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Bacterial pathogens and commensals are surrounded by diverse surface poly-
saccharides which include capsules and lipopolysaccharides. These carbohy-
drates play a vital role in bacterial ecology and interactions with the
environment. Here, we review recent rapid advancements in this field, which
have improved our understanding of the roles, structures, and genetics of
bacterial polysaccharide antigens. Genetic loci encoding the biosynthesis of
these antigens may have evolved as bacterial diversity-generating machines,
driven by selection from a variety of forces, including host immunity, bacter-
iophages, and cell–cell interactions. We argue that the high adaptive potential
of polysaccharide antigens should be taken into account in the design of
polysaccharide-targeting medical interventions like conjugate vaccines and
phage-based therapies.

Diversity-Generating Machinery
The world of bacteria is extraordinarily diverse, and even the most superficial understanding of
each species alone takes years of research. Therefore, even though most bacteria produce
extracellular polysaccharides, the biology of polysaccharide production has more exceptions than
rules. Nevertheless, a cross-sectional look at different bacterial species reveals many similar
characteristics of carbohydrate antigens, and these similarities have important implications for
their evolution. Here we compare the main aspects of polysaccharide antigen biology between
different antibiotic-resistant global priority pathogens as defined by the World Health Organization
in 2017 (www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed), particu-
larly in relation to their functionality, genetics, and phenotypic variation.

Functions of Polysaccharide Antigens and Their Role in Disease
Bacteria produce several extracellular polysaccharides which are crucial for their ability to
colonise and cause disease. Gram-negative bacteria produce a lipopolysaccharide (LPS),
which is an important component of the outer cell membrane and often includes a highly
variable O-antigen at the end. Gram-negatives can also produce an additional capsular
polysaccharide (CPS), which forms a surface layer. Gram-positive bacteria can synthesise
teichoic acids, and like Gram-negatives, can also produce CPS, but they do not produce LPS.
In addition to these major antigens, both Gram-negative and Gram-positive bacteria can
synthesise exopolysaccharides (EPS), which are released into the environment and are not
attached to the cell.

All of these extracellular polysaccharides play a variety of important roles in bacterial lifestyle
and pathogenesis. Polysaccharide capsules enable bacterial evasion of the host immune
system by shielding bacteria from the complement system, antibodies, or engulfment by
macrophages [14]. Consequently, bacterial capsules are widely recognised as important
virulence determinants [15–20]. A brief summary of major polysaccharide antigens in WHO
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priority pathogens is presented in Table 1. (Note that Neisseria meningitidis is not included as it
does not appear on the WHO list; however, this is also an important encapsulated pathogen for
which capsule-targeting vaccines are in use [21]). Streptococcus pneumoniae capsules
facilitate escape from mucous entrapment, thus affecting bacterial ability to colonise and
transmit [22,23]. The LPS, together with its external component, O-antigen, plays an important
role in bacterial colonisation by protecting the cell from hydrophobic antibiotics [24], or inducing
resistance against bacteriophages [25]. LPS and LOS (lipo-oligosaccharide, which is LPS
without its external O-antigen) have both been shown to be virulence determinants in
Haemophilus, Neisseria, Campylobacter, or Enterobacteriaceae [19,21,26–29]. Furthermore,
both LPS and teichoic acid can contribute to adherence to epithelial cells [30,31]. Finally, the
externally secreted EPS, like colanic acid in Escherichia coli or the alginate in Pseudomonas
aeruginosa, forms the basis of biofilms – a self-produced polymeric matrix which enables
bacterial adhesion to surfaces and protects colonies from environmental dangers, including
desiccation, bacteriophages, antibiotics, or the host immune system [32].

Genetic Architecture and Evolution
In spite of its length, a polysaccharide chain consists of a relatively small number of sugar
molecules. The polymer can be biosynthesised in different ways, but in the large majority of
cases it is done via one of three different mechanisms: the wzy-dependent, ABC-dependent, or
synthase-dependent pathway (reviewed in [5,33]). These pathways engage sugar-specific
enzymes to synthesise the polysaccharide, and the specific combination of these enzymes
determines the sugar structure. There is a notable architectural similarity between genetic loci
which synthesise polysaccharide chains (particularly wzy-synthesis and ABC-synthesis
operons) in that the highly variable, polymer-specific region is located in the middle of the
locus, and is surrounded by conserved genes that usually have roles in transport, assembly,

Table 1. Comparison of Polysaccharide Antigens among WHO Priority Pathogens in Need of New Antibioticsa

Species Class Common habitat Major PS antigens Diversity Biosynthesis Refs

CRITICAL

Acinetobacter baumannii Gram� Diverse environments Capsule 38 serovars, 25 genetic clusters wzy [1]

Pseudomonas aeruginosa Gram� Diverse environments O-antigens (2 types) 20 serogroups wzy, ABC [2,3]

Klebsiella pneumoniae Gram� Diverse environments Capsule, O-antigen 80 K-antigens, 8 O-antigens wzy, ABC [4]

Escherichia coli Gram� Animals Capsule, O-antigen 180 O-antigens, 80 K-antigens wzy, ABC [5,6]

HIGH

Enterococcus faecium Gram+ Animals Teichoic acid, capsule (Understudied) Probably wzy [7]

Staphylococcus aureus Gram+ Animals Capsule 11 serotypes wzy [8]

Helicobacter pylori Gram� Human stomach O-antigen At least eight types wzk [9]

Campylobacter jejuni Gram� Animals Capsule, LOS 47 serotypes, LOS phase variation ABC [10]

Salmonella entericab Gram� Diverse environments O-antigen 46 O-antigens wzy, ABC [11]

Neisseria gonorrhoeae Gram� Humans LOS LOS phase variation (none) [12]

MEDIUM

Streptococcus pneumoniae Gram+ Human respiratory tract Capsule, teichoic acid �100 serotypes wzy, synth [13]

Haemophilus influenzae Gram� Human respiratory tract Capsule, LOS Six serotypes, LOS phase variation ABC [12]

aMajor polysaccharide antigens of WHO global priority pathogens in need of new antibiotics, divided into three categories according to the urgency of need for new
antibiotics: critical, high and medium priority. In critical-priority Enterobacteriacae, only K. pneumoniae and E. coli are shown. PS, polysaccharide; LOS, lipo-
oligosaccharide; wzy, wzy-dependent; synth, synthase-dependent.

bTyphi serovar also carries a capsule.
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export, or synthesis of sugars (in wzy-synthesised operons this also includes wzx and wzy
genes). The typical design of a polysaccharide antigen locus in bacteria is shown in Figure 1,
and its consequences for epidemiological serotyping are discussed in Box 1.

The strikingly consistent architectural design of polysaccharide biosynthesis loci has important
implications for the generation of antigenic diversity in bacteria. First, the synthesis of a
monosaccharide via serotype-specific genes means that shuffling of these genes can alter
the serotype. This can be achieved either via inactivation of one or more enzymes (gene loss), or
an exchange leading to a new combination of enzymes (horizontal gene transfer) – often with
the help of transposable elements – as has been widely observed in well studied S. pneumo-
niae, E. coli, or Klebsiella pneumoniae [4,6,34]. Second, the presence of conserved genes at
the flanking regions of the synthesis loci, like dexB/aliA in S. pneumoniae or galF/gnd in
Klebsiella, promotes exchange of the entire locus by homologous recombination, which
requires homology only at the flanks. Such changes facilitate serotype/antigen alterations
between distant lineages without having to ‘invent’ a new combination, which has been widely
documented in epidemiological studies [35–43]. Third, genetic and epigenetic changes in
regulatory genes (commonly referred to as ‘phase variation’) can affect capsule expression, and
the resulting ability to colonise or infect the host [44,45]. Finally, polysaccharide antigens are
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Figure 1. Generation of Polysaccharide Diversity in Bacteria. Polysaccharide antigens, like capsules and
O-antigens, are usually synthesised by a specialist group of enzymes which are encoded by genes located in an
antigen-biosynthesis locus. The genetic architecture of these loci is often similar between different, even distantly related,
bacterial species. The specialised polymer-specific genes (coloured cassettes), which encode transferase enzymes
(coloured shapes), are typically located in the middle of the locus. They are flanked by conserved, regulatory or transport
genes (grey cassettes). The polymer-specific genes synthesise a monomer (so-called repeat unit), which is then poly-
merised to a polysaccharide chain and transported outside the cell. The order of these two events depends on the
synthesis pathway, which, in the majority of studied cases, belongs to either the wzy-dependent or the ABC-dependent
class. A given combination of the polymer-specific genes is a strong predictor of the polysaccharide structure, and thus
bacterial serological type (serotype).
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more robust than protein antigens because biosynthesis loci do not include housekeeping
genes that are required for other functions, and monosaccharides – unlike proteins – do not
have specific binding functions which can be disrupted by single amino acid changes. Thus,
polysaccharides are much more flexible than proteins in their changing ability, and modifica-
tions to their structure are unlikely to incur a major fitness cost to the organism. This is evident
from successful persistence of isolates that have lost the capsule [46,47], or loss of polysac-
charide antigens in historical, in vitro passaged bacterial isolates [4,48].

The evidence therefore points to polysaccharide antigen loci having universally evolved as unique
bacterial adaptive weapons, able to diversify at different speeds [49]. Over short timescales,
diversity can be produced within populations via regulation and phase variation; over intermediate
timescales available serotypes are exchanged between lineages via recombinational events
spanning entire loci; over long timescales, gene loss and gene gain via horizontal gene transfer
produce novel, polymer-specific combinations, giving rise to new serotypes. Polysaccharide
antigen loci thus allow rapid bacterial adaptation to constantly changing selective pressures,
thereby maintaining fitness relative to other competing strains or species.

Factors Shaping the Diversity of Polysaccharide Antigens
The genetic and phenotypic plasticity of polysaccharide biosynthesis loci can give rise to many
serological types within a single species (Table 1), but it is not obvious why such diversity arose in
the first place. Arguably, the simplest explanation is that diversity is randomly generated over time,
but the drift alone is unlikely to be the driving evolutionary force. The sheer diversity of polysac-
charide antigens in some species – much greater than expected based on the rest of the genome
[4,6,50] – undoubtedly suggests the role of diversifying selection in generating new structures. The
existence of such selection is also supported by the fact that polysaccharide synthesis loci are
genetic variability hotspots between close bacterial species in the human gut [51], and they are
often recombination hotspots, for which we have direct [41,42,52–57] and indirect evidence

Box 1. The Future of Serotyping

Even though the sequence of genes located in the polysaccharide biosynthesis locus is highly predictive of the expressed polysaccharide, the genotype is not a
perfect predictor of the phenotype for two main reasons. First, genetic mutations within those genes can alter specificity of enzymes encoded by them, thus altering a
biochemical linkage and producing a new serotype. Second, additional genes located outside the synthesis locus can influence or direct the final sugar structure. This
has important consequences for public health. With increasing adoption of high-throughput sequencing for strain characterisation by research and public health labs,
in silico serotyping has now largely overtaken the standard serotyping methods, which require specialised reagents and expertise. (Table I summarises currently
publicly available tools for in silico serotyping.) The flip side of this is that the gap between serologically-determined diversity and genetically-determined diversity is
widening. Thus, biochemical characterisation of polysaccharide antigens remains important, and a good understanding of the complex genotype-phenotype map in
polysaccharide antigens remains one of the great challenges of polysaccharide biology (see also Outstanding Questions).

Table I. Public Tools for In Silico Serotyping Using Whole-Genome Dataa

Name Species Data input Precision Website Refs

PAst Pseudomonas aeruginosa SR or A Entire locus github.com/Sandramses/PAst [102]

Kaptive Klebsiella pneumoniae A Entire locus kaptive.holtlab.net [4]

SerotypeFinder Escherichia coli SR or A wzx/wzy/wzt/wzm cge.cbs.dtu.dk/services/SerotypeFinder [103]

SRST2 + EcOH E. coli SR wzx/wzy/wzt/wzm github.com/katholt/srst2 [104]

SeqSero Salmonella SR or A Entire locus www.denglab.info/SeqSero [105]

SISTR Salmonella A Core genes lfz.corefacility.ca/sistr-app [106]

PneumoCat Streptococcus pneumoniae A Entire locus github.com/phe-bioinformatics/PneumoCaT [107]

SeroBA S. pneumoniae SR Entire locus github.com/sanger-pathogens/seroba [108]

aThe list contains publicly available tools for in silico serotyping of WHO priority pathogens listed in Table 1. SR, short-reads; A, assembly.
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[4,35,58–61]. Finally, bacterial polysaccharides often involve synthesis of rare sugars, like L-
rhamnose or L-fucose, which are not typically found in animal cells [62]. This suggests that the
benefit of the possibility of generating a greater number of polysaccharide combinations over-
comes the cost of being more visible to the immune system. Therefore, it is now widely accepted
that polysaccharide antigens can be, and often are, under strong diversifying selection.

The strength of diversifying selection will depend on the species ecology, which can be
subdivided into three different classes of ecological factors: host immunity, bacteriophages,
and cell–cell interactions (Figure 2). Importantly, each of these factors contains a coevolutionary
component in that each involves interactions with other evolving entities. The strength of
selection will also vary with the antigen type, and the biological role and interactions of that
antigen are context-specific in each organism. For example, K. pneumoniae expresses both K-
and O-antigens, but exhibits far more capsular variation than LPS variation; whereas the closely
related enterobacterial species Salmonella enterica (mostly unencapsulated) and E. coli (vari-
ably capsulated) display extensive LPS diversity. However, in general, our understanding of the
relative importance of the three ecological forces for bacterial evolution and the resulting
antigenic diversity is far from complete.

Host Immunity
Both capsules and O-antigens are known to interact with the immune system and can be
immunogenic [14,63]. Correspondingly, host immunity has been the most popular candidate
for diversifying selection of polysaccharide antigens in host-adapted bacteria. A classic model
of immune-driven diversification is via negative frequency-dependent selection (Red Queen).
Under this model, a new antigenic variant is under positive selection as it encounters naive
hosts, but over time hosts develop immune memory against it and it is replaced by another,
novel variant. This cycle continues, thus promoting antigenic diversity. However, under this
scenario one would expect that novel diversity is constantly generated and dynamically
changes over time. It has been argued that this model might explain the ability of some
bacteria to alter their antigens on a generation timescale (like LPS variation in N. meningitidis
and Haemophilus influenzae, or variable capsule expression in Bacteroides), which may
promote colonisation and transmission by escaping the immune system [64]. But in many
species the Red Queen model does not fit empirically observed temporal and spatial timescales
at which novel serotypes emerge in many bacteria [65]. This conundrum has been partially
resolved by mathematical modelling, which has by now quite convincingly demonstrated that
immunity can play an important role in shaping the population structure of some pathogens and
help maintain their antigenic diversity [66]. One class of multistrain models suggests that strain-
specific immunity forces pathogens competing for hosts via cross-reactive responses to
organise into non-overlapping antigenic repertoires [67]. It was argued that this framework
explains the population structure of N. meningitidis and S. pneumoniae [68,69]. Furthermore, a
balance between strain-specific immunity in naive infants (stabilising selection) and nonspecific
immunity in adults (equalising selection) was suggested to explain the observed patterns of
serotype diversity in the pneumococcus [70].

Nevertheless, immune-driven diversification of polysaccharide antigens is probably the exception
rather than the rule in the bacterial kingdom. A recent study has shown that capsules are more
common in environmental than in pathogenic bacteria, and also in facultative than in obligate
pathogens [71]. The authors have argued that, for this reason, capsules have evolved as tools for
environmental adaptation rather than as host-associated virulence factors. This is also consistent
with the fact that, amongst all discussed bacterial species, the most extensive capsular variation
is found in gut microbes that behave as opportunistic pathogens, such as K. pneumoniae and
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E. coli. Furthermore, extensive capsule diversity is also found in commensal bacteria (e.g., oral and
pharyngeal streptococci [60], some gut microbiota species [51]), which are not affected by anti-
bodies orphagocytes dueto immunological tolerance tomutualisticmembersof ourmicrobiome.All
of this suggests that, while immunity can play a role in shaping polysaccharide antigen diversity, it
cannot be the single and most important factor driving such diversity in all bacteria.

Bacteriophages
Another factor that can act as an important driver of antigen polysaccharide diversity is bacterial
coevolution with their viruses, namely bacteriophages (phages). Phages often encounter
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Figure 2. Factors Driving and Maintaining Diversity of Polysaccharide Antigens. (A) Major diversifying forces in
the world of bacterial polysaccharide antigens: host immunity, bacteriophages, and cell–cell interactions (including host
glycan diversity, eukaryotic predators and other host commensals). These forces are likely to drive and maintain the
polysaccharide antigen diversity we observe today. (B) These factors should not be viewed as mutually exclusive, but
rather as different forces operating at different scales of time and space. Coevolution with bacteriophages could select for
novel polysaccharide diversity on short timescales from just a few bacterial generations, could occur within virtually any
ecological niche including host associated or non-host associated, and could have transient or long-lasting impacts on
both bacterial and phage population dynamics. The impact of genetic variation in host glycan diversity is expected to take
much longer to affect bacterial population structures, depending on host diversity and generation times. Host immunity,
the diversity of other host commensals, and the impact of predators are likely to operate somewhere between the two.
Phages may promote within-host diversity of antigens, but a serotype which provides resistance against a given phage
population may not spread in the population due to its low between-host fitness. Likewise, glycan diversity in different host
populations may promote diversity over space: different populations found in different locations may promote different
bacterial antigens, but a single type within each population.
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physical barriers preventing them from infecting bacterial cells: capsules, peptidoglycans, or
extracellular polysaccharides in biofilms. Thus, phages have evolved strategies to overcome
these barriers, and often carry receptors containing depolymerase – an enzyme which
degrades polymers like extracellular polysaccharides present on bacterial surfaces. These
receptors are typically encoded in tail fibres or base plates, and are highly specific to the antigen
type. Consequently, diverse serotype-specific depolymerases have been identified in phages
isolated from many different bacterial species [72]. Microbiological experiments have demon-
strated that, over time, antagonistic coevolution between bacteria and their viruses will lead to
an increased diversity of both bacteria and phages over time [73,74]. This hypothesis is in line
with the dynamics observed in longitudinal analyses of the gut microbiome, which have shown
dynamic shifts in bacterial and phage communities over time [75] and capsular polysaccharides
as variability hotspots [51]. Temperate phages could also play a role in polysaccharide antigen
diversification. They are known to coinfect bacteria [76], undergo competition [77,78], and alter
the chemical composition of O-antigen upon entry to prevent other phages from coinfecting,
which has been well documented in several species [79–81].

Cell–Cell Interactions
Cells are surrounded by carbohydrate structures known as glycans, and interaction between
those glycans and proteins of other cells is expected to be an important ecological factor
shaping their diversity [82]. Given the plethora of different cell–cell interactions in nature, we
here focus on three important types of interaction which are central to the survival of bacterial
pathogens and commensals inside hosts: interactions with host cells, with other colonising
bacteria, and with predatory eukaryotes.

Host tissues, such as gut or respiratory epithelia (but also plant cell walls), are covered by a dense
layer of glycans called the glycocalyx, which impacts many colonising bacteria. Consequently,
microbes have evolved various ways of interacting with these structures to facilitate colonisation,
including attachment to host glycans [82], modification of host glycans [83,84], and biofilm
formation [85]. As these interactions are necessary for successful colonisation, bacteria have
been under evolutionary pressure to adapt to the spectrum of glycans expressed by the cells of
their hosts. One consequence of this is the phenomenon of ‘molecular mimicry’, whereby some
bacterial polysaccharide antigens have evolved to resemble the glycan structures of their hosts
[86]. Such resemblance allows the bacteria to take advantage of self-tolerance in order to evade
the host immune system. Examples include production of polysialic acid in N. meningitidis
serogroup B,chondroitin orheparosan inE.coli, hyaluronicacid insomespeciesofStreptococcus
(including S. pyogenes, S. equi, S. dysgalactiae, and S. uberis) [86], or blood-group-antigen-
resembling LPS in Helicobacter pylori or Campylobacter jejuni [87,88]. These adaptations are part
of a larger coevolutionary dynamic between hosts and bacteria, whereby hosts diversify their
glycans over time to escape the selective pressure of bacteria, which in turn coadapt (for example
via molecular mimicry) [89]. In vertebrates, such diversification can also rely on somatic mecha-
nisms (like hypermutation or recombination), which permit keeping up with rapidly evolving
prokaryotes [82]. All of this generates not just large between-host diversity of glycans, but also
diversity within individual hosts. Such diversity can be beneficial by inhibiting the spread of
pathogens within a host population, due to the pathogen’s differential recognition of distinct
glycan structures expressed by members of the host population [82].

In addition to host cells, bacteria colonising new hosts may encounter other prokaryotic and
eukaryotic cells sharing the same niche. First, successful colonisation requires compatibility
with host-associated commensal bacteria – for example, the mutualistic streptococcal com-
munities found on oral mucosal surfaces. These communities are shaped by interactions
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between lectin-like adhesins and polysaccharides which act like receptors, thus connecting
multiple cell–cell adhesions into large complex networks known as biofilms [90]. Since joining a
biofilm substantially increases the chances of survival, new colonisers will be under selective
pressure to attach and join the biofilm, or perish. This, in turn, will affect the population diversity
of spreading bacteria [90]. Second, other single-celled species that feed on bacteria may also
be present. Well known examples are the predatory eukaryotes, such as amoebae, which are
sometimes found in animal intestines. As demonstrated in S. enterica, these predators exhibit
different feeding preferences towards different O-antigens [91]. The specificity of such rec-
ognitions between a bacterivorous amoeba, Acanthamoeba castellanii, and E. coli has been
attributed to the interaction between LPS and the predator’s surface mannose-binding protein
[92]. Given the genetically characterised diversity of mannose N-glycans between different
species of amoebae [93], it is plausible that such interactions have shaped (at least partly) the
diversity of O-antigens in some bacteria, as has been argued previously [64].

Selection over Time and Space
A schematic summary of the factors discussed above, and their expected timescales, is
given in Figure 2. Importantly, one needs to be cautious when attempting to find a single
explanation for the diversity of polysaccharide antigens in a given bacterial species, as
forces maintaining it might be different from those which have driven it in the first place. For
example, in S. pneumoniae it is widely accepted that immune selection is an important
driver of antigenic population structure. However, it is not entirely clear whether occasion-
ally appearing capsule switches are evolutionary ‘mistakes’, or whether they are (at least
partly) driven by interactions with bacteriophages. Pneumococcal capsule-specific depo-
lymerase enzymes have been isolated before [94,95], but almost nothing is known about
capsule–bacteriophage interactions in S. pneumoniae. In Klebsiella, some K-antigens are
known to interact with the adaptive immune system [96], but frequent capsule switches in
clinical lineages are unlikely to be explained by host immunity alone, and interaction with
phages and protists are considered to be important [4], not least because these bacteria
are found in the guts of many animals. It is also possible that, for a facultative pathogen like
Klebsiella, the ability to exchange K-antigens permits adaptation during environmental
shifts. In S. enterica, host-specific distribution of O-antigens was previously argued to
be a consequence of the the varying feeding preferences of intestinal predators present in
different animal hosts [91]. However, it has also been speculated that such diversity could
be (at least partly) driven by the diversity of mucins (intestinal polysaccharides) which
amoebae use for attachment: O-antigens resembling these attachments would be much
less likely to get predated, thus providing bacteria carrying those polysaccharides with a
selective advantage [97]. All of this emphasises how little we know about the relative
importance of various ecological and evolutionary forces interacting with bacterial poly-
saccharide antigens. Their characterisation will be important for an accurate prediction of
the short-term and long-term impact of therapeutic interventions (see also Box 2).

Medical Implications
The adaptive potential of polysaccharide antigen loci to spread within bacterial populations or
to evolve new types has potentially important consequences for public health. The antibiotic
resistance crisis has led to an increased interest in polysaccharide-based therapeutic inter-
ventions (e.g., polysaccharide conjugate vaccines or phage-based therapies). These
approaches impose strong selective pressures on a fraction of the bacterial population by
targeting only a small subset of the capsular repertoire. Given the discussed potential of
polysaccharide antigens to rapidly generate novel diversity, a question arises about the long-
term efficacy of such interventions (see Outstanding Questions). We have seen some evidence
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of vaccine-driven adaptation in the antigenically diverse S. pneumoniae, which emphasises the
challenge of robust vaccine design against other diverse bacteria like Klebsiella or Acineto-
bacter (Box 3). However, predicting the consequences of phage therapy will be arduous as
current understanding of bacteria–phage coevolution in the complex environment of the human
gut remains limited [98]. Also, since phage therapy is currently under active research and
development, it is unclear what approaches will end up being used in practice. Using viruses as
a public health control strategy has a long history of controversy, and indeed the implications of
using bacteriophages for medical purposes have been actively debated for many years [99].
The rapidity with which some phage can kill their target suggests that the targeted bacteria
would have a very narrow window of opportunity to evolve escape, for example by changes in
the capsule locus; however, evolution experiments and observational microbiome data show
that this may be possible or even likely [98,100]. One alternative might be to use phage-derived
depolymerases which degrade bacterial capsules [101]; they alone would not kill bacteria and
thus would impose very different selective pressures compared to lytic treatments.

Ultimately, long-term effectiveness of any polysaccharide-targeted medical intervention will
depend on a good understanding of the evolutionary dynamics of the relevant bacterial system,
as well as on clever formulation of mathematical models to predict the impact of such
approaches (see also Box 2). However, neither can be achieved without viewing bacterial
pathogens in the wider context of their ecological interactions as such pathogens in reality
represent a ‘tip of the iceberg’ of the entire bacterial population. As medical interventions – like
antibiotics, vaccines, or phage therapies – will impact the bacterial ecosystem as a whole, more
attention in the future should be devoted to isolate sampling designs that overcome such

Box 2. Predicting the Impact of Medical Interventions with Mathematical Models

Mathematical models serve as powerful tools for predicting the effects of medical interventions. For a model to be a
successful prediction tool, one needs to choose the right balance between the model simplicity and its biological
accuracy.

Polysaccharide Conjugate Vaccines
Since the development and introduction of the conjugate vaccination programmes against H. influenzae and S.
pneumoniae, mathematical models have been widely used to predict their effect on the control of bacterial disease
[109–111]. Such models are based on compartmental modelling, in which the human population is represented by
different classes (for example vaccinated and unvaccinated), and rates of changes between these compartments are
defined by a set of mathematical equations. Disease dynamics can be described deterministically (via ordinary
differential equations) or stochastically (via parameters drawn from random distributions). These models have varying
levels of complexity, depending on the underlying assumptions about the complexity of the host structure, pathogen
biology, and interactions between the two.

Studies modelling the impact of conjugate vaccines have mostly focused on their short-term effects, namely their effect
on bacterial transmission and disease. Some papers have examined the impact of conjugate vaccines on the bacterial
population structure [112]; however, none have investigated the role of emergence of novel bacterial diversity on long-
term vaccine effectiveness. This is difficult and requires models which can merge the epidemiological framework with
pathogen genetics, as has been done with some viral disease models such as Influenza or HIV-1 [113,114]. The
predictive value of such models will depend not only on accurate estimates of epidemiological parameters (e.g.,
transmission rates, between-strain competition, strength of strain-specific and nonspecific immunity) but will also rely on
good estimates of evolutionary rates driving diversification of bacterial genomes, including (but not limited to) acquisition
of novel diversity from nonclinical reservoirs.

Phage Therapy
While phage therapy is fundamentally different from vaccination, previous studies have mostly relied on epidemiological
models to predict its dynamics, and thus likely success [99,115]. However, these models still do not accurately capture
the complexity of in vivo dynamics [116], nor do they address the question of coevolution between bacteria and viruses,
or their potential epidemiological implications (e.g., transmission of bacterial resistance). Using mathematical models to
predict the long-term success of phage therapy thus relies on quantifying parameters of in vivo bacteria–phage
coevolution. Such quantification will be facilitated by recent advances in microbiome research and genomics [98].
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Box 3. Implications of Polysaccharide Diversity for Treatment Design: Lessons from Conjugate Vaccines

While the significance of natural polysaccharide variation for vaccine escape has been appreciated for decades, recent advances in genomic epidemiology have
improved our understanding about its actual importance. Our knowledge comes predominantly from vaccines against three nasopharyngeal pathogens:
Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis, the impact of which has been studied for many years.

The simplest form of vaccine escape is by losing the capsule, which is an acceptable outcome since unencapsulated bacteria are unlikely to cause disease. This is
most likely to happen when a vaccine spans the entire capsule repertoire (as in cases where a single capsule serotype is associated with human-adapted invasive
disease, such as in Salmonella enterica serovar Typhi or H. influenzae type B), but in fact in all three species there has been a rise in the reported frequency of
unencapsulated strains [47,117,118]. By contrast, when the vaccine spans only a fraction of the capsule repertoire, from an evolutionary point of view it becomes an
ecological experiment where we can observe the impact of the removal of selected serotypes on the bacterial population (see also Figure IA). Interestingly,
recombination-driven vaccine escapes have only been reported in the species which, incidentally, has the highest capsule diversity: the pneumococcus [119]. There,
we have seen persistence of some lineages associated with vaccine serotypes thanks to exchange of those serotypes into nonvaccine serotypes via recombination
[39,54]. Genetic sequencing from densely sampled areas also revealed the existence of previously unseen capsule loci that were recombinations of other serotypes
[56]. Importantly, phylogenetic and phylodynamic analyses revealed that these recombinants emerged prior to the introduction of the vaccine [39,54], implying that
the polysaccharide capsule diversity evolves over time and that selection acts on this diversity. This process could be enhanced by interactions with closely related
commensal bacteria, as we have seen that capsule genes are often shared between pathogens and commensals in all three bacterial species [59–61]. Furthermore,
in the pneumococcus there is evidence that commensals can act as a source of horizontally acquired capsule diversity [56,120]. It thus seems that the dynamic
microbial ecosystem of the nasopharynx could be an evolutionary hub where novel serotypes occasionally emerge and, in the presence of a vaccine, gain a selective
advantage and rise in frequency (Figure IB). However, as seen in the case of the three major pathogens, sharing a similar ecological niche, it is difficult to gauge the
likelihood of such a scenario due to our limited understanding of the complex microbial interactions in the nasopharynx and the probability of new serotypes rising in
frequency (see Outstanding Questions).

It will be even more challenging to predict the impact that polysaccharide conjugate vaccines in humans would have on populations of opportunistic pathogens with
very different host ranges and ecologies, like Klebsiella or Acinetobacter. However, vaccines against these bacteria would most likely be used in a much more
targeted way, such as aiming to protect at-risk patients in hospitals that are experiencing problems with outbreaks of antibiotic-resistant strains, or patients who are
known to be colonised with such strains. Ultimately, estimating such risks requires a good understanding of the bacterial colonisation dynamics, which, in turn,
emphasises the importance of routine bacterial carriage studies and quantifying bacterial evolution in real time.
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Figure I. Mechanisms of Bacterial Adaptation against Polysaccharide Conjugate Vaccines. (A) Impact of polysaccharide conjugate vaccines on bacterial
population structure. On the left, introduction of the vaccine against the red serotype is followed by the decline of this serotype but no replacement by another strain
with the blue serotype, and thus overall reduction in carriage rates. This is similar to the situation in Haemophilus influenzae [121]. In the middle, vaccination against
the red serotype is followed by the rise of another lineage (triangle) with the blue serotype with no significant reduction in carriage, known as ‘serotype replacement’.
On the right, vaccination against the red serotype is followed the rise of the same lineage (square) with another serotype (blue). This is a result of an acquisition of the
blue serotype by the square lineage (known as ‘serotype switching’), which had occurred prior to the introduction of the vaccine. The latter two situations are
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clinical bias. Fortunately, with the advancement of next-generation sequencing such studies
are increasingly likely to become routine in the future.

Concluding Remarks
Polysaccharide antigens, such as capsules, O-antigens, or teichoic acids, are common in
pathogenic and commensal bacteria. Our understanding of how these structures are
synthesised and how they interact with hosts, viruses, and the environment have largely
improved over the last two decades. Altogether, they paint a picture of genetic loci which
are highly adapted to become modified and exchanged between different bacteria. Such
diversity is likely a result of millions of years of coevolution with bacterial viruses, hosts,
predators, and other bacteria, and is unlikely to change drastically on epidemiological time-
scales. However, the introduction of vaccines, antibiotics, or phage therapies may dramatically
alter the structure of bacterial populations due to the resulting strong selective pressures. It is
thus conceivable that these antigens could rapidly evolve, undermining the long-term efficacy
of therapeutic interventions. Therefore, the ability to predict the long-term consequences of
these interventions and inform public health will be conditional on our understanding of the
biology, epidemiology, and ecology of the system in question, quantification of evolutionary and
epidemiological parameters, and the resulting accurate design of mathematical models.
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