
METHOD Open Access

cnvHiTSeq: integrative models for high-resolution
copy number variation detection and genotyping
using population sequencing data
Evangelos Bellos1, Michael R Johnson2 and Lachlan J M Coin3*

Abstract

Recent advances in sequencing technologies provide the means for identifying copy number variation (CNV) at an
unprecedented resolution. A single next-generation sequencing experiment offers several features that can be used
to detect CNV, yet current methods do not incorporate all available signatures into a unified model. cnvHiTSeq is
an integrative probabilistic method for CNV discovery and genotyping that jointly analyzes multiple features at the
population level. By combining evidence from complementary sources, cnvHiTSeq achieves high genotyping
accuracy and a substantial improvement in CNV detection sensitivity over existing methods, while maintaining a
low false discovery rate. cnvHiTSeq is available at http://sourceforge.net/projects/cnvhitseq.

Background
Next-generation sequencing (NGS) technologies are
rapidly superseding microarrays as the leading platform
for identifying and cataloging genomic variation. Unlike
genotyping arrays, NGS can potentially assess all forms
of variation at an unprecedented resolution. While high-
coverage, whole-genome sequencing (WGS) remains pro-
hibitive in large sample sets, low-coverage sequencing at
the population level has been proposed as a more effi-
cient alternative [1].
Copy number variation (CNV) is pervasive in the human

genome, and has been estimated to contribute more to
genetic diversity than single nucleotide polymorphisms
[2]. Moreover, rare copy number variants (CNVs) have
been shown to be highly penetrant for complex diseases
such as obesity [3]. As a result, there has been an
increased interest in developing algorithms to identify
CNVs using low-coverage WGS [4], while accurate CNV
genotyping from population sequence data has received
less attention.
Most NGS-based CNV detection algorithms rely on

mapping sequence reads back to a reference genome in
search of discrepancies that may provide evidence for dif-
ferent types of variants. CNV signatures of all classes

(deletions, insertions and duplications) can be obtained
from the different features of a single NGS experiment,
with varying degrees of sensitivity. Methods that focus on
read depth (RD) are better suited for determining the
absolute copy number [5] but often suffer from low break-
point resolution and lower sensitivity for small variants
(<1 kb). Methods that focus on the distance (span) and
orientation of read pairs (RPs) are more sensitive to CNVs
caused by retrotransposable elements but often fail to
detect CNVs flanked by repetitive sequence [6]. Finally,
approaches based on split reads (SRs) can achieve single-
base-pair resolution but depend highly on the length of
the reads and are less reliable in repetitive regions. Achiev-
ing a high sensitivity across the CNV spectrum, therefore,
requires taking the strengths and weaknesses of each
approach into account and incorporating information
from multiple data sources. While there are a few methods
that analyze data from any two of these sources, they use
step-wise approaches to combine the results. Notably,
Genome STRiP [7] considers discordant RPs as a starting
point and RD as a downstream filter. Similarly, DELLY [8]
analyzes discordant RPs first and then attempts to
strengthen the results with supporting SRs.
Here we present cnvHiTSeq, an integrative approach to

sequencing-based CNV detection and genotyping that
jointly models all available NGS features at the popula-
tion level. By organically combining evidence from RD,
RPs and SRs, cnvHiTSeq provides sensitive and precise
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discovery of all CNV classes even from low-coverage
sequence data. Furthermore, the probabilistic model
employed by our method allows it to pool information
across individual samples and reconcile copy number dif-
ferences among data sources, thus achieving a high CNV
genotyping accuracy.

Results
cnvHiTSeq integrates evidence from three distinct and
largely complementary sequencing data sources: RD, RPs,
and SRs (Figure 1). Each data source consists of a vector
of one (or more) real values measured at a user-specified
resolution across a chromosome. RD corresponds to the
number of reads aligning to a specific genomic position
and is proportional to the underlying copy number.
In our model, RD is represented by a single measurement
of the average normalized read count within a given
window (Figure 1a,d). RP analysis utilizes discrepancies
between the observed and the expected distance of
mapped paired-end reads to infer the presence of CNVs.
RP is incorporated into cnvHiTSeq using a pair of mea-
surements, the first being the number of RPs that span a
given position, and the second being the average insert
size of these reads (Figure 1b,e). Finally, SR analysis
involves detecting single reads that happen to encompass
the breakpoints of a CNV and thus appear to be ‘split’
between two genomic locations when mapped to the
reference. SR is summarized by the count of split reads
that span a given genomic position (Figure 1c).
cnvHiTSeq utilizes the population-haplotype framework

of cnvHap [9] to incorporate the diverse data sources into
a single probabilistic model. A hidden Markov model
(HMM) is used to capture the spatial properties of CNV
across a single chromosome copy (Figure 2). This is moti-
vated by the hypothesis that the observed sequence data
are generated by discrete unobserved states corresponding
to the unknown copy numbers at each genomic position.
cnvHiTSeq models the probability of every data point
conditional on this hidden copy number using statistical
distributions tailored to each data source (Figure 2c).
The HMM can then be used to calculate the likelihood of
different paths (corresponding to different CNV segmenta-
tions) through the model, and thus perform an integrated
analysis of the underlying sources (Figure 2d,e). The spa-
tial smoothing provided by the HMM allows cnvHiTSeq
to detect events from low coverage data at a much finer
resolution than sliding window methods without concomi-
tant loss of power or increase in false positives due to
small window noise. To benefit from large sample sizes
and account for sample-independent variation in the data
sources (for example, due to the local sequence composi-
tion), cnvHiTSeq uses the population distribution of data
measurements at each position to update the parameters
of the emission distribution during the model training.

cnvHiTSeq also updates a transition rate parameter at
each position in order to capture variation in CNV fre-
quency across the genome.

False discovery rate estimation
We first evaluated the ability of cnvHiTSeq to detect CNV
using data from the HapMap CEU trio. This trio was
sequenced by the 1000 Genomes Project to high coverage
(30×), but we also randomly downsampled the data to
medium (10× and 20×) and low coverage (6×). We applied
cnvHiTSeq separately to the child (sample NA12878) and
the parents (samples NA12891 and NA12892) of the trio
in order to approximate the false discovery rate (FDR) via
the rate of Mendelian inconsistency in CNV prediction.
This method does not utilize the population modeling
capabilities of cnvHiTSeq, but provides a good genome-
wide estimate of the FDR in the absence of a gold stan-
dard. Throughout our analyses we only focus on CNVs
larger than 100 bp. At low coverage, cnvHiTSeq detected
2,910 deletions and 2,994 duplications in the child at a
FDR of 4.3% and 9.8%, respectively. The FDR was calcu-
lated using a 1-bp overlap criterion and was found to
decrease with increasing coverage (Figure 3a). When using
a stricter 50% reciprocal overlap criterion between the
child and the parents we report a FDR of 5.3% and 12.6%
for deletions and duplications, respectively. Genome
STRiP [7], which was the best competing method,
achieved a 8.2% (50% reciprocal overlap) FDR for this
sample when calculated in exactly the same way, although
a lower FDR of 3.7% has been reported [4] based on
experimental validation, demonstrating the conservative
nature of our validation approach (Table S3 in Additional
file 1). By adjusting the posterior probability threshold for
calling CNVs we show that our method maintains a low
FDR even when making twice as many calls as other
methods [7,10,11] (Figure 3b).
Since estimation of FDR using Mendelian inconsistency
may be prone to sequencing biases potentially affecting all
three samples in the trio, we also applied a strict criterion
of requiring true positive predictions to have been
observed in only one of the parents. Thus, after excluding
common CNVs using the Database of Genomic Variants
(DGV) [12], we designated CNVs present in both or
neither parent as false positive to obtain an FDR upper
bound of 15.2%, which remained better than the equiva-
lent for Genome STRiP (Table S4 in Additional file 1).
We also obtained an independent estimate of FDR

using array-CGH data from the High Resolution CNV
Discovery project [2]. We identified 166 deletions pre-
dicted by cnvHiTSeq for NA12878, which encompassed
at least 4 CGH probes and were thus considered for vali-
dation. CGH analysis validated 155 of these 166 regions
(FDR = 6.8%; Table S1 in Additional file 1), while 101 of
the 166 deletions were also identified by Genome STRiP,
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confirming the higher sensitivity of our approach. The
validated deletions range from 541 bp to 143,379 bp in
length, with a median of 4,170 bp and cnvHiTSeq main-
tains a low FDR across CNV lengths, while being slightly
more accurate for longer variants (Figure S3 in Addi-
tional file 1).

Sensitivity analysis
In order to estimate the sensitivity of our method, we
applied cnvHiTSeq to the low coverage NA12156

sample and then compared the results to the gold stan-
dard dataset used by the 1000 Genome Structural Var-
iant discovery study [4]. This gold standard comprises
three heterogeneous CNV call sets for sample NA12156
that were obtained using different technologies and are
therefore more sensitive to CNV events of different
sizes, covering a wide range of the CNV spectrum.
Smaller CNVs are examined using capillary read data
(median = 0.2 kb) [13], medium-sized CNVs are exam-
ined using array-comparative genomic hybridization

Figure 1 Two characteristic CNVs on chromosome 8 and their corresponding paired-end sequencing signatures. Gray reads give rise to
read depth measurements, represented as black circles. Blue reads correspond to discordant read pairs and contribute to read pair
measurements denoted as blue squares. Split reads and their corresponding counts are represented in green. Hybrid green/blue reads provide
evidence of split reads combined with abnormal read pair distance. (a) Read depth signature for well described homozygous deletion on
chromosome 8. Reads are absent inside the deleted region. (b) Read pair signature for the same deletion as (a). The distance of the pairs
spanning the deletion is significantly increased compared to the expected insert size. (c) Combination of read depth, read pair and split read
signatures. Two split reads that span the breakpoints of the deletion were identified. The joint analysis of all the sources improves the breakpoint
detection. (d) Read depth signature for multi-copy tandem duplication on chromosome 8. Significantly more reads are present inside the
duplicated region. (e) Read pair signature for the same duplication as (d). The read pair distance appears significantly decreased compared to
the expected insert size. (f) Combination of read depth and read pair signatures provides improved breakpoints. The split reads detected in the
region are used to rescue their orphaned pair and are thus incorporated into the read pair signature.
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Figure 2 Schematic diagram of cnvHiTSeq model. (a) State diagram of the haploid HMM used by cnvHiTSeq. Vertices represent haploid copy
number states (0, red; 1, gray; and 2, green) and edges represent transitions from one state to another. The thickness of the edges is
proportional to the transition probabilities of the model. More haploid states can be used to model higher copy numbers. (b) By pairing two
haploid copy number states cnvHiTSeq derives the final diploid model (0, dark red; 1, red; 2, gray; 3, green; 4, dark green). (c) Each observed
variable is modeled using a customized emission distribution. Here, as an example, we present the emission distributions for read depth and
read pair distance conditional on the copy number state. Read depth is modeled using the negative binomial distribution, while read pair
distance is modeled using the normal distribution. The color scheme corresponds to the diploid copy number states presented in (b). (d) The
trained haploid HMM that corresponds to the homozygous deleted region on Figure 1a-c. The rows represent copy number states and the
columns represent genomic location. Positions are given in megabases (Mb). Bubble size corresponds to the probability of assignment to each
state at each position. The lines between bubbles indicate possible transitions between states. The annotated positions indicate the start and the
stop of the CNV call. (e) The trained haploid HMM that corresponds to the heterozygous duplicated region on Figure 1d-f.
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(array-CGH; median = 2 kb) [14] and larger variants
using fosmid sequencing (median = 6 kb) [15]. Both our
reported sensitivity results and those of competing meth-
ods are based on a 1-bp overlap criterion. Using low-
coverage WGS data, we report an overall sensitivity of
80.1%, with cnvHiTSeq performing consistently better
than competing methods on the same data [4] (Figure 4a;
Table S5 in Additional file 1). Specifically, on the fosmid
dataset cnvHiTSeq achieves a sensitivity of 88%, com-
pared to 63% for Genome STRiP. For array-CGH we
report a sensitivity of 86%, while the next best result of
70% is achieved by event-wise testing (EWT) [10].
cnvHiTSeq also outperforms other methods on the capil-
lary read data, for which we report a sensitivity of 48%
compared to Genome STRiP’s 21%.
To provide context for our FDR results we also esti-

mated our method’s sensitivity on the downsampled
CEU trio. The previously used gold standard datasets
contain CNV calls for the child of the trio (NA12878).
For this sample we report an overall sensitivity of 78.4%
and individual results consistent with those for sample
NA12156 (Table S5 in Additional file 1). Furthermore,
we created a CNV call set for the entire trio by analyz-
ing the raw array-CGH intensity data from the High
Resolution CNV Discovery project [2] using cnvHap.
On this set, which contains both duplication and dele-
tion events as small as 100 bp, cnvHiTSeq achieves an
overall sensitivity of 87.8% (Figure 4b).

Genotyping accuracy
In order to explore the extra benefits available from popu-
lation level modeling of NGS features, we applied cnvHiT-
Seq to 94 low-coverage CEU samples at the sites of 18
common deletions characterized by PCR, which have been
previously used to benchmark CNV genotyping accuracy
[9,16]. We used cnvHiTSeq in two different configura-
tions: single-sample, in which each sample is analyzed
separately, and population-aware, in which the model
parameters are updated via ten iterations of expectation
maximization. The population-aware mode achieved per-
fect genotyping concordance with the reference in 14 of
18 deletions (98.2% genotyping accuracy, 0.5% missing
rate) and outperforms the single-sample mode at all dele-
tions. Furthermore, the population-aware mode is shown
to be as good as, or superior to, the results obtained from
Illumina 1M genotyping arrays in 16 of 18 deletions
(Table 1).
We also tested the genotyping accuracy of population-

aware cnvHiTSeq on a larger genotyping dataset obtained
from the High Resolution CNV Discovery study [4]. This
dataset consists of approximately 5,000 CNV regions gen-
otyped for 450 HapMap samples and was created using a
custom array-CGH. We applied cnvHiTSeq on a ran-
domly chosen subset of 150 CNVs for 91 CEU samples
that were common with the low-coverage phase of the
1000 Genomes Project. These CNVs range from 462 bp to
48,748 bp in length, with a median of 2,550 bp. We report

Figure 3 False discovery rate analysis of cnvHiTSeq. (a) FDR of our method for different depths of coverage. FDR determined using
segregation analysis on the HapMap CEU trio. (b) FDR of cnvHiTSeq versus the number of detected CNVs. Our method maintains a low FDR
even when calling twice as many deletions as competing methods.
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a genotyping concordance of 96.0% (2.7% missing rate),
which is consistent with our previous results considering
the limitations of array-CGH platforms in identifying com-
plex and nested copy number events (Figure S4 in Addi-
tional file 1).

Discussion
In our study, we have demonstrated that our novel CNV
detection framework maintains a low FDR and high sen-
sitivity while identifying considerably more variants than
other methods in low-coverage WGS data. By adopting
a unifying approach we are able to detect both deletions
and duplications/insertions across a wide range of sizes,
without deviating from previously reported length distri-
butions [4] (Figure S2 in Additional file 1).
Our results indicate that almost all CNVs that are

detectable by microarray technologies can also be identi-
fied using low-coverage sequencing with similar, if not
greater, genotyping accuracy. And since the proportion
of the genome that can be interrogated by sequencing is
much higher than that by microarrays, low-coverage
NGS constitutes a natural choice of platform for CNV
association studies.
Our method’s modular framework makes it readily

extendible to additional data sources as they become
available. Furthermore, as cnvHiTSeq constitutes a nat-
ural extension of cnvHap, it can take full advantage of
cnvHap’s microarray-based CNV detection framework.
Synthesizing the two technologies will achieve the most
comprehensive results and allow us to impute sequen-
cing-derived CNVs onto existing genotyped datasets.
High-throughput sequencing technologies are still in

active development. Over the course of the past few
years, there has been tremendous progress that allowed

for faster, more affordable sequencing on a genome-
wide scale. As a result, we are now in an era in which
hundreds of animal and plant species have been, or are
being sequenced, while thousands are being planned.
NGS is the driving force behind population re-sequen-
cing projects, which rely on existing reference genomes
to identify and catalogue genetic variation, construct the
pan-genome [17], and make inference on population
structure and demographic history. Population re-
sequencing projects are underway in multiple human
populations, in Arabidposis thaliana [18], as well as rice
[19] and soybean [20]. Such projects typically attempt to
sequence more individuals by lowering the coverage per
individual to between 4× and 8×. As these low-coverage
re-sequencing cohorts become available, cnvHiTSeq will
provide the means for interrogating the role of both
deletions and duplications on the phenotypic diversity of
multiple species. Considering the added ability to accu-
rately distinguish between homozygous and heterozy-
gous events, cnvHiTSeq offers a complete solution to
sequencing-based CNV detection and genotyping, aim-
ing to further our understanding of CNV impact on dis-
ease and evolution.

Conclusions
We have presented a novel approach to detect and geno-
type CNVs using high-throughput sequencing data. By
combining evidence from various sequencing features, our
method offers a substantial improvement in CNV detec-
tion sensitivity over existing methods, while maintaining a
low FDR. The population modeling aspects of cnvHiTSeq
also allow it to achieve a high genotyping accuracy even
from low-coverage data. Therefore, our method is espe-
cially well-suited for low-coverage re-sequencing cohorts

Figure 4 Sensitivity analysis of cnvHiTSeq. (a) Sensitivity of cnvHiTSeq for sample NA12156 compared to competing methods for three gold
standard datasets. (b) Sensitivity of cnvHiTSeq for the CEU trio (downsampled to 6× coverage), based on data from the High-Resolution CNV
Discovery project. The histogram represents the number of CNVs in the call set, and the blue line denotes the sensitivity.
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Table 1 Genotyping accuracy on a subset of the HapMap CEU population

cnvHiTSeq

cnvHiTSeq* cnvHiTSeq†

Location Predicted Location Predicted length (bp) cnvHap r2 SCIMM r2 r2 Accuracy Missing rate r2 Accuracy Missing rate

chr1:35098051-35115368 chr1:35100671-35112111 11,440 1.00 1.00 0.77 0.88 0.23 1.00 1.00 0.00

chr1:152759872-152770356 chr1:152760173-152770753 10,580 0.90 0.94 0.85 0.82 0.23 1.00 1.00 0.00

chr3:151625213-151657165 N/A N/A 0.00 N/A N/A N/A N/A N/A N/A N/A

chr7:97395305-97402641 chr7:97395365-97402646 7,281 1.00 1.00 0.66 0.81 0.05 1.00 1.00 0.00

chr7:115930472-115941073 chr7:115931453-115941632 10,179 1.00 1.00 N/A 0.95 0.00 1.00 1.00 0.00

chr8:51030941-51038331 chr8:51031082-51038282 7,200 0.92 0.93 0.63 0.94 0.11 1.00 1.00 0.00

chr8:144700485-144714694 chr8:144700505-144714606 14,101 1.00 0.97 0.54 0.67 0.00 1.00 1.00 0.00

chr10:71280989-71291079 chr10:71280949-71291070 10,121 0.90 0.82 0.58 0.86 0.05 0.89 0.95 0.00

chr11:5783630-5809284 chr11:5784450-5809211 24,761 1.00 1.00 0.61 0.83 0.00 0.94 0.94 0.00

chr11:107238222-107244154 chr11:107238422-107244103 5,681 0.94 0.97 0.83 0.90 0.00 1.00 1.00 0.00

chr15:34694542-34817215 chr15:34701483-34817043 115,560 0.80 1.00 0.69 1.00 0.05 1.00 1.00 0.00

chr15:76884597-76907042 chr15:76884597-76896918 12,321 0.56 N/A 0.96 0.95 0.00 1.00 1.00 0.00

chr19:35851153-35861684 chr19:35851134-35863213 12,079 1.00 1.00 0.81 0.90 0.05 1.00 1.00 0.00

chr19:52132525-52148984 chr19:52132606-52149186 16,580 0.96 0.96 0.88 0.86 0.00 1.00 1.00 0.00

chr20:1558407-1585809 chr20:1561187-1585928 24,741 0.90 N/A 0.95 0.94 0.00 1.00 1.00 0.00

chr22:23154417-23243496 chr22:23186037-23241798 55,761 0.22 N/A 0.61 0.73 0.00 0.77 0.80 0.09

chr22:24323894-24418396 chr22:24343395-24397295 53,900 0.00 N/A 0.91 0.86 0.00 1.00 1.00 0.00

chr22:39366812-39386139 chr22:39358773-39383652 24,879 1.00 0.96 0.46 0.85 0.00 1.00 1.00 0.00

Genotyping accuracy as measured by the concordance between copy number estimates on 22 HapMap CEU samples from the low-coverage pilot of the 1000 Genomes Project and reference copy number estimates
obtained using PCR. Concordance is quantified using two different metrics: the correlation coefficient r2 between the reference and the predicted genotypes as well as the fraction of calls with the correct genotype
for both alleles. r2 measurements for SCIMM (SNP-Conditional Mixture Modeling) were obtained from the supplementary material of [16]. r2 measurements for cnvHap were obtained from the supplementary material
of [9]. Two different versions of cnvHiTSeq were used: cnvHiTSeq*, which is a single-sample version of the algorithm that does not take advantage of the population modeling capabilities, and cnvHiTSeq†, which
trains the parameters of the model using the entire low-coverage HapMap CEU population from the 1000 Genomes Project (currently consisting of 94 samples). The genotyping accuracy was calculated using 22 of
the 94 samples, since these were the only samples for which PCR copy number estimates were available. When all the samples are predicted to be copy neutral for a given location, the accuracy and r2 are
undefined and denoted by N/A. cnvHiTSeq calls with posterior probabilities lower than 80% were excluded and declared as missing.
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and can provide valuable insights into CNV prevalence
and importance.

Materials and methods
Samples and datasets
Development and benchmarking of cnvHiTSeq were
accomplished using the publicly available data from the
recently completed low-coverage and trio phases of the
1000 Genomes Project [1]. These datasets were sequenced
using the Illumina Genome Analyzer platform and aligned
to the GRCh37 reference genome using the Burrows-
Wheeler algorithm (BWA) [21]. The resulting alignments,
encoded in the BAM format [22], comprise the input of
our algorithm.
To evaluate our method’s FDR we used raw array-CGH

intensity data from the High Resolution CNV Discovery
project [2] (available online at [23]). For our sensitivity
analysis we obtained three gold standard datasets from
‘Additional file 1, Material’ of the 1000 Genome Structural
Variant discovery study [4]. Our genotyping accuracy was
assessed using the reference CNV genotypes that were
generated by the Genome Structural Variation Consor-
tium [2] (available online at [24]).

Data pre-processing and normalization
The first step of our pipeline is to calculate normalized
summary statistics for each of the three data sources
across the genome (Figure S1 in Additional file 1), which
form the input to the cnvHiTSeq HMM. We carry out
separate data processing steps to get RD, RP and SR sum-
mary statistics. Each of these summary statistics is sampled
at a user-defined frequency (with a default of 20 bp) across
the chromosome. Different data sources are offset by 1 bp
to avoid obtaining measurements from different sources at
the same position. The computational requirements of the
pre-processing steps are outlined in Table S2 in Additional
file 1.

Read depth pre-processing
The RD pre-processing proceeds by first filtering the
BAM alignment files to discard unmapped and duplicate
reads. The results of the filtering process are refor-
matted as BAM files. The filtered BAM files are then
sorted and converted to the pileup format using the
SAMtools software package [22]. The pileup format
comprises a summary of the alignment by chromosomal
position, thus allowing us to extract the desired RD
information. However, even in the summarized pileup
format the alignments are of prohibitive size (>10 GB,
for low-coverage samples) both for storage and analysis.
Therefore, we split the files up by chromosome and
developed a compression scheme that combines run-
length encoding and ASCII-to-binary conversion that
achieves a 60-fold decrease in pileup file size.

In order to avoid biases arising from highly repetitive
portions of the reference sequence (including telomeres
and centromeres), we filter genomic regions based on
‘sequence uniqueness’. The standard metric used by
the ENCODE pilot project [25] to quantify sequence
uniqueness is the alignability score. This score is calcu-
lated by mapping sliding windows of k-mers to the
genome allowing up to two mismatches and assigning
a score to each window equal to the inverse of the
number of matches across the genome. Thus, alignabil-
ity ranges from 0 for redundant sequences to 1 for per-
fectly unique sequences. Regions with alignability
scores lower than 0.05 (corresponding to at least 20
genomic matches) were masked out. We also used the
ENCODE Data Analysis Consortium (DAC) blacklist to
exclude 9.8 Mb from further analysis. This list was
designed to complement the alignability metric with
pathological elements such as pericentromeric and sub-
telomeric repeats that have proven troublesome for
short read alignment. In total we excluded approxi-
mately 13.6% of the reference sequence, which is in
almost perfect accordance with the ‘accessible genome’
for low-coverage analysis as defined by the 1000 Gen-
omes Pilot study [1].
Next, the RD is normalized to correct for the documen-

ted NGS biases in GC-rich and GC-poor regions [26].
Even after correction, RD data exhibit spatial autocorrela-
tion patterns, known as ‘wave artifacts’, that cannot be
fully explained by the GC content bias [27]. To minimize
the effects of such artifacts we fit a LOESS curve to
the RD data using second degree local polynomials. The
LOESS smoothed data are then normalized by the average
per-sample chromosome depth to account for differences
in coverage among samples. Finally, we calculate the aver-
age of these values in non-overlapping 20-bp windows as
the RD summary statistic.

Read pair pre-processing
RP data are extracted from BAM alignment files after a
rigorous filtering process. In addition to duplicate and
unaligned reads, we also filter out reads with non-unique
alignments as they would introduce ambiguity. Both reads
of a pair are required to have a high mapping quality
(Phred Quality Score >20) and originate from a sequen-
cing library of known insert size. Since RP data are
extracted from different libraries, we account for the dif-
ferent insert size distributions by quantile-normalizing
them to an arbitrary Gaussian reference (N(200,15) in our
case). To that end, we use a kernel quantile estimator,
with a standard Gaussian kernel function to avoid biases
in libraries containing only a small number of RPs. Finally,
we record two RP summary statistics at every 20 bp across
the genome: the average normalized distance of reads that
span the given position (RPS) and the total count of
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spanning read pairs (RPC), which may be different from
the overall RD in the presence of single-end libraries.

Split read pre-processing
SR discovery involves a non-trivial computational pro-
blem that is related to sequence alignment. To that end,
we look for RPs with one read properly mapped and the
other not. The mapped read is going to provide the
‘anchor’ and limit the search space. The unmapped read
of the pair is exhaustively split in all plausible combina-
tions and the results are stored in paired FASTQ files.
Since some of the resulting split fragments may be quite
short, we eliminate fragments of low-complexity (for
example, highly repetitive fragments) using the DUST
algorithm [28]. The split reads are then aligned to the
reference using BWA, allowing up to two mismatches
but no gaps. All the alternative mappings of the paired
split fragments are retained in order to find the best
combination. The results are filtered to discard frag-
ments aligning more than 1 Mb away from the anchor
read. This creates the final SR discovery set. Note that
this discovery set may contain alternative splits of the
same read, which are used to fine-map the breakpoints
of a deletion.
The SR mappings are used in two separate configura-

tions. First, we exploit the fact that the anchor read was
originally orphaned but is now properly paired. These
newly rescued pairs are especially informative in repeti-
tive regions, where there is a higher chance of splits
occurring, and are thus incorporated into the previously
described RP framework (Figure 1f). Second, we keep a
count of the actual splits that span any given genomic
position (Figure 1c), which is sampled every 20 bp. This
sampled count constitutes the split read count (SRC)
summary statistic.

cnvHiTSeq hidden Markov model
First, cnvHiTSeq builds a haploid HMM (Figure 2a). This
HMM comprises one hidden state smc per haploid copy
number c, up to a user-defined maximum cÎ{0, ..., Z-1}, at
each measured position mÎ{1, ..., M}. Two copies of this
HMM are paired to create a diploid HMM (or n copies
for a n-ploid sample) (Figure 2b). The computational cost
of modeling increased copy number and polyploidy has
been discussed previously for cnvHap [9]. The diploid
HMM states have emission distributions specific to the
data source measured at a given position (Figure 2c), thus
interweaving different sources in the same model. In more
detail, we represent the emission data for sample j by Ijm,
so that Ijm = {RDj

m} for read depth, Ijm = {RPSjm ,RPCj
m}

for read pair, and Ijm = {SRCj
m} for split read. As noted

above, each of these data sources is measured at pre-
defined resolution (default 20 bp) across the genome,
with an offset of 1 bp between sources. The emission

probability of a list of unordered states sm={l1,..., lN}
depends only on the total copy number:

P(Ij
m|c(sm = {l1, . . . , lN}), θm) =

⎧⎪⎨
⎪⎩

NB(RDj
m|κmc, ηmc) read depth,

N(RPSj
m|μmc, σmc) ∗ NB(RPCm|κmc, ηmc) read pair,

SN(SRCj
m|ξmc, ωmc, αmc) split read,

(1)

where c = c(sm) represents the total copy number for
an unordered list of haploid states, θm represents the
parameters of the emission distributions at position m,
NB represents the negative binomial distribution, Ν the
normal distribution and SN the skew normal distribu-
tion. For the single-sample mode, there is only one glo-
bal set of emission parameters, so, for example κmc = κc.
RD is modeled using the negative binomial distribu-

tion in order to account for the observed overdispersion
of RD due to the non-uniform distribution of mapped
reads across the genome [26]. The initial parameters of
NB reflect the mode of the expected distribution (for
example, a single copy deletion has an expected normal-
ized mode of one read per fold coverage). We followed
the parameterization adopted in [29] according to
which, if Y is a negative binomial random variable with
mean parameter h and dispersion parameter �, it has a
probability mass function given by:

NB(RD|κ, η) =
	(RD + κ−1)
(RD)!	(κ−1)

(
κη

1 + κη

)RD(
1

1 + κη

)κ−1

(2)

We model the average read pair span RPS as a normal
distribution. The initial parameters for the normal 2
copy number state are set to reflect the size and random
variation of the paired-end insert library (for example,
200 ± 15 bp insert). The initial parameters for a homo-
zygous (heterozygous) deletion/insertion are set so that
the mean is 3 (2) standard deviations above/below the
library insert size, respectively. The spanning RP count
(RPC) is again modeled with NB as in Equation 2 to
account for overdispersion. We assume that RPS and
RPC are independent, conditional on the hidden copy
number, and hence the joint conditional probability is
the product of their individual probabilities. In this way,
cnvHiTSeq avoids using a hard threshold on the num-
ber of supporting RPs, as is the case for competing algo-
rithms, and instead assigns more confidence to distances
that arise from RP counts closer to the average cover-
age. This is especially important for detecting deletion
events in low-coverage data, as the scarcity of RPs
should not be interpreted as absence of CNV. On the
other hand, our approach also downweights regions that
appear to have extremely high RP counts, since they
most likely correspond to sequencing artifacts or highly
redundant reference sequences.
Since SR events are less common than the evidence

provided by the other sequencing data sources, the pre-
sence of a few overlapping SRs is usually sufficient to
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make confident CNV calls. Therefore, we model the SR
count using a positively skewed normal distribution with
initial parameters depending on the depth of coverage.
As with RPC, cnvHiTSeq eliminates the need for a mini-
mum number of supporting SRs by directly modeling the
SRC. By avoiding hard thresholds and allowing for align-
ment mismatches, our method achieves higher flexibility
than existing methods, especially for low-coverage sam-
ples where SRs are infrequent.
The transition probability between unordered pairs of

states is given by:

p(sm = {l1 . . . lN}|sm−1 = {k1 . . . kN}) =
∑

τ∈T(N)

(
∏

n=1...N

p(smn = lτ(n)|s(m−1)n = kn)), (3)

where T(N) represents all possible permutations of a
list of length N. The haploid transition is calculated as:

p(smn = l|s(m−1)n = k) = {eQrm(d(m)−d(m−1))}k,l (4)

where Q is a global reversible transition rate matrix
between copy number, rm is a scalar representing the local
rate of transitions at position m, and d(m) represents the
base-pair coordinate of position m. The user can either
specify the steady-state distribution of this rate matrix (for
example, reflecting an expectation of the relative number
of different copy number states in the genome) or specify
this rate matrix directly.

Model training
Model training is accomplished via a generalized expec-
tation maximization algorithm. In the expectation step,
cnvHiTSeq applies the forward-backward algorithm to
each sample separately to calculate the expected counts
of transitions between states k,l of the haploid HMM
Etmkl, as well as the posterior probability of each copy
number at each position p(cjm|I

j). The parameters of the
transition model are updated based on the Et

mkl, as
described in more detail in [9]. The posterior probability
of each copy number state at each position is also
recorded as wj

m(CN) = p(cjm = CN|Ij), and can be
thought of as the assignment weight of the data at posi-
tion m to state CN, using the current parameterization
of the model.
We optimize the parameters θ̂mc of the emission dis-

tribution for copy number c based on maximization of
the log-likelihood:

H(θ̂mc) =
∑

j

wj
m(c) ∗ log(p(Ij

m|c, θ̂mc)) (5)

where Equation 1 is used to calculate the emission
probabilities given new parameters. The maximization is
carried out using a gradient descent algorithm. In single-
sample mode, there is only one global set of emission

distributions, and the sum is performed across all sites
m. In order to avoid overfitting, we introduce pre-defined
counts of pseudo-observations I’m

j , sampled from the
initial emission distributions (Equation 1).
Figure 2d,e presents examples of the trained haploid

HMM for the characteristic CNVs introduced in Figure
1. After ten training iterations, the Viterbi algorithm is
used to calculate the most likely CNV segmentation
(conditional on the trained parameters) for each sample.

Mendelian inconsistency analysis
To obtain an estimate of cnvHiTSeq’s FDR we applied a
Mendelian inconsistency approach on the CEU trio using
standard and strict criteria. For the standard criterion, we
required the CNVs detected in the child (NA12878) to
overlap CNVs of the same class in at least one parent.
For the strict criterion, we consider CNVs that have been
detected in all three members of the trio as candidate
false positive calls corresponding to systematic biases.
The child CNV is required to have at least 50% overlap
with both parents to be included in this category. This
candidate false positive list is filtered to exclude common
CNVs that were present in the DGV (ignoring those pre-
dicted for NA12878 as well as those from early bacterial
artificial clone (BAC) studies) as these are likely to recur
in the population. We also required that a DGV variant
covered at least 90% of our corresponding CNV call.
After filtering, the remaining false positives were
included in our Mendelian inconsistency calculation to
obtain a conservative upper bound of the FDR. To facili-
tate comparison we applied the exact same procedure to
Genome STRiP calls on the CEU trio.

Additional material

Additional file 1: Supplementary material. This file contains Figures S1,
S2, S3 and S4, and Tables S1, S2, S3, S4 and S5. Figure S1 presents a
schematic of our pre-processing pipeline. Figure S2 presents the length
distribution of our CNV calls. Figure S3 presents the cumulative length
distribution of cnvHiTSeq calls that were validated with array-CGH data.
Figure S4 presents a heatmap of the genotyping concordance between
cnvHiTSeq and a benchmark dataset. Table S1 presents the array-CGH
validation results. Table S2 describes the computational requirements of our
pipeline. Table S3 presents a comparison of our deletion calls with those of
Genome STRiP for sample NA12878. Table S4 presents a comparison of our
Mendelian inconsistency results for different criteria. Table S5 presents a
comparison of the sensitivity of various methods on low-coverage samples.
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pair span; SR, split read; SRC, split read count; WGS, whole-genome
sequencing.
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