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We adjust the Proof of Work (PoW) consensus mechanism
used in Bitcoin and Ethereum so that we can build on its
strength while also addressing, in part, some of its perceived
weaknesses. Notably, our work is motivated by the high energy
consumption for mining PoW, and we want to restrict the use
of PoW to a configurable, expected size of nodes, as a function
of the local blockchain state. The approach we develop for this
rests on three pillars: (i) Proof of Kernel Work (PoKW), a means
of dynamically reducing the set of nodes that can participate
in the solving of PoW puzzles such that an adversary cannot
increase his attack surface because of such a reduction; (ii)
Practical Adaptation of Existing Technology, a realization of this
PoW reduction through an adaptation of existing blockchain
and enterprise technology stacks; and (iii) Machine Learning for
Adaptive System Resiliency, the use of techniques from artificial
intelligence to make our approach adaptive to system, network
and attack dynamics. We develop here, in detail, the first pillar
and illustrate the second pillar through a real use case, a pilot
project done with Porsche on controlling permissions to vehicle
and data log accesses. We also discuss pertinent attack vectors
for PoKW consensus and their mitigation. Moreover, we sketch
how our approach may lead to more democratic PoKW-based
blockchain systems for public networks that may inherit the
resilience of blockchains based on PoW.

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
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use, provided the original author and source are credited.
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1. Introduction
There is little doubt that blockchains, such as Bitcoin created in 2008, have had a significant impact on
the global start-up scene, FinTech, asset managers and traders, regulators and policy-makers, as well as
on academics working in distributed systems, cybersecurity and economics.

But the intense growth of blockchain systems and cryptocurrencies has also led to a perceived
hype and deplorable misconceptions of the underlying technologies and their potential. For example,
commercial entities have been deploying services based on distributed ledger technology (DLT) since
the 1990s—based on the concept of a hash chain. And many perceived use cases of blockchain may
already be adequately covered by such existing DLT technology, with little or no need for more recent
blockchain innovations. In fact, one may say that—for a particular use case—a blockchain is the right
choice over a hash-chain-type DLT solution whenever there is

C1 a concern about the ability of insiders to maliciously or unintentionally facilitate an attack of the
decentralized data management system realized by this blockchain or

C2 it is desired or mandatory that the re-writing of part of the data history would require
considerable effort that is quantifiable in terms of cost, time or other measures of interest.

System requirements and use cases that do not have such concerns may often be well catered for
with DLT-based systems that do not use hardening mechanisms such as cryptographic puzzles and their
solutions in order to address concerns C1 and C2 above. By contrast, our work reported in this paper aims
at developing blockchain technology that can harden system resiliency by addressing these concerns.
For example, the networks that one would intend to deploy in intelligent transportation systems may be
open and thus exposed to attacks on their confidentiality, integrity and availability; and even their closed
parts may be subject to insider attacks that could bring down important functionality or compromise
information security.

One major attack surface of a blockchain is its chosen consensus mechanism. There are many
proposals for such mechanisms in the literature, including those that rest on classical Byzantine fault-
tolerant consensus protocols (e.g. [1]). Some others are rooted in the developments of blockchain
technology; see [2] or §2.5.3 in [3] for an overview of the most prominent such BCT-based proposals.
Yet, these approaches either have severe scalability issues or fail to adequately address concerns C1 and
C2. Very recent conceptual developments, such as Hedera’s Hashgraph [4], still need to be validated by
their implementation and operation. In that light, cryptographic puzzles (e.g. ch. 8 in [5]) appear to be an
attractive alternative. The most promising such cryptographic puzzle is perhaps Proof of Work (PoW),
as used in Bitcoin and Ethereum, whereas alternative puzzle definitions seem to be ill-suited for needs
of real-world blockchain systems.

In simplified terms, the idea behind PoW is that the puzzle contains specified information i about
the current blockchain, notably its last block, and that one needs to add some random source r to that
information in order for a hash h(i || r) of the concatenation of i and m to have a certain number of leading
zeros.

The cryptographic properties of hash function h are what makes this a hard puzzle to solve: there is
no way of predicting, given i and h, a value of r that is more likely to solve that puzzle than any other
value. The hash function h should also be chosen so that there is no genuine advantage in trying to solve
this puzzle with a random source rk if one has already failed to solve it for random sources r0 up to rk−1
for the same information i. That way, anyone who joins a race to solve a puzzle has the same chance of
winning that race—regardless of how long others have already tried to win it.

PoW thus allows any node in a network to participate in such a concurrent mining race, where it is
impossible to predict who will first find a solution to the current puzzle, the information encoded in i. It
is this unpredictability that makes PoW so secure. The winner of this race, announced on the peer-to-peer
network, is then the elected leader whose solution determines the next block on the chain.

Although this election process may have local divergence on who the leader is, a PoW blockchain
corrects such divergence since each node keeps a ‘blocktree’ in which exactly one path represents the
blockchain. Such divergence is thus recorded in that tree as a different path. The network eventually
self-stabilizes, since each node interprets the deterministically chosen path of its tree that represents the
most overall work as the ‘true’ blockchain.

A major concern about this approach, however, is that solving a PoW puzzle is power hungry, many
hashes have to be computed before a solution may be found. Moreover, incentive structures for puzzle
solving may result in more and more nodes joining such mining races, leading to an even greater
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consumption of energy on the network in order to sustain a PoW consensus mechanism. These problems
are made worse for blockchains that mint coins which can be traded for fiat currencies, and where the
level of difficulty may have to increase in order to reflect increasing computational power of puzzle
solvers.

A good example thereof is Bitcoin, where application-specific integrated circuits for PoW were
developed in record time and are widely available commercially. This meant that the PoW mining race
was no longer democratic as only such high-end hardware made it viable to compete in the race, and
only if individual devices/agents would pool their resources in such races. This, combined with the
speculation around Bitcoin trading platforms, has meant that the Bitcoin network consumes, at the time
of writing, as much energy as the entire nation of Sweden. PoW mining races in Bitcoin, therefore, seem
to be undemocratic and contribute to global warming.

These issues motivate us to ask whether one could retain the strong aspects of PoW (notably its
resilient and random manner of choosing the leader for the next block), while also weakening or
eliminating the disadvantages of PoW discussed above.

Our contributions in this paper are a result of trying to answer this question and are as follows:

— we propose a variant of PoW, Proof of Kernel Work (PoKW), based on Cryptographic Sortition [6,7]
that dynamically reduces the mining race to a small kernel of randomly selected nodes,

— we show how our PoKW reduces the energy demands of puzzle solving whilst also not increasing
abilities of an attacker in an enterprise network,

— we identify pertinent attack vectors for blockchains based on PoKW and mitigation measures for
such attacks,

— we sketch possible ways of realizing PoKW-based public networks, in order to create more
democratic yet resilient infrastructures for blockchain-facilitated services, and

— we adjust an Ethereum technology stack to accommodate this novel consensus mechanism and
report insights from a real-world use case of that system.

The PoKW expresses the reduction of mining races to a randomly chosen set of network nodes (the
kernel). It should be stressed that PoKW does not rely on use of a particular blockchain technology stack,
making PoKW applicable within a broad range of blockchain solutions.

Outline of paper: In §2, we present our modified PoW, PoKW. In §3, we discuss how access control may be
managed for PoKW-based blockchains. The potential of PoKW to support more democratic, public blockchain
networks is the subject of §4. In §5, the attack surface of PoKW is explored and mitigations discussed. A
real use case of a PoKW-based blockchain is featured in §6 and the paper concludes in §7.

2. Proof of Kernel Work
PoW, as currently used in Bitcoin and Ethereum, has been very successful as a consensus mechanism for
cryptocurrencies and blockchain systems. However, as discussed above, PoW consumes a lot of energy
and leads to centralization of mining in standard incentivization structures. Therefore, it seems desirable
to retain the advantages of PoW while also containing its energy consumption and mitigating, if not
eliminating, centralization of mining. This paper reports our proposal for adapting PoW to achieve such
desirable system properties.

Let us first point out related work and how it informs our approach. The work in [8] already
developed means of minimizing energy consumption of PoW in the ‘governed blockchain’ setting [9], at a
guaranteed level of security. That setting is suitable for enterprise blockchains, since miners are procured
resources owned or controlled by an organization or consortium. It also comes with a mathematical
model that can compute initial system configurations, so that optimal trade-offs between security, cost
and availability are found.

The approach we develop in this paper can make use of such optimization, as sketched below. But
we here mean to focus on how we control participation in the PoW mining race so that this control
mechanism cannot be corrupted by a powerful adversary. We also mean to discuss how this approach
can, in principle, by adopted on public networks in which any network node may join activities in
order to realize a more democratic network structure. Throughout the paper, we emphasize conceptual
structures (e.g. which new components to add to the structure of blocks) over routine implementation
details (such as specific hash trees for transaction sets).

Conceptually, a blockchain B0, B1, . . . , Br−1 consists of a linearly ordered list of blocks, where block Bi

has block number i and block height i − 1. The latter refers to the number of blocks that precede Bi in
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nodes and validators use a random seed in each block for selection
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Figure 1. An illustration of the Cryptographic Sortition process used in PoKW.

that chain. Block B0 is the Genesis Block. Each block Br with r > 0 is determined by a mining race that also
makes Br depend on Br−1.

2.1. Intuition behind Proof of Kernel Work
In our approach, the process of electing a leader—who can propose the next block on the chain—relies
on PoW. However, we restrict the PoW mining race for the next block by two control mechanisms:

WL A dynamic White List L which is authenticated on the blockchain and maintains those public
keys that are, in principle, eligible to participate in a PoW mining race.

CS An adaptive node selection mechanism, illustrated in figure 1, based on Cryptographic Sortition
as introduced in Algorand [6,7].

Cryptographic Sortition determines the superset of nodes that may be eligible to participate in
specific tasks of blockchain construction and management. Such tasks may include mining, machine
learning, and management of the White List L. Below, we will make machine learning a task that is
(periodically) subsumed by the task of mining. Our approach lends itself to other realizations of task
divisions and dependencies, though. The task eligibility based on Cryptographic Sortition is necessary
but not sufficient for engaging in a task: White List L or other security state may override such eligibility
as discussed below.

The utility of the White List control mechanism is that it can support adaptive access control informed
by anomaly detection, an aspect we will not develop here. The second control mechanism, based on
Cryptographic Sortition:

— randomly selects, at each blockheight r ≥ 1, from the set of all nodes on the White List L those
nodes eligible to complete a task—such as mining a block Br

— this selection process is sufficiently random and only the selected nodes themselves will know
that they are selected

— an adversary who can compromise nodes cannot exploit this selection mechanism to inform
which nodes it aims to compromise

— the expected number of selected nodes, nw, is a parameter of the blockchain system.

This second mechanism, therefore, offers many advantages. For one, a system can control the expected
number of nodes that participate in specific tasks such as mining or administering the White List
L. This can save energy costs as fewer miners will lose a mining race. It can also modify the game
theory of incentive structures for application domains that incorporate such incentives, for example,
for cryptocurrencies. The pooling of mining resources, as seen in Bitcoin and other cryptocurrency
blockchains, may no longer be effective or would require novel strategic pooling and reward-division

 on September 3, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


5

rsos.royalsocietypublishing.org
R.Soc.opensci.5:180422

.................................................
behaviour. The apparent advantages resulting from this node selection mechanism apply equally to
blockchain systems that are open (any node may join the system) or closed (only specified nodes are
permitted to participate in the system).

Moreover, the blockchain has a system parameter p ≥ 1. It ensures that all mining races of blockheights
r that are multiples of p are also doing machine learning that will inform the modification of system
parameters, whose changes would be embedded in the next block Br, or after a configuration-
dependent number of subsequent blocks. Such learning would aim to detect anomalies and to ensure
network stability.

Another important system parameter is the expected number of nodes that participate in mining races
for the next p or so blocks. The actual set of nodes eligible to participate in a specific task at blockheight r
will be a function of the White List L at blockheight r − 1, the local blockchain, and the superset generated
by the second mechanism above.

2.2. Specification of Proof of Kernel Work
We will now specify PoKW, our modified PoW mechanism, in sufficient detail.

2.2.1. Block structure

Using the notation in [6,7], we let a block have conceptual structure

Br = (r, TSetr, Qr, H(Br−1), noncer, k, p, nw, . . .), (2.1)

where

— r is the blockheight of block Br,
— TSetr is the payload, a set of transactions of the application domain,
— Qr is the seed of block Br—a concept introduced in [6,7],
— H(Br−1) is the hash of the previous block Br−1,
— noncer is the value that demonstrates PoW for block Br,
— k is a security parameter similar to that used in Algorand [6,7],
— p specifies that machine learning is meant to happen every pth block,
— nw is the expected number of nodes eligible to participate in a task for creating Br, and
— other components ‘. . .’ may contain additional configuration information.

Let us fix some notation next. Expression sigpk(m) refers to the digital signature of message m with
the private key sk that corresponds to the public key pk. The definition of SIGpki

(m), given in figure 2,
embeds the public key pki into the signed message. The notation 0.H(m) refers to the real number in
the open interval (0, 1) obtained by interpreting H(m) as the mantissa of that real number over the binary
representation of reals (base b = 2). As stated above, we make use of the concept of Cryptographic Sortition,
an important technical ingredient of Algorand [6,7], to select a dynamically adjustable group of nodes for
a specific task task, e.g. the next mining race. Formally, a node pki may perform task task at blockheight
r if

0.H(SIGpki
(r, task, Qr−1)) <

nw

|PKr−k| (2.2)

that is, if the hash of its signature of (r, task, Qr−1) is less than the quotient of parameter nw and the size
of the set PKr−k of public keys that are—in principle—eligible to perform task task, based on the blocks
from B0 up to Br−k, and possibly other access-control state as discussed below.

Note that this also reveals the interpretation of the security parameter k, a usage proposed in [6,7]
already: public keys that only made their first appearance on the blockchain in the most recent k blocks
must not and will not be selected for any tasks. This gives us a configurable way of controlling and
mitigating Sybil attacks. In particular, this prevents an adversary from introducing such entities in more
recent blocks in order to rapidly gain significant influence—which then may also increase the number of
nodes it would control in the randomly selected mining nodes for blockheight r. We also point out that
the current blockchain B0 . . . Br−1 creates consensus for the values of the seed Qr−1 and expected size nw,
and indirectly for the set of public keys PKr−k used in (2.2).

Functions getEligibleKeyspki
and getTransactionsForNextBlockpki

, shown in figure 2, refer to local state
of node pki: for the former, its local blockchain B0, . . . , Br−1, and for the latter a set of transactions (of
the chain’s application domain) that node pki has already seen and validated; the validation logic is also
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Figure 2. (a) Specification of digital signatures for node pki , sigpki (m) refers to the digital signature of message m with private key for
pki . (b) Specification of checking whether node pki is a potential participant in the task task. (c) Function name for extraction of set of
eligible public keys from local blockchain state. (d) Function name for computing local transactions that should get into the next block
(should node pki become leader). The manner in which outputs for (c) and (d) are computed will be application-specific

application-specific. Note that an implementation that uses machine learning to update system policy
may make functions getEligibleKeyspki

and getTransactionsForNextBlockpki
dependent on the current state

of such policy; for example, this would allow one to ban or add public keys, block or prefer certain types
of transactions and so forth. Our White List is an example of such policy specification and enforcement.
The pseudo-code below indicates which functions may want to extract values of local variables such as
k and nw from the blockchain.

Figure 2 shows additional functions, commented as (a)–(d) in the figure, we use as primitives:

(a) Specification of digital signatures for node pki—where sigpki
(m) refers to the digital signature of

message m under the private key for pki.
(b) Specification of checking whether node pki is eligible, in principle, to participate in task task

(where task mine refers to a mining race) for the block with blockheight r: expression PK refers
to a set of eligible public keys—typically a subset of the White List L.

(c) Function name for extraction of the set of eligible public keys from local blockchain state. The
implementation of this function will also reflect the logic of the White List L.

(d) Function name for computing local transactions that should be in the next block (should node
pki happen to win the mining race).

Computation of outputs for getEligibleKeyspki
(r, k) in (c) and getTransactionsForNextBlockpki

(r) in (d)
will be application-specific.

In figure 3, we are now in a position to specify the code that nodes run to determine whether they are
eligible to participate in the next mining race, and what tasks they will perform if indeed eligible. Node
pki waits until it knows block Br−1. Then it extracts from the local blockchain the security parameter k, the
period p at which machine learning and system parameter adaptation takes place, the level of difficulty
d for PoW, and the expected size nw of the set of nodes that are permitted to mine the next block Br.

Then it checks the integrity of these values, with appropriate exception handling (not shown). It also
extracts the seed Qr−1 from block Br−1 and assigns to PK the set of all eligible public keys—a function of
the local block state, security parameter k and the White List L (left implicit).

The function mayPerformpki
is then used with these computed inputs to determine whether node pki is

indeed eligible to participate in specific task mine, i.e. the mining race for Br. Note that only node pki will
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Figure 3. Specification of PoW for potential leaders for blockheight r. Nodes pki start mining only if they are eligible. New system values
are the same as the old ones when r is not a multiple of p; otherwise, the new system values are determined by local machine learning.

know if it is eligible, assuming that it does not share the signature SIGpki
(r, Q) with any other node: this

signature is the input for the hash function H, whose output decides whether node pki is indeed eligible.
In particular, no other node can produce this signature as it will not be in possession of the corresponding
secret key ski.

We note that an attacker who compromises node pki and so also knows the secret key ski will
then know whether this node can participate in the specified task. However, this selection process is
dependent on the seed Qr−1 in a non-predictable and non-manipulable way. Thus, the adversary would
not know which nodes to compromise before the next mining race, machine-learning process, and so
forth are about to start. This provides crucial resiliency to this blockchain system architecture.

Returning to the specification for mining, if node pki is not selected for mining the block with
blockheight r, function computePoWpki

stops execution. Otherwise, node pki computes the set of
transactions TSetr to be included in block Br—dependent on the application logic for transactions.
Next, it checks whether the block Br is one in which system parameters may be updated according to
machine-learning insights.

If so, it computes newSysValues—a tuple of form (k′, p′, n′
w, . . .)—as result of such machine learning

(function doMachineLearningpki
) and how these machine-learning outcomes inform decisions (function
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newParpki

) that modify system parameters. Otherwise, r is not such a periodic block, and then the value
of newSysValues defaults to those from the previous block Br−1 so that system parameters would not be
adjusted in block Br.

Candidate blocks are computed as follows. The new seed Qr is computed as the signature of the
previous seed Qr−1. This ensures that the new seed is sufficiently random, and that an adversary cannot
really influence the value of the next seed—in a model of an adversary that is similar to that used for
Algorand in [6,7].

If PoW has been found (tested with function isPoWpki
), the block (which contains the nonce for which

PoW was found) together with a signature of its hash and a credential (a signature of the blockheight,
nonce and previous seed) are sent across the network. Otherwise, node pki either exhausted its possible
nonce values without finding PoW (and so stops the entire function); or node pki has learned from
another node a verified PoW block Br that is then added to his local blockchain, and its own mining
efforts stop. Function raceEndedpki

captures the ability to detect either of these events (nonce space
exhausted or verified block learned from another node).

Note that the message to be broadcasted contains a signature of the hash of this next block, but
signed with an ephemeral private key—which also gets destroyed once the message has been sent. This
ensures that an attacker who compromises nodes can no longer manipulate signatures of such hashes,
for example, in order to recreate a segment of a chain assuming that it compromised the long-term public
key pki. The use of ephemeral keys requires a sufficient number of such key pairs such that other nodes
can easily learn the corresponding set of public keys. There are standard solutions to this, for example,
the use of identity-based public-key cryptography.

2.3. Optimization for initial system configuration
Let us now describe how the robust optimization framework in [8] can be used to compute initial
system parameters. In that work, we assume that each miner has approximately the same hash rate in an
enterprise blockchain system. We then formulate constraints, lower or upper bounds, on characteristics
of the mining process. For example, we may stipulate that the average time it takes to find PoW for s
miners at level of difficulty d and with nonces of r bits is within a given time interval. And we may
want to ensure that the worst-case completion time for such a mining race is below a given bound
with sufficiently small probability. We can then optimize over an objective that takes into account the
procurement of mining machines, the energy costs of mining and so forth.

Optimal solutions then also tell us an ideal number of miners s0 and level of difficulty d0. We can then
initialize d for the blockchain as d0 and set nw = s0 as the expected number of nodes eligible to mine the
next block. These values may become sub-optimal as the network evolves; for example, a consortium
may deploy miners with heterogeneous hash rates over the life cycle of the blockchain. This is where the
periodic machine learning is meant to adapt such system parameters.

3. Access control
We now discuss our approach to access control in blockchains based on PoKW, by focusing on the actions
taken that change pertinent state of the blockchain system. These actions include:

(i) adding a block to the blockchain,
(ii) changing the value of one of the system parameters,

(iii) making possible changes to the state of smart contracts, and
(iv) initial system set-up of access-control state.

The first three items contain dependencies. In fact, adding a block may be seen as the basic mechanism
by which actions, once granted, are enforced (in access-control terminology). For example, the action to
change the level of difficulty from 12 to 10 would be recorded by writing the new value 10 into the
new block. A policy may contain similar such rules, for example, that the value of p cannot be changed
by much, to prevent an attacker from making such checkpoints occur too infrequently. Therefore, the
validation logic that nodes use needs to reflect the access-control model: a new block that, within it,
violates some aspect of the access-control model will be refused by honest nodes. For example, a policy P
may say that changes of the level of difficulty cannot be greater than 10% of its current value—in which
case the decrease of the value of d from 12 to 10 would not be validated.
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The system parameters that actions may change include the expected size of committees nw, the level

of difficulty d, the security parameter k for banning public keys freshly introduced in last k blocks from
committees, and the value p that specifies that machine learning happens at each pth block creation. The
latter system parameter is of particular interest to an attacker, since it controls the frequency with which
such parameters, including p itself, may change. The access control for changing p, therefore, deserves
special attention and needs to be very restrictive.

Actions that change the states of smart contracts, for example, the state of a White List L, would have
to be consistent with the contracts’ code, and so the validation of actions is here done by the consensus
of running the code on the Ethereum Virtual Machine. Initial system set-ups may be dealt with in a
completely different manner, discussed further below.

The access-control state of a PoKW-based blockchain, therefore, includes the following:

— the current blockchain of r blocks,
— the derived set of public keys PKr−k whenever r > k,
— a policy P, in simplest form a set of rules, that is encoded in a smart contract, and
— a White List L, encoded in a smart contract.

Let us next discuss how the blockchain and its access control may be initialized.

3.1. Initial set-up
There seem to be two principal ways of initializing the access control for a PoKW-based blockchain: either
appropriately adjust the body of function getEligibleKeyspki

(r, k) in the cases in which k > r − 1 or let those
who create the genesis block also create the initial part of the blockchain so that subsequent calls to
getEligibleKeyspki

(r, k) satisfy its assertion.
We now describe the latter approach in more detail. We have an initial value k > 0 that is set by those

who are responsible for instantiating the blockchain and its initial configuration. In particular, those
parties will create the first k + 1 blocks

B0, B1, . . . , Bk. (3.1)

The creation of these first k + 1 blocks may use a much simpler access-control model during that phase.
For example:

— The Genesis block contains initial values of system parameters, as well as references to smart
contracts that encode initial values of an access-control policy P and White List L.

— The first k mining races are done by all nodes on that White List L.
— During these first k mining races, neither machine learning nor modification of system values or

smart contracts that capture the state of P and L takes place.

The information in the Genesis block would be trusted by all parties. Consensus about that trust can be
realized through means external to the blockchain itself. Such external mechanisms would also bootstrap
trust into the first k + 1 blocks of the chain. Although this phase does not reduce mining to a kernel, it
will neither consume much energy nor invite pooling behaviour in mining. This is so since the size of the
initial White List L or of the initial value of k may be rather small.

For example, in a consortium of four parties, each one may supply a node to be on L and then k
mining races take place between these nodes to seed the ‘chain security horizon’. In particular, the first
k + 1 blocks may not even contain any payload information. Also, once the initial chain in (3.1) has been
produced, the parties may form an external consensus that this chain is trustworthy as a ‘seed chain’ for
the running PoKW system. Then, PoKW can operate as specified in §2.

Let us next consider how different types of tasks/actions shape access-control policy.

3.2. Action types and their access control
When mining blocks Br with r > k, the system then switches to another access-control model, which is
assumed to operate in a more hostile environment and so is more restrictive. And this more protected
environment is realized through the adaptive PoKW blockchain itself.
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It is important to note that information that impacts whether or not to grant an access is recorded or

securely referenced on the blockchain: the White List L, the policy P, the set of public keys PKr−k that
appeared in the payloads of blocks

B0, B1, . . . , Br−k, (3.2)

as well as the code that captures the validation logic of new blocks. In particular, any public keys that
freshly appeared on the chain in the k-block segment

Br−k+1, Br−k+2, . . . , Br (3.3)

are not in PKr−k. We distinguish two types of access-control actions:

— Actions that change the state of one or several of the system parameters, e.g. a decrease of the
level of difficulty or an increase in the expected size of the committee.

— Actions that change the state of the White List L.

We do not consider, at the moment, actions that might change the state of policy P. Rather, we view
policy P as static since it enforces rules that ensure robustness of system stability. For example, policy P
may be a ‘conjunction’ of rules, including the rules

— Addition of a block and its implicit change of access-control state shall never increase or decrease
the size of L by more than 2% compared to its size at the last time its smart contract state changed.

— The level of difficulty shall not change by more than 10% compared to its previous value.1

The policy P is captured in a smart contract, and may even be controlled by a central entity—
depending on the nature of the use case. Let us next discuss how the White List may be realized.

3.3. Different realizations of the White List L
We may think of the White List L as a qualitative list, telling us those nodes that are definitely on that
list. Alternatively, we may have a threshold thL—which would itself be a system parameter encoded in a
smart contract or in the block structure. Then, White List L would be a mapping from nodes to reals. The
logic would then be that L represents the set of network nodes n that satisfy

L(n) > thL. (3.4)

In the former case, access-control actions may simply be to add or remove nodes from L. In the latter case,
such actions may increase or decrease L(n) based on evidence from machine learning, say. For example,
if the periodic anomaly detection flagged up node n, an action may decrease L(n) as a function of the
computed anomaly score.

A question in that context is how such an action would be validated by other nodes. It could simply be
approved, if the node was eligible to do the learning task. But one can imagine more complex validation
logic, e.g. that the proposed decrease is an agreed upon deterministic function of the anomaly score,
and there may perhaps even be some validation of that score itself. Related to that, equation (3.4) may
be instantiated with thresholds that are specific to tasks, for example, separate thresholds for mining,
anomaly detection and network stabilization. However, more complex realizations of the White List L
potentially offer an attack surface and would have to be formally modelled and verified.

3.4. Policy-based access control
It is customary to express policy-based access control within an architecture. For example, in XACML [10]
a policy decision point (PDP) is the system part that computes whether a particular action (i.e. an access
request by some actor) should be granted. The policy evaluation point (PEP) would then operationalize
that decision on the system, for example, to perform the action if granted or to log a denial if the action
is not granted. We may think of the PDPs and PEPs as decentralized engines, as seen, for example, in the
so-called User Managed Access Control as developed by the Kantara initiative.

We now want to understand how this view of access-control systems can be interpreted in the PoKW
context. For the first k + 1 blocks of the system, the PoKW system would simply implement whatever
access-control logic this initial phase of system set-up might have. After k + 1 blocks have been created,

1Or perhaps as a function of those values from the last p blocks.
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the PDP might operate a follows. Let node n make a request to perform action a. The PDP then reasons
as follows:

R1 If n is not in the set PKr−k, then the action is not allowed.
R2 Otherwise, if L(n) ≤ thL, then the action is not allowed.
R3 Otherwise, if action a violates any of the rules in policy P in its current state, action a is not

allowed.
R4 Otherwise, if node n is not in the sortition committee for the task associated to action a at the

local blockchain state, then action a is not allowed.
R5 Otherwise (subject to refinement in particular circumstances and for certain actions), action a is

allowed.

In the priority composition of the five rules R1–R5, the three components PK, P and L of access control
as well as the cryptographic sortition are semantically a conjunction for granting access: all of them need
to rule that the action a is allowed in order for action a to be permitted.

As for the PEP, in a blockchain context this mostly refers to the validation logic for new blocks, which
each node would independently verify. For example, the action of node n of proposing a new block has
task type mine and so this would only be accepted if n could be in the mining committee of that race
according to the above five rules, for action mine.

However, we need to be careful that this model does not introduce feature interactions that lead
to inconsistent access-control state, and so to a deadlock in the system. For example, the function
getEligibleKeyspki

should in its body compute a set of public keys that only contain nodes n satisfying
L(n) > thL. Otherwise, use of cryptographic sortition with nw = 4, say, may compute with non-trivial
probability a set of four nodes—none of which satisfy L(n) > thL. In that case, the validation logic for
new blocks, which subsumes the checks of the access-control logic, would simply refuse to validate any
new block.

We turn to describing how committee memberships are determined for the concrete specification
in §2.

3.5. Determining node eligibility
Let us illustrate how the set of eligible public keys may be computed after k + 1 blocks have already been
created and when there are only two possible tasks:

— mine: the new block Br+1 is such that r + 1 is not a multiple of p, and so no learning or other
system parameter adjustments will take place in that creation

— mine_and_adapt: the new block Br+1 is such that r + 1 is a multiple of p, and so the new block
not only needs to be mined, but also system parameters need to be adjusted based on anomaly
detection.

To make things simple, we also assume that the policy P has no influence over which nodes are eligible
for this new block creation; P will only constrain the possible sets of parameters. Let us also assume, for
sake of further simplicity, that all system parameters stay constant for p − 1 consecutive blocks once a
mine_and_adapt task just created a new block. The code for function computeEligibleKeyspkn

(r, k) would
then produce the following output:

computeEligibleKeyspkn
(r, k) = PKr−k ∩ {n′ | L(n′) > thL}. (3.5)

Node n can then call function mayPerformpkn
, with either task mine or task mine_and_adapt, to determine

whether it is eligible to participate in the mining race for Br+1. Note that node n has no incentive to call
that function with the wrong task: block validation will invariably check whether the node that mined
this block was eligible for the unique task of that new block.

Finally, we make some points about how our approach affects the validation of new blocks.

3.6. Validation logic of new blocks
For task mine, the structure of the new block would be such as expected by the logic of the payload
transactions and that of the creation of the new seed, whereas other system parameters would not be
allowed to change. This implicitly determines the validation logic for new blocks of type mine. For new
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blocks of type mine_and_adapt, the validation logic inherits the logic for the transaction sets and new
seed, but would also verify that the system parameter values meet the policy P.

The policy P needs to have a deterministic semantics so that a vector of system parameter values,
as the suggested new values in the block Br+1, is either accepted by the policy P or rejected. Rejection
would mean that the entire new block Br+1 does not validate. This also implicitly specifies how other
nodes validate such a new block.

4. Public Proof of Kernel Work networks and democracy
It is well understood that PoW, as used in Bitcoin, led to the centralization of mining into pools. The
interplay of game theory, adjustment of level of difficulty of PoW, and exchange value of mined Bitcoins
also resulted in a dramatic increase in the level of difficulty. Bitcoin, therefore, consumes way too much
energy, on par with an entire economy such as Sweden. It also means that ordinary nodes and devices
are essentially deprived from the ability to ever mine successfully. Moreover, the mechanisms for sharing
rewards within pools are complicated and cannot prevent nodes to participate in more than one pool and
to gain an unfair advantage. The latter problem is similar to the known Dilemma of the Commons; see,
for example, the discussion in [11].

So what can PoKW offer in this problem space? It seems that it can at least provide a reduction in the
energy consumption of PoW in the network: equation (2.2) guarantees that an expected number of nw

nodes will be able to mine the next block. However, this assumes that public keys are somehow bound
to individual mining units. An attacker may use mining rags to duplicate and scale up such mining
for eligible public keys. This means that PoKW-based blockchains that contain considerable monetary
incentives for mining are likely to see more energy consumption caused by such mining behaviour.

In applications in which identity management is an integral aspect of the blockchain, public keys may
be generated from identities and one could manage, in function getEligibleKeys, how many public keys of
a given identity would be classified as eligible by that function. In fact, consider Pa as the set of private
keys that agent a knows and that function getEligibleKeys decides to be eligible. Then, the size of set Pa

may be seen as a relative stake of agent a in determining the next block. And this stake is independent of
the hash rates that agents may employ once they are permitted to participate.

We note that the unfairness that may result from the different hash rates of, say, a generic smartphone
of a typical user of a public network and of a powerful miner, may be less pronounced for lower levels
of difficulty. This is so since the propagation times for blocks on the network may influence the leader
election in a peer-to-peer gossip protocol, for example.

One concern with PoKW, however, is that if even one adversarial miner with powerful hash rate is
eligible to mine the next block, then the adversary can take over control of the block mining. Let us
understand this issue better though. Recall that the probability of finding PoW within time t, at hash rate
r (the number of PoW attempts done per second), and for level of difficulty d is exponentially distributed:

Pr(Successr ≤ t) = 1 − e−rt/d, (4.1)

where Successr is the actual time for a miner with hash rate r to find a PoW. Let us illustrate how one may
analyse an attack that uses machines with high hash rates if the benign part of the network has only half
as many machines with such higher hash rate available.

We consider r = 109, so the high hash rate is 1 GHash per second for both attacker and benign node.
Let us say we have 1000 nodes in the network of which 200 are controlled by the attacker and have
hash rate r. Let us assume that 100 nodes in the network also have hash rate r but are not controlled
by the attacker. For the expected size of the mining committee, we choose nw = 50, and suppose that
p = nw/|PKr−k| equals 0.1.

This means that na = 50 × 200/1000 = 10 nodes of those that are controlled by the attacker and have
hash rate r are expected to be eligible to mine. For d = 16, say, this gives us the probability

Pr(AttackSuccessr ≤ t) = 1 − e−(t/d)rna = 1 − e−t×109×10/16 (4.2)

that the attacking na nodes find PoW within t seconds. Similarly, we have nb = 50 × 100/1000 = 5 as the
expected number of benign nodes that are eligible to mine the next block and have hash rate r. From this,
we may compute

Pr(BenignSuccessr ≤ t) = 1 − e−(t/d)rno = 1 − e−t×109×5/16 (4.3)

as the probability that these benign nodes find PoW within time t. We can see from this that both of these
probabilities are exponentially distributed. Moreover, their rates reflect how many more compromised
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Table 1. Some values of the probabilities in (4.2) and (4.3), rounded to three significant digits. Probabilities refer to a group of nodes
finding PoW, not winning a PoW race that includes convincing the network that one has won that race.

t Pr(AttackSuccessr ≤ t) Pr(BenignSuccessr ≤ t)

10−8 0.998 0.956
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10−9 0.465 0.268
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10−10 0.06 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

machines an attacker has among those machines with the high hash rate: the attacker has twice as many
such machines, and so the rate in (4.2) is twice the rate in (4.3).

Let us illustrate how this translates into concrete probabilities. Table 1 shows these probabilities for
a few values of t. It is worth noting that, for smaller time periods, these probabilities reflect well how
many more powerful machines the attacker controls. However, for longer time periods, these differences
become much less pronounced. As already discussed, the time differences in this table may not matter
too much within a PoKW-based network, since PoKW solutions need non-negligible time to propagate on the
network.

We think that PoKW may also help with making public networks, in which the mining does not generate
significant monetary value to the miner or her pool, more democratic. For example, one may generate a
small donation for a good cause and the controllers of such a network may use smart contracts to manage
the list of organizations to which one may donate.

Furthermore, the creation and state of such a list may be determined through participation of the
network’s social agents, where common social values would influence which organizations to propose,
elect and perhaps remove. Such a socio-computational model is particularly attractive for lower levels of
difficulty, and where these levels may neither change much nor exceed a threshold that would discourage
participation of small devices.

A combination of PoKW with other consensus mechanisms may be used to control the ability or
incentive of nodes to duplicate eligible key pairs on other devices; see, for example, the discussion in
[3] on how one may combine PoKW with Proof of Elasped Time.

5. Attack vectors and their mitigation
We now discuss some potential vectors through which an adversary or a group of adversaries
could attack this system, and how we may mitigate such threats. First, let us state the underlying
security model.

Security model: The overall security model is that all nodes trust the current blockchain that they
know, and may not trust anything else. Also, we assume that an adversary or group of adversaries
cannot compromise more than a certain percentage pc of all network nodes, at any given point in
time.

Let us analyse the use of Cryptographic Sortition. We assume that the initial seed Q0 in the system’s
Genesis Block B0 will be generated by a cryptographically strong pseudo-random generator. If the
Genesis Block is created by a central system authority, the latter could create the seed for the generation of
Q0 from a high-entropy source. One could alternatively generate this seed using decentralized protocols
for verifiably generating secrets, e.g. the JF-DKG protocol [12], if there is a well-defined initial set of nodes
that would participate in this process. The latter approach may produce more trust into the initial block
data B0, including the value of Q0. Similar considerations apply for the creation of the next k blocks on
the chain.

The generation of subsequent seeds Qr is such that it is a deterministic function of the previous
seed Qr−1—whose value we trust based on the consensus of the current blockchain—and of the digital
signature of some node pki. An adversary cannot change the format of this new seed since block
validation would otherwise fail. An attacker may only try to create this signature with a key pair (pki, ski)
of his choice, assuming he is able to compromise a certain percentage of all nodes.

But all such signatures would use a specific algorithm, in our use case this is ECDSA for a particular
Elliptic curve. And we assume that an adversary cannot exploit any changes in digital signatures based
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on changes of private keys. This is a reasonable assumption as the creation of signatures acts like a
(key-dependent) pseudo-random generator.

Let us now consider how an adversary could exploit knowledge of the new seed value Qr, for
example, in a setting in which the adversary would first learn the new block Br and could ensure that
other nodes receive this block only after some delay. For those nodes which the adversary has already
compromised, we may assume that the adversary knows the private keys of these nodes. Assuming
that the set of public keys PK that are, in principle, eligible to participate in a mining race for Br+1

is computable from the current blockchain, the adversary therefore can evaluate the entire body of
mayPerformpki

(r, mine) for compromised nodes pki to determine which of these nodes are eligible to mine.
However, if he has not yet compromised a node pkj, then he would not know its secret key skj and so

he cannot evaluate the body of mayPerformpkj
. Therefore, the attacker cannot know which of the nodes

that he has not yet compromised will be able to participate in the next mining race. This means that
he has no additional information that may help him determine which additional nodes to compromise
next—assuming that such actions take effort and time and can only be done for a limited number of
nodes. Therefore, an adversary may as well resort to compromising nodes randomly for the purpose of
influencing mining races.

This means that he has to compromise a percentage pc of all network nodes in order to guarantee
that he compromises an expected percentage of pc of eligible nodes for each mining race. To make this
concrete, assume that nw equals 50 and that there are 100 000 nodes in the network. Then an adversary
needs to compromise 10 000 nodes if he expects to compromise five of the 50 nodes that will be eligible
to mine the next block.

Another threat is that an adversary who knows a private key ski can duplicate this key across fast PoW
devices to engage in a private, parallel thread of the current mining race. Depending on the number and
types of devices used for this, the adversary may gain a considerable advantage in winning the mining
race. Specifically, the probability that the adversary will compromise at least one node that is eligible to
mine the next block can be seen to be equal to

1 − (1 − pc)nw . (5.1)

For example, for nw = 50 and pc = 0.1 this gives us a probability of 0.99484622479268 that the adversary
controls at least one of these eligible nodes. However, the discussion around table 1 suggests that this may
not be a grave concern whenever the public network has sufficiently many benign nodes of similar hash
rates available. This is certainly less of a concern in an enterprise setting.

Another threat stems from the ability to propose empty, sparse or low quality transaction sets TSetr

within blocks Br. We assume that the system policy, embedded into the blockchain, would be able to flag
up such behaviour so that the machine-learning engines could react to this—for example, by removing a
node from the White List L or by adjusting system parameters as a corrective response.

Naturally, these control mechanisms themselves, including the machine-learning algorithms used,
may be subject to attack and manipulation. Adversarial machine-learning techniques (e.g. [13]) may be
mitigated against, given that most if not all the data for learning would stem from the current blockchain,
which we would trust in our security model, and so data poisoning would be prevented. Other control
mechanisms, including those based on policy, would need to be internally consistent so that they would
not offer denial-of-service type attacks on their own access-control logic. Formal verification has already
been applied extensively in the area of access-control policies, and such validation could therefore also
be done for smart contracts that embody such policies.

The strength of smart contracts, as compute engines that are immutable and for which there is
system consensus, also reflects their weakness: the limited ability to manage change. This needs to be
reconciled with support of the entire life cycle of a system. One may achieve this, for example, through
voting mechanisms within smart contracts, similarly to how Bitcoin handles major system configuration
changes through a vote of miners. We think that such voting mechanisms will offer an ability to recover
from major system incidents, should an attack of an adversary ever produce systemic damage that
requires stability-preserving system repair.

6. Use case
We report here a pilot project in IoT and mobility, where PoKW and our approach above were used. The
outcomes of this pilot are illustrated in this short video:
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https://www.youtube.com/watch?v=KvyF78RTj18&feature=youtu.be

The pilot was run by XAIN—a University of Oxford spin-off focused on strengthening the blockchain
through reinforcement learning and PoKW as discussed above, to enable flexible, efficient and secure
machine communication networks. The use of PoKW allows for massive energy reductions and network
democratization that directly includes mobile low-power devices, integrated in embedded systems, e.g.
in engine control units (ECUs) in machines or connected cars.

The benefits of this work and innovation are rooted in realizing the following abilities, of interest to
owners of a Porsche car:

— record traffic data over the blockchain, in direct communication with other vehicles,
— lock/unlock your car, way faster and much more secure, thanks to a blockchain-powered direct

offline connection (no server connection involved),
— grant somebody else temporary access to your Porsche, even if you are nowhere near,
— receive real-time notifications about who/when/where accesses your Porsche,
— get mail packages securely delivered directly inside the trunk of your parked car, and
— obtain resilient security of a fully decentralized blockchain implementation.

Additionally, Porsche itself gains direct benefits on the basis of data access, including:

— an increased trust in vehicle data, entirely audited and usable for reports, certificates and
especially the access of local data for predictive maintenance and autonomous driving,

— an increased security for vehicle software, used for flexible access transactions and secure over-
the-air update opportunities,

— the XAIN blockchain as a distributed, lightweight and trusted ‘app store’ for fast integrations of
third-party software, such as from DHL,

— an increased customer trust, while being GDPR compliant for data usage, and
— the potential training of distributed machine learning to achieve better local models for

autonomous driving, thus supporting a knowledge transfer platform.

The latter is a key point, privacy-sensitive computations are done locally (within a company or
even within a vehicle), and only statistical results are shared to improve overall learning and analytical
insights.

This use case needs to emphasize safety and security as key consideration. Unlocking your Porsche
car happens via an online transaction that is mined by the vehicle network, a public permissioned
blockchain with hybrid nodes inside the car. Each node mines with PoKW, developed as an energy-
optimized consensus algorithm that works in ECUs of the cars. The running network is then stabilized
through reinforcement learning.

6.1. System architecture
The pilot system comprises a variety of different network and system components that refer to
the architecture diagram shown in figure 4. Inside the car, we run a single-board computer (SBC),
which includes a XAIN Processor with the ability to process data (mining) and to store the most
important information. Further, the SBC stores the car wallet with the encrypted private keys for signing
transactions and for encrypting all communication via Bluetooth Low Energy (BLE), a BLE module
as an implementation of the transaction protocol for communication with the smartphone, a Whisper
module as a message protocol for secure transmission of encrypted vehicle data, an LTE module for
communication between the processor with the blockchain network, and a CAN bus module as the
interface between the SBC and the vehicle itself.

Subsequently, we implemented a smartphone app, which includes a digital wallet (HD Wallet) as
an Initiator Client that comprises the encrypted private keys, necessary for signing transactions, for the
encryption of the communication via BLE and for the encryption of the symmetric key of the vehicle
data. This allows for all keys to be recovered via a mnemonic seed.

Thus, if one loses the seed, all data are lost, a security and privacy requirement—especially when
considering GDPR. Moreover, the app comprises a BLE module for communicating with the car, plus
a Web3 module for the communication between the app and the different XAIN clients (processors or
dataloggers) and for requesting smart contract data or for sending signed transactions.
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Figure 4. System architecture of our pilot use case for Porsche: user smartphone components are shown on upper left; vehicle ECU, CAN
bus and vehicle systems are depicted on upper right; and the XAIN network is seen below. Edges are labelled with communications and
their realizing technology.

Last but not least, we implemented a network of multiple nodes on AWS with three different
categories. Firstly, Inter Planetary File System (IPFS) nodes, which store the encrypted vehicle data,
transferred via Whisper. Secondly, dataloggers that each contain the complete Merkle tree of the
blockchain as a security instance. These nodes are also used as so-called boot nodes for the hybrid
nodes in the car. Thirdly, we also implemented a network of processors (miners) on AWS that perform
the mining process (PoKW) and store less information over time (recursive pyramid data structure). The
processors can be removed at a later stage from AWS, once enough cars have running processors installed
and the network becomes large enough.

6.2. Smart contract architecture
The architecture of the pilot system is based on three main smart contracts (among others):
UserRegister, UserHistory, and VehicleState.

— UserRegister is just what the name says; it provides an overview of all users of the system. It
allows queries as to whether an address represents a user and the possibility to exclude users
from the system (ban from the White List). It also allows querying the address of a user’s
UserHistory contract.

— UserHistory contains the hash values of the driver’s history (driving history). The actual
records are encrypted on the distributed file system IPFS. The contract contains the addresses
of the vehicles that are allowed to add entries in the driver’s history of the user. These vehicles
are the ‘authorized cars’ for this user. It is also possible to deposit access permissions that allow
outside parties access to specific records.

— VehicleState represents the state of a vehicle. Mainly, this means an assignment to an owner,
as well as a mapping of addresses to permissions. These permissions determine which specific
users have rights to the vehicle. For example, when opening the doors, the trunk or starting the
engine. These authorizations are not fixed but are represented by an identifier that is interpreted
by the above-described application scenarios. Authorizations are always provided with an
expiration date but can be manually withdrawn at any time.

6.3. Access control and key management
The diagram in figure 5 shows a different view of the system architecture, focusing on the management
of access control and cryptographic keys. Overall, the XAIN network and this pilot system are using
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Figure 5. Schematic overview of our approach to key management in our pilot use case.

established, tried and tested, cryptographic primitives—and in standard usage modes. We stay well clear
from ‘rolling our own cryptography’ in order to make our systems as secure as is possible by the state of
the art in cryptography.

Essentially, access is granted when an appropriate and verifiable cryptographic credential is being
presented that matches the request to the sought access, e.g. a specific action performed by the vehicle.

We follow best security practice by using different private/public key pairs for different intents of the
same user (a smartphone, the SBC or other system agents). In particular, keys for symmetric encryption
of payload data, such as the data generated by driving behaviour, are encrypted with a private key
dedicated for communicating such symmetric keys. Whereas the signature of transactions or messages
is performed by another private key. Certificates are generated by digital signatures that involve the use
of standard hash functions, in this case SHA-3.

Our security protocols for key and message exchange, sketched below, adapt common protocol
primitives and steps to the particular tasks at hand. For example, we rely on the generation of nonces
(which is security-sensitive code that needs to guarantee that nonces never get regenerated, in particular,
that the state of that generator does not ‘flow over’ to an initial counting state).

Cryptographic credentials such as public keys are stored in smart contracts, a register that functions
as a secure public-key infrastructure that is resilient to adversarial manipulation to the same extent
that smart contracts are resilient to unauthorized modifications. The private keys for the wallet in
a smartphone, that is the private keys that belong to a human agent who wishes to interact with
the vehicle, are all determined by a mnemonic seed—giving us a good balance of security and
usability, and also a sole and simple source whose destruction also ‘destroys’ (knowledge of) these
private keys.

6.4. Direct connector via Bluetooth Low Energy
We now describe the pertinent steps of communication protocols. The owner can communicate using
the smartphone app, encrypted via BLE with the vehicle. The following actions are currently available:
opening, closing the vehicle and opening the trunk.

Both the user and the vehicle have two private key types. A key is used for encrypted communication
via BLE, here called Type 1 key. The other key (Type 2) is again used only for signing transactions
and messages.

The transfer protocol that turns requests into actions works as follows: the user connects to the vehicle
securely via the smartphone app. The smartphone app and the vehicle exchange their Type 1 public keys.
After the vehicle has received the Type 1 public key of the user, it checks whether the key is contained
in the UserRegister smart contract. However, the Type 1 public key is not contained in the smart
contract, rather only the SHA-3 hash of this key.
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If the Type 1 public key exists, the smart contract returns the XAIN network address of the user—the

shortened SHA-3 hash of Type 2 public key. Subsequently, a random nonce is generated and sent back
encrypted to the smartphone app with the Type 1 private key of the vehicle and with the Type 1 public
key of the user. The random nonce is used to prevent replay attacks.

In the smartphone app, the random nonce is decrypted with the Type 1 private key, incremented by
1, encrypted with the Type 1 public key, and sent back to the vehicle along with a time stamp and the
selected actions (e.g. a request to open the vehicle). The action and the time stamp are signed with the
Type 2 private key of the user. The vehicle first checks to see if the nonce has been successfully increased
by 1.

Subsequently, it verifies whether the signature of the requested action matches that of the user’s XAIN
network address. Finally, it is verified whether the time stamp is within the specified time interval and
whether the user has the authorization to perform this action. The verification of the authorization is
technically realized by a call to the VehicleState smart contract. The outcome of that verification
activity is then recorded via a transaction (signed with the Type 2 private key of the vehicle) in the
smart contract.

The so-called ‘Eventual Consistency’ property of the blockchain makes these actions available even
when the vehicle is not connected to the Internet. However, there are restrictions on the validity of third-
party permissions in such circumstances, as discussed in the next subsection.

6.5. Remote control of vehicle access
Via the smartphone app, certain actions (opening and closing the vehicle, opening the trunk, assigning
or withdrawing authorizations) can also be carried out remotely. For that, the smartphone app
communicates via the Web3 module with the distributed clients. Once the user selects an action through
the app, a transaction with the selected action is created and signed with the user’s private key on the
smartphone. After signing, the transaction is sent to the network nodes.

The ‘open’, ‘close the vehicle’, ‘open the trunk’ actions are all time-stamped to ensure that past actions
or actions planned for the future are not performed at present. The authorizations, however, may refer
to the future, but their validity is limited in time. The validity depends on the difference between the
last synchronization of the blockchain client and the network. If the difference is too large, permissions
to third parties are also ignored for security reasons. The owner could have already withdrawn long
ago a permission during this time interval. Only the owner can open the vehicle at any time with the
smartphone via BLE (without Internet connection). The vehicle smart contract can be easily extended
with further actions.

6.6. Secure data logging and auditing
If the owner opens the vehicle, the public key responsible for encrypting the vehicle data is sent to the
SBC via BLE. The SBC is connected to the vehicle via the CAN bus interface. Once the engine of the
vehicle starts, the SBC logs the generated vehicle data. The logged vehicle data are stored in small files
(chunks), encrypted on the data system of the SBC.

The data are encrypted with a symmetric key, randomly generated by the vehicle. The symmetric key
is then encrypted with the owner’s public key and attached to the file in the form of metadata. The data
package (consisting of the encrypted vehicle data, the encrypted symmetric key and further metadata,
such as the time stamp of the file) is then sent via the Whisper protocol V5 to the XAIN clients. As an
identification of the data package, a SHA-3 hash is formed via this data package and signed with the
private key of the vehicle. The data package itself is encrypted with the public Whisper key of the AWS
client. This public key is stored in a smart contract (a register for AWS clients connected to an IPFS node).

Only these AWS clients can decrypt this data package. Public keys can only be added or removed by
Porsche itself. As soon as an AWS client receives a data package, the sender’s signature is checked with
the VehicleRegister.

If a vehicle with this address exists, the data package is stored in IPFS and the resulting multi-hash,
signed with the private Whisper key of the AWS client, gets sent back to the sender. The multi-hash is
subsequently stored by the SBC via a transaction in the UserHistory contract of the owner. The AWS
clients are stateless. If the SBC does not receive a response after a specified time interval, the data package
is resent. The time intervals can be freely selected.

In our live test drive, we chose a transmission interval of 2.5 s and were thus able to follow the driven
route via our smartphones almost in real time. For the streaming of data, we used the functions and
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possibilities of IPFS. It is interesting to note here that Swarm could be an alternative to IPFS/Whisper.
But we did not use it, because Swarm is still in a very early stage of development.

However, all XAIN system components are loosely coupled, which means that we can easily replace
the IPFS/Whisper system with Swarm at a later stage. The entire data logging case provides the network
with the benefit of a very secure, flexible, immutable and, most importantly, GDPR compliant means to
collect valuable data. Data can be used by Porsche for third-party integrations on the platform, as well
as for a personal revenue stream on the basis of reports. One such example is a trusted car certificate
that informs about the history of a vehicle, including not only information such as mileage but also past
driving behaviour, which can be used as a trusted certificate when re-selling the car. Furthermore, the
data on their own are also highly valuable to Porsche itself when it comes to predictive maintenance and
autonomous driving, both involving not just global models but also the locality of data.

6.7. Third-party integration
One of the XAIN pilot system’s main features is its flexible utilization as a distributed app store for
vehicle software by third parties. Third parties can access the Porsche system as soon as Porsche will have
published its system and will then allow the integration of third-party addresses in the UserRegister

smart contract. To communicate with the vehicle, a third party only needs two private keys and an
implementation of the BLE transmission protocol. If the owner of the vehicle allows a third party, say
DHL, access to the vehicle data, further interesting use cases are possible. For example, a DHL employee
can not only open the trunk, but can then also determine the last location of the vehicle and thus deliver
the package easily and quickly.

Further use cases include telematic insurances, fleet management, electrical charging and
entertainment applications or over the air system updates in general. In the case of telematic insurances,
for example, Allianz can ask the vehicle owner via the smartphone app, whether it may access the vehicle
data for a smart contract as a telematic insurance that evaluates driving behaviour, such that the owner
only pays per usage and pays less when exhibiting good driving behaviour. If the owner agrees, the
encrypted symmetric key used to encrypt the vehicle data is decrypted with the owner’s private key and
then re-encrypted using the Allianz public key. Subsequently, this encrypted key will be sent to Allianz.

These suggested use cases are just an extension of the underlying product’s wide range of capabilities.
With the help of the blockchain, we have created a platform that makes it possible to safely communicate
with a vehicle from the outside. The advantage of this platform is that it allows building applications
without requiring their own security stack and/or additional hardware. This brings interaction with the
connected car to the level of a smartphone, where the user has constant and immediate access to the
newest standards with a quick software update.

6.8. Open access of source code
The pilot was done for a commercial partner and so we are unable to offer open access to its source code.
However, we are in the process of building the XAIN protocol as a flexible and expressive framework
for policy-based, and user-centric access control and where owners of resources may delegate not
just access but also the ability to write policies. We envision that, in the future, the code base of this
approach—including tool support for writing, verifying and compiling access-control policies—will be
made available to the general public. This will, therefore, allow parties to program applications that
create resilient services through fine-grained access control enforced by the XAIN protocol.

7. Conclusion
In this paper, we presented a refinement of PoW, PoKW, as a secure means of reducing the number of
public keys that are eligible to participate in the next mining race. The paper also offered thoughts on
how this approach may reduce the overall energy consumption of the blockchain network and how it
may support attempts of making public PoKW-based networks more participatory and democratic. We
further discussed possible attack surfaces for PoKW-based blockchains, and means for mitigating against
such attacks. Finally, we reported on a use case in mobility and IoT that integrated PoKW into the Ethereum
technology stack, as maintained by XAIN AG for its enterprise systems.

In future work, we mean to advance the work reported in this paper through cooperation
with commercial partners that have an interest in building and maintaining more democratic and
participatory public blockchains, especially in the Internet of Moving Things. There is a lot of commercial
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interest and willingness to engage in that space as evidenced, for example, by the Mobility Open
Blockchain Initiative (www.dlt.mobi).
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