – a 1 mm thick,
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Figure 4.16.: Same as fig. 4.14 but for the pulse at the entrance of the PCF. Here the

trace contains 149× 149 points.

anti-reflection coated piece of fused silica in the case of the capillary, and a 1.5 mm

thick uncoated piece of CaF2 for the PCF. For the measurement of the PCF input pulse,

an equivalent piece of glass is inserted into the beam path before the FROG device to

alleviate this problem. Note that the beam also propagates through some amount of air

both before and inside the FROG device before the nonlinear interaction takes place.

This can be taken into account by phase-correcting the measured pulse if required.

Reconstruction of the acquired SHG FROG traces is carried out using the PCGPA.

The software for this was implemented by Dane Austin. To increase the reliability of

the reconstruction, a threshold is applied to the trace first to reduce noise. Furthermore,

the PCGPA requires that the data is interpolated onto a square grid of delays and

frequencies which are Fourier-conjugate axes to one another4. The measured and

reconstructed FROG traces are shown in figs. 4.14 and 4.16. The FROG error ∆ is 0.0092

for the measurement at the capillary entrance and 0.0062 for that at the PCF entrance,

indicating excellent agreement between the two traces.

Because the two pulses interacting in an SHG FROG measurement are identical, the

4A pair of time and frequency axes are Fourier conjugates if their sampling rates exactly match the

minimum required for the window size in the other domain according to the Shannon-Nyquist

sampling theorem [59].
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Figure 4.17.: Same as fig. 4.15 but for the pulse at the entrance of the PCF.

trace contains several ambiguities, i.e., questions that cannot be answered without

further information. The unknown quantities are the arrival time of the pulse, its

absolute phase, and most importantly, the sign of the spectral phase, or equivalently the

direction of time [60]. The symmetry of the trace means that it is the same if the delay

axis is reversed, which also reverses the direction of time in the reconstructed pulse.

A single SHG FROG measurement is therefore incapable of distinguishing between a

pulse that is positively chirped and one that is negatively chirped.

To alleviate this problem, the symmetry can be broken by adding a known amount

of dispersion to the pulse and taking a second measurement. There is only one

combination of signs for the phases from the two measurements for which their

difference will match the added phase, the sign of which is known. The sign ambiguity

is lifted here by propagating the pulse through a 6 mm thick piece of fused silica, which

adds around 220 fs2 of GDD to the pulse.

The measurement of the pulse at the entrance of the capillary is shown in figs. 4.14

and 4.15, and that of the PCF input pulse in figs. 4.16 and 4.17. The pulse at the entrance

of the capillary is slightly negatively chirped since no equivalent piece of glass was

inserted for this measurement. By numerically adding propagation through a 1 mm

thick piece of silica glass, the measured pulse is compressed by about 1 fs.

As shown in figs. 4.16 and 4.17, the pulse compression in the capillary has reduced
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100 µm

Figure 4.18.: Cross-section scanning electron micrograph of the 46 µm core diame-

ter kagomé PCF used for the results in this section. Image courtesy of

Francesco Tani, Max Planck Institute for the Science of Light, Erlangen,

Germany.

the pulse duration by a factor of around 1/2. The pulse is also very close to its

transform limit in duration, evidencing that a compressed pulse can be delivered to

the DUV generation process. The weak post-pulses at around 40 fs and 60 fs are the

consequence of the steep phase gradient around 850 nm visible in the frequency domain

plot. This is likely caused by the bandwidth extending slightly past the bandwidth of

the dispersion-compensating mirrors.

4.3.4. DUV output energy and spectrum

The main quantities of interest for the characterisation of the output of the apparatus are

the spectral location and energy of the DUV pulse, as well as its duration. Additionally,

the stability of the output is also important for the source to be useful in a transient

absorption experiment. The measurement of the duration is the main experimental

result of the work for this thesis, and is addressed in detail in chapter 5.

To measure the spectrum of the DUV pulse, the beam exiting the PCF was analysed

with a commercial spectrometer (Ocean Optics). Since the beam in the fibre is contained

largely in the fundamental mode, the beam size at all wavelengths is the same as the
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Figure 4.19.: Typical output spectrum of a DWE process driven by a 16 fs pulse of 8 µJ

energy in a 46 µm core diameter fibre filled with 23.5 bar of neon. Left:

The total output spectrum on a logarithmic scale. Right: the DUV part

of the spectrum on a linear scale. The shaded area shows the standard

deviation at each wavelength over 1000 shots taken over ca. 5 minutes.

pulse leaves the waveguide. The divergence angle of each wavelength is therefore

different, leading to significant spatio-spectral coupling in the far field. This could be

taken into account either by focusing the beam onto the entrance slit of the spectrometer,

or by using a diffusing sphere. However, since a full spectral sensitivity calibration of

the spectrometer was unavailable, a significant source of uncertainty remains about the

shape of the overall spectrum even then. To simplify the apparatus, the spectrometer

was therefore simply placed in the collimated beam.

A typical output spectrum of a DWE process is shown in fig. 4.19. The dominant

features are the extreme spectral broadening around the pump pulse wavelength of

790 nm and the peak at 250 nm, which shows the dispersive wave. The sharp edge of

almost two order orders of magnitude in spectral intensity near the peak at 600 nm is

due to a cladding resonance in the fibre. The fibre in this case is larger than that used

in previous examples (see fig. 4.18), since a larger core diameter allows for more energy

to be coupled into the fibre while preserving the balance of nonlinear and dispersive

effects required for DWE. As a result of the large core diameter, phase-matching in the
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Figure 4.20.: Output spectra from the DUV generation apparatus acquired over ca. 5

minutes with (left) and without (right) measures to increase the stability

of the system.

DUV spectral region is best achieved by using high pressures of neon gas.

The spectrum of the dispersive wave is shown in the right-hand part of fig. 4.19. The

transform-limited duration of a pulse with this spectrum is below 3 fs. By inserting a

prism to disperse the output beam spectrally, the DUV component could be isolated

in space and the pulse energy measured with a photodiode power meter (Thorlabs).

The total energy in the spectral region between 200 nm and 300 nm in this case was

250 nJ, taking into account losses caused by the prism as well as the window on the exit

gas cell. This corresponds to a conversion efficiency of 3.2 %. While higher conversion

efficiencies have been achieved in DWE [87], this is likely already enough for some

experiments, and the efficiency is sufficient for the generation of µJ-level pulses by

appropriate scaling of the input pulse energy and fibre length.

Stability

For the DWE-based source to be useful in a transient absorption experiment, it must

be capable of delivering a stable pulse, that is, one that does not change significantly

in either duration or spectral location. While also important, the DUV pulse energy is
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less critical, since fluctuations in both the pump and probe intensities can and must be

addressed by the design of the experiment, given the intrinsically more unstable probe

pulse generation mechanism of HHG. As shown in fig. 4.19, under good conditions the

DUV part of the spectrum is very stable, with the standard deviation over 1000 shots

not exceeding 5 % at any point in the spectrum. The standard deviation of the total

pulse energy in the DUV region is 3.5 %.

The most important parameter to achieve this is the stability of the laser system,

however the design of the generation apparatus itself is critical as well. There are

two aspects to this. The first, as already discussed in section 4.3, is to ensure that any

thermal drifts, air currents or accidental movements cannot lead to damage to the PCF.

This is crucial especially for experiments using a pressure gradient in the fibre, since

the bonding of a new fibre into the gas cells takes more than 12 hours. The second is

that pointing instabilities must be kept to a minimum; through the spatial filter and

the coupling into the PCF, beam movements cause power fluctuations in the fibre in

addition of those already present in the laser beam.

The biggest detrimental factor to overall stability of the apparatus is the presence

of air currents in the laboratory. To mitigate this effect, the simplest solution is to

enclose the setup. The effect of this is shown in fig. 4.20, where the stability of the DUV

spectrum is compared between an enclosed and open apparatus. Two conclusions can

be drawn from this observations. The first is that minimisation of air currents is indeed

critical to achieving reliable operation of the DUV source. The second is that even in

the presence of strong air currents and the attendant instability in the whole apparatus,

the PCF is protected by the spatial filter.
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As outlined at the beginning of chapter 4, a source of DUV pulses for transient-

absorption experiments must fulfil three central criteria if it is to be useful – it needs

to be bright, tunable in wavelength across the DUV range and short in duration,

significantly below 5 fs if possible. DUV generation by dispersive wave emission

can satisfy these in principle. The first two, pulse energy and spectral tunability,

are relatively straightforward to measure. As with any ultrashort pulse, however,

establishing its duration is substantially more difficult.

When the second pulse in the intended experiment is generated by HHG, it is

effectively guaranteed to be very short. The time resolution is then chiefly determined

by the DUV pulse, and measuring it accurately is critical for the experiment. In

addition, the pulse that is characterised must faithfully reflect the one that is used

in the experiment. While an in situ measurement would be ideal for this purpose,

in many cases this is not possible, and instead large differences between the pulse

characterisation and experimental set-ups should be avoided.

An accurate measurement of the pulse duration is especially important for pulses

generated by DWE, since the strong coupling between various experimental parameters

precludes reliable predictions of the pulse shape from its spectrum alone. This is in

contrast to, for instance, bulk-crystal harmonic generation, where the fixed medium

provides a degree of confidence that, after initial characterisation, a pulse with the same

spectrum will have the same duration.

In this chapter, I describe the design and implementation of a pulse characterisation

apparatus, based on FROG, to measure DUV pulses generated in an anti-resonant fibre.

The measurement is carried out in near-identical conditions to those of a transient-
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absorption experiment, and therefore demonstrates what pulse duration can be deliv-

ered to an experimental target. In particular, I address the challenge of preserving the

pulse duration of an initially short DUV pulse both for the pulse characterisation and

an experiment.
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5.1. Cross-correlation FROG

At first glance, the problem of measuring the DUV pulses generated by DWE is very

similar to that of measuring any other ultrafast laser pulse, for instance the one driving

the process. Therefore it should be possible to fully characterise the pulses with a

FROG measurement. However, the particular properties of the unknown pulses in this

case complicate the situation.

Firstly, the DUV pulses can be very short, with durations below 5 fs predicted

[10, 11]. Although pulses of this duration have been measured using FROG [65], it

is significantly more challenging than for longer pulses, and the frequency response

of the measurement apparatus as well as the nonlinear process have to be taken into

account with great care.

The more immediate issue, however, is that the most common variant, SHG FROG,

cannot be used in the DUV. This is because the crystals normally used as the nonlinear

medium are not transparent at sufficiently short wavelengths. The lowest transmitted

wavelength is 190 nm for BBO [17], which is currently the only nonlinear crystal for

this wavelength region that can be manufactured in thin enough samples to achieve the

phase-matching bandwidth necessary for very short pulses [129]. The second harmonic

of any pulse with a centre wavelength below 380 nm would be absorbed in the crystal

and could not be observed, precluding SHG FROG measurements in the DUV.

To generate a FROG signal from a DUV pulse, another nonlinear interaction has

to be employed. One option is to use self-diffraction [63] or a transient grating [11],

since these do not up-convert the pulse in frequency in order to create the signal. The

downside of these methods is that they are based on third-order interactions, so that

significantly more pulse energy is required to make the measurement. In the case of

a transient-grating FROG, three beams need to be crossed in the nonlinear medium,

increasing experimental complexity. This is not required for self-diffraction FROG,

however it suffers from increased background in the signal as a consequence [60].

Another issue that influences the choice of nonlinear interaction is that beam transport

is challenging in the DUV: the protective coating on most broadband UV laser mirrors,
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Figure 5.1.: Type I phase-matching efficiency for DFG between a DUV test pulse and a

gate pulse at 790 nm in a 5 µm thick BBO crystal used at four crystal angles

between 40° and 64°. The dashed lines show the same, but for a 20 µm thick

crystal. The top axis shows the wavelength of the DFG signal resulting

from down-conversion of the corresponding wavelength on the bottom axis.

The change in effective thickness at different angles is taken into account,

assuming a crystal angle at normal incidence of 48°.

which are made of aluminium, absorbs light at wavelengths below 250 nm, so that

aluminium mirrors coated with magnesium fluoride (MgF2) have to be used instead.

These are both more expensive and significantly more sensitive to environmental

damage [130]. When using a Kerr nonlinearity, this disadvantage applies to both the

test pulse and the FROG signal.

It would thus be preferable to down-convert the test pulse in frequency in a nonlinear

process to generate a signal further towards the visible part of the spectrum, and using

this as the FROG signal. Given that the DUV generation process is driven by a pulse

at 790 nm, this is most easily achieved by using DFG between this and the test pulse.

As shown in fig. 5.1, the DFG signal resulting from a pulse centred anywhere in the

DUV spectral range lies above 250 nm. This is longer than the cut-off wavelength both
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for transmission through BBO crystals as well as for the cheaper and more robust

type of aluminium mirror. Since there are two pulses involved in the interaction, this

type of measurement is best described as a frequency-resolved cross-correlation of the

two pulses, and is appropriately known as cross-correlation frequency-resolved optical

gating (XFROG) [131, 132].

As the DUV source is widely tunable, the measurement must be applicable to pulses

of different wavelengths. This capability is provided by angle-tuning of the nonlinear

crystal. Figure 5.1 shows the type I phase-matching efficiency for DFG in BBO between

a DUV pulse and one at the wavelength of the driving field for several different angles

between the propagation direction and the crystal axis, taking into account the changing

effective thickness as the crystal is rotated away from normal incidence. The wavelength

of peak phase-matching efficiency can be tuned across the entire range from 200 nm

to 300 nm by rotating the crystal by only 24°. Since BBO, like most materials, becomes

more dispersive at short wavelengths, the phase-matching bandwidth decreases at the

low end of this range, however it is still sufficient for the measurement of sub-5 fs

pulses when using a thin (5 µm) crystal.

In principle, it is possible to achieve larger phase-matching bandwidths for a given

crystal thickness by using type II phase-matching. However, for type II phase-matching

the effective nonlinearity of BBO scales with the crystal angle as cos2 θ rather than cos θ

as in the case of type I phase-matching, and additionally θ is larger than for type I

phase-matching by around 10° [17]. In combination, these lead to a decrease in signal

intensity by a factor of ca. 10 for the DFG process used here. Importantly, for type

I phase-matching it is the two fields at longer wavelengths that are in the ordinary

wave [21]. In the case of DFG, these are the input pulse at the longer wavelength and

the signal pulse. Therefore the two pulses crossing in the crystal have to be polarised

in orthogonal directions. This is satisfied by the polarisation rotation in the attenuator

for the driving pulse in the DUV generation apparatus.

The first demonstrated technique to measure an unknown pulse using XFROG

requires the second pulse, often termed the gate, to be well characterised [131]. In this
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case, the reconstruction algorithm is altered to generate the FROG trace amplitude

σ(ω, τ) (see section 2.4.3) using the gate pulse and the current guess for the test pulse.

The disadvantage of this method is that a precise characterisation of the gate pulse at

point of the nonlinear interaction is necessary; any errors in this measurement affect

the reconstructed test pulse. Furthermore, for an XFROG measurement of this type

to yield reliable results, the two pulses interacting need to be of approximately equal

duration [131, 132]. For the measurement of potentially sub-5 fs pulses, this poses a

major technical hurdle. Removing knowledge of the gate pulse profile, however, makes

the phase retrieval problem significantly harder. In fact, it can be shown that without

additional information, many ambiguities exist in such a so-called blind FROG trace,

precluding useful pulse measurements [133].

5.1.1. Ptychographic reconstruction

The most successful solution to the issue of blind XFROG is to borrow a technique

from the field of lens-less imaging. The process of retrieving the object function, which

describes the sample, from the data in these experiments is a phase retrieval problem

as in a FROG trace, and many algorithms to solve it have been developed [134].

One relatively recent method is the ptychographic iterative engine (PIE) [135, 136].

The algorithm was developed for ptychography experiments, in which lens-less imaging

is performed with the illumination beam scanned across several overlapping positions

on the sample [137]. This is analogous to an XFROG measurement, because the field

produced in the sample plane can be written as the product of the illumination field, or

probe, P(r) and the object function O(r) [135]. Scanning the probe across the target by

displacements R yields an exit field ψ, given by

ψ(r, R) = O(r)P(r−R) . (5.1.1)

Since the image is acquired in the far field, Fraunhofer diffraction can be applied [72],

which means that the image is the intensity of the Fourier transform of ψ:

Ψ(k, R) =

∣∣∣∣∫ ∞

−∞
O(r)P(r−R)e−ik·rdr

∣∣∣∣2 , (5.1.2)
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which has a very similar form to that of a FROG trace as shown in eq. (2.4.5). The

PIE was later improved upon to allow the reconstruction of both the object and the

probe functions, with the updated version named the extended ptychographic iterative

engine (ePIE) [138, 139]. This opened the door for blind XFROG measurements to be

carried out using ptychographic methods.

The ePIE was recently used to retrieve the temporal profile of laser pulses in an

XFROG measurement [140, 141]. The additional information needed to break the

ambiguities in a blind XFROG trace can be supplied in the form of the power spectrum

of one of the two unknown pulses [142, 143]. Crucially, the gate pulse can be much

longer than the test pulse for this reconstruction method; in fact, since the “illumination”

samples of the pulse need to overlap for the reconstruction to succeed, a longer gate

pulse allows for larger delay steps. The time resolution of the measurement is not

compromised by this, since the ePIE is capable of retrieving features on a timescale

much faster than the sampling step in delay [140, 143].

The ePIE was further improved by adding a regularisation term to the algorithm. This

essentially changes the cost function which the algorithm seeks to minimise such that

large changes in the reconstructed fields are penalised. This leads to faster convergence

and a more reliable reconstruction [144]. The resulting algorithm is correspondingly

called the regularised ptychographic iterative engine (rPIE).

All measurements of ultrashort laser pulses using ptychographic reconstruction in

the literature have been carried out using SFG as the nonlinear interaction [140–143,

145–147]. This is likely partly because SFG maps most closely onto the form of the

signal which the ePIE was developed for, that is, the Fraunhofer diffraction pattern

shown in eq. (5.1.2). The signal in an SFG XFROG measurement is given by

S(ω, τ) =

∣∣∣∣∫ ∞

−∞
E(t)G(t− τ)eiωtdt

∣∣∣∣2 , (5.1.3)

where G(t) is the field of the gate pulse. Note that we have dropped the subscript from

the test pulse to maintain legibility in the rest of this section. This is exactly eq. (5.1.2),

with the frequency ω taking the place of spatial frequency k and the delay τ taking
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that of the displacement R. For a DFG XFROG, on the other hand, the signal is

S(ω, τ) =

∣∣∣∣∫ ∞

−∞
E(t)G∗(t− τ)eiωtdt

∣∣∣∣2 , (5.1.4)

that is, the gate pulse enters the signal field as the complex conjugate. Recall that the

analytic signal of the gate field, G(t), contains only positive frequencies; the complex

conjugate therefore contains only negative frequencies, leading to subtraction rather

than addition of the frequencies of E(t) and G(t). The PIE algorithm as used in the

literature has to be adapted to reflect this difference. For a derivation of the update

functions used below, see appendix A.

The ptychographic algorithm for reconstructing XFROG traces differs from other

methods, such as the PCGPA, in that it treats each delay sample in the data separately.

Each delay sample is a slice of the XFROG trace, S(ω, τj). One complete iteration of the

algorithm consists of using each delay sample in turn, with the order in which they are

used randomised at each iteration [142]. In the following we will denote the outer loop

index by n and the inner loop index by j, since the reconstructed fields are updated

with each delay slice. Furthermore, we will treat the time and frequency domains

as continuous to keep expressions simple, however in practice time and frequency

are sampled at discrete points and Fourier transforms must be carried out using the

discrete Fourier transform [114]. For each step in the inner loop, first the DFG field is

calculated using the current guess for the test pulse, En,j(t), and the gate pulse, Gn,j(t),

with the latter shifted by the value of the delay τj:

ψj(t) = En,j(t)G∗n,j(t− τj) . (5.1.5)

This is then Fourier transformed to yield the XFROG amplitude ψ(ω), and its mag-

nitude is replaced by the square root of the measured signal S(ω, τj). This yields the

updated DFG field ψ′(t) by the inverse Fourier transform:

ψ′j(t) = F−1
ω

[
Ft
[
ψj(t)

]∣∣Ft
[
ψj(t)

]∣∣√S(ω, τj)

]
. (5.1.6)

The difference between ψ(t) and ψ′(t) is then used together with a weight function to
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update the test pulse:

En,j+1(t) = En,j(t) +
Gn,j(t− τj)

(1− α)
∣∣Gn,j(t− τj)

∣∣2 + α
∣∣Gn,j(t− τj)

∣∣2
max

[
ψ′j(t)− ψj(t)

]
, (5.1.7)

where α is a real-valued parameter, and Qmax denotes the maximum value of the

quantity Q. Note that in the version of this algorithm for SFG XFROG, the complex

conjugate of the gate pulse appears in the numerator of the weight function [142]. In

the ePIE, only the term proportional to
∣∣Gn,j(t− τj)

∣∣2
max is present in the denominator

of the weight function. The term (1− α)
∣∣Gn,j(t− τj)

∣∣2 is due to the regularisation

modification introduced in the rPIE.

The gate pulse is updated in a symmetrical fashion to the test pulse:

Gn,j+1(t− τj) = Gn,j(t− τj) +
En,j(t)

(1− α)
∣∣En,j(t)

∣∣2 + α
∣∣En,j(t)

∣∣2
max

[
ψ′j(t)− ψj(t)

]∗
. (5.1.8)

Here, the different form of the interaction for DFG leads to conjugation of the weight

function as well as the difference term ψ′j(t) − ψj(t) as compared to the SFG case.

Note also that the gate pulse has to be shifted by −τj after this procedure to retrieve

the updated guess Gn,j+1(t). The gate pulse is furthermore projected onto its power

spectrum Ig(ω), which has to be measured independently:

Gn,j+1(t) = F−1
ω

[
Ft
[
Gn,j(t)

]∣∣Ft
[
Gn,j(t)

]∣∣√Ig(ω)

]
. (5.1.9)

This way, the added information is used at each step and convergence can be achieved

[142]. Note that apart from the asymmetry in the interaction for the case of DFG

XFROG, the only difference in the algorithm between the gate and test pulses is the

additional projection on the power spectrum for the gate. After each iteration through

all delay slices, the complete reconstructed XFROG trace is generated according to

eq. (5.1.4), and the FROG error ∆ is calculated as in eq. (2.4.7). The algorithm is run

until ∆ converges to a minimum.

Implementation details

Given that the interaction in DFG XFROG involves pulses at three different wavelengths,

the necessary sampling window in the frequency domain is very large, extending from
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the DUV to the near infrared (NIR). The window in the time domain, on the other

hand, must be able to accommodate the gate pulse when shifted to both extremes of

the delay scanning range. This range, in turn, is determined chiefly by the gate pulse

duration, as this is the dominant contribution to the cross-correlation width. The time

window must therefore be at least twice as wide as the gate pulse duration.

The FWHM is an inappropriate measure for the cross-correlation width and pulse

duration in this case, since it excludes the contribution of the weaker wings of the

signal. Instead, the entire time over which there is detectable signal has to be used; this

is several times longer than the FWHM. Depending on the experimental signal-to-noise

ratio, the resulting required window width can easily run to several hundred femtosec-

onds, leading to a large number of time and frequency samples and correspondingly

slow execution of the algorithm.

To avoid this issue, it is useful to shift all three pulses to the baseband. For the signal

pulse, this is done by determining the central frequency of the XFROG trace as the first

moment of the frequency marginal,

ωs

0 =
∑ij ωiS(ωi, τj)

∑ij S(ωi, τj)
, (5.1.10)

then shifting the frequency axis of the trace by ωS
0 and interpolating the trace onto

a common baseband frequency axis ω̃, which is also used for both the gate and test

pulses. Even without frequency shifting, interpolation is necessary in order to obtain a

uniformly spaced frequency axis from the non-uniform axis in the raw data1, which

allows the use of significantly faster algorithms for the discrete Fourier transform [114].

For the gate pulse, the first moment of the separately measured power spectrum is

used:

ωg

0 =
∑i ωi Ig(ωi)

∑i Ig(ωi)
, (5.1.11)

and the power spectrum is interpolated onto the baseband frequency axis as well. The

central frequency of the test pulse is then determined by the gate pulse and trace
1The non-uniformity in frequency space is a consequence of the operating principle of optical spectrome-

ters: because the frequency resolution is created by diffraction off of a grating, the displacement on the

detector array is (approximately) proportional to wavelength rather than frequency.
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moments:

ωt
0 = ωs

0 + ωg

0 . (5.1.12)

The actual gate and test pulses can then be retrieved from the baseband signals by

simply shifting their frequency axis back by the appropriate central frequency. Because

the reconstructed test pulse satisfies the form constraint, that is, its DFG signal with

the reconstructed gate pulse yields the experimentally acquired spectrum to within

the FROG error ∆, this shifting to the baseband and inferring the test pulse frequency

neither adds nor removes any information to the process.

At several points in the ptychographic reconstruction algorithm, it is necessary to shift

a pulse in time by some delay τ and back. This is most easily achieved by exploiting

the shifting property of the Fourier transform:

E(t− τ) = F−1
ω

[
eiωτFt[E(t)]

]
. (5.1.13)

The weighting parameter α is critical in the reconstruction. Viewing the PIE as an

optimisation algorithm [145], it determines the size of the step taken in the direction of

steepest descent; that is, in the direction towards the minimum of the cost function. To

keep the process from stagnating in or around a local minimum, it is useful to choose

α randomly [142]. In the implementation described here, a new random value for α

between 0.2 and 1 is chosen for each iteration of the outer loop.

139



5.2. DUV XFROG apparatus 5. Characterisation of DUV Pulses

200 225 250 275 300 325 350 375 400

Wavelength [nm]

100

200

300

400

500
β

2
[f

s2
m

m
−

1 ]
Air ×1000
MgF2

CaF2

Silica

Figure 5.2.: The GVD of three common materials for vacuum windows and optics as

well as air. Note that the dispersion of air has been multiplied by a factor

of 1000 to display it on the same scale.

5.2. DUV XFROG apparatus

The basic principle of an XFROG apparatus is very similar to that of an SHG FROG,

except that two beams enter the optical set-up and are overlapped in the nonlinear

medium. Effectively, this simply moves the beam-splitting step of the FROG layout

to a much earlier point, since both pulses in an XFROG measurement are ultimately

derived from the same laser. In the case of XFROG in the DUV, however, there is one

very important complication to this principle, and that is the dispersion of both the

measurement apparatus and the optical path preceding it.

As can be seen in fig. 5.2, the GVD of materials commonly used for transmissive

optics in the visible and DUV increases rapidly with decreasing wavelength, rising to

several hundred square femtoseconds per millimetre – for comparison, the GVD of

silica glass at 790 nm is only 36 fs2 mm−1. Even air, while much less dispersive than

any bulk material, becomes a significant source of dispersion over distances of metres.

100 fs2 of GDD is sufficient to stretch a 5 fs pulse to a duration of more than 50 fs, so

this amount of dispersion must be either avoided or compensated.

Unfortunately, the common schemes for dispersion compensation are either impracti-
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cal or unavailable in the DUV spectral region. No suitable materials with anomalous

dispersion in this wavelength region exist, so bulk dispersion cannot be used. Prism

compressors [148], commonly used in the infrared wavelength region, may compensate

positive GDD, however the third-order dispersion of the prism material would distort

the pulse significantly, erasing the benefits of removing the quadratic phase. Grating

compressors do not have this issue, however the dispersion induced in these devices

is usually very large, so that a stretcher-compressor combination has to be used in

order to compensate for smaller amounts of GDD [15]. This leads to a large number of

reflections (or more accurately, diffractions) off of gratings, greatly reducing the energy

throughput. Lastly, while there is no fundamental reason why dispersive mirrors

cannot be manufactured for the DUV, this is not one of the main areas of interest for

these optics, and there are no commercial suppliers.

This lack of suitable means of dispersion compensation makes delivering a short pulse

to an experiment a matter of avoiding dispersion wherever possible. As a consequence,

no transmissive optics such as lenses or windows can be used, and the entire beam

path has to be kept in vacuum. The vacuum requirement is only a minor addition to

the experimental effort when using the DUV source in an experiment together with an

SXR pulse, since in this case the other half of the pump-probe pair must be propagated

under vacuum in any case. The inability to use windows, however, makes connecting

the DUV source to the apparatus for characterisation or an experimental chamber

significantly more challenging.

The phase-matching pressure for DWE at DUV wavelengths lies in the range of

several atmospheres for argon gas and tens of atmospheres for neon. This high a

gas pressure at both ends of the anti-resonant fibre cannot practically coexist with

a vacuum environment for the rest of the beam path without a window separating

the two regions. In the absence of a window, keeping the exit end of the fibre under

vacuum is therefore the only solution. As shown in section 4.2.3, the resulting pressure

gradient along the fibre complicates the dynamics of self-compression and DWE, but

similar pulses can be generated.
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Figure 5.3.: Optical layout of the DUV XFROG system. A detailed description can be

found in the text. FM: focusing mirror; A: aperture; NDF: neutral density

filter; BPF: bandpass fiter; DCM: dispersion-compensating mirror; SM:

spectrometer; τ: delay stage. The path of the test pulse is shown in purple,

that of the gate pulse is shown in red, and that of the signal pulse is shown

in blue.

Vacuum propagation and the pressure gradient along the fibre is maintained by

enclosing part of the XFROG apparatus in a vacuum chamber. In particular, the entire

beam path of the DUV test pulse between the exit of the fibre and the nonlinear

interaction in the crystal is kept in vacuum. The delay line, which is incorporated into

the path of the gate pulse, is outside, as are the parts of the system which select and

analyse the signal pulse, since dispersion is no longer an issue here. High vacuum is

not required; at 1 mbar, the UV dispersion of air is already reduced by a factor of 1000

and thus negligible. Since the conductance of a small-core PCF is very small [149], the

pressure in the vacuum chamber does not exceed 0.5 mbar, even when the entrance of

the PCF is filled with over 20 bar of gas.

The optical layout of the system is shown in fig. 5.3. The DUV pulse exiting the

fibre is collimated by an f = 30 cm spherical mirror (FM1). Afterwards it is steered
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towards another f = 30 cm spherical mirror (FM2), which focuses it into the nonlinear

medium, a nominally 5 µm thick BBO crystal on a 1 mm silica glass substrate (Lightkey

Technology). All optics between the exit of the fibre and the crystal are MgF2-coated

aluminium mirrors (Acton Optics). To reduce the total energy focused into the crystal,

and thus the chances of damage occurring, the aperture (A) is closed to a diameter of

approximately 5 mm to only allow the central part of the beam through. Due to the

spatio-spectral coupling in the beam, this predominantly attenuates the visible and

infrared parts of the spectrum with little effect on the DUV pulse energy.

The gate pulse reflects off of two dispersion compensation mirrors (FemtoOptics)

before passing through a bandpass filter, the passband of which is centred at 790 nm

and 10 nm wide (FWHM). After the delay line, consisting of a retro-reflecting pair

of mirrors on a motorised delay stage (Thorlabs), the now-narrowband pulse passes

through a variable neutral density filter (Thorlabs) and enters the vacuum chamber

through a 6 mm thick anti-reflection coated window made of silica glass (Eksma optics).

It is steered towards focusing mirror FM2, with the last steering mirror being a half-

mirror with its top edge 1 mm underneath the height of the DUV beam. The two beams

thus cross in the crystal with the crossing angle in the vertical plane. The crossing angle

is below 1°.

The vertical crossing angle is useful for the beam steering after the crystal; since the

signal beam appears on the outside of the ingoing beam pair (see fig. 5.4), subsequent

optics must not be too small lest they clip the beam. Since reflection at 45° in the

horizontal plane reduces the effective aperture of the steering mirrors by a factor of
√

2

in the horizontal dimension, propagating the three beams vertically displaced results

in easier alignment.

As shown in section 5.1.1, it is useful for the gate pulse to be narrowband for the

ptychographic reconstruction algorithm to converge quickly, and a transform-limited

gate pulse is not necessary, but nevertheless advantageous. The bandpass filter required

for this and the entrance window to the vacuum chamber both add non-negligible

amounts of GDD to the pulse; the 6 mm of silica glass for the entrance window alone
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FM2 FM3 FM4BBO SM

Figure 5.4.: Schematic of the XFROG interaction and subsequent filtering of the signal

in a side-on view. The transverse phase-matching in the DFG interaction

means that the signal beam exits the nonlinear medium at a steeper angle

than either input beam, in this case below the DUV beam. Therefore it

can be isolated by a simple beam block. The labels correspond to those in

fig. 5.3.

add around 220 fs2, and the filter is also around 6 mm thick and will thus account for a

similar amount of GDD. Combined with the chirp already present in the pulse from

the SPM in the capillary, this makes dispersion compensation necessary. The attenuator

makes sure that damage to the nonlinear medium can be avoided, and also serves to

check that the measurement is not distorted by XPM.

After the nonlinear interaction, the three beams – the test, gate, and signal pulses

– are re-collimated by an f = 10 cm mirror. Because they are collimated rather than

re-imaged straight away, the mask to remove the test and gate beams can remain

outside of the vacuum chamber, where it is possible to adjust it. This is very important

to enable diagnostics of the system (see below). The exit window is an uncoated 1.5 mm

thick piece of MgF2. Imaging onto the detector is done with an f = 50 cm spherical

mirror. A flip mirror can be inserted after the re-imaging mirror to instead send the

beam towards a UV-sensitive camera (EHD Imaging), which is also located in the focal

plane of the beam.

The two most critical factors when aligning any two-pulse system, be it a transient-

absorption experiment or an XFROG measurement, are the spatial and temporal overlap

between the pulses. Due to space constraints in the vacuum chamber, the spatial overlap
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100 µm

Figure 5.5.: Cross-section scanning electron micrograph of the 33 µm core diameter

kagomé PCF that was in use for the characterisation of DUV pulses. Image

courtesy of Francesco Tani, Max Planck Institute for the Science of Light,

Erlangen, Germany.

cannot be ascertained by simply placing a camera in the focal plane of the focusing

mirror. Instead, the re-imaged focus is used by inserting the flip mirror as shown in

fig. 5.3. This has the additional advantage of being usable with the chamber under

vacuum, so that any misalignment caused by deformation of the chamber during the

pumping process can be diagnosed and corrected.

A common method of finding temporal overlap is to increase the intensity of one or

both of the interacting pulses, focusing both into a thick third-order nonlinear medium

such as glass, and looking for the disturbance of one beam by the nonlinear refractive

index profile induced by the other. Unfortunately, this method cannot be used here.

Only the gate pulse is sufficiently energetic to cause a strong nonlinear refractive index

variation, however it is significantly larger than the DUV pulse both in space (because

of its longer wavelength) and in time (because of the spectral bandpass filter). Any

induced refractive index changes will therefore be experienced by the entirety of the

DUV pulse, and the resulting average phase shift will not be easily detectable.

The simplest way of temporally overlapping the gate and test pulses is therefore to

look for the DFG signal directly. This cannot be done by eye, since the signal beam
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is invisible; because it is also very weak, even UV detector cards yield no detectable

signal. So as not to rely on alignment into the spectrometer, the UV-sensitive camera

is used for the temporal overlap as well. With the selection mask set such that only

weak scatter from the DUV beam (the middle of the three) reaches the camera, so

that accidental blocking of the signal beam is avoided, the delay is scanned in steps

of tens of femtoseconds until the signal is found. Initially, this is most easily done

without evacuating the chamber, since the resulting air path stretches the DUV pulse to

several hundred femtoseconds, increasing the range over which signal can be detected.

The location of temporal overlap changes when the air is removed from the chamber,

however the amount is easily predicted by measuring the length of the optical path.

One disadvantage of the apparatus is that due to the reflectivity of the mirrors after

the nonlinear crystal, it is not possible to measure the spectrum of the DUV pulse with

the chamber evacuated, unless the whole spectrum is above 250 nm. As a consequence,

reference spectra were taken only for some example pulses.
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Figure 5.6.: Example DFG XFROG trace of a pulse centred around 250 nm, obtained by

coupling a 16 fs, 1 µJ pulse at 790 nm into a 17 cm long, 33 µm core diameter

PCF filled with a negative pressure gradient from 8 bar to vacuum. The

gate pulse is approximately Gaussian in shape with a duration of 133 fs

(see fig. 5.7). Left: the measured trace. Right: the reconstructed trace after

ca. 300 iterations of the rPIE algorithm.

5.3. Tunable sub-10 fs DUV pulses

With the conversion efficiency sufficient to achieve the pulse energies necessary for an

experiment, the XFROG measurement must primarily establish that a short pulse can

be obtained at any chosen wavelength in the DUV. For that purpose, measurements

were taken with several different gas pressures in the PCF to tune the phase-matching

conditions.

A typical XFROG trace is shown in fig. 5.6. The most important feature of the

measured trace is that there is no evidence of strong chirp in the pulse, since the trace

is not visibly tilted. The test and gate pulses retrieved from this measurement are

shown in fig. 5.7, along with an additional measurement of the gate pulse. Note that

the gate pulse in these two cases has not experienced the exact same amount of GDD

due to the different air path and the fact that a separate piece of glass was used to add

approximately the same GDD as the vacuum chamber window.
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Figure 5.7.: Test (left) and gate (right) pulses as retrieved from the XFROG trace shown

in fig. 5.6. The red line shows the gate pulse as measured with the SHG

FROG device discussed in section 4.3.3 after propagating the pulse through

a 6 mm thick piece of silica glass to approximate the influence of the vacuum

chamber window.

The reconstructed test pulse is somewhat longer than would be expected from both

the numerical modelling and non-vacuum measurements in the literature [11]. However,

this is likely not caused by the pulse itself, but rather by the measurement; it is likely

that the phase-matching bandwidth was insufficient.

Evidence that the phase-matching window was too narrow can already be seen in

the reconstructed XFROG trace. The reconstruction algorithm effectively forces the

convolution of the gate and test pulse spectra to reproduce the frequency marginal of

the trace. Because the gate pulse spectrum is fixed in the reconstruction algorithm (see

section 5.1.1), only the spectrum of the test pulse is free to vary to satisfy this constraint.

If the phase-matched bandwidth, which determines the width of the marginal, is

reduced, this decreases the reconstructed bandwidth of the test pulse. The width of

the delay marginal, on the other hand, is set only by the duration of the two pulses

and is not affected by the phase-matching as long as neither pulse has a very strong

spectral phase gradient. As a consequence, insufficient phase-matching bandwidth

leads to an inconsistency between the widths in delay and frequency of the measured
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Figure 5.8.: Left: normalised spectrum of the test pulse as reconstructed from the

XFROG measurement (black) and as measured independently (red). Right:

spectrum of the gate pulse as used in the XFROG trace reconstruction.

trace. The reconstructed trace then appears stretched in delay when compared to the

measured one, since this inconsistency can only be accommodated by assuming longer

pulse durations. This effect can be seen in fig. 5.6

As shown in fig. 5.1, the phase-matching bandwidth is strongly affected by the

thickness of the medium. Therefore it is likely that the observed discrepancy is caused

by the nonlinear medium being too thick due to a manufacturing error.

Figure 5.8 shows the normalised reconstructed and externally measured spectra of

the test pulse. The transform-limited pulse duration as obtained from the externally

measured spectrum is 4.5 fs. Here, evidence of poor phase-matching is visible in a

shift in the spectrum as well as a reduction in bandwidth, with the shift partly due

to a small misalignment of the crystal angle leading to a shift of the phase-matching

efficiency curve. The misalignment is caused by the need to set the crystal angle

with the vacuum chamber at atmospheric pressure; the DUV pulse is then chirped

to over 100 fs, making the crystal angle at which maximum overall signal is obtained

delay-dependent and thus adding uncertainty as to the correct angle. It should be

noted that with a 5 µm thick crystal, the phase-matching bandwidth would be sufficient

for such a small uncertainty to have a negligible effect on the spectrum.
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Figure 5.9.: Spectra (left) and pulse profiles (right) obtained from the XFROG mea-

surement for a 2.4 µJ, 30 fs pulse coupled into the same PCF as in fig. 5.6,

filled with a negative pressure gradient of varying initial pressures (see

legend). Matching line colours in the two plots indicate data from the same

measurement. The legend in the right-hand side plot shows the FWHM

duration of each retrieved pulse.

In the case of SHG FROG, the mixing of all possible frequencies from both (identical)

pulses makes reconstruction of traces that are strongly affected by phase-matching

difficult or even impossible, and correction factors have to be applied to account for the

limited bandwidth [64]. This is not the case for XFROG with a narrowband gate pulse,

since here the frequency conversion can be approximately treated as a pure shift – in

this case, a subtraction of the gate pulse frequency. Effectively, this view approximates

the gate pulse spectrum as a delta function. Therefore, the phase-matching efficiency

acts only as a bandpass filter on the trace and consequently on the reconstructed pulse.

As long as the pulse is not too complex, that is, in the absence of strong spectral phase

gradients, the pulse duration as measured here then forms an upper bound, with the

real pulse duration likely significantly shorter.

Despite the lack of appropriate phase-matching, the measurement can yield informa-

tion on the change in pulse duration as the DWE wavelength is changed through the

gas pressure. The result of keeping the input pulse energy constant while changing the
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pressure is shown in fig. 5.9. It was found that the DWE wavelength could be changed

to a greater degree while retaining detectable signal and relatively simple spectral

shapes when the input pulse was long. The pre-compression capillary was therefore

evacuated to remove the spectral expansion and the resulting dispersion compensated

using the grating compressor inside the laser.

Owing to the limited phase-matching bandwidth, spectra at the edge of the range

of the pressure scan are likely reshaped strongly by the measurement, however their

central wavelength is a guide to the tunability achieved. As shown in the time-

domain plot in fig. 5.9, the pulse duration remains around or below 10 fs as its central

wavelength is changed by around 20 nm. With this duration forming an upper bound,

it is likely that the pulses were in fact well below 10 fs in duration at all central

wavelengths, evidencing that the tunability of the source does not compromise the

achievable temporal resolution.
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Gas

(a) (b)

Figure 5.10.: (a) Altered mounting method for very short lengths of PCF. The fibre

is bonded into the same part that connects the gas cell to the vacuum

chamber. This makes the second chamber unnecessary and allows for the

mounting of shorter fibres.

(b) Photograph of the exit end of the fibre in operation, looking from the

inside of the vacuum chamber. The purple glow is due to a cladding

resonance around 400 nm leading to strong scattering of light at that

wavelength.

5.4. Sub-5 fs DUV pulses

Even at their transform limit, the pulses generated in the relatively long fibre discussed

in section 5.3 are not as short as required for an experiment with true few-femtosecond

resolution. They are also somewhat longer than those predicted by the numerical

modelling for a static fill (see section 4.2.2). The reason for this lies chiefly in the length

of the fibre, with a shorter fibre required to generate very short pulses as described in

section 4.2.3. The length of the fibre can be reduced by altering the DUV generation

apparatus to only use one gas cell (see fig. 5.10a).

The phase-matching bandwidth using a thick crystal is clearly insufficient to measure

pulses with even larger bandwidth than those discussed in section 5.3. However, this

can be remedied to some degree by rotating the crystal during the measurement in a
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Figure 5.11.: Normalised spectra of a DUV pulse generated with 3 µJ input energy

and an entrance pressure of 10.9 bar as measured externally (black) and

reconstructed by an XFROG measurement without angle dithering (red).

The red dashed line shows the externally measured spectrum after mul-

tiplication by the phase-matching efficiency for a BBO crystal which is

20 µm thick rather than the nominal 5 µm.

technique known as angle dithering [150]. The most important criterion for this to be

successful is that the dithering be faster than the acquisition period at each delay point

in the trace. Only then can the dithering be treated as a continuous function in the

analysis, which leads to a pure increase in phase-matching bandwidth without adding

artefacts.

By comparing the reconstructed pulse spectrum to an externally measured one, it

is possible to determine the thickness of the nonlinear medium, since the relationship

between the two can be approximated as a simple multiplication by the phase-matching

efficiency. The spectrum of the more broadband pulse generated in the shorter fibre is

much wider than the observed phase-matching bandwidth, so that any spectral shift

due to the angle-sensitivity does not obscure the narrowing effect. Figure 5.11 shows

this comparison for a particular case. The crystal angle was determined by aligning the

incoming beam to normal incidence, so that the only free parameter in the calculation
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Figure 5.12.: Measured trace (left) and reconstructed test pulse (right) from an angle-

dithered XFROG measurement. In this case the entrance pressure in the

fibre was 11.5 bar and the 1 µJ input pulse was pre-compressed to 16 fs.

The purple curve shows the transform-limited test pulse as retrieved from

the externally measured spectrum shown in fig. 5.13. The duration of the

transform-limited pulse is 2.4 fs

is the crystal thickness. The excellent agreement between the two red curves means it

is very likely that the crystal was 20 µm thick.

To put the angle-dithering approach into practice, the rotation stage holding the

crystal in the XFROG vacuum chamber was exchanged for a motorised version (Thor-

labs)2. While this provided the necessary range of motion, the speed of the motorised

mount was limited to around one degree per second. The necessary angular range to

access the whole bandwidth of the pulse was about 15°, so the spectrum at each point

had to be averaged over at least 15 s. To ensure that a lack of synchronisation between

the crystal rotation and the data acquisition did not lead to uneven weighting in the

average over angles, this was increased to one minute.

Since for any given crystal angle there is no signal at most of the wavelengths in the

2It should be noted that the incorrect crystal thickness was only discovered after the switch to the shorter

fibre had been completed, and thus the dithering technique could not be applied to the measurements

discussed in section 5.3.
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Figure 5.13.: Test pulse spectrum as retrieved from the XFROG measurement shown in

fig. 5.12 (black) and as measured with a spectrometer directly (purple).

spectral window of interest, the spectra were not acquired as a single average over the

dithering period. Instead, 50 shots were acquired individually, and a threshold was

applied to each of these spectra before adding them up. In this way, accumulation of

noise due to the lack of signal was avoided.

The rotation of the crystal leads to additional issues that are not present for a single

crystal angle. Since the crystal is mounted on a 1 mm thick silica substrate, the rotation

causes a displacement of the beam exiting the back surface by refraction in the substrate.

The re-imaged focal spot therefore walks off of the spectrometer entrance slit as the

crystal is rotated, reducing the signal at the edges of the spectral window. Even with

the improved phase-matching bandwidth, the measurement using a thick crystal can

thus not truly capture the extremely broadband pulses generated in the shorter fibre.

The XFROG trace acquired using this technique with the output of a 7 cm long PCF

is shown in fig. 5.12. To further aid the measurement, the gas pressure in the fibre

was increased in order to push the dispersive wave to longer wavelengths, where the

phase-matching bandwidth is greater for any given crystal. The increased bandwidth

can be seen by comparing the measured trace to that in fig. 5.6; the angle-dithered trace

extends almost 150 nm despite the relatively poor signal-to-noise ratio, whereas traces

in earlier measurements are around 70 nm wide. As a consequence of the improved
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bandwidth, this measurement is capable of retrieving a 4.6 fs pulse.

Unfortunately, the bandwidth of this improved XFROG measurement is still severely

limited by the beam walk-off issue discussed above. This can be seen by comparing

the reconstructed test pulse spectrum with a reference spectrum, shown in fig. 5.13.

Clearly, only part of the spectrum is retrieved, so that the test pulse duration can

once again only be treated as an upper bound. The lack of any visible chirp in the

trace in combination with the very large bandwidth means that the test pulse is likely

below 3 fs in duration, as predicted by the numerical modelling for this combination of

parameters.

With the incorrect nonlinear crystal, the measurements presented here cannot un-

ambiguously determine the pulse duration of the dispersive wave, and significant

assumptions have to be made to make any quantitative statements at all. However, the

primary purpose of the characterisation apparatus is fulfilled: the absence of significant

pulse chirp in any of the measurements so far is clear evidence that it is possible to

deliver a very short pulse to an experiment by using a negative pressure gradient, and

that dispersive wave emission can be a powerful source for ultrafast science. Exactly

how short the pulses are will have to be determined in a future experiment using the

correct nonlinear medium. This will consist of simply replacing the crystal, since all

other parts of the measurement have been proven to work through the results presented

already.
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Probe

With dispersive wave emission providing a source of ultrashort pulses that is tunable

across the DUV, both the pump and probe pulses for an SXR transient absorption

experiment are available. However, the question of delay stability between the two

pulses has yet to be addressed.

In the apparatus described in chapters 4 and 5, the DUV pulses are generated using a

driving pulse that is split from the output of the laser, while the higher-energy portion

of the pulse is converted to the SWIR, compressed, and finally used to drive HHG. The

SXR harmonics are then combined with the DUV pulse. The optical path from the

splitting point to the recombination mirror is over 12 m long, comprising the internal

path of the OPA, beam routing into, through, and out of the SWIR capillary, as well

as the in-vacuum pump-probe interferometer. Over this distance, thermal fluctuations

may cause femtosecond-scale drifts in the delay between the two pulses, drastically

reducing the effective time resolution of the experiment. A large proportion of both

paths is outside of vacuum, so that currents and temperature-dependent refractive

index changes in the air are present in addition to expansion and contraction of optics

and optical tables.

One possible technique to alleviate this problem is to measure the delay between the

two arms, for instance via spectral interferometry, and to re-sort the data from delay

scans based on this [151]. However, this requires the two pulses to overlap spectrally

at least in part, which is not the case for the SWIR pulse driving HHG and the pulse

driving DWE. Additionally, the timescale of delay drifts needs to be significantly slower

than the acquisition time at each delay point for the re-sorting to be effective. With the
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low signal levels in SXR spectroscopy using HHG sources necessitating several minutes

of integration at each point1 [53], this requirement cannot easily be met.

Because of these issues, it would be preferable for the two arms to have common

optical paths for as long as possible. At the very least, this requires the DUV generation

to be driven by the SWIR pulse. For example, the pulse could be split after the SWIR

capillary with both parts being compressed separately and used to drive the two

frequency conversion processes, HHG and DWE. However, this would still require the

pump-probe interferometer to begin outside the vacuum chamber, or alternatively that

a high-pressure gas cell be placed inside the chamber, neither of which are particularly

desirable. Furthermore, a substantial portion of the SWIR pulse would have to be split

off to drive the DUV generation process.

A better solution is to generate both the few-cycle SWIR pulse and the DUV pump

pulse in the same fibre, directly connected to vacuum, and split them inside the

chamber. In this way, both the splitting and recombination occur in vacuum and thus

close together. Additionally, the two pulses never propagate in air, reducing both the

attendant instability issues as well as dispersion, and the driving pulse energy available

for HHG is reduced only by the small amount lost in the splitting process. The use of a

self-compressed pulse to drive HHG has been proposed [152] and demonstrated [153]

before, however so far only propagation in PCF has been considered, limiting the total

pulse energy, and the potential to create two pulses has not been explored.

In this chapter I propose a scheme to simultaneously generate both a SWIR and a

DUV pulse, both of sub-5 fs duration, in a single waveguide that can be connected

directly to a vacuum system. Instead of a PCF, the proposed apparatus uses a simple

capillary of the type already used in our laboratory, significantly reducing both the cost

and the demands on the beam profile of the initial pulse. I will further demonstrate,

using a simple numerical model, that the infrared pulse is capable of generating high

harmonics in the SXR range.

1In principle, it is possible to integrate for shorter periods and take several spectra at each delay point.

The degree to which this is practical, however, is limited by the read-out noise of the detector.

158



6. A Combined Source for Pump and Probe 6.1. Practical constraints

6.1. Practical constraints

The most important requirement for the output of the proposed source is that it must

generate the correct pulses. For the DUV pulse, the desired characteristics are the

same as in the case of driving at 790 nm, with one exception: because the driving

pulse generated in the OPA is much more energetic, the conversion efficiency from the

driver to the DUV pulse is less important. Even a decrease in the efficiency by one

order of magnitude would lead to more energy in the DUV pulse than achieved so

far. The pulse duration and tunability of the photon energy are needed just as before.

Consequently, the requirements on vacuum propagation are also the same, meaning

that a negative pressure gradient has to be used.

Further requirements are added by the intention of generating two short pulses

simultaneously, which is to say that the driving pulse should remain short after the

self-compression process. This means that soliton fission must not be allowed to occur.

Moreover, significant stretching of the soliton after DWE has happened should also

be avoided; with the dispersion of both the fibre and most optical materials being

negative at SWIR wavelengths, re-compressing the pulse afterwards poses an added

complication. Therefore, the point of maximum self-compression and DUV emission

should be very close to the end of the fibre. This is in contrast to the process used in

previous chapters, in which the DUV pulse was often created nearer the middle of the

fibre.

Another parameter that has been ignored so far is the total power transmission of the

apparatus including the waveguide. This is of paramount importance for the proposed

source because of the extreme inefficiency of the HHG process used to generate the

attosecond SXR pulse. Commonly, over 600 µJ of driving pulse energy is required

with a pulse duration below 15 fs to access to the water window. Thankfully, the

comparatively large pulse energy means that a fibre with a much larger core diameter

can be used while still obtaining the necessary intensity for strong nonlinear effects. In

the proposed scheme, a simple capillary of 400 µm core diameter is used. At this size,

the propagation loss at the SWIR wavelength of 1750 nm is only 0.36 dB m−1, lower
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Current

OPA

Proposed

OPA

400-800 mbar Ar

2-5 bar Ne

1 m, 400µm

2 m, 400µm

5% DWE

Figure 6.1.: Optical layout of the current (top) and proposed (bottom) experimental

apparatus for the generation and combination of high harmonics and DUV

pulses. Note that the experimental chamber (at the right edge of the image)

is not the same as that containing the XFROG apparatus.

even than in most anti-resonant PCF.

The large core diameter reduces the anomalous dispersion of the waveguide when

compared to the small anti-resonant PCF used in earlier chapters; the GVD of an evacu-

ated 400 µm capillary at 1750 nm is only −35 fs2 m−1, compared to around −250 fs2 m−1

for a 45 µm PCF at 790 nm. Since the pulses generated in the OPA process are also

comparatively long, around 35 fs, the dispersion length is very large, exceeding 10 m

even in an evacuated capillary. Correspondingly, the soliton fission length for moderate

soliton numbers is in the range of a few metres, meaning that a longer fibre is needed.

In practice, this cannot be scaled arbitrarily, however, for the simple reason that the

optical table has a finite length. The table just outside the vacuum chamber containing

the pump-probe interferometer is 3 m long. Although the current SWIR capillary is

only 1 m long, it takes up nearly the entire table. This is because the beam at the
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entrance and exit of the capillary is very small, and the intensity correspondingly high.

The entrance and exit windows must therefore be placed sufficiently far away from the

entrance and exit faces of the waveguide to avoid burning, resulting in a total length of

2 m for the apparatus including the gas cells on either side of the capillary. In addition,

the focusing and collimating mirrors are around 50 cm away from the entrance and

exit windows, respectively, so that the angle of incidence on the spherical optics can be

minimised to avoid astigmatism (see fig. 6.1).

For a capillary directly coupled to the vacuum chamber, the added length on the exit

side of the waveguide can be omitted, since the re-collimation occurs in the vacuum

chamber. This puts the maximum waveguide length achievable without a major re-

design of the laboratory at around 2 m. One option to increase this further would be to

let the capillary extend into the vacuum chamber for some distance, however given the

space constraints inside it, this may prove very difficult in practice.

Apart from lower cost and easier procurement, the use of a capillary as the waveguide

additionally eases the requirements on the input beam profile. As discussed in sec-

tion 4.3, a beam being coupled into a PCF needs to be almost entirely free of distortions

in order to avoid damage to the delicate cladding structure. This would add significant

experimental complication and introduce additional losses to the fibre-coupling of

the SWIR driving pulse, since the profile of the beam generated in the OPA is very

poor (see fig. 6.2a), requiring aggressive spatial filtering. Given the high pulse energy,

nonlinear effects in air are likely to occur in the focal plane of the spatial filter, so that

the filtering would have to be done in vacuum. When using a capillary, the extra stage

of filtering can be avoided, since it acts as a spatial filter itself.

161



6.2. Numerical results 6. A Combined Source for Pump and Probe

−4 −2 0 2 4

X [mm]

−4

−2

0

2

4
Y

[m
m

]

(a)

200 300 400 500

Core diameter [µm]

0

2

4

6

Pr
es

su
re

[b
ar

]

0

2

4

6

Fi
ss

io
n

le
ng

th
[m

]

(b)

Figure 6.2.: (a) The far-field beam profile of the 1750 nm pulse generated in the OPA.

The small features in the top part of the beam are caused by dust on the

attenuators in front of the camera, and the vertical lines are artefacts from

the camera chip.

(b) The (static-fill) phase-matching pressure in neon (left axis, black) for

DWE at 250 nm when driven by 700 µJ energy in a 35 fs driving pulse at

1750 nm for a variety of capillary core diameters, and the resulting fission

length (right axis, red).

6.2. Numerical results

To establish that the simultaneous generation of both a driver for HHG and a DUV

pump pulse is feasible both in principle and in practice, I have performed numerical

simulations of an experimental set-up that could be built in our laboratory. To establish

realistic parameters, the current SWIR capillary pulse compression apparatus was taken

as a guide.

Since the input beam profile is very poor (see fig. 6.2a), the low coupling efficiency at

the capillary entrance significantly reduces the amount of energy that actually drives

nonlinear processes in the fibre. Therefore, the total pulse energy before coupling is

not an appropriate value to take for the simulations. Instead, the transmitted energy
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can be used. At present, a typical value for the pulse energy transmitted through the

evacuated 400 µm capillary is 650 µJ. By measuring the spatio-temporal profile of the

beam after the capillary, it has previously been established that most of the energy is

indeed propagating in the fundamental mode [154]. Using the propagation loss from

the Marcatili model as in eq. (3.1.8), this corresponds to an initial pulse energy in the

fundamental mode of around 770 µJ. One consequence of this is that a conversion

efficiency to the DUV of less than 0.2 % would be sufficient to obtain µJ-level pulses.

Within the analytical model for phase-matching to the dispersive wave introduced

in section 3.4, the choice of the waveguide diameter is largely arbitrary because of the

scaling of the various parameters. A smaller core will lead to higher loss per unit length,

however the intensity is higher and the anomalous waveguide dispersion stronger, so

that both the dispersion and nonlinear lengths are shorter. Correspondingly, the soliton

fission length, which can be taken as a length scale for the DWE process, is also shorter,

so that a shorter waveguide can be used, decreasing the overall loss. This implies that

by choosing a smaller, shorter waveguide, the same overall dynamics can be achieved

while making the apparatus more compact.

However, this analysis ignores both photoionisation effects and the coupling into the

waveguide [23]. As mentioned, the intended application for the light source demands

that a negative pressure gradient be used. Therefore, the presence of a nonlinear

medium at the fibre entrance has to be taken into account. Both the self-focusing

induced by the Kerr effect and the plasma defocusing will influence the coupling

efficiency, especially since the spatial filtering effect of the capillary has not yet taken

place, so that the intensity distribution is not perfectly uniform and the pulse energy is

high. In order to avoid these issues, it is prudent to simply increase the core diameter

to the largest practical size to reduce the intensity at the entrance face.

With the waveguide length limited to around 2 m, the problem of finding the biggest

feasible core size reduces to making sure that the fission length under the conditions

required for DUV generation is around this value. This is complicated somewhat by

the presence of the pressure gradient, however the core size obtained for a static fill can
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Figure 6.3.: Spectral (left) and temporal (right) evolution of the 35 fs SWIR driving pulse

discussed in the text in a 2 m long capillary with a core diameter of 400 µm

filled with neon using a negative pressure gradient from 3.4 bar to vacuum.

The strong fringes in the time-domain plot are created by the third harmonic

of the driving pulse, visible around 600 nm in the spectral-domain plot.

Note that the logarithmic colour scale for the frequency domain plot spans

four orders of magnitude.

serve as a guide for a numerical exploration of the parameter space.

Figure 6.2b shows that for phase-matching at 250 nm, a fission length of just under

2 m is obtained for a core diameter of about 350 µm. To obtain similar dynamics with

a pressure gradient, the initial pressure needs to be higher, suggesting that the core

diameter should be slightly larger than this value. Therefore, a core diameter of 400 µm

is indeed reasonable.

One example of a soliton self-compression and DUV emission process in a practically

feasible capillary waveguide is shown in fig. 6.3. The simulation in this case includes

the loss of the capillary as shown in eq. (3.1.8). The typical features associated with

the appearance of the dispersive wave are present, including the dramatic spectral
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Figure 6.4.: Infrared (left) and DUV (right) pulses at the end of the fibre from the

simulation shown in fig. 6.3. The bandpass windows are 400 nm to 5000 nm

for the infrared pulse and 190 nm to 250 nm for the DUV pulse. The inset

in the left plot shows a zoomed-in region around the peak of the infrared

pulse.

expansion and temporal compression of the driving pulse. Crucially, the point of

maximum pulse compression is far enough towards the end of the fibre to avoid soliton

fission, and the driving pulse stays intact.

The dispersive wave appears at 225 nm in this example. The conversion efficiency to

the DUV is 3.6 %, similar to what was achieved when driving with a pulse at 790 nm.

However, due to the much larger input energy, the DUV pulse contains over 25 µJ of

energy. The pressure at the entrance side of the fibre is 3.4 bar, but at the point of

dispersive wave emission it has dropped to 1 bar. This is close to the phase-matching

pressure for a dispersive wave at 225 nm driven by this input pulse as calculated using

the GNLSE model, which is 1.2 bar.

Power stability

Because the pulse driving the self-compression process in the proposed scheme is itself

derived from the laser output using a nonlinear frequency conversion process, the input

pulse energy fluctuates more than that of the laser output itself. As already mentioned,
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Figure 6.5.: Infrared (left) and DUV (centre) pulses as in fig. 6.4 for 5 values for the

input energy between 683 µJ and 718 µJ, representing the extremes of a

5 % fluctuation in the input pulse energy around the nominal value of

700 µJ. The pulses were overlaid by shifting their peak to time t = 0. Right:

spectrum of the DUV pulse for the same range of input energies.

the beam path inside the OPA system is also very long, so that the OPA output energy

and any pointing instabilities in the laser beam are coupled through the alignment

sensitivity of the apparatus. A conservative (i.e., pessimistic) estimate of the pulse

energy fluctuation of the system is around 5 %.

It is thus important to consider the effect of these energy fluctuations on the self-

compression process. Should a small increase of energy lead to soliton fission, for

instance, or a small decrease to the disappearance of the DUV pulse, the requirements

on the laser stability may be impractically stringent. These particular issues are not

present when using a capillary for only spectral broadening; in this case, energy

fluctuations couple to the pulse duration after compression, but do not usually lead to

pulse breakup.

As shown in fig. 6.5, even the more demanding self-compression process is not

affected too strongly by input energy fluctuations. A 5 % change around the mean

energy leaves the shapes of both the infrared and DUV pulses essentially unchanged,

with neither pulse duration changing by more than 5 %. However, the pulse energy
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Figure 6.6.: Dependence of the electric field, rather than intensity, profile of the self-

compressed infrared pulse on the CEP of the input pulse, shown at the exit

of the fibre.

Left: field profiles at the CEP value resulting in the highest peak field (π/2)

and the one exactly π/2 out of phase from it. The black dashed line shows

the intensity profile at φ0 = 0.

Right: Evolution of the field profile with CEP.

in the DUV changes dramatically, with an overall fluctuation of about 50 % around

the mean. Furthermore, the central wavelength of the DUV pulse shifts a little, with

the centre of mass of the main peak changing by ca. 3 nm at the extremes. This

is a consequence of the fact that the DUV emission occurs at very slightly different

pressures when the input energy is changed as well as the small change in the nonlinear

contribution to the phase-matching.

The frequency shift is likely inconsequential when the source is used in an experiment,

since it is very small compared to the bandwidth of the pulse. The energy fluctuation is

more worrisome, however, and reducing any instabilities present in the laser and OPA

output as much as possible is therefore very important.
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Carrier-envelope phase

As explained in section 2.3, a simple, if not easy, way of generating isolated attosecond

pulses with HHG is to use a few-cycle pulse to drive the process. However, this places

additional demands on the pulse as compared to the case of a multi-cycle driving field.

As the pulse duration approaches the cycle time of the field, the CEP of the pulse

becomes more and more important. If the peak of the carrier wave under the intensity

envelope does not coincide with the peak of the envelope itself, the maximum field

strength is reduced, leading to weaker harmonic emission. For a pulse envelope that

is symmetric around its peak, like for instance a Gaussian pulse, the extreme case is

that the maximum field strength occurs at two points in the pulse envelope, so that

two attosecond pulses at lower photon energy are created.

The self-compressed pulse is extremely short, with an intensity envelope several

times shorter than the cycle time of the input pulse (5.8 fs). At this pulse duration,

the definition of the CEP becomes somewhat less useful, given that the carrier field

is strongly reshaped by the envelope and non-sinusoidal. However, the CEP of the

multi-cycle input pulse still has a dramatic effect on the output pulse. In fact, because

the self-compression dynamics are sensitive to the electric field itself rather than purely

the intensity envelope, the shape of the self-compressed intensity envelope also changes

as the input CEP varies. This is in sharp contrast to the case of pure spectral expansion

without self-compression, where the pulse is not strongly reshaped as it propagates,

and the sub-cycle effects of strong-field ionisation play a much smaller role.

Figure 6.6 shows the effect of varying the input pulse CEP on the output pulse. The

pulse splits from a single strong spike into two cycles of lower, near-equal strength

as the phase is changed by π/2, in a similar way to a Gaussian pulse. However, the

evolution of the pulse between these points, shown in the right-hand part of the figure,

is more complicated, since the intensity envelope also changes shape – note that the

envelope shown as a dashed line in the left-hand part of fig. 6.6 differs from that shown

in fig. 6.4.

This variation of the envelope as well as the carrier has potentially important con-
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sequences for the use of the proposed source to generate attosecond pulses. The

numerical results show that, similar to traditional capillary-based pulse compression

schemes, the CEP of the driving pulse must be stabilised to reliably generate single

attosecond pulses. In the OPA system used in our laboratory to down-convert the

790 nm laser pulses to the SWIR, the CEP of the pulse at 1750 nm is passively stabilised

by the frequency conversion process: since the 1750 nm pulse is the idler in the OPA

process, its phase is determined by the difference between the phases of the pump (at

790 nm) and the signal (at 1480 nm). With both of the latter derived from the same

laser pulse, this phase difference is constant except for small fluctuations in the delay

between the pulses [155]. The fluctuations are measured and compensated for by

adjusting the length of the signal-pump interferometer in the parametric amplifier in a

feedback loop.

Stability of the CEP does not mean that it has the correct value at the point of

attosecond pulse generation, however. Rather, the CEP needs to be scanned in order

to find the optimum condition. This is partly because most measurements of the

CEP can only determine phase differences rather than an absolute value of the CEP.

Furthermore, the phase and group velocity of the pulse are not equal except in vacuum,

so that the CEP in the harmonic generation target is determined by the precise optical

path length to the target. Since the stabilisation is done in the OPA system, any tuning

of the CEP is also most easily carried out there by adding an offset to the stabilisation

feedback loop. For self-compression of the infrared pulse, however, this tuning affects

not only the CEP but also the pulse shape, so that the combination of optimal pulse

shape and CEP may be impossible to attain. This problem can be overcome by tuning

the CEP after the fibre with the insertion of glass wedges. By using sufficiently thin

wedges manufactured from a material that is weakly dispersive at the SWIR wavelength,

such as CaF2 (GVD of −8.5 fs2 mm−1 at 1750 nm), the added dispersion can be kept to

a minimum.
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6.3. Potential for attosecond pulse generation

To ascertain whether the self-compressed pulse discussed in the previous section is

indeed capable of generating SXR harmonics, I have calculated the HHG spectrum

resulting from focusing this pulse into a gas target. To do this, I used the strong-field

approximation (SFA), the most common numerical model for HHG [31, 49].

The strong-field approximation

The SFA takes its name from the principal assumption of the model, namely that the

laser field applied to the atom is very strong. Additional assumptions are the single

active electron approximation, which means that only the outermost valence electron of

the atom can be ionised, and the dipole approximation, which means that the electric

field varies only with time and not space. The latter is equivalent to the assumption that

even the furthest excursion of any electron is much shorter than the driving wavelength.

In combination, these approximations lead to a model in which only the ground state

and the field-dressed continuum (i.e., free-electron) states of a single electron have to be

considered, with the electric field driving transitions between the two. Bound excited

states are ignored.

The quantity of interest is the time-dependent dipole moment of a single atom-

electron system,

D(t) = 〈Ψ|r|Ψ〉 , (6.3.1)

where r is the spatial coordinate and |Ψ〉 is the state of the electron. This is because

the dipole moment is directly related to the nonlinear polarisation Pnl through the

density of atoms subjected to the laser field. Therefore, the Fourier transform of

the dipole moment yields the spectrum of the nonlinear response, which is to say

the HHG spectrum. The utility of the SFA is that it allows for the calculation of D(t)

without solving the time-dependent Schrödinger equation itself, decreasing the required

computation time by orders of magnitude. This means that varying parameters such as

the pulse duration, pulse energy or gas pressure becomes feasible.
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Two further approximations are necessary to make the calculation of D(t) in the

SFA numerically efficient. The first is that no continuum-continuum transitions are

considered, which means that any scattering between a returning electron and the

Coulomb potential of the ion is ignored. The second is to carry out the resulting integral

over momentum using a saddle-point approximation, which simply ignores those parts

of the integral where rapid oscillations in the phase lead to an average value of 0. With

these approximations, the dipole can be calculated as

D(t) = −i
∫ t

−∞
dtb

(
2π

τ

)3/2

g∗(tb)d∗[pst +A(tb)]E(tb) g(t)d[pst +A(t)]e−iS(pst,t,tb)+ c.c. ,

(6.3.2)

where tb can be interpreted as the birth time of the electron and consequently τ = t− tb

is the excursion time, g(t) is the population of the ground state, d(p) = 〈g|r|p〉 is

the dipole moment between the ground state and the continuum, A(t) is the vector

potential of the field, E(t) is the field itself, S(p, t, tb) is the action,

S(p, t, tb) =
∫ t

tb

dt′
(

Ip −
1
2
[
p + A(t′)

]2
)

, (6.3.3)

and pst is the stationary momentum (the momentum at which the action is stationary):

pst =
−1
τ

∫ t

tb

dt′A(t′) . (6.3.4)

To calculate D(t) numerically given a field E(t), the lower limit of the integral over birth

times in eq. (6.3.2) has to be changed to a finite time. By choosing the limit such that

the entire laser pulse is contained in the window, no information is lost. Furthermore,

by assuming a linearly polarised field, we can use scalar quantities.

The SFA is essentially the quantum analogue of the semi-classical three-step model.

Where the three-step model treats the trajectory of the electron outside the ion purely

with classical mechanics [29], in the SFA this is encoded in the action. Furthermore,

the SFA involves no “recombination” of the electron with the ion as a defined event.

Instead, harmonic emission is the result of the interference between the continuum

electron wavepacket and the ground state. The SFA can include the effect of arbitrary

atomic potentials through the dipole moment d, and arbitrary pulse profiles through
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the field E . Furthermore, while it ignores the possibility of ion-electron scattering,

it does include higher-order returns [31]; in the classical picture these correspond to

electrons which pass the atom one or more times before recombination.

As with all nonlinear frequency conversion schemes, phase-matching is very impor-

tant for the efficient generation of high harmonics. In the SFA as presented in eq. (6.3.2),

this is not taken into account at all. It is also not possible to derive a simple phase-

matching efficiency curve such as those for low-order processes [30, 156]. A complete

treatment involves calculating the dipole for each plane of a propagating laser pulse

and adding up the contributions, which is orders of magnitude more computationally

expensive than a single SFA calculation. However, some general phase-matching effects

can be approximated during the SFA calculation itself.

For a sinusoidal laser field, there are two combinations of birth and return times

in each half-cycle of the field which result in the same photon energy, except for

the very highest energy. These pairs are usually separated into the long trajectories

and short trajectories, based on which trajectory has the longer excursion time. The

long trajectories are commonly much weaker than the short ones due to the larger

amount of electron wavepacket diffusion, and furthermore phase-matching for the long

trajectories is more difficult to achieve [30, 156]. In addition, they are emitted with

a much larger divergence and thus hard to detect [39]. It is therefore reasonable to

remove the contributions of the long trajectories. This can be done by attenuating any

components with excursion times longer than one half-cycle, since all short trajectories

have shorter excursion times. So as not to add additional frequency content to the

dipole, it is best to use a smoothly decaying apodisation function, such as the error

function.

The apodisation has the further benefit of reducing the computation time required

for the SFA integral. Without it, the integral for return times near the end of the time

window extends over a very large range in possible birth times, making computation

slow. The apodisation means that a smaller window extending to only around one

cycle of the field can be considered.

172



6. A Combined Source for Pump and Probe 6.3. Potential for attosecond pulse generation

The spectrum of the simulated driving field is very broadband and the spectral

expansion during self-compression is asymmetric due to self-steepening, so the carrier

frequency of the compressed pulse is not the same as that of the initial pulse generated

by the OPA; it furthermore changes slightly over the course of the pulse, partly due to

the strong reshaping of the carrier by the sub-cycle envelope. The apodisation of the

long trajectories was done based on a cycle time of 5.5 fs.

There are two quantities in the SFA integral eq. (6.3.2) which are not immediately

given by the SFA itself. The first is the dipole moment d between the ground state

and the continuum. Values for this as well as approximate analytical expressions are

available in the literature [157]. The second quantity is the ground-state population

g(t). This can be calculated using one of the approximate ionisation rates introduced

in section 2.2.5. Through g(t), the SFA includes the effects of ground-state depletion;

in a very strongly ionised medium, g(t) is small, so that the dipole D(t) is drastically

reduced, and harmonic generation ceases. Here, ground-state depletion was included

by calculating g(t) with the ADK ionisation rate.

It is important to note that since only a single electron is considered and the bound-

state structure of the atom is largely ignored, the SFA cannot give accurate results

for low-order harmonics of the laser field. Another way to view this is that the semi-

classical analogue, the three-step model, clearly does not apply where the response

of the atom is due to bound charges, because only a liberated electron is considered.

Furthermore, while the shape and frequency extent of the harmonic spectrum calculated

by the SFA is a good guide as to what to expect in an experiment, the harmonic yield

or conversion efficiency is not, with the SFA commonly overestimating the yield by

around two orders of magnitude [158].

Results

Figure 6.7 shows the harmonic spectrum as a function of input CEP for the driving

pulse shown in figs. 6.3 and 6.4 when focused into a helium gas target. Only the on-axis

field in the focal plane of an aberration-free Gaussian beam was considered. To obtain
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Figure 6.7.: CEP-dependent high-harmonic spectra calculated using the SFA for the self-

compressed pulse described in the previous section, focused into a helium

target with a magnification of M = 0.5, resulting in a focal spot diameter

of 128 µm. Phase-matching of the short trajectories was approximated by

temporal apodisation of birth times more than one half-cycle before the

return time, assuming a cycle time of 5.5 fs. The dashed black line shows

the CEP value for which the spectrogram is shown in fig. 6.8.

the driving field amplitude in the medium, the scaling inherent in the single-mode

FME was undone and the transverse field profile of the pulse modelled as a Gaussian

beam with a waist given by the value for optimum coupling efficiency, w0 = 0.64a with

a the fibre core radius. Collimation and refocusing was included by re-scaling the field

strength according to the magnification of the imaging system; here, M = 0.5 was taken

to include collimation with an f = 1 m optic and re-focusing with an f = 50 cm optic.

The SFA results show that the pulse is capable of generating high harmonics across

all of the water window and beyond, with the highest cutoff photon energy at around

600 eV. This is despite the relatively loose focusing with a focal spot size of 128 µm,

which is more than twice the focal diameter used in recent work on SXR HHG in our

laboratory. The difference arises from several factors.

Firstly, the model presented here does not include any losses or dispersion introduced
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to the pulse during the transport from the capillary to the gas target. Given that the

pulse is directly delivered to a vacuum chamber in the proposed apparatus, ignoring

dispersion is not a very significant approximation, however the reflectivity of the beam

transport optics would have to be taken into account for a more realistic model. Energy

loss would make tighter focusing necessary to achieve the same intensity, however in

this simple zero-dimensional model nothing else would change.

Secondly, the pulse used here is significantly shorter than that used in our previous

work, where the driving pulse could not be compressed much below 12 fs due to

dispersion in the beam path. The driving pulse also likely had a strong satellite after

the main peak, reducing the peak intensity further [53, 154]; this is not the case for

the pulse in the simulations. It should be noted that although the pulse duration is

only a fraction of the cycle time (5.8 fs at 1750 nm), this does not lead to a significant

reduction in the ponderomotive energy; the full width of the electric field transient itself

is ca. 2.25 fs, corresponding almost exactly to a single half-cycle of the long-wavelength

driving field. The pulse thus has a near-perfect shape for the generation of isolated

attosecond pulses, with little ionisation or harmonic emission occurring before and

after the main peak and a sufficiently long cycle time for high photon energies.

The third factor leading to the very high photon energies as compared to previ-

ous experiments is the most important, namely the lack of macroscopic effects. As

mentioned before, this single-point SFA calculation does not include the effects of

phase-matching beyond removal of the long trajectories. A related issue is that the

reshaping of the beam by the Kerr effect and plasma defocusing in the gas target is not

included. Numerical modelling of our recent experimental results showed that this is a

very important effect when driving HHG with long-wavelength pulses, partly because

the refractive index contribution from the plasma increases for longer wavelengths (see

eq. (2.2.38)).

The highest ionisation fraction in the simulations shown here occurs at a CEP value

of π/2 and reaches as high as 9 %. As a result, the peak intensity in the target will

likely not reach the value assumed in this simple model, reducing the peak photon
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energy. The plasma defocusing effect should be somewhat weaker than in previous

experiments, since only the main peak of the pulse contributes significantly. However,

the fact that the gas target does not have hard boundaries and so some gas will be

present for an extended distance before the target means that defocusing will still occur

in practice.

An interesting feature of the CEP-dependent harmonic spectra in fig. 6.7 is that while

the highest photon energy occurs at a CEP value of π/2 as suggested by the field

profiles in fig. 6.6, the highest overall flux in the water window is obtained at a value of

ca. 0.75 π, indicated by the dashed black line in fig. 6.7. From these simulations it is not

immediately clear why this is so, however it is likely related to the detailed interplay

between the CEP-dependent shape of the carrier and pulse envelope.

The absence of any discrete harmonics in the spectra already indicates that the SXR

radiation is generated as an isolated pulse. To establish that this pulse is indeed of

attosecond duration and to obtain the bandwidth over which a single pulse can be

isolated, it is useful to calculate the spectrogram of the SFA dipole. The spectrogram is

created using a Gaussian gate and is therefore calculated as

S(ω, t) = Ft′
[

D(t′) e−[(t
′−t)/∆t′]2

]
, (6.3.5)

where ∆t′ is the 1/e half width of the gate, chosen here as 100 as.

The spectrogram of the SFA dipole with an input CEP of 0.75π is shown in fig. 6.8.

The fact that energies above 200 eV are only created for the strongest peak of the pulse

indicates that they are emitted as an isolated attosecond burst. Although the transform-

limited pulse duration of this spectrum is below 20 as, the real pulse duration even

in this simulation is much longer, around 200 as. The cause for this can be seen in

the spectrogram: different photon energies are emitted at different times due to the

dependence of the photon energy on the excursion time. This inherent dispersion is

known as attochirp. It can be compensated to an extent by passing the harmonic beam

through thin metal films, which are transmissive as well as anomalously dispersive for

certain regions of the SXR photon energy range [159].

In an experiment, the limited bandwidth of high-harmonic phase-matching as well as
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Figure 6.8.: Top: spectrogram of the dipole D(t) as obtained by the SFA for an input

CEP value of 0.75π. The window function is a Gaussian with a 1/e half

width of 100 as.

Bottom: squared electric field E(t)2 of the driving pulse. The dashed line

shows the field profile for an input CEP of 0.5π

the dispersion of the medium would likely further limit the pulse duration. However,

a sub-femtosecond pulse should be easily obtainable. The source proposed here is

thus capable in principle of producing both the pump and probe pulses for a transient

absorption experiment with an unprecedented time resolution of around 3 fs using

only a single pulse compression stage.
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Progress in ultrafast science has depended on the development of new light sources

for the entirety of the field’s relatively short history. As the focus shifts from atoms to

molecules and from gas-phase experiments to solid and liquid targets, the availability

and characterisation of extremely short pulses at new wavelengths is one of the dom-

inant issues. In many areas of light source development, the state of the art is being

overturned by the application of novel micro-structured waveguides and their unique

capabilities.

In this thesis I have presented work towards harnessing these capabilities to generate

ultrashort pulses across the deep ultraviolet for time-resolved experiments, with a

particular focus on applying it to soft X-ray transient absorption spectroscopy. In

addition, I have demonstrated that the phenomenon of soliton self-compression, which

forms the basis of this pulse generation mechanism, can be used for both parts of the

experiment simultaneously in a single fibre, greatly reducing complexity and improving

both the reliability and performance of the apparatus.

In chapter 4 I described the design, modelling and implementation of an experi-

mental apparatus to use soliton self-compression and dispersive wave emission as a

source of tunable ultrashort pulses in the deep ultraviolet. To increase the conversion

efficiency, the driving field is pre-compressed by a factor of 2 in a hollow-capillary

pulse compressor. The design of the apparatus places particular emphasis on fulfilling

the stability requirements for long data acquisition times and the need to protect the

photonic crystal fibre from damage. While not record-breaking, the energy conversion

efficiency is already sufficient for many experiments and can likely be improved further.

Delivery of the generated pulses to an experiment while avoiding pulse distortions
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and stretching poses a significant challenge, and one that has remained somewhat

unexamined until now. To address this issue, the simplest and most effective solution

is to connect the light source directly to a vacuum chamber, which results in a pressure

gradient in the waveguide. This poses additional complications both in a numerical

model and in the experiment, however the utility of the source remains unchanged.

To verify that dispersive wave emission can indeed be used as a source of ultrashort

pulses in a real experiment, in chapter 5 I presented the characterisation of deep

ultraviolet pulses using ptychographic methods under conditions which closely match

those of a future time-resolved experiment. The measurements show that direct-to-

vacuum coupling of the generation apparatus provides essentially dispersion-free

transport of the pulse from generation to target, so that very short pulses can be

delivered. This remains true when the wavelength of the pulse is changed, indicating

that the full tuning capabilities of the dispersive wave can be utilised without significant

additional complications.

Unfortunately, the fact that a sufficiently thin nonlinear medium was not available

precludes definitive statements about the pulse shape for the moment, so that a

systematic investigation of the optimal parameters for the shortest possible pulses will

have to wait. However, the data so far strongly suggests that durations significantly

below 5 fs are achievable in this system while retaining tunability. Once the appropriate

nonlinear medium is available, a higher-quality measurement will be straightforward.

In the numerical model for the generation of ultraviolet pulses, a particular scenario

appeared in which both the driving pulse and the dispersive wave exit the fibre as

high-quality few-femtosecond pulses. In chapter 6, I explored this phenomenon further

with a view to apply it to the generation of soft X-ray attosecond pulses. This would

harness both the self-compression and secondary pulse generation capabilities. From

the simulations, the great potential of this kind of source is easily apparent. The

creation of high-energy sub-cycle pulses alone makes the self-compression technique an

attractive option for harmonic generation, especially because most of the pulse energy

is contained in a single peak and can contribute to X-ray emission. The calculated
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single-atom harmonic spectrum extends across the water window and beyond even

with relatively loose focusing. In combination with the simultaneous creation of a

bright second pulse in the ultraviolet, the proposed source is uniquely capable of

driving a time-resolved soft X-ray experiment using existing laser sources.

To make this proposal a reality, more work is required on the experimental imple-

mentation. For instance, the phase-matching conditions for harmonic generation have

not been addressed thus far. This is partly due to the fact that phase-matching of soft

X-ray harmonics is poorly understood, and so far no consensus has emerged on routes

towards source optimisation. Therefore, only sophisticated and resource-intensive

numerical modelling or experiments can give more insight into how the brightness of

high-harmonic soft X-ray sources can be increased. Given the extensive expertise and

previous work on this topic in the Laser Consortium, this laboratory is very well-placed

to implement and test the proposed source and use it in experiments.

While this work focused on the deep ultraviolet and short-wavelength infrared parts

of the electromagnetic spectrum, all techniques presented here can be applied to a

number of combinations of driving and dispersive wave frequency. Especially for the

dispersive wave, this potential extends in both directions. The generation of ultrashort

pulses in the vacuum ultraviolet is more challenging due to detection issues, but there

are no fundamental restrictions that prevent it. On the other hand, dispersive wave

generation across nearly all of the visible spectral range has already been demonstrated.

There are two main avenues for future work based on the results acquired and

challenges encountered during the experimental work for this thesis. Initially, the

first of these consists simply of repeating the pulse characterisation measurements

in the deep ultraviolet with an appropriate nonlinear medium to establish the true

pulse duration achieved with the source presented here. The next step will be to

explore in more detail how the various experimental parameters influence the pulse

duration in the dispersive wave, and consequently how the duration can be improved

further towards the sub-femtosecond regime. If the bandwidth can be improved

sufficiently, this could provide a route towards true attosecond-resolution experiments.
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Depending on the dynamics being investigated and the relevant absorption resonances,

two dispersive wave sources may be used instead of a probe based on high-harmonic

generation, increasing the total pulse energy available for the experiment by several

orders of magnitude.

The second avenue for future work is to apply the source that is already available to

experiments with few-femtosecond resolution, such as a soft X-ray transient absorption

study. Work towards this goal is ongoing in our laboratory, and the availability of

tunable pump pulses for such an experiment opens up a wide variety of possible

samples. Depending on the molecular system, this may require more pump pulse

energy than has been achieved so far. Improving on the pulse energy of around 250 nJ

reported in chapter 4 can be done in two ways, by increasing the conversion efficiency

or by using more energy to drive the process. The first will consist mostly of an

exploration of the experimental parameter space, however this will have to be done in

conjunction with pulse characterisation measurements to establish whether efficiency

and bandwidth have to be traded off in a similar way to more conventional frequency

conversion schemes. The second is mostly dependent on the availability of applicable

waveguides with larger core diameters, since a large increase in intensity would require

even shorter lengths of fibre than shown in section 5.4, which may not be practical.

The work in this thesis establishes soliton self-compression dispersive wave emission

as a versatile, reliable and practical source of ultrashort pulses for time-resolved

experiments. The exploration of the breadth of possible applications has only just

begun.
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A. Detailed derivations

Temporal phase shift due to GVD

A unchirped Gaussian pulse in time, centred at ω0,

E(t) = E0 e−
1
2 (

t
τ )

2

e−iω0t , (A.1)

has a complex frequency spectrum given by

E(ω) = Ft[E(t)] =
√

2π E0τ e−
1
2 τ2(ω−ω0)

2
. (A.2)

After propagation through a dispersive medium of length L with a GVD at ω0 given by

β2, this is modified:

E(ω, L) =
√

2π E0τ e−
1
2 τ2(ω−ω0)

2
ei 1

2 β2L(ω−ω0)
2

, (A.3)

where we have ignored the phase and group delays β0 and β1, since we are only

interested in the shape of the pulse. The form of the field in eq. (A.3) is a Gaussian with

a complex variance of (τ2 + iβ2)−1. The field in the time domain is therefore given by

E(t, L) = E′0 e
1
2 (τ

2+iβ2L)−1t2
e−iω0t = E′0 exp

[
1
2

τ2 − iβ2L
τ4 + β2

2L2
t2 − iω0t

]
. (A.4)

Note that the peak field E′0 is also different to the unchirped case, however its value is

irrelevant to the present discussion. The temporal phase shift due to GVD is then given

by

φL(t) =
β2t2L

τ4 + β2
2L2

. (A.5)



A. Detailed derivations

The single-mode forward Maxwell equation

The nonlinear polarisation induced by the field in the fundamental mode is given by

(see eq. (2.2.5))

Pnl(r, θ, z, t) =
3
4

ε0χ(3)|E(r, θ, z, t)|2E(r, θ, z, t) (A.6)

=
3
4

ε0χ(3)|E(z, t)|2E(z, t) |e0(r, θ)|2e0(r, θ) , (A.7)

where we have neglected the THG term for simplicity1, and e0(r, θ) is the transverse

field distribution of the fundamental mode. Since |e0(r, θ)|2e0(r, θ) 6= e0(r, θ), to find

the part of this which radiates in the fundamental mode, we project it as in eq. (3.2.12):

P(0)
nl (r, θ, z, t) = ê0(r, θ)

∫
S

Pnl(r, θ, z, t)ê∗0(r, θ)dS , (A.8)

where the integration region S is the fibre core and dS = rdrdθ. Note that this is

expressed in the time domain since the nonlinear polarisation then takes a simple form,

and we have retained the transverse spatial dimension by adding the factor ê0(r, θ). To

carry out the projection, we first need to normalise e0(r, θ) to find ê0(r, θ):

ê0(r, θ) =

[∫
S
|e0(r, θ)|2 dS

]− 1
2

e0(r, θ) . (A.9)

Using this to express ê0(r, θ) in terms of e0(r, θ) in eqs. (A.7) and (A.8) yields

P(0)
nl (r, θ, z, t) =

3
4

ε0χ(3)|E(z, t)|2E(z, t)

∫
S |e0(r, θ)|2e0(r, θ)e∗0(r, θ)dS∫

S |e0(r, θ)|2 dS
e0(r, θ) (A.10)

=
3
4

ε0χ(3)|E(z, t)|2E(z, t)

∫
S |e0(r, θ)|4 dS∫
S |e0(r, θ)|2 dS

e0(r, θ) (A.11)

=
3
4

ε0χ(3)|E(z, t)|2E(z, t) Γ−1 e0(r, θ) , (A.12)

which defines the normalisation constant Γ:

Γ =

∫
S |e0(r, θ)|2 dS∫
S |e0(r, θ)|4 dS

. (A.13)

1Since e(r, θ) can be taken as real-valued, including the THG term in this analysis would lead to the

same result.
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If we now define a re-scaled field Ẽ by

E ≡
√

ΓẼ , (A.14)

and substitute for E in the FME eq. (3.2.7) for the fundamental mode, assuming that

the nonlinear polarisation is solely due to the Kerr effect, we arrive at

√
Γ∂zẼ(0)(r, θ, z, ω) = iβ

√
ΓẼ(0)(r, θ, z, ω) + Γ

3
2 Γ−1 iω2

2ε0c2β
P(0)

nl (r, θ, z, ω) , (A.15)

where the factor Γ−1 in the nonlinear term comes from the projection, and the factor

Γ
3
2 from the third power of Ẽ. Since all of the factors of Γ and the spatial distribution

e0(r, θ) cancel, we recover the FME in the same form:

∂zẼ(0)(z, ω) = iβẼ(0)(z, ω) +
iω2

2ε0c2β
P(0)

nl (z, ω) , (A.16)

and transforming coordinates into the moving frame leads to the single-mode FME

eq. (3.2.14).

By integrating the square of the field E over the transverse surface, we calculate the

total time-dependent power W(t) in the fibre. We can also express this in terms of the

re-scaled field Ẽ:

W(t) =
cε0

2

∫
S
|E(r, θ, z, t)|2dS (A.17)

=
cε0

2

∫
S
|E(z, t)|2|e0(r, θ)|2dS (A.18)

=
cε0

2
Γ
∫

S

∣∣Ẽ(z, t)
∣∣2|e0(r, θ)|2dS (A.19)

=
cε0

2

(∫
S |e0(r, θ)|2 dS

)2

∫
S |e0(r, θ)|4 dS

∣∣Ẽ(z, t)
∣∣2 (A.20)

=
cε0

2
Aeff

∣∣Ẽ(z, t)
∣∣2 , (A.21)

which defines the effective area Aeff:

Aeff =

(∫
S |e0(r, θ)|2 dS

)2

∫
S |e0(r, θ)|4 dS

. (A.22)
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The pre-conditioned forward Maxwell equation

The FME is a first-order ODE, the generic form of which is commonly written as

∂y
∂t

= f (y, t) . (A.23)

In the FME, t is the propagation coordinate z, y(t) is the field E(ω, z) and f (y, t)

contains the linear propagation as well as the nonlinear effects. To better incorporate

the (analytically solvable) linear part of the equation, we can write the generic equation

instead as
∂y
∂t

= L(t)y(t) + f (y, t) , (A.24)

where L is the linear part (in the FME this incorporates dispersion through β(ω, z),

the loss through α(ω, z), and the moving frame) and f (y, t) now only includes the

nonlinear part. We then define the pre-conditioned function ȳ(t):

ȳ(t) = exp
{
−
∫ t

0
L(t′)dt′

}
y(t) = e−L(t)y(t) , (A.25)

where we have also defined the linear propagator L(t) for brevity:

L(t) ≡
∫ t

0
L(t′)dt′ . (A.26)

The left-hand side of the differential equation can thus be expressed as

∂y
∂t

= eL(t)
[

∂ȳ
∂t

+
∂L
∂t

ȳ(t)
]

(A.27)

= eL(t)
[

∂ȳ
∂t

+ L(t)ȳ(t)
]

. (A.28)

Also substituting for y(t) using ȳ(t) on the right-hand side, the whole equation then

becomes

eL(t)
[

∂ȳ
∂t

+ L(t)ȳ(t)
]
= eL(t)L(t)ȳ(t) + f (y, t) , (A.29)

and the two terms proportional to L(t) cancel, leaving us with

∂ȳ
∂t

= e−L(t) f (y, t) . (A.30)

By further defining the pre-conditioned function f̄ (ȳ, t) as

f̄ (ȳ, t) = e−L(t) f
(

eL(t)ȳ, t
)

, (A.31)
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we recover a generic first-order ODE which now includes the pre-conditioner:

∂ȳ
∂t

= f̄ (ȳ, t) . (A.32)

Applying a numerical integrator such as the Dormand-Prince method now automati-

cally includes the linear propagation with the highest possible accuracy, speeding up

computation considerably.

The ptychographic iterative engine for DFG

Here I will derive the form of the update function in the ePIE and rPIE for an XFROG

produced with a DFG process. In this process, the signal field ψ is given by

ψ(t) = E(t)G∗(t− τ) . (A.33)

The fundamental structure of the algorithm is to calculate ψ from the current guesses

for E(t) and G(t), replace its magnitude with the corresponding slice of the measured

XFROG trace, and then update the guesses using this updated field ψ′(t). To obtain

the form of this update, we can write the updated test pulse E′(t) as

E′(t) =
ψ′(t)

G∗(t− τ)
=

G(t− τ)

|G(t− τ)|2
ψ′(t) , (A.34)

that is, we simply apply eq. (A.33). However, this update will only be accurate where

the gate pulse field G(t− τ) is strong; at times where |G(t− τ)|2 is weak, the update

will be very noisy. Therefore, it is prudent to add a weighting function to the update.

Where the gate field is weak, the update simply retains the previous guess for E(t):

E′(t) = [1− w(t)]E(t) + w(t)
G(t− τ)

|G(t− τ)|2
ψ′(t) , (A.35)

where w(t) is near unity where the gate field is strong, and near zero where G(t− τ) is

weak. Since we can express E(t) in terms of ψ(t) by using eq. (A.33),

E(t) =
ψ(t)

G∗(t− τ)
=

G(t− τ)

|G(t− τ)|2
ψ(t) , (A.36)

this update can also be expressed as

E′(t) = E(t) + w(t)
G(t− τ)

|G(t− τ)|2
[
ψ′(t)− ψ(t)

]
. (A.37)
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A very simple weighting function is to use the normalised intensity of the gate field:

w(t) = α
|G(t− τ)|2

|G(t− τ)|2max

. (A.38)

This leads to the update function for DFG in the ePIE:

E′(t) = E(t) + α
G(t− τ)

|G(t− τ)|2max

[
ψ′(t)− ψ(t)

]
. (A.39)

The update function in the rPIE is obtained by using a different weight function which

includes the regularisation component in the denominator:

wrPIE(t) =
|G(t− τ)|2

(1− α)|G(t− τ)|2 + α|G(t− τ)|2max

. (A.40)

Using the form of the DFG field eq. (A.33) to obtain an updated guess for the gate

pulse instead yields

G′∗(t− τ) =
ψ′(t)
E(t)

=
E∗(t)

|E(t)|2
ψ′(t) . (A.41)

Following the same procedure as for the test pulse, this update can be expressed as

G′∗(t− τ) = G∗(t− τ) + w(t)
E∗(t)

|E(t)|2
[
ψ′(t)− ψ(t)

]
. (A.42)

In this case, the weighting function takes into account the normalised intensity of the

test pulse instead:

w(t) = β
|E(t)|2

|E(t)|2max

, (A.43)

which leads to the ePIE update function for the gate pulse:

G′(t− τ) = G(t− τ) + β
E(t)

|E(t)|2max

[
ψ′(t)− ψ(t)

]∗ , (A.44)

which can again be improved by adding a regularisation term in the same manner as

before.
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Journal of the Optical Society of America B, 31(2):p. 311, 2014. ISSN 0740-3224.

doi:10.1364/JOSAB.31.000311 [Cited on p. 100.]

[124] A. Suda, et al. Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with

a pressure gradient. Appl. Phys. Lett, 86:p. 111116, 2005. doi:10.1063/1.1883706

[Cited on p. 103.]

[125] A. Bideau-Mehu, et al. Measurement of refractive indices of neon, argon, krypton

and xenon in the 253.7140.4 nm wavelength range. Dispersion relations and estimated

oscillator strengths of the resonance lines. Journal of Quantitative Spectroscopy and

Radiative Transfer, 25(5):pp. 395–402, 1981. ISSN 0022-4073. doi:10.1016/0022-

4073(81)90057-1 [Cited on p. 109.]

[126] F. Frank, et al. Invited Review Article: Technology for Attosecond Science.

Review of Scientific Instruments, 83(7):p. 071101, 2012. ISSN 0034-6748.

doi:10.1063/1.4731658 [Cited on p. 112.]

[127] C. Knapp and G. Carter. The generalized correlation method for estimation of time

delay. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4):pp.

320–327, 1976. ISSN 0096-3518. doi:10.1109/TASSP.1976.1162830 [Cited on p. 113.]

[128] C. Scott and Craig. Introduction to Optics and Optical Imaging. 1998 [Cited on

p. 121.]

[129] Eksma Optics. Ultrathin nonlinear crystals [Cited on p. 131.]

[130] R. Schalck and Society of Photo-optical Instrumentation Engineers. The

203

http://dx.doi.org/10.1103/PhysRevLett.83.2930
http://dx.doi.org/10.1364/JOSAB.31.000311
http://dx.doi.org/10.1063/1.1883706
http://dx.doi.org/10.1016/0022-4073(81)90057-1
http://dx.doi.org/10.1016/0022-4073(81)90057-1
http://dx.doi.org/10.1063/1.4731658
http://dx.doi.org/10.1109/TASSP.1976.1162830


A. Bibliography A. Bibliography

proper care of optics : cleaning, handling, storage, and shipping. ISBN 0819494577

[Cited on p. 132.]

[131] S. Linden, H. Giessen, and J. Kuhl. XFROG - A new method for amplitude and

phase characterization of weak ultrashort pulses. Physica Status Solidi (B) Basic

Research, 206(1):pp. 119–124, 1998. ISSN 03701972. doi:10.1002/(SICI)1521-

3951(199803)206:1¡119::AID-PSSB119¿3.0.CO;2-X [Cited on pp. 133 and 134.]

[132] S. Linden, J. Kuhl, and H. Giessen. Amplitude and phase characterization of weak

blue ultrashort pulses by downconversion. Optics Letters, 24(8):pp. 569–571, 1999.

ISSN 0146-9592. doi:10.1364/OL.24.000569 [Cited on pp. 133 and 134.]

[133] B. Seifert, H. Stolz, and M. Tasche. Nontrivial ambiguities for blind frequency-

resolved optical gating and the problem of uniqueness. Journal of the Optical Society

of America B, 21(5):p. 1089, 2004. ISSN 0740-3224. doi:10.1364/JOSAB.21.001089

[Cited on p. 134.]

[134] J. R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):p.

2758, 1982. ISSN 0003-6935. doi:10.1364/AO.21.002758 [Cited on p. 134.]

[135] J. M. Rodenburg and H. M. L. Faulkner. A phase retrieval algorithm for shifting

illumination. Applied Physics Letters, 85(108), 2004. doi:10.1063/1.1823034 [Cited

on p. 134.]

[136] J. Rodenburg, A. Hurst, and A. Cullis. Transmission microscopy without lenses

for objects of unlimited size. Ultramicroscopy, 107(2-3):pp. 227–231, 2007. ISSN

0304-3991. doi:10.1016/J.ULTRAMIC.2006.07.007 [Cited on p. 134.]

[137] P. D. Nellist, B. C. McCallum, and J. M. Rodenburg. Resolution beyond the

’information limit’ in transmission electron microscopy. Nature, 374(6523):pp. 630–632,

1995. ISSN 0028-0836. doi:10.1038/374630a0 [Cited on p. 134.]

[138] P. Thibault, et al. Probe retrieval in ptychographic coherent diffractive

204

http://dx.doi.org/10.1002/(SICI)1521-3951(199803)206:1<119::AID-PSSB119>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1521-3951(199803)206:1<119::AID-PSSB119>3.0.CO;2-X
http://dx.doi.org/10.1364/OL.24.000569
http://dx.doi.org/10.1364/JOSAB.21.001089
http://dx.doi.org/10.1364/AO.21.002758
http://dx.doi.org/10.1063/1.1823034
http://dx.doi.org/10.1016/J.ULTRAMIC.2006.07.007
http://dx.doi.org/10.1038/374630a0


A. Bibliography A. Bibliography

imaging. Ultramicroscopy, 109(4):pp. 338–343, 2009. ISSN 03043991.

doi:10.1016/j.ultramic.2008.12.011 [Cited on p. 135.]

[139] A. M. Maiden and J. M. Rodenburg. An improved ptychographical phase retrieval

algorithm for diffractive imaging. Ultramicroscopy, 109(10):pp. 1256–1262, 2009.

ISSN 0304-3991. doi:10.1016/J.ULTRAMIC.2009.05.012 [Cited on p. 135.]

[140] D. Spangenberg, et al. Time-domain ptychography. Physical Review A

- Atomic, Molecular, and Optical Physics, 91(2), 2015. ISSN 10941622.

doi:10.1103/PhysRevA.91.021803 [Cited on p. 135.]

[141] A. M. Heidt, et al. Measurement of complex supercontinuum light pulses us-

ing time domain ptychography. Optics Letters, pp. 1–5, 2016. ISSN 0146-9592.

doi:10.1364/OL.41.004903 [Cited on p. 135.]

[142] P. Sidorenko, et al. Ptychographic reconstruction algorithm for frequency-resolved

optical gating: super-resolution and supreme robustness. Optica, 3(12):p. 1320, 2016.

ISSN 2334-2536. doi:10.1364/OPTICA.3.001320 [Cited on pp. 135, 136, 137, and 139.]

[143] D. Spangenberg, et al. Ptychographic ultrafast pulse reconstruction. Optics Letters,

40(6):p. 1002, 2015. ISSN 0146-9592. doi:10.1364/OL.40.001002 [Cited on p. 135.]

[144] A. Maiden, D. Johnson, and P. Li. Further improvements to the pty-

chographical iterative engine. Optica, 4(7):p. 736, 2017. ISSN 2334-2536.

doi:10.1364/OPTICA.4.000736 [Cited on p. 135.]

[145] D.-M. Spangenberg, et al. All-optical implementation of a time-domain ptychographic

pulse reconstruction setup. Applied Optics, 55(21):p. 5771, 2016. ISSN 0003-6935.

doi:10.1364/AO.55.005771 [Cited on pp. 135 and 139.]

[146] T. Witting, et al. Time-domain ptychography of over-octave-spanning laser pulses

in the single-cycle regime. Opt. Lett., 41(18):pp. 4218–4221, 2016. ISSN 0146-9592.

doi:10.1364/OL.41.004218 [Cited on p. 135.]

205

http://dx.doi.org/10.1016/j.ultramic.2008.12.011
http://dx.doi.org/10.1016/J.ULTRAMIC.2009.05.012
http://dx.doi.org/10.1103/PhysRevA.91.021803
http://dx.doi.org/10.1364/OL.41.004903
http://dx.doi.org/10.1364/OPTICA.3.001320
http://dx.doi.org/10.1364/OL.40.001002
http://dx.doi.org/10.1364/OPTICA.4.000736
http://dx.doi.org/10.1364/AO.55.005771
http://dx.doi.org/10.1364/OL.41.004218


A. Bibliography A. Bibliography

[147] J. Hyyti, et al. Interferometric time-domain ptychography for ultrafast pulse

characterization. Optics Letters, 42(11):p. 2185, 2017. ISSN 0146-9592.

doi:10.1364/OL.42.002185 [Cited on p. 135.]

[148] R. L. Fork, O. E. Martinez, and J. P. Gordon. Negative dispersion using pairs of

prisms. Optics Letters, 9(5):p. 150, 1984. ISSN 0146-9592. doi:10.1364/OL.9.000150

[Cited on p. 141.]

[149] A. Ermolov, et al. Low loss hollow optical-waveguide connection from atmospheric

pressure to ultra-high vacuum. Applied Physics Letters, 103(26), 2013. ISSN

00036951. doi:10.1063/1.4860947 [Cited on p. 142.]

[150] P. O ’shea, et al. Increased-bandwidth in ultrashort-pulse measurement us-

ing an angle-dithered nonlinear-optical crystal. Optics, 7(10):pp. 342–349, 2000.

doi:10.1364/OE.7.000342 [Cited on p. 153.]

[151] E. R. Simpson. Attosecond transient absorption spectroscopy in atomic species. Ph.D.

thesis, Imperial College London, 2016 [Cited on p. 157.]

[152] T. Balciunas, et al. A strong-field driver in the single-cycle regime based

on self-compression in a kagome fibre. Nature Communications, 6, 2015.

doi:10.1038/ncomms7117 [Cited on p. 158.]

[153] F. Tani, et al. Continuously wavelength-tunable high harmonic generation

via soliton dynamics. Optics Letters, 42:p. 1768, 2017. ISSN 0146-9592.

doi:10.1364/OL.42.001768 [Cited on p. 158.]

[154] D. R. Austin, et al. Spatio-temporal characterization of intense few-cycle 2 µm pulses.

Optics Express, 24(21):p. 24786, 2016. ISSN 1094-4087. doi:10.1364/OE.24.024786

[Cited on pp. 163 and 175.]
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