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Introduction
Neurons communicate through repeated, specifically timed action potential sequences
(spike patterns) to convey information [3, 8]. Since neuronal activity is noisy and
neurons are likely involved in a multitude of spike patterns of various lengths and
extent, it can be hard to find spike patterns at first glance. The more neurons are
recorded, the more difficult the task becomes due to the exponential increase of possible
combinations of spikes that could make up a pattern [2]. It is unclear how neurons
in the brain may extract relevant information from such input. In a 2008 paper,
Masquelier and colleagues demonstrated that a single neuron with afferent synapses
exhibiting spike timing dependent plasticity (STDP) is able to find the start of a
repeating pattern in noisy (artificial) data [6].

Masquelier, Guyonneau, and Thorpe [6] use a simple feedforward network in which
2000 input neurons connect to one output neuron via excitatory STDP synapses. Half
of the input neurons spike according to a spike pattern of 50 ms length for about 25%
of the time. Finding the pattern is made more difficult by jittering the pattern spikes,
adding random noise spikes to all neurons, and ensuring a constant population rate as
well as no differences in overall firing rate between neurons.

We replicated their findings using the spiking neural network simulator Brian [5, 9],
whereas the the original study implemented the simulations in Matlab, with the main
functions being computed in C/C++ through mex files. In addition, we examined
some of the implementation details and parameters and investigated whether they
were essential to the success of the algorithm.

Methods
All simulations were performed using the spiking neural network simulator Brian
(Brian2, version 2.0, http://briansimulator.org/). We attempted to stay as true as
possible to the original study. Simulation parameters were taken from the text and
we additionally obtained the source code for the standard parameter configuration
from the authors to ensure equivalency of the implementations. The source code for
deleting spikes within the pattern (Fig. 5 E) was not provided.
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Running simulations
Brian calculates neuron properties such as membrane voltage at discrete time steps.
The time step for these simulations was 10−4 s unless otherwise indicated. Each
parameter combination was run 100 times and the success of a run determined as in
the original study: a hit rate of over 98%, no false alarms and an average latency of
under 10 ms (as calculated over the last 150 s of the simulation).

Table 1: Parameter variations

parameters standard variations
winitial 0.475 0.275, 0.325, 0.375, 0.425
jitter (sd) [ms] 1 0, 2, 3, 4, 5, 6
pattern frequency 0.25 0.05, 0.1, 0.15, 0.5
prop. neurons in pattern 0.5 0.3, 0.4, 0.6
spike deletion 0 0.1, 0.2, 0.3

Spike trains
The spike trains of the 2000 input neurons were created in the same way as in the
original study: a Poisson process with a variable instantaneous firing rate (30-90 Hz,
64 Hz on average) with no refractory period.

The absence of a refractory period in the input neurons has the effect that inter
spike intervals can be as small as 10−9 s in some cases. The original implementation
uses an event-based simulation method in which the simulation variables (output neu-
ron voltage etc.) are calculated at every input neuron or output neuron spike, and so
such small inter spike intervals are not a problem.

Brian on the other hand uses discrete time steps for its simulations and updates its
simulation variables once per time step. In order to convert the original spike trains
into Brian, we had to modify the spike trains slightly: whenever two spikes from the
same neuron happened in the same time step, we deleted the second spike. At a
resolution of 10−4 s (standard time step) this affected 0.25% of all spikes, and at a
resolution of 10−6 s it affected 0.0025%. Deleting spikes does not affect the input drive
to the neuron significantly since the initial firing rate of the output neuron is the same
with or without the close spikes.

Leaky Integrate and Fire neuron
The original study models the potential of the output neuron with the Gerstner’s Spike
Response model (SRM) [4], which uses kernels to calculate the effect of incoming spikes
on the postsynaptic voltage. Brian on the other hand uses differential equations to
model the system parameters and evaluates those equations for each time step. The
SRM kernels can be modelled using alpha functions [1], so we converted the kernels of
the postsynaptic potential and the spike afterpotential into the following differential
equations:

du

dt
=

Xx− u

τm
+

Aa

τs
(1)

dx

dt
= − x

τsyn
(2)

da

dt
= −A

τs
(3)

The values for the parameters can be found in Tbl. 1. We chose the exact method
for integrating the differential equations (called ‘linear’ in Brian). Eq. 1 describes
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Figure 1: Postsynaptic potential. The postsynaptic potential of the replication implementation
behaves the same as in the original study. Both show the same EPSP shapes and the negative
afterpotential after a postsynaptic spike. A) The postsynaptic potential of the original study
was calculated using the equations given in the original paper. B) The postsynaptic potential in
the replication implementation was calculated from the differential equations specified in section
Leaky Integrate and Fire neuron

the postsynaptic membrane potential, which is influenced by presynaptic excitatory
postsynaptic potentials (EPSPs, first term) and a negative afterpotential after a spike
(second term). In the event of a presynaptic spike at neuron i, x is increased by the
respecitve synaptic weight wi (x← x+wi), which initiates the voltage increase in the
postsynaptic neuron. When the postsynaptic voltage reaches the threshold, a spike
occurs: the voltage u is set to twice the threshold (u ← 2T ), all EPSPs are flushed
(all x set to 0, x← 0) and the negative afterpotential is set into motion (a is set to 1,
a ← 1). Presynaptic spikes had the same effect on the postsynaptic neuron potential
as in the original publication as shown in Fig. 1.

Table 2: Simulation parameters

LIF neuron value …………… STDP value
τm [ms] 10 τ+ [ms] 16.8
τs [ms] 2.5 τ− [ms] 33.7
τsyn [ms] 2.5 a+ 2−5

T [a.u.] 500 a− 0.85 a+
X τs

τm

τm
τs−τm wmin 0

A -3 T wmax 1
∆x 1 - -
∆a 1 - -

Spike Timing Dependent Plasticity
For synaptic plasticity, the original study uses the reduced nearest neighbor rule (RNN)
[7] - a more restrictive version of the nearest neighbor (NN) STDP rule. In the standard
NN rule, every spike causes a weight change (with the amount depending on the
timing of the nearest spike), while for RNN a weight change only happens for the first
postsynaptic spike immediately following a presynaptic spike (or vice versa). This
means that for NN, there can be a series of potentiations or depressions, whereas for
RNN potentiations and depressions strictly alternate.

A visualisation of three STDP rules is shown in Fig. 2: the RNN, the standard NN
and the all-to-all (ATA) rule, in which all pairs of spikes are considered to calculate
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Figure 2: Effect of different learning rules on synaptic weight. We compare the all-to-all (ATA,
A), nearest neighbor (NN, B), and reduced nearest neighbor (RNN, C) learning rules for a case
in which the presynaptic neuron (green dots) spikes more often than the postsynaptic neuron
(blue dots). Grey lines indicate which spike pairs are taken into account for the calculation of the
synaptic weight change; the sign denotes a corresponding increase (+) or decrease (-) in weight
at that spike. The synaptic weight in ATA (A) and NN (B) experience more weight changes and
also a net decrease in weight after only a few spikes. Under the RNN rule (C), there are fewer
changes and — in this example — no visible net weight change.

the weight change. A case is considered in which the presynaptic neuron (the input
neurons in this study) spikes more often than the postsynaptic neuron (the output
neuron in this study), leading to synaptic weight decreases for ATA and NN, but no
visible net change under RNN (Fig. 2 C).

Results
The ability to find repeating patterns was reproduced in the replication implemen-
tation. We could qualitatively reproduce all results of the original paper and show
the reproduced figures relevant to the model behaviour: latency development (Fig. 3),
pattern specificity after convergence (Fig. 4), and robustness (Fig. 5). In addition, we
comment on some implementation details that turned out to be relevant to replicating
the original study successfully: simulation time step, learning rule, EPSP shape.

Pattern finding
The latency measures the time of the output neuron spike relative to the start of the
pattern. If the spike occurs outside of the pattern (>50 ms after the start of the
pattern), the latency for that spike is set to 0 as in the original paper.

In order to assess the time of pattern finding, we used the same spike train (standard
conditions) as input for both the original code and in the replication implementation.
The latency development looks similar in both implementations (see Fig. 3). The time
until a stable state arises is longer in the replication implementation (1400 discharges
instead of 700 or 20 s instead of 13.5 s). This discrepancy is due to the size of the
discrete time steps used (see section Implementation details).

At the end of the simulation, the synaptic weights that are maximally potentiated
(close to wmax = 1) belong exclusively to neurons involved in the pattern, whereas
weights from neurons not involved in the pattern are depressed nearly completely (see
Fig. 4). Neurons that spike at the beginning of the pattern are potentiated, causing
the postsynaptic neuron to spike at a low latency.

Both latency development and the potentiation of only synaptic weights of pat-
tern neurons in the converged state were successfully reproduced by the replication
implementation.
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Figure 3: Latency. Comparing the latency development of the original study (A) and the repli-
cation implementation (B). In both implementations, the timing of the output spike in relation
to the start of the pattern (vertical axis, set to latency=0 if output spike happens outside the
pattern) is random at first, but becomes selective after a few hundred discharges. From then on
the postsynaptic neuron always spikes only within the pattern (no spikes at latency = 0). The
number of discharges until this happens is smaller in the original paper than in the replication
implementation.
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Figure 4: Weights at converged state. This figure shows a raster plot of the input spikes at
the end of the simulation (converged state) with the color of the dots indicating the synaptic
weight (see colorbar). The final weights in the converged state look very similar in the the original
study (A)) and the replication implementation (B)). Weights from neurons not involved in the
pattern are close to 0 (black, neurons 1000-1999), whereas weights from some neurons involved
in the pattern (neurons 0-999) are close to 1 (white, maximum value). The weights of neurons
that spike at the beginning of the pattern are nearly all close to 1 and their added postsynaptic
potentials cause a spike at the beginning of the pattern (blue rectangle).
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Figure 5: Robustness. Pattern finding abilities of the system were tested against different pattern
presentation frequencies (A), jitter (B), number of neurons spiking according to the pattern (C),
initial weights (D) and deletion of spikes in the pattern (E). For each parameter combination 100
simulations were run and the number of successful runs are reported as percentage of success.
The replication implementation was run at two different time steps: 10−4 s (solid black lines) and
10−6 s (dashed black lines). The results from the original study were calculated using the source
code provided (solid green lines in A, B, C, D) or estimated from the original publication (dashed
green line in E).
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Figure 6: Time until finding pattern. Using larger simulation time steps leads to the pattern
to be found later. The horizontal striped green line is the reported time when the pattern is
found by Masquelier, Guyonneau, and Thorpe [6]. Errorbars represent standard deviation from
100 successful runs.

Robustness
Our simulations showed largely the same resilience to degradations as in the original
paper, but despite the very similar implementations, there were some differences.

The replication implementation behaves the same as the original study when sub-
jected to different amounts of jitter (Fig. 5 B), various proportions of neurons involved
in the pattern (Fig. 5 C), different initial weights (Fig. 5 D) and when a percentage
of spikes within the pattern are deleted (Fig. 5 E).

At a high pattern repetition frequency of 0.5 (Fig. 5 A), when the pattern is
presented every 100 ms for 50 ms, the performance of the replication differs from the
original: at larger time steps of 10−4 s the replication version does not perform as well
as the original, but shows good results at smaller time steps (10−6 s).

Implementation details
We noticed that small implementation details can affect the behaviour of the network
significantly. We summarised the relevant details in Table tbl. 3.
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Simulation time step

In the standard parameter configuration, the time step chosen does not have an effect
on overall pattern finding success, as long as the time step is less than or equal to 10−4

s. At larger time steps (10−3 s), no specificity emerges. Instead there is a systematic
potentiation of all synaptic weights leading to very high firing rates in the output
neuron. In contrast, success rates are above 95% for 10−4 s, 10−5 s, 10−6 s, and 10−7

s.
Although the success rate stays roughly the same, the time until the pattern is

found (defined as the time after which no output spikes happen outside of the pattern)
increases with larger time step size. An example can be seen in Fig. 3: the pattern
is found after about 700 output neuron spikes in the original publication (left) and
after about 1400 in the replication implementation (right) at a time step of 10−4 s for
the same input. At smaller times steps (10−6 s), the pattern is found after about 700
discharges - the same as in the original publication (Fig. 6).

Table 3: Implementation details

works does not work
simulation time step continuous, discrete
time step size ≤ 10−4 s > 10−4 s
learning rule RNN ATA, NN
EPSP shape kernel immediate voltage increase

Version of STDP learning rule

The choice of learning rule is crucial for the pattern finding abilities of the network.
The RNN rule results in stable posystnaptic firing and reliable finding of the pattern.
The use of other learning rules does not result in stable learning.

The spike trains used here involve neurons with a continuously high firing rate
in the input neurons (on average 64 Hz, min 30 Hz, max 90 Hz) and a significantly
lower firing rate in the output neuron (63 Hz initially, 5Hz after reaching specificity).
This means that input neurons fire often in the time between output neuron spikes.
Therefore, with any other than the reduced NN learning rule, the input neurons will
experience a decrease in weight a lot more often (every time an input neuron spikes)
than an increase in weight (every time the postsynaptic neuron spikes). This leads
to a strong overall depression of the synaptic weights in the first few seconds of the
simulation. With the parameters specified in Masquelier, Guyonneau, and Thorpe
[6] and an ATA or a conventional NN learning rule, the output neuron stops firing
after a few seconds because the output neuron voltage does not reach the voltage
threshold necessary to evoke an output neuron spike anymore (see Fig. 7). In the case
of the standard parameters, the output neuron stops firing after less than one second.
When no output neuron spikes occur, learning cannot take place and no specificity
can emerge.

In the case of an ATA learning rule, a behaviour resembling pattern finding can
be evoked under the right circumstances: reducing the learning rate by a factor of 5
and increasing the value of a+ (the maximum weight increase) to double the value
of a− (the maximum weight decrease). This setup works because the large amount
of depression (on every input spike) is counteracted by large potentiation (due to the
increased a+). In such runs, the output neuron will correctly reach specificity and
trace back through the latency, but then starts firing outside of the pattern again.
This system is not stable since the ATA rule leads to “too much learning” as the
synaptic weights change after every single spike. A further reduction in the learning
rule will not result in pattern specificity at all.

We were unable to find parameters for the standard NN learning rule that allowed
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Figure 7: Effect of learning rules on synaptic weights. A) Both the ATA and the NN rules lead
to a very rapid depression of all synapses leading to silence in the output neuron. B) In contrast,
the average weight of all neurons declines at a much slower rate for the RNN rule. C) and D)
When tweaking the ATA rule (increasing a+ substantially) it is possible to achieve a behaviour
that resembles pattern finding. For a short amount of time the output neuron becomes specific
to the pattern, but loses this ability again and does not regain it.
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for pattern finding, despite this rule exhibiting slower learning when compared to
the ATA rule. In the case of both the ATA and NN learning rules, it seems likely
that stable pattern finding relies on a precise balance of a+ and a−, with runaway
potentiation or depression likely if the balance is wrong. By contrast, the RNN rule
is automatically balanced and is not subject to this issue.

Effect of learning rule at ∆t = 0

The spike times of the output neuron are slightly different in the original study and
the replication. In the original study spike times of the input and output neurons
are not restricted to fixed multiples of the timestep, so it is extremely unlikely that
two neurons will spike at the same time. In Brian, the output neuron spikes at the
beginning of a time step and will therefore happen in the same time bin as some input
neuron spikes leading to a time difference between the spikes of ∆t = 0 where the
STDP rule is undefined. Brian treats all of the input neuron spikes in this time bin as
if they happened just before the output neuron spike (∆t < 0, due to the scheduling of
events in Brian) and will therefore increase all those weights instead of increasing some
and decreasing others. This higher number of potentiations makes it more difficult for
the system to systematically depress unimportant weights in order to become selective
to the pattern.

If the learning rule is modified so that the change in synaptic weight reflects that
on average half the input neurons spike before the output neuron and the other half
afterwards (by adding the mean of LTP and LTD traces), the pattern is found earlier,
at around 17 s or 850 spikes (for a time step of 10−4s) which is close to the performance
for smaller time steps (10−6s) and the original paper (both 14 s or 700 spikes). This
modified learning rule was only used to determine the time until finding (Fig. 6).

This difficulty to depress non-relevant input neurons is the reason for the lower
success rate at a high pattern presentation frequency at large time steps (10−4 s) as
seen in Fig. 5 A). The time until the pattern is found during this condition is notably
longer (>30 s instead of 20 s) and points towards towards the difficulties of the system
to properly depress the synaptic weights of the non-pattern neurons.

EPSP shape

The kernels used in the original study simulate a gradual increase of the postsynaptic
neuron voltage as can be seen in Fig. 1. Other studies sometimes also model the effect
of the presynaptic spike as an immediate jump in postsynaptic voltage instead of that
gradual increase. In this system, using an immediate increase in postsynaptic voltage
does not lead to stable pattern finding. This might have to to with the fact that the
kernel shape and the immediate increase exhibit slightly different spike times as seen
in Fig. 8.

When modelling the immediate voltage increase, one needs to set the magnitude
of the voltage increase (for Fig. 8 ∆u was set to 1.2). It is very difficult to find the
∆u that corresponds to the same amount of voltage increase from the kernel. If the
value of ∆u is too small, then the output neuron stops firing after a short period of
time without having gained specificity for the pattern. If the value for ∆u is too high
all input neurons are potentiated and the output firing rate rockets. For the scope of
this paper, no value for ∆u was found to induce a stable pattern finding behaviour.

Conclusion
We could successfully replicate the results from Masquelier, Guyonneau, and Thorpe
[6] - a neuron with STDP synapses could reliably find a repeating spike pattern and
afterwards spike only when the pattern is presented. The time when the pattern is
found depends on the time step size chosen for the simulation, whereas the success
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Figure 8: Choice of EPSP. For the same presynaptic spikes, the postsynaptic voltage behaves sim-
ilarly, but the postsynaptic spike time is slightly different (/home/ph416/Documents/ReScience-
submission/article/figures/fig8_kernel_vs_imm.pdf).

of reliably finding the pattern requires the precise learning rule and the shape of the
EPSPs. Reproducing the paper was made easy by the fact that simulation parameters
were stated in the text and the source code was shared by the authors of the paper on
request.

Introducing discrete time steps. To run the simulations in Brian, we intro-
duced discrete time steps. This did not affect pattern finding abilities (as long as the
time steps are 10−4 s or smaller), but it did increase the time until a pattern was found
for large time steps (10−4 s), but not for small time steps (10−6 s).

We verified that the delay in pattern finding did not stem from either the deletion
of some input spikes (to avoid input neurons spiking twice in one time step) or the
spike timing being at the start of each 0.1 ms time bin. When we fed those modified
input spikes to the original implementation, the timing of finding the pattern was not
affected. The delay therefore stems from forcing the output neuron to spike at the
beginning of a time step and the associated consequences for STDP learning.

Running the simulations using discrete time steps does not negatively impact pat-
tern finding abilities, but delays pattern finding for large time steps due to a larger
number of potentiations.

Choice of learning rule. The learning rule used is one specific version of a NN
STDP rule, which was not clearly stated in the original article. The comparison with
other learning rules shows that the use of this particular learning rule enables the
pattern finding behaviour.

The usage of the RNN rule has two interesting consequences. Firstly, it slows down
the rate of synaptic weight change, since it considers fewer spike-spike interactions than
other learning rules. This slows down overall weight changes significantly and gives
the system more time to learn the spike sequences of the pattern. Neurons that spike
together during the pattern will experience similar weight changes more often than
non-pattern neurons. Over the course of hundreds of output neuron spikes - until
pattern specificity arises - these synchronised weight changes lead to higher synaptic
weights for the pattern neurons than for the non-pattern neurons.

Secondly, for this particular input the restrictions of the RNN STDP rule lead to
the weights alternating between increase and decrease. The stabilising effect of this is
most clear during the converged phase. The output neuron only spikes when a pattern
is presented more or less at the same latency. The input neurons (which are forced to
spike at least once every 50 ms) reliably spike at least once before or after or both. In
the latter case the input neurons will always experience the same increase or decrease
in synaptic weight per output neuron spike disregarding small changes due to jitter
and noise. If the input neuron only spikes once per pattern, then either the increase or
decrease of weight will be nearly constant whereas the respective decrease or increase
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in weight will be random. On average the weights of all input neurons will slowly
increase to 1 or decrease to 0 over time, resulting in a very stable system.

Choice of EPSP shape. It seems to be essential to use a kernel EPSP shape
since using immediate voltage increases as the effect of an input neuron spike does
not lead to learning of the pattern. This might be due to the difficulty in finding the
correct parameters that create an equivalent voltage increase. It seems likely that the
EPSP shape is responsible for the decrease in success, since small changes in output
neuron spike times also occur when using different time step sizes and do not affect
pattern finding abilities under standard conditions.
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