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1 Introduction

Government guarantees to financial institutions are common all over the world. The recent financial crisis

has led to renewed interest and debate about their role and their desirability. On the one hand, government

guarantees are thought to have a positive role in preventing panic among investors, and hence help stabilize

the financial system. On the other hand, they may distort banks’incentives, thus leading to an increase in

financial fragility (see, e.g., Calomiris (1990), Demirguc-Kunt and Detragiache (1998), Gropp, Gruendl and

Guettler (2014), and Acharya and Mora (2015)).

In light of this trade-off, evaluating the overall effects of government guarantees to banks requires a frame-

work in which the behavior of banks and their investors interacts with the amount and form of guarantees.

Such a model is known to be notoriously rich and hard to solve. It needs to endogenize the probability of runs

and how it is affected by banks’risk choices and government guarantees. It also needs to endogenize banks’

risk choices and how they vary with the guarantee, taking into account investors’expected run behavior.

We make technical progress in this paper by putting all these ingredients together in a tractable model,

which generates some surprising results on the effects of government guarantees. Most notably, we show that

the increase in bank fragility resulting from the introduction of government guarantees may sometimes be a

desirable consequence.

To conduct our analysis, we build on the model developed in Goldstein and Pauzner (2005), where

depositors’withdrawal decisions are uniquely determined using the global-game methodology. Our novelty

is to add a government to this model to study how the government guarantee policy interacts with the

banking contract and the probability of a run. In our model, there are two periods. Banks raise funds from

risk-averse consumers in the form of deposits and invest them in risky projects whose return depends on

the fundamentals of the economy. Depositors derive utility from consuming both a private and a public

good. At the interim date, each depositor learns whether he needs to consume early or not and receives

an imperfect signal regarding the fundamentals of the bank. Impatient depositors withdraw at that point

and patient ones decide when to withdraw based on the information received. In deciding whether to run

or not, depositors compare the payoff they would get from going to the bank prematurely and waiting until

maturity. These payoffs depend on the fundamentals and the expectation about the proportion of depositors

running.

As in Goldstein and Pauzner (2005), the equilibrium outcome is that runs occur when the fundamentals
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are below a unique threshold, which depends on the banking contract. Within the range where they occur,

they can be classified into panic-based runs or fundamental-based runs. The former type of run is one

that is generated by the self-fulfilling belief of depositors that other depositors will run. The latter type of

run happens when the signal on the fundamentals is low enough to make running a dominant strategy for

depositors. As in Diamond and Dybvig (1983), there is perfect competition with free entry in the banking

sector, and so banks offer a contract that maximizes depositors’expected utility. Unlike in Diamond and

Dybvig (1983), however, banks recognize the implications that the contract has for the possibility of a run

and take them into account when deciding on the contract. As a result, in the decentralized equilibrium

without guarantees banks reduce the amount of liquidity they offer to depositors demanding early withdrawal

so that there is under provision of liquidity insurance. Yet, the deposit contract offered by banks is such

that ineffi cient fundamental-based and panic-based runs occur in equilibrium. While banks internalize the

cost of the runs, the benefit from risk sharing is large enough to lead them to offer contracts that entail some

ineffi cient runs.

We then analyze whether the provision of public guarantees through the transfer of resources from the

public good to the banking sector can alleviate the ineffi ciencies of the decentralized allocation in terms

of ineffi cient runs and lack of protection against project risk. Essentially, by ensuring depositors receive a

minimum payment irrespective of the specific bank outcome, guarantees can play two distinct roles: They

ameliorate the coordination failure among depositors, thus reducing the probability of panic-based runs; and

they protect late depositors against project failure. To highlight their distinct roles, we start by considering

the possibility of different levels of guarantees, depending on the bank outcome. We first analyze a simple

form of guarantees which, in the spirit of Diamond and Dybvig, addresses only panic runs due to depositors’

coordination failure. Second, we consider a guarantee scheme that protects depositors against bank project

risk, even in the absence of runs. Finally, we consider a standard deposit insurance scheme, which fulfils all

these roles by guaranteeing depositors to receive the same payment irrespective of the bank outcome.

In the first scheme, depositors are guaranteed to receive a minimum payment only if the bank project

is successful irrespective of what the other depositors do. By eliminating the negative externality that a

run imposes, this scheme prevents panic runs with a mere announcement effect and thus it does not entail

any public disbursement. Hence, it does not lead to distortions in the bank’s choice of the deposit contract.

However, unlike in Diamond and Dybvig (1983), fundamental runs still occur in our framework, as depositors

are not protected against bank project risk.
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An important result is that, under this guarantee scheme, banks increase deposit rates to early withdraw-

ers, and so perform more liquidity transformation. This increases the probability of fundamental-based runs,

thus possibly leading to an increase in the overall run probability relative to the decentralized equilibrium.

The result that crises may become more likely in the presence of public intervention, which is consistent with

the evidence in Demirguc-Kunt and Detragiache (1998), can be interpreted as one form of increased risk

taking following the introduction of guarantees (e.g., Calomiris, (1990)). However, even if banks increase the

amount they offer for early withdrawals so that the overall likelihood of runs can be higher than in the de-

centralized equilibrium, the introduction of guarantees still improves welfare as banks are not acting against

depositors’interests. Hence, the model demonstrates the need for caution in interpreting often-mentioned

empirical results.

Although it eliminates panics and improves welfare, the first guarantee scheme does not protect depositors

against bank project risk, that is the risk that the bank project fails at the final date in the absence of a

run. Thus, we next investigate whether, in addition to eliminating panics, it is optimal to provide some

insurance to depositors against such risk by guaranteeing them a minimum payment at the final date when

the bank project fails. We show that, under certain conditions, offering some guarantee against project risk is

desirable. However, given that the government makes transfers to banks when their projects fail, intervention

is now costly and there are distortions in banks’behavior. As before, banks increase deposit rates in response

to the guarantee, but choose to under provide liquidity insurance as they do not internalize the government’s

costs. This is where the intuition of moral hazard often featured in the public debate —according to which

banks’incentives are distorted by guarantees—starts to show up in our model. Interestingly, however, while

it is commonly thought that banks set deposit rates too high in response to guarantees, our framework shows

that the distortion can go in the opposite direction.

Both schemes described above entail contingent guarantee payments, which is not in line with real-world

deposit insurance schemes, in which depositors always receive a minimum guaranteed payment irrespective

of bank outcome. In this case, we show that all trade-offs of the previous scheme remain valid in that,

despite entailing bank moral hazard, deposit insurance is still welfare improving because it reduces the run

probability and induces banks to perform better liquidity transformation. However, as it is not possible to

adjust the guaranteed amount to the different bank outcomes, the deposit insurance scheme reduces -but

does not eliminate- panic runs. In addition, the distortion in banks’behavior depends now on the size of

the guarantee. When this is low, banks under provide liquidity insurance, as before. By contrast, when the
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guarantee is high, banks tend to over provide liquidity insurance.

In summary, a careful analysis of the effects of government guarantees shows that they have an important

role helping the financial system to provide risk sharing to investors while mitigating the problems associated

with coordination failures and bank project risk. The common criticism against guarantees —that they may

be a source of financial fragility — ignores that some risk taking by banks due to liquidity transformation

is desirable as banks under provide liquidity when they are concerned about run risk. Guarantees, in turn,

relax these concerns allowing banks to provide greater liquidity transformation, which is welfare improving.

Our analysis focuses on the effect of guarantees on the interconnection between banks’liquidity creation

and likelihood of runs, so that all risk taking in our model is captured on the liability side. In doing this, we

disregard other possible aspects of government guarantees such as, for example, the choice of assets by banks.

It is possible that extending the model further will uncover undesirable aspects of government guarantees.

Also, we make several simplifying assumptions on the form of the banking contract and government guar-

antees, which keep the analysis tractable, but might prevent additional implications from being revealed.

Still, our framework, to the best of our knowledge, is the first one that allows studying the endogenous

probability of runs and the endogenous risk choice by banks and how they interact with each other and with

the government’s guarantee policy.

Our paper provides a step towards understanding the interconnection between guarantees, fragility and

bank’s behavior. In the seminal Diamond and Dybvig (1983) analysis, the introduction of deposit insurance

eliminates panic runs so that banks fully perform their role as liquidity providers. However, this approach has

two important shortcomings.1 First, deposit insurance has no effect on banks’behavior as it only works as

an equilibrium selection device. Second, as it has a simple announcement effect, deposit insurance entails no

disbursement for the government. This no longer holds when runs can also occur as a result of deteriorating

bank fundamentals (see evidence in Gorton (1988), Calomiris and Gorton (1991) and Calomiris and Mason

(2003)). In such cases, deposit insurance typically does not fully prevent runs, entails actual costs of paying

for failed banks and distorts banks’behavior (e.g., Calomiris (1990), and Cooper and Ross (2002)). The

richness of our model, where runs can be both fundamental and panic driven and the probability of runs

is endogenously determined as a function of the parameters of the demand deposit contract, allows us to

overcome these two shortcomings and fully analyze the interconnections between government guarantees,

1Similar environments where runs are driven by agents’ expectations and public intervention is desirable to eliminate the
panic equilibrium are analyzed in subsequent papers including, recently, Cooper and Kempf (2016).
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depositors’withdrawal decisions and banks’behavior.

Our public intervention differs from bailouts, which represent a form of ex post intervention aimed at

mitigating the negative consequences of a crisis rather than preventing it. Despite these differences, our

analysis shares some features with the literature on bailouts (see, among others, Farhi and Tirole (2012),

Nosal and Ordonez (2016), Keister (2016) and Keister and Narasiman (2016)), in that these contributions also

analyze how the (anticipation of) bailouts may adversely affect banks’risk taking incentives, and ultimately

the desirability of public intervention.

Among these contributions, the closest papers to ours are Keister (2016) and Keister and Narasiman

(2016). In both contributions the anticipation of a bailout introduces a trade-off: on the one hand, it induces

banks to engage in more liquidity creation, thus increasing depositors’incentives to run; on the other hand,

it improves investors’payoffs, thus reducing their incentives to run if they expect others to do the same.

Whether the bailout improves welfare and leads to more or less fragility depends on which of these two

effects dominates.

In both papers, the occurrence of runs depends on the realization of a sunspot variable, whose probabil-

ity is exogenous and not affected by the anticipation of bailouts, and there is always a no run equilibrium

irrespective of the bailout policy chosen by the government. An advantage of our model is that the prob-

ability of runs is fully endogenous, and so we are able to better characterize the interconnection between

fragility, public guarantees and bank behavior. Our results that guarantees enable banks to perform more

welfare-improving liquidity transformation, which is true even if the probability of crisis increases, and the

characterization of the direction of distortions caused by guarantees are not present in the other papers.

The ability to endogenize the probability of panics- and fundamental-driven runs and derive unique

equilibria in context where agents have private information on some random variables relies on the use of

global games as in the literature originating with Carlsson and van Damme (1993).2 The closest contribution

to ours in this literature is Goldstein and Pauzner (2005). As our model builds on theirs, it shares the same

technical challenge of characterizing the existence of a unique equilibrium in a context in which there are no

global strategic complementarities.

As our analysis shows, having a unique equilibrium and being able to disentangle the various effects

of a specific policy is key to evaluating its desirability, effectiveness and costs. In line with this, global

2Applications of global games in finance include Goldstein and Pauzner (2004), Corsetti, Dasgupta, Morris and Shin (2004),
Goldstein (2005), and Rochet and Vives (2004). See also Morris and Shin (2003) for a survey on the theory and application of
global games.
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games techniques have been increasingly used in recent years to analyze relevant policy questions concerning

financial regulation and public intervention (e.g., Bebchuk and Goldstein (2011), Choi (2014), Vives (2014)

and Eisenbach (2017)).

The paper proceeds as follows. Section 2 describes the model without government intervention. Section 3

derives the decentralized equilibrium. Section 4 analyzes the guarantee schemes. It first characterizes schemes

where the guaranteed amounts are contingent to bank outcome; and then a standard deposit insurance scheme

with fixed payments. Section 5 uses a parametric example to illustrate the properties of the model. Section

6 contains discussion and concluding remarks. All proofs are contained in the appendix.

2 The basic model

Our model is based on Goldstein and Pauzner (2005), augmented to include a government for the purpose of

studying guarantee policies. There are three dates (t = 0, 1, 2), a continuum [0, 1] of banks and a continuum

[0, 1] of consumers in every bank.

Banks raise one unit of funds from consumers in exchange for a deposit contract as specified below, and

invest in a risky project. For each unit invested at date 0, the project returns 1 if liquidated at date 1 and

a stochastic return R̃ at date 2 given by

R̃ =

{
R > 1 w.p. p(θ)

0 w.p. 1− p(θ).

The variable θ, which represents the state of the economy, is uniformly distributed over [0, 1]. We assume

that p(θ) = θ and Eθ[p(θ)]R > 1, which implies that the expected long term return of the project is superior

to the short term return.

Each consumer is endowed with one unit at date 0 and nothing thereafter. At date 0, each consumer

deposits his endowment at the bank. The bank promises a fixed payment c1 > 1 to depositors withdrawing

at date 1. Alternatively, depositors can choose to wait until date 2 and receive a risky payoff c̃2, as specified

below.

Consumers are ex ante identical but can be of two types ex post: each of them has a probability λ of being

an early consumer (impatient) and consuming at date 1, and a probability 1 − λ of being a late consumer

(patient) and consuming at either date (we usually refer to them as early depositors and late depositors,

respectively). Consumers privately learn their type at date 1.

The government has an endowment g, which, for the moment, it can only use to provide public goods
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to consumers in addition to the deposit payments they obtain from banks. Consumers’preferences are then

given by

U(c, g) = u(c) + v(g),

where u(c) represents the utility from the consumption of the payments obtained from banks and v(g) is the

utility from the consumption of the public good provided by the government. In what follows, we will refer

to u(c) and v(g) also as private and public utility, respectively.3 The function U(c, g) satisfies u′(c) > 0,

v′(g) > 0, u′′(c) < 0, v′′(g) < 0, u(0) = v(0) = 0 and the relative risk aversion coeffi cient, −cu′′(c)/u′(c), is

greater than one for any c ≥ 1. In addition, we focus on the case where the government’s endowment g is

small enough that u′(1) < v′(g). This ensures that the government has no incentives to make direct transfers

to consumers.

The state of the economy θ is realized at the beginning of date 1, but is publicly revealed only at date 2.

After θ is realized at date 1, each consumer receives a private signal xi of the form

xi = θ + εi, (1)

where εi are small error terms that are independently and uniformly distributed over [−ε,+ε]. After the

signal is realized, consumers decide whether to withdraw at date 1 or wait until date 2.

There is perfect competition among banks, so that they choose the deposit contract (c1, c̃2) at date 0 that

maximizes depositors’expected utility. As usual in the financial crisis literature (e.g. Diamond and Dybvig

(1983) and numerous papers thereafter), the deposit contract involves a non-contingent date 1 payment c1

and a date 2 payment c̃2 equal to the return of the non-liquidated units of the bank project divided by the

number of remaining late depositors. The payment c1 must be lower than the amount 1−λc1
1−λ R that each

late depositor receives at date 2 when only the λ early depositors withdraw early and the project succeeds.

Otherwise, the deposit contract is never incentive compatible and late consumers always have an incentive

to withdraw early and thus generate a run. The bank satisfies consumers’withdrawal demands at date

1 by liquidating the project. If the liquidation proceeds are not enough to repay the promised c1 to the

withdrawing depositors, each of them receives a pro-rata share of the liquidation proceeds.4

The timing of the model is as follows. At date 0, each bank chooses the promised payment c1. At date 1,

after realizing their type and receiving the private signal about the state of the fundamentals θ, depositors
3Consumers receive the same amount of public good irrespective of their type. As with the good provided by the bank,

early consumers enjoy the public good at date 1 while late consumers enjoy it at either date. Given there is no discounting, the
timing of the provision does not matter for the late types.

4The assumption that depositors’repayments follow a pro-rata share rule rather than a sequential service constraint as in
Goldstein and Pauzner (2005) simplifies the analysis without affecting the qualitative results.
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decide whether to withdraw early or wait until date 2. At date 2, the bank project return is realized and

waiting late depositors receive a pro-rata share. The model is solved backwards.

3 The decentralized equilibrium without guarantees

In this section we derive the decentralized allocation following Goldstein and Pauzner (2005), where we

use the superscript D to denote the equilibrium variables. We start by analyzing depositors’withdrawal

decisions at date 1 for a given fixed payment c1.

Early consumers always withdraw at date 1 to satisfy their consumption needs. By contrast, late con-

sumers decide whether to withdraw at date 1 based on the signal xi they receive since this provides infor-

mation on both θ and other depositors’actions. Upon receiving a high signal, a late consumer attributes

a high posterior probability to a positive bank project return R at date 2 and infers that the others have

also received a high signal. This lowers his belief about the likelihood of a run and thus his own incentive

to withdraw at date 1. Conversely, when the signal is low, the opposite happens and a late consumer has a

high incentive to withdraw early. This suggests that late consumers withdraw at date 1 when the signal is

low enough, and wait until date 2 when the signal is suffi ciently high.

To show this formally, we first examine two regions of extremely bad and extremely good fundamentals,

where each late consumer’s action is based on the realization of the fundamentals irrespective of his beliefs

about the others’behavior. We start with the lower region.

Lower Dominance Region. When θ is very low, running is a dominant strategy: upon receiving his signal,

a late consumer is certain that the expected utility from waiting until date 2, θu
(
1−λc1
1−λ R

)
, is lower than

that from withdrawing at date 1, u(c1), even if only the early depositors were to withdraw (n = λ). We then

denote by θ(c1) the value of θ that solves

u(c1) = θu

(
1− λc1
1− λ R

)
, (2)

that is

θ(c1) =
u(c1)

u
(
1−λc1
1−λ R

) . (3)

We refer to the interval [0, θ(c1)) as the lower dominance region, where runs are only driven by bad

fundamentals. For the lower dominance region to exist for any c1 ≥ 1, there must be feasible values of θ for

which all late depositors receive signals that assure them to be in this region. Since the noise contained in

the signal xi is at most ε, each late depositor withdraws at date 1 if he observes xi < θ(c1)−ε. It follows that
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all depositors receive signals that assure them that θ is in the lower dominance region when θ < θ(c1)− 2ε.

Given that θ is increasing in c1, the condition for the lower dominance region to exist is satisfied for any

c1 ≥ 1 if θ(1) > 2ε.

Upper Dominance Region. The upper dominance region of θ corresponds to the range
(
θ, 1
]
in which

fundamentals are so good that waiting is a dominant strategy. We construct this region by assuming that in

the range (θ, 1] the project is safe, i.e., p(θ) = 1, and yields the same return R > 1 at dates 1 and 2. Given

c1 <
1−λc1
1−λ R ≤ R, this ensures that the bank does not need to liquidate more units than the n depositors

withdrawing at date 1. Then, upon observing a signal indicating that the fundamentals θ are in the upper

dominance region, a late consumer is certain to receive his payment 1−λc1
1−λ R at date 2, irrespective of his

beliefs on other depositors’actions, and thus he has no incentives to run. Similarly to before, the upper

dominance region exists if there are feasible values of θ for which all late depositors receive signals that assure

them to be in this range. This is the case if θ < 1− 2ε.

The Intermediate Region. When the signal indicates that θ is in the intermediate range
[
θ(c1), θ

]
, a

depositor’s decision to withdraw early depends on the realization of θ as well as on his beliefs regarding

other late depositors’actions. To see how, we first calculate a late depositor’s utility differential between

withdrawing at date 2 and at date 1 as given by

v(θ, n) =


θu
(
1−nc1
1−n R

)
− u(c1) if λ ≤ n ≤ n̂

0− u( 1n ) if n̂ ≤ n ≤ 1,

(4)

where n represents the proportion of depositors withdrawing at date 1 and

n̂=1/c1 (5)

is the value of n at which the bank exhausts its resources if it pays c1 ≥ 1 to all withdrawing depositors.

For n ≤ n̂, a waiting late depositor obtains 1−nc11−n R with probability θ while an early withdrawer obtains c1.

By contrast, for n ≥ n̂ the bank liquidates its entire project at date 1. Late depositors receive nothing when

waiting until date 2 and the pro-rata share 1/n when withdrawing early.

Insert Figure 1

As Figure 1 illustrates, the function v(θ, n) decreases in n for n ≤ n̂ and increases with it afterwards,

crossing zero once for n ≤ n̂ and remaining always below afterwards. Thus, the model exhibits the property of

one-sided strategic complementarity as in Goldstein and Pauzner (2005) and there exists a unique equilibrium
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in which a late depositor runs if and only if his signal is below the threshold x∗(c1). At this signal value, a

late depositor is indifferent between withdrawing at date 1 and waiting until date 2. The following result

holds.

Proposition 1 The model has a unique equilibrium in which late depositors run if they observe a signal

below the threshold x∗(c1) and do not run above. At the limit, as ε→ 0, x∗(c1) simplifies to

θ∗(c1) =
u(c1) [1− λc1] + c1

∫ 1
n=n̂

u( 1n )

c1
∫ n̂
n=λ

u
(
1−nc1
1−n R

) . (6)

The proposition states that even in the intermediate region a late depositor’s action depends uniquely

on the signal he receives as this provides information both on the fundamentals θ and the other depositors’

actions. For θ in the interval [θ(c1), θ
∗(c1)) there is strategic complementarity in consumers’withdrawal

decisions: If c1 > 1, the bank has to liquidate more than one unit for each withdrawing depositor. This

implies that late depositors’date 2 payoff is decreasing in the proportion n of early withdrawing depositors

and so their incentives to run increases with n. In the limit case when ε→ 0, all late depositors behave alike

as they receive approximately the same signal and take the same action. This implies that only complete

runs, where all late depositors withdraw at date 1, occur. In what follows, we will focus on this limit case.

Insert Figure 2

Proposition 1 implies that a run occurs for any θ < θ∗(c1), but for different reasons as also illustrated

in Figure 2. For θ in the interval [0, θ(c1)) runs are fundamental-based : Late depositors withdraw early

because they expect the fundamentals to be bad so that running is a dominant strategy. For θ in the interval

[θ(c1), θ
∗(c1)) runs are panic-based : Late depositors withdraw because they expect others to do the same.

The two types of runs differ significantly in terms of effi ciency. Panic runs are always ineffi cient as they

result from a coordination failure among depositors. By contrast, fundamental runs can be effi cient if they

lead to the early liquidation of unprofitable investments. For each unit that the bank liquidates at date 1

to repay the withdrawing depositors, the return R is foregone with probability θ. Liquidating the project is

then ineffi cient for any θ > θ(1) since the utility u(1) that a depositor obtains from the liquidated unit is

lower than the expected utility θu (R) he would obtain from the same unit if invested until date 2. If c1 > 1,

then θ(1) < θ(c1) < θ∗(c1). Thus, fundamental runs are effi cient in the range [0, θ(1)) but ineffi cient in the

range [θ(1), θ(c1)).
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The likelihood of both types of run− as given by the thresholds θ(c1) and θ
∗(c1)− is affected by the

deposit payment c1 as follows.

Corollary 1 Both thresholds θ(c1) and θ∗(c1) are increasing in c1

(
i.e., ∂θ(c1)∂c1

> 0 and ∂θ∗(c1)
∂c1

> 0
)
with

∂θ∗(c1)
∂c1

> ∂θ(c1)
∂c1

.

The corollary suggests that both run thresholds increase with the deposit rates offered by banks, although

their sensitivity is different. The reason is that the higher c1, the lower is the payoff c̃2 accrued by the late

depositors at date 2 and thus the stronger is the incentive for each late depositor to withdraw early. The

panic threshold θ∗(c1) is more sensitive to changes in c1 than the fundamental threshold θ(c1) because in the

case of panic runs an increase in c1 also changes the beliefs that each depositor has on the others’behavior

and on the damage that their withdrawals will cause to the remaining investors’returns. This reinforces

each late depositor’s incentive to run, thus making θ∗(c1) more sensitive to changes in c1 than θ(c1).

Given depositors’withdrawal decisions at date 1, we compute the optimal deposit contract c1. At date

0 each bank chooses c1 to maximize depositors’expected utility as given by

Max
c1

∫ θ∗(c1)

0

u (1) dθ +

∫ 1

θ∗(c1)

[
λu(c1) + (1− λ)θu

(
1− λc1
1− λ R

)]
dθ +

∫ 1

0

v(g)dθ. (7)

The first term represents depositors’expected utility from depositing at the bank for θ < θ∗(c1) when each

depositor obtains 1 in the occurrence of a run. The second term is depositors’expected utility for θ ≥ θ∗(c1)

when the bank continues until date 2: The λ early consumers obtain c1, while the (1 − λ) late depositors

receive 1−λc1
1−λ R at date 2 with probability θ. The last term is depositors’utility from the public good. Since

the entire government’s endowment g is used to provide the public good, depositors’utility v(g) is unaffected

by the occurrence of runs. We have the following result.

Proposition 2 The optimal deposit contract cD1 > 1 in the decentralized solution solves

λ

∫ 1

θ∗(c1)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ +

−∂θ
∗(c1)

∂c1

[
λu(c1) + (1− λ)θ∗(c1)u

(
1− λc1
1− λ R

)
− u(1)

]
= 0 (8)

In choosing the promised payment to early depositors the bank trades off the marginal benefit of a higher

c1 with its marginal cost. The former, as represented by the first term in (8), is the better risk sharing

obtained from the transfer of consumption from late to early depositors. The latter, which is captured by

the second term in (8), is the loss in expected utility
[
λu(c1) + (1− λ)θ∗(c1)u

(
1−λc1
1−λ R

)
− u(1)

]
due to the
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increased probability of runs, as measured by ∂θ∗(c1)
∂c1

. At the optimum, the bank chooses cD1 > 1 even if

this entails panic runs. The reason is that when c1 = 1, the difference between early and late depositors’

expected payment is maximal. A slight increase of c1 provides a large benefit in terms of risk sharing given

that depositors have a relative risk aversion coeffi cient greater than 1. Furthermore, at c1 = 1 the loss in

terms of expected utility in the case of a run approaches zero.5 Thus, increasing c1 slightly above 1 entails

a second-order cost and a first-order benefit and so it is always optimal. The optimal cD1 is chosen so that

runs occur only for θ < θ∗(c1) < θ. If this was not the case and runs occurred for any θ, consumers would

obtain a utility u(1), which would be lower than the utility they reach with the optimal cD1 .

The bank’s choice of cD1 > 1 entails a trade-off in our model. On the one hand, c1 represents the amount

of risk sharing banks offer to depositors. On the other hand, given that the probability of runs is endogenous

and is linked to the parameters of the deposit contract, c1 represents a form of risk as it determines banks’

exposure to runs. Hence, the higher payment c1, the greater is banks’ liquidity creation but also their

fragility. Since banks anticipate the effect of a higher c1 on their fragility, they reduce deposit rates thus

scaling down liquidity creation.

The decentralized allocation entails several ineffi ciencies. First, as cD1 > 1, both ineffi cient fundamental

and panic runs occur. Second, depositors are exposed to project risk in that they obtain zero with probability

1− θ∗(cD1 ) when the project fails at date 2. Third, the anticipation of runs affects banks’ability to provide

liquidity insurance to early depositors. To illustrate these frictions, we characterize the allocation reached by

a social planner that can enforce effi cient runs and use public funds to protect depositors against bank project

risk, while being restricted as banks to offer only non-contingent demandable deposit contracts. Formally,

the social planner chooses c1 and cf to maximize depositors’expected utility as given by∫ θ(1)

0

u (1) dθ +

∫ 1

θ(1)

[
λu (c1) + (1− λ)

(
θu

(
1− λc1
1− λ R

)
+ (1− θ)u (cf )

)]
dθ (9)

+

∫ θ(1)

0

v (g) dθ +

∫ 1

θ(1)

[θv (g) + (1− θ) v (g − (1− λ) cf )] dθ.

The expression differs from (7) in two respects: the run threshold is now given by θ (1) instead of θ∗(c1)

and depositors obtain a positive payment cf with probability 1 − θ when the project fails. This implies a

reduction in the provision of public good when no runs occur, as evident in the last term of (9).

5When c1 = 1, the term
[
λu(c1) + (1− λ)θ∗(c1)u

(
1−λc1
1−λ R

)
− u(1)

]
simplifies to (1 − λ) [θ∗(1)u (R)− u(1)] = 0 with

θ∗(1) =
[
u(1)
u(R)

]
.
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The optimal values for cSP1 and cSPf solve

λ

∫ 1

θ(1)

[
u′ (c1)− θRu′

(
1− λc1
1− λ R

)]
dθ = 0, (10)

and ∫ 1

θ(1)

(1− λ) (1− θ) [u′ (cf )− v′ (g − (1− λ) cf )] dθ = 0.

The solution for cSP1 improves risk sharing relatively to the decentralized allocation, i.e., cSP1 > cD1 , and

offers some protection against project risk, i.e., cSPf > 0 when u′(0)− v′(g) > 0.

4 Introducing government guarantees

One way to improve the decentralized allocation derived above is through the provision of government

guarantees, which consist in a minimum payment to depositors when the bank is unable to repay them the

promised amount: at date 1 if there is a run and all depositors receive a pro-rata share of 1; at date 2 if the

bank project succeeds but there is a panic run; at date 2 if the bank project fails irrespective of the proportion

of early withdrawers. This implies that guarantees can play three distinct roles: Allowing a transfer of public

resources to depositors at date 1; ameliorating the coordination failure among depositors, thus reducing the

probability of panic-based runs; and protecting late depositors against bank project failure.

To illustrate these different roles, we start by allowing the government to offer different levels of guarantees

depending on bank outcome. In particular, we first analyze a simple form of guarantees which, in the spirit

of Diamond and Dybvig, addresses only panic runs due to depositors’ coordination failure. Second, we

consider a guarantee scheme that protects depositors against bank project risk, even in the absence of runs.

Third, we show that providing a transfer of public resources to depositors at date 1 is never optimal. Finally,

we analyze a standard deposit insurance scheme, which fulfils all these roles as it guarantees depositors to

receive the same payment irrespective of the bank outcome.

In all cases, the introduction of guarantees modifies the timing of the model as follows. At date 0, the

government chooses the amount to guarantee c and then the bank chooses c1. At date 1, after learning their

types and receiving the signal about the state of fundamentals θ, depositors decide whether to withdraw

early or wait until date 2. As before, for each guarantee scheme considered, we solve the model backward.

We first characterize depositors’withdrawal decisions for given c and c1 and obtain the thresholds θ(c1, c)

and θ∗(c1, c) for the fundamental and panic runs, respectively. Then, we characterize the bank’s choice of
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c1, for given c, and finally the government’s choice of c. In all guarantee schemes, the government finances

the promised guarantee c through the transfer of resources from its endowment g to the banking sector.

4.1 Guarantees against panic runs

We first analyze a scheme aimed at reducing the occurrence of panic runs by addressing the coordination

problem among depositors. Under this scheme, depositors are guaranteed to receive a minimum payment

if the bank project is successful at date 2 irrespective of what the other depositors do. We show that this

guarantee eliminates panics and induces banks to offer higher deposit rates. In turn, this increases the

probability of fundamental runs and possibly even the probability of runs overall. We use the superscript P

to denote the equilibrium variables under this guarantee scheme.

As highlighted in the analysis of the decentralized economy, panic runs arise in our model because of the

strategic complementarity between depositors’actions. The greater the number of depositors withdrawing

at date 1, the more units of the project the bank needs to liquidate prematurely. This, in turn, increases the

incentive for a late depositor to run since his repayment in the case he waits is reduced. The coordination

failure among depositors leads to a panic-driven run for θ in the interval [θ(c1), θ
∗(c1)).

Consider now that the government promises depositors to receive a minimum repayment cs > 0 when

the bank project succeeds at date 2. This reduces late depositors’incentives to withdraw at date 1 for θ in

the range [θ(c1), θ
∗(c1)) because a depositor’s date 2 payoff when the bank project succeeds becomes less

dependent on the other depositors’withdrawal decisions. As in Diamond and Dybvig (1983), this scheme

has a pure announcement effect, without entailing any disbursement for the government. As a result, the

government finds it optimal to set cs = 1−λc1
1−λ R so that panic runs are eliminated.

While eliminating panics, this scheme fails to address fundamental-based runs as it does not protect

depositors against bank project risk. Thus, late depositors still choose to run when they expect bad funda-

mentals, that is when θ < θ(c1), where θ(c1) is determined in (3). Importantly though, the elimination of

panic runs affects the bank’s choice of c1 and thus the probability of fundamental runs in equilibrium will

be different from the decentralized economy. This is what we turn to next.

Given that runs occur now for θ ≤ θ(c1), each bank chooses c1 to maximize depositors’expected utility
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as given by

Max
c1

∫ θ(c1)

0

u(1)dθ +

∫ 1

θ(c1)

[
λu(c1) + (1− λ)θu

(
1− λc1
1− λ R

)]
dθ +

+

∫ 1

0

v(g)dθ (11)

The terms in (11) have the same meaning as in (7), with the difference that runs are now only fundamental-

driven and thus the relevant threshold is θ(c1) instead of θ
∗(c1). Since the insurance scheme does not entail

any cost, the government still provides g units of public good and depositors still obtain public utility v(g)

as in the decentralized allocation without guarantees. As there, the solution to the problem in (11) must be

such that θ(c1) < θ at the equilibrium c1. This gives the following result.

Proposition 3 The optimal deposit contract cP1 > cD1 in the case of a guarantee scheme against panic runs

solves

λ

∫ 1

θ(c1)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ +

−∂θ(c1)
∂c1

[
λu(c1) + (1− λ)θ(c1)u

(
1− λc1
1− λ R

)
− u(1)

]
= 0. (12)

As in the decentralized economy, the bank chooses the deposit contract that trades offthe marginal benefit

of a higher c1 with its marginal cost. The former, as represented by the first term in (12), is the better risk

sharing obtained from the transfer of consumption from late to early depositors. The latter, as captured by

the second term in (12), is the loss in expected utility
[
λu(c1) + (1− λ)θ(c1)u

(
1−λc1
1−λ R

)
− u(1)

]
due to the

increased probability of fundamental runs as measured by ∂θ(c1)
∂c1

. The solution cP1 is now larger than c
D
1 in

the decentralized economy as given by the solution to (8). The reason is that both the run threshold θ(c1)

and its sensitivity to changes in c1, as represented by
∂θ(c1)
∂c1

, are lower than θ∗(c1) and
∂θ∗(c1)
∂c1

as shown in

Corollary 1. As a result, the marginal benefit of an increase in c1 in terms of better risk sharing is higher

than the one in the decentralized economy, while its marginal cost is lower. Thus, the bank has an incentive

to choose a higher c1 and improve liquidity creation relative to the case without government intervention.

Insert Figure 3

The proposition has important implications in terms of bank stability, as illustrated in Figure 3. The

guarantee scheme eliminates panic runs, but it increases the probability of fundamental runs due to the

increased deposit rate. That is θ(cP1 ) > θ(cD1 ), given Corollary 1 and cP1 > cD1 .
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If the difference between cP1 and c
D
1 is large enough, it can even happen that the bank becomes more

fragile than in the decentralized solution, that is θ(cP1 ) > θ∗(cD1 ). The bank chooses to do so if the benefit of

the increased c1 in terms of improved risk sharing outweighs the cost in terms of higher probability of runs.

After comparing the expected overall utilities with and without guarantees in equilibrium as given in (11)

and (7), and rearranging the terms, we can express the condition for this to happen as follows:∫ 1
θ(cP1 )

[(
λu(cP1 ) + (1− λ)θu

(
1−λcP1
1−λ R

))
−
(
λu(cD1 ) + (1− λ)θu

(
1−λcD1
1−λ R

))]
dθ >

∫ θ(cP1 )
θ∗(cD1 )

[
λu(cD1 ) + (1− λ)θu

(
1−λcD1
1−λ R

)
− u (1)

]
dθ.

(13)

The term on the LHS represents the benefit in terms of greater risk sharing deriving from a larger c1 in the

range θ > θ(cP1 ) where no run occurs both in the decentralized economy and in the one with guarantees. The

term on the RHS represents instead the loss in terms of foregone risk sharing when in the range θ∗(cD1 ) ≤ θ <

θ(cP1 ) a run occurs in the presence of guarantees because of the higher c1. Characterizing when (13) holds

is not straightforward as several effects are at play. We will provide an example in which this happens and

guarantees lead to greater overall instability in Section 5.

To sum up, the analyzed guarantee scheme eliminates panic runs and thus induces banks to provide more

liquidity, which in turn increases fundamental runs. Importantly, such increased fragility is not driven by

banks’attempt to maximize the value of the guarantee as there is no disbursement of the public good in

equilibrium. In other words, there is no moral hazard problem on the side of the banks. As a result, despite

the increased bank fragility, this guarantee scheme is welfare improving as it allows better risk sharing than

in the decentralized equilibrium.

4.2 Guarantees against fundamental project risk

We now consider that, in addition to eliminating panics, the guarantee scheme protects depositors against

the bank project risk. Under this scheme depositors are also promised a minimum payment at date 2 if

the bank project fails and no run has occurred. As a consequence, the probability of fundamental runs is

reduced but, as guarantees are now provided in equilibrium when the project fails, they are costly in terms

of reduced public good provision. Differently from the scheme that only eliminates panics, there is now

moral hazard in the choice of the deposit contract as banks do not internalize the cost that guarantees entail

for the government. We use the superscript F to denote the equilibrium variables with guarantees against

fundamental project risk.

Consider now that the government promises a minimum repayment cf > 0 at date 2 with probability 1−θ
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when the project fails in addition to the payment cs > 0 when the project succeeds. First, it is immediate to

see that preventing panic runs is still desirable as they destroy resources in the range [θ(c1), θ
∗(c1)). Thus,

setting cs = 1−λc1
1−λ R is still optimal.

Given this, we start by characterizing late depositors’withdrawal decisions at date 1 for given c1 and cf

in the absence of panics. Late depositors decide to run at date 1 when θ is below the threshold θF (c1, cf )

which solves

u (c1) = θu

(
1− λc1
1− λ R

)
+ (1− θ)u (cf ) .

The terms have the same meaning as in (2) with the difference that depositors now receive utility u(cf ) at

date 2 when, with probability 1− θ, the bank project fails and the guarantee cf is paid. The solution is then

equal to

θF (c1, cf ) =
u (c1)− u (cf )

u
(
1−λc1
1−λ R

)
− u (cf )

. (14)

It is immediate to see that the threshold of fundamental runs increases in c1 and decreases in cf (i.e.,

∂θF (c1,cf )
∂c1

> 0 and ∂θF (c1,cf )
∂cf

< 0).

We now turn to date 0 and analyze the bank’s choice of c1 and the government’s choice of cf . We

start with the former. Given cf and anticipating depositors’withdrawal decisions, each bank chooses c1 to

maximize depositors’expected utility as given by

Max
c1

∫ θF (c1,cf )

0

u (1) dθ +

∫ 1

θF (c1,cf )

[
λu (c1) + (1− λ)

(
θu

(
1− λc1
1− λ R

)
+ (1− θ)u (cf )

)]
dθ (15)

+

∫ θF (c∗1 ,cf )

0

v (g) dθ +

∫ 1

θF (c∗1 ,cf)
[θv (g) + (1− θ) v (g − (1− λ) cf )] dθ

The expression in (15) is similar to the one for the social planner in (9), except that the run threshold is

now given by θF (c1, cf ) instead of θ(1). The first term in (15) represents depositors’expected utility when a

run occurs for θ < θF (c1, cf ) and depositors obtain u(1). The second term in (15) is the expected utility for

θ ≥ θF (c1, cf ) when there is no run: Early depositors obtain the promised repayment and late depositors

receive either the promised payment with probability θ when the project succeeds or the guarantee level

cf with probability 1 − θ when the project fails. The last two terms in (15) represent the utility from the

public good. For θ < θF (c1, cf ) the government uses g entirely to provide the public good so that depositors

obtain utility v(g). The same happens with probability θ for θ ≥ θF (c1, cf ). By contrast, with probability

1− θ for θ ≥ θF (c1, cf ) the government uses (1− λ) cf of its endowment to provide the guarantee and thus

depositors only obtain v (g − (1− λ) cf ) as utility from the public good.
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As they are atomistic, banks do not internalize the cost of the guarantee in their choice of c1 and,

consequently, the last two terms in (15) depend on the equilibrium choice c∗1 of other banks rather than the

individual bank’s choice of c1. We obtain the following.

Proposition 4 The deposit contract cF1 > cP1 against the bank fundamental project risk solves

λ

∫ 1

θF (c1,cf )

[
u′ (c1)− θRu′

(
1− λc1
1− λ R

)]
dθ (16)

−∂θ
F (c1, cf )

∂c1

[
λu (c1) + (1− λ) θF (c1, cf )u

(
1− λc1
1− λ R

)
+ (1− λ)

(
1− θF (c1, cf )

)
u (cf )− u (1)

]
= 0

and it is increasing in the amount of guarantee, i.e., dc
F
1

dcf
> 0.

As usual, in choosing the promised payment to early depositors the bank trades off the marginal benefit

of a higher c1 with its marginal cost. The former, as represented by the first term in (16), is the better risk

sharing obtained from the transfer of consumption from late to early depositors. The latter, as captured by

the second term in (16), is the loss in expected utility due to the increased probability of fundamental runs

as measured by ∂θF (c1,cf )
∂c1

.

The proposition shows also that the optimal c1 increases with cf . Thus, protecting depositors also against

project risk induces banks to provide even more risk sharing to early depositors than when only panics are

eliminated. The increased liquidity provision is, however, not necessarily welfare improving. The reason is

that now providing the guarantee is costly in equilibrium when the government reduces the provision of the

public to increase depositors’payment in the event of project failure. This creates distortions in the bank’s

choice of the deposit rate. Anticipating this effect, the government chooses to provide a positive level of the

guarantee only if its benefits in terms of liquidity provision and insurance against project failure outweigh its

costs in terms of lower public good provision. To see when this is the case, we now turn to the government’s

choice of cf .

Given the bank’s choice cF1 (cf ), at date 0 the government chooses cf to maximize depositors’ total

expected utility, which is given by the expression in (15) evaluated at c1 = cF1 (cf ). Note that this objective

function differs from that of the social planner in (9) as the government choose cf while taking c1 as set by

the bank and depositors’withdrawal decisions as represented by the threshold θF (c1, cf ) in (14).

19



Proposition 5 If u′(0)− v′ (g) > 0, the government chooses cFf > 0, which solves:∫ 1

θF (c1,cf )

(1− λ) (1− θ) [u′ (cf )− v′ (g − (1− λ) cf )] dθ

−∂θ
F (c1, cf )

∂cf

[
λu (c1) + (1− λ) θF (c1, cf )u

(
1− λc1
1− λ R

)
+
(

1− θF (c1, cf )
)
u (cf )− u (1)

]
−∂θ

F (c1, cf )

∂cf

[
θF (c1, cf ) v (g) +

(
1− θF (c1, cf )

)
v (g − (1− λ) cf )− v (g)

]
(17)

−∂θ
F (c1, cf )

∂c1

dc1
dcf

[
θF (c1, cf ) v (g) +

(
1− θF (c1, cf )

)
v (g − (1− λ) cf )− v (g)

]
= 0.

where c1 = cF1 (cf ).

The proposition shows that the government chooses cFf > 0 to protect late depositors against bank project

failure if the marginal benefit in terms of increased private utility outweighs the marginal cost in terms of

reduced utility from the public good. Given the concavity of the utility functions, this condition will be

satisfied unless the government is very constrained in its endowment g.

The choice of the optimal amount of cFf depends on the amount of public good g. There are three

effects to consider. First, the guarantee is essentially a transfer from the public to the private good, so

that a marginal change in the amount provided affects the marginal utilities from consumption as reflected

in the first term in (17). Second, an increase in the guaranteed amount has the direct effect of reducing

the probability of runs through the term ∂θF (c1,cf )
∂cf

. As reflected in the second and third term in (17), this

increases the utility from private consumption, while decreasing that from public consumption due to the

government’s payment of the guarantee when the bank project fails. Third, a higher guaranteed payment

has an indirect effect on the utility from the public good through the bank’s choice of c1, as captured in the

last term in (17). In particular, the increased probability of a run induced by a higher c1 increases the utility

from public good, which is not internalized by the bank.

As mentioned above, the provision of a positive amount of guarantee cf induces distortions in bank

behavior. To investigate these in more detail, we first derive the equilibrium in the case when the government

would choose both c1 and cf and then we compare it with the one characterized in Propositions 4 and 5. In

this case, the government chooses c1 and cf to maximize (15) for given depositors’withdrawal decisions, but

taking explicit account of the disbursement needed to provide the guarantee when choosing c1. We denote

the optimal choice of c1 as cF1G and we obtain the following.
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Proposition 6 For a given cf , banks choose an ineffi ciently low c1, that is cF1 < cF1G, where c
F
1G solves

λ

∫ 1

θF (c1,cf )

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ

−∂θ
F (c1, cf )

∂c1

[
λu(c1) + (1− λ)

(
θF (c1, cf )u

(
1− λc1
1− λ R

)
+ (1− θF (c1, cf ))u (cf )

)
− u(1)

]
−∂θ

F (c1, cf )

∂c1

[
θF (c1, cf ) v(g) + (1− θF (c1, cf ))v (g − (1− λ)cf )− v(g)

]
= 0. (18)

The proposition suggests that the distortion in the bank’s choice of c1 leads banks to be less exposed

to runs than would be optimal. This result, which is opposite to common wisdom, hinges on the fact that

the government internalizes that the production of public good is reduced in the case there is no run and

the bank project fails, while the public good is fully provided when there is a run. This idea relates to

the concept of prompt corrective action: Liquidating banks early rather than intervening them later when

banks’assets turn out to be unsuccessful may be desirable when it allows minimizing the costs associated

with public intervention.

4.3 Guarantees as a transfer at date 1

So far we have shown that the government finds it optimal to offer levels of guarantees cs = 1−λc1
1−λ R and

cs > 0 at date 2 to eliminate panic runs and protect depositors against bank project risk. Now we consider

whether it would be desirable to also guarantee some minimum repayment at date 1 in the event of a run

to increase depositors’payoffs. We show this is not the case as long as the government can offer different

payments depending on bank outcome.

When the government guarantees depositors a payment c1 > 1 at date 1 when a run occurs, depositors’

overall expected utility is given by

Max
c1

∫ θF (c1,cf )

0

u (c1) dθ +

∫ 1

θF (c1,cf )

[
λu (c1) + (1− λ)

(
θu

(
1− λc1
1− λ R

)
+ (1− θ)u (cf )

)]
dθ

+

∫ θF (c∗1 ,cf )

0

v (g − c1 + 1) dθ +

∫ 1

θF (c∗1 ,cf)
[θv (g) + (1− θ) v (g − (1− λ) cf )] dθ (19)

The expression is the same as in (15) with the difference that for θ < θF (c1, cf ) depositors now obtain

u (c1) from the private good and v (g − c1 + 1) from the public good. We obtain the immediate following

result.

Proposition 7 The government chooses not to offer any guarantee at date 1, that is c1 < 1.
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As it does not have any effect on the probability of runs, guaranteeing depositors in the case of a run is

equivalent to provide a direct transfer of public good to the private sector. This is not optimal in our model

since, by imposing the condition u′ (1) < v′ (g) in Section 2, we restrict our attention to the case when the

government’s endowment g is such that transfers of public to the private agents can be desirable only if they

help reduce the occurrence of runs.

4.4 Standard deposit insurance

We now consider a standard deposit insurance scheme where depositors receive a minimum payment when

the bank is unable to repay them. Formally, this means cs = cf = c1 = c. Within this scheme, providing a

guarantee reduces panics, protects depositors against bank project risk and provides a transfer at date 1 if

the government finds it optimal to set c > 1.6 We show that all trade-offs analyzed in the previous sections

remain in place and that providing the guarantee can still be welfare-enhancing.

To study this new form of guarantee, we follow the same steps as in the previous sections and we use

the superscript DI to denote the equilibrium variables. We first characterize the equilibrium in depositors’

withdrawal decisions for given c1 and c. To make the analysis meaningful, we focus on the parameter space

where c < c1 in equilibrium so that depositors are not fully insured and still have incentives to run. It follows

that panic runs can now occur, and thus we need to characterize the run threshold as in Section 3. The

upper dominance region is as in the decentralized economy, while the upperbound of the lower dominance

region θ(c1, c) is the same as in (14) with c instead of cf . In the intermediate region, a late depositor’s utility

differential between withdrawing at date 2 versus date 1, denoted v(θ, n, c), is given by

v(θ, n, c) =



θu
(
1−nc1
1−n R

)
+ (1− θ)u (c)− u(c1) if λ ≤ n ≤ n

u (c)− u(c1) if n ≤ n ≤ n̂

u (c)− u( 1n ) if n̂ ≤ n ≤ min {1, ñ}

u (c)− u(c) if min {1, ñ} ≤ n ≤ 1

, (20)

where n = R−c
Rc1−c , n̂ = 1

c1
and ñ = 1

c . The expression for v(θ, n, c) has four intervals. In the first interval,

for λ ≤ n ≤ n, depositors waiting until date 2 receive 1−nc1
1−n R > c with probability θ and c with probability

1 − θ , while those withdrawing early obtain c1. As n reaches n, banks’repayment to depositors at date 2

falls below c so that late depositors always receive c for n ≥ n. Depositors withdrawing at date 1 receive the

6The condition u′(1) < v′(g) works against the optimality of c > 1 as it rules out transfers at date 1 when guarantees
are conditional on bank outcome, as shown in Section 4.3. However, unlike that case, with standard deposit insurance, the
government may find it optimal to set c > 1 in order to reduce panics.
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promised repayment c1 as long as n ≤ n̂, that is as long as the bank has enough resources to pay c1 from the

liquidation of the project at date 1. As n grows further (i.e., for any n̂ ≤ n ≤ min {1, ñ}), the bank liquidates

its entire project for a value of 1 and each depositor receives the pro-rata share 1
n when withdrawing at date

1. Finally, for any min {1, ñ} ≤ n ≤ 1, the pro-rata share 1
n falls below c and depositors withdrawing at date

1 start receiving the guarantee c. This case occurs only if c > 1.

The functions v(θ, n, c) are illustrated in Figures 4a and 4b for the case c ≤ 1 and c > 1, respectively.

When c ≤ 1, the function v(θ, n, c) crosses zero once and remains strictly below zero afterwards. By contrast,

when c > 1, it crosses zero for n < n̂, it stays below zero for n̂ ≤ n ≤ ñ and it is equal to zero for ñ ≤ n ≤ 1.

Despite this, in both cases there still exists a unique threshold equilibrium.

Insert Figures 4a and 4b

As in the decentralized economy, the threshold signal x∗(c1, c) can be found as the solution to the

indifference condition that equates a depositor’s expected utility from withdrawing early with the one from

waiting until date 2.7 We have the following result.

Proposition 8 The model with a guarantee scheme against panic and fundamental failures has a unique

threshold equilibrium in which late depositors run if they observe a signal below the threshold x∗(c1, c) and

do not run above. In the limit as ε→ 0, the equilibrium threshold x∗(c1, c) simplifies to

θ∗(c1, c) =

∫ n̂
n=λ

u (c1) +
∫min(ñ,1)
n=n̂

u( 1n )−
∫min(ñ,1)
n=λ

u (c)∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] . (21)

The threshold θ∗(c1, c) is increasing in c1 and decreasing in c, i.e.,
∂θ∗(c1,c)
∂c1

> 0 and ∂θ∗(c1,c)
∂c < 0.

The proposition characterizes the equilibrium threshold θ∗(c1, c) as a function of the deposit contract

c1 chosen by the bank and the level of guarantees c set by the government. The expression for θ
∗(c1, c)

depends on whether the level of guarantees c is above or below 1 as this determines when depositors enjoy

the guarantee. As in the decentralized economy, for a given c, a higher c1 leads to more runs as it increases

depositors’payoff at date 1, while lowering that at date 2. By contrast, for a given c1, a higher c reduces

θ∗(c1, c) as it increases the expected payment that late depositors receive if they wait until date 2. This

represents the positive direct effect of government intervention on bank fragility.

7 In what follows, we restrict our attention to threshold equilibria. As in the previous section, we show that the model
has a unique threshold equilibrium, but, unlike the decentralized equilibrium, we do not prove that this is the only possible
equilibrium of the model.
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Having characterized depositors’withdrawal decisions, we can now turn to date 0 and analyze the bank’s

decision. Given c and anticipating depositors’ withdrawal decisions, each bank chooses c1 to maximize

depositors’expected utility:

Max
c1

∫ θ∗(c1,c)

0

u(max(1, c))dθ +

∫ 1

θ∗(c1,c)

[
λu(c1) + (1− λ)

(
θu

(
1− λc1
1− λ R

)
+ (1− θ)u (c)

)]
dθ

+E [v (g, c∗1, c)] (22)

where c∗1 denotes the equilibrium value of c1 chosen by all banks, and E [v (g, c∗1, c)] is the expected utility

from the public good as given by

E [v (g, c∗1, c)] =

∫ θ∗(c∗1 ,c)

0

v (g) dθ +

∫ 1

θ∗(c∗1 ,c)

[θv(g) + (1− θ)v(g − (1− λ)c)] dθ (23)

when c ≤ 1, and by

E [v (g, c∗1, c)] =

∫ θ∗(c∗1 ,c)

0

v (g − c+ 1) dθ +

∫ 1

θ∗(c∗1 ,c)

[θv(g) + (1− θ)v (g − (1− λ)c)] dθ (24)

when c > 1.

The bank’s problem is similar to the one in (15), with only a few differences. First, the run threshold is

now θ∗(c1, c) instead of θ(c1, cf ). Second, if c > 1 depositors receive u(c) instead of u(1) and utility from the

public good v (g − c+ 1) instead of v(g) when there is a run at date 1.

As in the decentralized equilibrium, the solution for c1 is such that θ
∗(c1, c) < θ at the equilibrium choice

of c1. This maximizes depositors’expected utility as runs do not always occur. We have the following result.

Proposition 9 The deposit contract cDI1 > cD1 in the case of a guarantee scheme against panic and funda-

mental runs solves

λ

∫ 1

θ∗(c1,c)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ (25)

−∂θ
∗(c1, c)

∂c1

[
λu(c1) + (1− λ)

(
θ∗(c1, c)u

(
1− λc1
1− λ R

)
+ (1− θ∗(c1, c))u (c)

)
− u(max(1, c))

]
= 0,

and is increasing in the amount of the guarantee, i.e., dc
DI
1

dc > 0.

The choice of cDI1 is similar to before: The bank still trades off the marginal benefit of a higher c1 in

terms of better risk sharing with its marginal cost in terms of increased probability of panic runs; and the

equilibrium cDI1 is increasing in the guaranteed amount.

Given the bank’s choice of cDI1 , at date 0 the government chooses cDI to maximize depositors’ total

expected utility, which is given by the expression in (22) evaluated at c1 = cDI1 (c). The problem here is very
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complex and does not admit a sharp characterization. Still, we can show that under certain conditions, the

government finds it optimal to provide a positive amount of guarantee. We have the following result.

Proposition 10 If u′(0)− v′ (g) > 0, the government chooses cDI > 0, as characterized in the Appendix.

The proposition suggests that the government still finds it optimal to offer a positive level of guarantee

if the marginal benefit in terms of increased private utility outweighs the marginal cost in terms of reduced

utility from the public good. This holds despite the fact that the scheme does not allow specific bank

outcomes to determine the level of the guarantee.

As before, the equilibrium entails distortions in bank behavior, which depend on the size of the guarantee,

i.e., c ≶ 1. Following the same steps as in Section 4.2 and denoting cDI1G the optimal choice of c1 of the

government when it chooses both c1 and c, we obtain the following.

Proposition 11 For a given c, banks choose an ineffi ciently low c1 (i.e., cDI1 < cDI1G) if c ≤ 1 and if c > 1

when
[
θ∗(cDI1 , c)v(g) + (1− θ∗(cDI1 , c))v(g − (1− λ)c)− v(g − c+ 1)

]
< 0 and an ineffi ciently high one (i.e.,

cDI1 > cDI1G) otherwise, where c
DI
1G is characterized in the Appendix.

As shown in the proposition, the distortion in the bank’s choice of c1 can now go either way, as the

bank can choose either to under or over provide liquidity insurance. The direction of the distortion depends

on whether the government ends up paying depositors more at date 2 when the bank project fails or when

there is a run. The former case, which entails the same distortion as the one analyzed in Section 4.2, holds if

c ≤ 1 and when [θ∗(c1, c)v(g) + (1− θ∗(c1, c))v(g − (1− λ)c)− v(g − c+ 1)] > 0 if c > 1. The latter emerges

otherwise and is more in line with common wisdom as it entails cDI1 > cDI1G .

5 A numerical example

In this section we illustrate the properties of the model using a numerical example. The goal is to demon-

strate that our main results hold in a reasonable parameter space and provide a comparison of the different

guarantee schemes analyzed in terms of liquidity creation, bank fragility and welfare.

In the example depositors’utility functions from the private good u(c) and from the public good v(g)

are given by

u(c) =
(c+ t)1−σ

1− σ − (t)1−σ

1− σ ,
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and

v(g) =
(g + t)1−σ

1− σ − (t)1−σ

1− σ ,

respectively. The two functions are variations of a standard CRRA function with σ being the risk aversion

coeffi cient. The parameter t ensures that the assumption u(0) = v(0) = 0 is always satisfied, and it can be

interpreted as the consumption that depositors enjoy from resources not invested in the bank. We maintain

p(θ) = θ, with the upper dominance region corresponding to θ = 1, and set the parameters as follows σ = 3;

R = 5; λ = 0.3, t = 4 and g = 0.7.

In the table, we report the decentralized allocation and the equilibrium in all guarantee schemes analyzed.

Each scheme is labelled according to the corresponding paper section. The columns of the tables report,

in order, the probability of panic and fundamental runs (θ∗, θ), the equilibrium values for the deposit

contract (c1, c2), the equilibrium levels of guarantee cs and cf , the expected utility from the private and

public good (E [u (c1, c2, c)] and E[v(g, c)]) and the percentage change in social welfare, as given by the sum

E [u (c1, c2, c)] + E[v(g, c)], in the various interventions relative to the decentralized economy.

Table 1 : g = 0.7

θ
θ∗

c1
c2

cs
cf

E [u (c1, c2, c)]
E[v(g,c)]

∆SW (c1, c2, g, c)
(%)

Decentralized economy
0.451436
0.463204

1.0076
4.98372

0
0

0.0139202
0.00861532

−

Guarantees against
panic runs

0.488273
θ

1.10762
4.7694

1−λc1
1−λ R

0

0.013945
0.00861532

0.11

Guarantees against
fundamental project risk

0.380187
θ

1.12573
4.7058

1−λc1
1−λ R

0.329

0.0145561
0.008157575

0.78

Deposit insurance
0.355442
0.373496

1.01445
4.96905

0.27
0.27

0.0144034
0.0082353

0.45

The table shows that all types of guarantees lead to higher deposit rates (cF1 = 1.12573 > cP1 = 1.10762 >

cDI1 = 1.01445 > cD1 = 1.0076) and thus greater risk sharing. With guarantees against panics only, panic runs

are eliminated, but the overall probability of runs (θP (cP1 ) = 0.488273) is higher than in the decentralized

solution (θ∗(cD1 ) = 0.463162) because of the higher deposit rate. This occurs neither when guarantees also

protect against fundamental project risk (θF (cF1 , c
F
f ) = 0.380187) nor with deposit insurance (θ∗(cDI1 , cDI) =

0.373496). All guarantee schemes entail higher welfare than the decentralized solution, but the guarantee

against fundamental project risk performs better than the others (∆SWF = 0.78 > ∆SWDI = 0.45 >

∆SWP = 0.11) as it allows the government to better target the different bank outcomes.
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6 Discussion and concluding remarks

In this paper we develop a model where both panic and fundamental runs are possible and both banks’

and depositors’decisions are endogenously determined. We show that government guarantees are beneficial

in that they improve depositors’welfare, as a result of the induced greater risk-sharing, even if this comes

sometimes at the cost of greater fragility. This result holds also in the context of guarantee schemes that

entail an actual disbursement for the government and so distortions in banks’risk-taking.

The paper offers a convenient framework to evaluate the implications of government guarantees because

it allows the probability of runs and bank’s behavior to be endogenous. The framework builds on some

assumptions regarding the type of contract banks offer and the set of feasible actions of the various players

involved (i.e., depositors, banks and the government) that are typical in the standard literature on financial

crises. Below, we discuss these assumptions. Attempting to relax them and enrich the framework is, in our

view, a fruitful path for future research.

First, our framework assumes that banks offer non-contingent deposit contracts, which cannot be ex post

renegotiated. Similarly, the amounts promised in the guarantee schemes we consider are non-contingent and

non-renegotiable as is typical in deposit insurance schemes. This framework enables us, differently from

the previous literature, to fully endogenize investors’runs decisions, banks’risk choices, and the interaction

between them and with the guarantees regime. Extending this framework to consider the optimal contracts

would certainly be an interesting direction. However, the tractability would clearly be a constraint.

Second, for simplicity, we do not allow banks to store liquidity between the intermediate and the final

date as a way to insure themselves against the possibility that their project fails at the final date. The only

choice banks make is the amount they offer to early withdrawing investors. As Ahnert and Elamin (2015)

show, if storage is possible, banks will make use of it at the intermediate date. This reduces depositors’

incentives to run and may improve allocation. However, as storage is costly, banks do not find it optimal to

fully self-insure. As a consequence, banks are still subject to project risk and both fundamental and panic

runs occur in equilibrium. This still leaves a potential role for public guarantees as a way to further reduce

runs and offer better protection to depositors against project failure. Investigating this issue is an interesting

direction for future research.

Finally, still in line with the existing literature on public intervention, we consider that public funds are

always suffi cient for the provision of guarantees, although their size affects the optimal amount of guarantees
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that the government offers in equilibrium. In other words, depositors are sure to receive the transfers

announced by the government. The events in the recent Eurozone crisis proved that guarantees may not

be always feasible and their provision may even have negative implications for the solvency of the country,

their credibility and in turn their effectiveness. In a recent paper, Leonello (2017), analyzes these issues

in a model where the government providing the guarantees is fragile and has access to limited resources.

She studies the role that guarantees play for banks and sovereign stability and their interaction, but her

analysis abstract from moral hazard considerations. Allowing for the possibility of sovereign default and

removing the assumptions of full credibility and feasibility of the guarantees, while still analyzing their

impact on banks’risk-taking incentives, would require modifying our framework significantly and could pose

tractability concerns. However, the basic trade-off between fragility and liquidity creation triggered by the

provision of the guarantee that we highlight in this paper would still be present in the extended framework.
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Appendix

Proof of Proposition 1: The proof follows Goldstein and Pauzner (2005). The arguments in their proof

establish that there is a unique equilibrium in which depositors run if and only if the signal they receive is

below a common signal x∗(c1). The number n of depositors withdrawing at date 1 is equal to the probability

of receiving a signal xi below x∗(c1) and, given that depositors’ signals are independent and uniformly

distributed over the interval [θ − ε, θ + ε], it is:

n(θ, x∗(c1)) =


1 if θ ≤ x∗(c1)− ε

λ+ (1− λ)
(
x∗(c1)−θ+ε

2ε

)
if x∗(c1)− ε ≤ θ ≤ x∗(c1) + ε

λ if θ ≥ x∗(c1) + ε

(26)

When θ is below x∗(c1) − ε, all patient depositors receive a signal below x∗(c1) and run. When θ is

above x∗(c1) + ε, all late depositors wait until date 2 and only the λ early consumers withdraw early. In

the intermediate interval, when θ is between x∗(c1)− ε and x∗(c1) + ε, there is a partial run as some of the

late depositors run. The proportion of late consumers withdrawing early decreases linearly with θ as fewer

agents observe a signal below the threshold.

Having characterized the proportion of agents withdrawing for any possible value of the fundamentals θ,

we can now compute the threshold signal x∗(c1). A patient depositor who receives the signal x∗(c1) must

be indifferent between withdrawing at date 1 and at date 2. The threshold x∗(c1) can be then found as the

solution to

f(θ, c1) =

∫ 1
c1

n=λ

[
θ(n)u

(
1− nc1
1− n R

)
− u(c1)

]
+

∫ 1

n= 1
c1

[
u(0)− u

(
1

n

)]
= 0, (27)

where, from (26), θ(n) = x∗(c1) + ε − 2ε (n−λ)1−λ . Equation (27) follows from (4) and requires that a late

depositor’s expected utility when he withdraws at date 1 is equal to that when he waits until date 2. Note

that in the limit, when ε→ 0, θ(n)→ x∗(c1), and we denote it as θ
∗(c1). Solving (27) with respect to θ

∗(c1)

gives the threshold as in the proposition. �
Proof of Corollary 1: The expression for ∂θ(c1)∂c1

can be obtained simply differentiating θ(c1), as given

in (3) with respect to c1. This gives

∂θ(c1)

∂c1
=
u′(c1) + θ(c1)

(
λR
1−λ

)
u′
(
1−λc1
1−λ R

)
u
(
1−λc1
1−λ R

) > 0 (28)
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since u′(c) > 0.

To prove that θ∗(c1) is increasing in c1, we apply the implicit function theorem to the expression for

f(θ∗, c1) as given by (27) in the proof of Proposition 1. We obtain

∂θ∗(c1)

∂c1
= −

∂f(θ∗,c1)
∂c1

∂f(θ∗,c1)
∂θ∗

.

It is easy to see that ∂f(θ
∗,c1)
∂θ > 0. Thus, the sign of ∂θ

∗(c1)
∂c1

is given by the opposite sign of ∂f(θ
∗,c1)

∂c1
, where

∂f(θ∗, c1)

∂c1
= − 1

c21

[
θ∗(c1)u

(
1− 1

c1
c1

1− 1
c1

R

)
− u(c1)

]
+

1

c21
[u(0)− u(c1)]−

∫ 1
c1

n=λ

[
u′(c1) + θ∗(c1)

(
nR

1− n

)
u′
(

1− nc1
1− n R

)]

= −
∫ 1

c1

n=λ

[
u′(c1) + θ∗(c1)

(
nR

1− n

)
u′
(

1− nc1
1− n R

)]
< 0.

Thus,

∂θ∗(c1)

∂c1
=

∫ 1
c1

n=λ

[
u′(c1) + θ∗(c1)

(
nR
1−n

)
u′( 1−nc11−n R)

]
∫ 1
c1

n=λ u
(
1−nc1
1−n R

) > 0, (29)

To complete the proof, we need to show that ∂θ
∗(c1)
∂c1

> ∂θ(c1)
∂c1

. To see this, substitute the expression for each

derivative from (28) and (29). After a few manipulations, we can rewrite the condition ∂θ∗(c1)
∂c1

> ∂θ(c1)
∂c1

as

follows

u′(c1)

∫ 1
c1

n=λ

u

(
1− λc1
1− λ R

)
+

∫ 1
c1

n=λ

θ∗(c1)u

(
1− λc1
1− λ R

)(
nR

1− n

)
u′
(

1− nc1
1− n R

)
> u′(c1)

∫ 1
c1

n=λ

u

(
1− nc1
1− n R

)
+

∫ 1
c1

n=λ

θ(c1)u

(
1− nc1
1− n R

)
u′
(

1− λc1
1− λ R

)(
λR

1− λ

)
,

which holds since 1−λc1
1−λ R > 1−nc1

1−n R and nR
1−n >

λR
1−λ for any n > λ and θ∗(c1) > θ(c1). This completes the

proof of the corollary. �

Proof of Proposition 2: Differentiating (7) with respect to c1 gives the deposit contract cD1 as the

solution to (8).

To show that cD1 > 1, we evaluate (8) at c1 = 1. From (6), at c1 = 1 the threshold θ∗(c1) simplifies to

θ∗(1) =
(1− λ)u(1)

(1− λ)u(R)
,

and, from (3), it is then

θ∗(1) = θ(1).

Thus, when c1 = 1, (8) can be rewritten as follows:

λ

∫ 1

θ(1)

[u′(1)− θRu′(R)] dθ − ∂θ(c1)

∂c1

∣∣∣∣
c1=1

(1− λ) [θ(1)u(R)− u(1)]

The second term is equal to zero because of the definition of θ(c1) in (3), and thus the expression simplifies

to

λ

∫ 1

θ(1)

[u′(1)− θRu′(R)] dθ.

31



Since the relative risk aversion coeffi cient is bigger than 1, it follows

1 · u′(1) > Ru′(R),

so that λ
∫ 1
θ(1)

[u′(1)− θRu′(R)] dθ > 0 and thus cD1 > 1. �

Proof of Proposition 3: Denote FOCPc1(c1) as the first order condition in (12) which implicitly

determines the deposit contract cP1 chosen by the banks. To show that cP1 > cD1 , we need to com-

pare (8) with (12) and show that that FOCPc1(c1) evaluated at c1 = cD1 is greater than (8) evaluated

at c1 = cD1 , which is equal to zero. The first term in each expression only differs in the lower ex-

treme of the integrals and it is easy to see that the first term in (8) is smaller than that in (12) since

θ∗ (c1) > θ (c1). Thus, we only need to compare
∂θ∗(cD1 )
∂c1

[
λu(cD1 ) + (1− λ)θ∗(cD1 )u

(
1−λc1
1−λ R

)
− u(1)

]
with

∂θ(cD1 )
∂c1

[
λu(cD1 ) + (1− λ)θ(cD1 )u

(
1−λc1
1−λ R

)
− u(1)

]
and show that the former is larger than the latter. It is

easy to see that[
λu(cD1 ) + (1− λ)θ∗(cD1 )u

(
1− λc1
1− λ R

)
− u(1)

]
>

[
λu(cD1 ) + (1− λ)θ(cD1 )u

(
1− λc1
1− λ R

)
− u(1)

]
,

since θ∗(cD1 ) > θ(cD1 ). Moreover, ∂θ
∗(cD1 )
∂c1

>
∂θ(cD1 )
∂c1

holds from Corollary 1. Thus, the proposition follows. �

Proof of Proposition 4: Denote FOCFc1 as the first order condition in (16), which implicitly determines

the deposit contract chosen by the banks. To show that dc
F
1

dcf
and so that cF1 > cP1 , we use the implicit function

theorem as follows:

dcF1
dcf

= −
∂FOCcF1
∂cf

∂FOCcF1
∂c1

.

Since cF1 is an interior solution,
∂FOCcF1
∂c1

< 0 and the sign of dc
F
1

dcf
is equal to the sign of ∂FOCc

F
1

∂cf
, with

∂FOCcF1
∂cf

= −∂θ
F (c1, cf )

∂c1∂cf

[
λu (c1) + (1− λ) θF (c1, cf )u

(
1− λc1
1− λ R

)
+ (1− λ)

(
1− θF (c1, cf )

)
u (cf )− u (1)

]
−λ∂θ

F (c1, cf )

∂cf

[
u′ (c1)− θF (c1, cf )Ru′

(
1− λc1
1− λ R

)]
−∂θ

F (c1, cf )

∂c1

∂θF (c1, cf )

∂cf
(1− λ)

[
u

(
1− λc1
1− λ R

)
− u (cf )

]
. (30)

Using the expression for θF (c1, cf ) as given in (14), we can compute

∂θF (c1, cf )

∂c1∂cf
=

λR
1−λu

′
(
1−λc1
1−λ R

)
∂θF (c1,cf )

∂cf
+ u′ (cf )

∂θF (c1,cf )
∂c1

u
(
1−λc1
1−λ R

)
− cf

. (31)

Substituting (31) into (30) and rearranging, we obtain

∂FOCcF1
∂cf

= −

 λR
1−λu

′
(
1−λc1
1−λ R

)
∂θF (c1,cf )

∂cf

u
(
1−λc1
1−λ R

)
− cf

+
u′ (cf )

∂θF (c1,cf )
∂c1

u
(
1−λc1
1−λ R

)
− cf

 [u (c1)− u (1)]

−λ∂θ
F (c1, cf )

∂cf

[
u′ (c1)− θF (c1, cf )Ru′

(
1− λc1
1− λ R

)]
−∂θ

F (c1, cf )

∂c1

∂θF (c1, cf )

∂cf
(1− λ)

[
u

(
1− λc1
1− λ R

)
− u (cf )

]
, (32)
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since, given the definition of θF (c1, cf ), it holds that[
λu (c1) + (1− λ) θF (c1, cf )u

(
1− λc1
1− λ R

)
+ (1− λ)

(
1− θF (c1, cf )

)
u (cf )− u (1)

]
= u (c1)− u (1) .

Given ∂θF (c1,cf )
∂c1

> 0 and ∂θF (c1,cf )
∂cf

< 0, all terms in (32) are positive besides

− u′ (cf )

u
(
1−λc1
1−λ R

)
− cf

∂θF (c1, cf )

∂c1
[u (c1)− u (1)] (33)

in the first row in (32). From (16), we have that

∂θF (c1, cf )

∂c1
[u (c1)− u (1)] = λ

∫ 1

θF (c1,cf )

[
u′ (c1)− θRu′

(
1− λc1
1− λ R

)]
,

and we can rewrite (33) as follows

−λ u′ (cf )

u
(
1−λc1
1−λ R

)
− cf

∫ 1

θF (c1,cf )

[
u′ (c1)− θRu′

(
1− λc1
1− λ R

)]
.

It follows that, for ∂FOCc
F
1

∂cf
> 0, it suffi ces to show that

λ
u′ (cf )

u
(
1−λc1
1−λ R

)
− cf

∫ 1

θF (c1,cf )

[
u′ (c1)− θRu′

(
1− λc1
1− λ R

)]
<

λ

∣∣∣∣∣∂θF (c1, cf )

∂cf

∣∣∣∣∣
[
u′ (c1)− θF (c1, cf )Ru′

(
1− λc1
1− λ R

)]
Using

∂θF (c1, cf )

∂cf
= −

u′ (cf )
(

1− θF (c1, cf )
)

u
(
1−λc1
1−λ R

)
− cf

,

we can rearrange the inequality above first as follows

λ
u′ (cf )

u
(
1−λc1
1−λ R

)
− cf

∫ 1

θF (c1,cf )

[
u′ (c1)− θRu′

(
1− λc1
1− λ R

)]
<

λ
u′ (cf )

(
1− θF (c1, cf )

)
u
(
1−λc1
1−λ R

)
− cf

[
u′ (c1)− θF (c1, cf )Ru′

(
1− λc1
1− λ R

)]
,

and after a few manipulations as∫ 1

θF (c1,cf )

θRu′
(

1− λc1
1− λ R

)
>

∫ 1

θF (c1,cf )

θF (c1, cf )Ru′
(

1− λc1
1− λ R

)
,

which always holds and so dcF1
dcf

> 0. The inequality cF1 > cP1 follows directly from
dcF1
dcf

> 0, as cP1 is computed

for cf = 0. Thus, the proposition follows. �

Proof of Proposition 5: The expression (17) in the proposition is obtained by taking the derivative

of (15) with respect to cf and applying the Envelope theorem as c1 is chosen optimally by the bank as the
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solution to (16). To prove that the government chooses a positive level of guarantees, we show that the first

order condition (17) evaluated for cf = 0 is positive.

Evaluating (17) for cf = 0, we obtain

∫ 1

θF (c1,cf )

(1− λ) [u′ (0)− v′ (g)] dθ (34)

− ∂θF (c1, cf )

∂cf

∣∣∣∣∣
cf=0

[
λu (c1) + (1− λ) θF (c1, cf )u

(
1− λc1
1− λ R

)
− u (1)

]
,

as
[
θF (c1, 0) v (g) +

(
1− θF (c1, 0) v (g)

)
− v (g)

]
= 0. Given that ∂θF (c1,cf )

∂cf

∣∣∣
cf=0

= − u′(0)

u( 1−λc11−λ R)
(1−θF (c1, 0)) <

0, the second term in (34) is positive. Thus, a suffi cient condition for (34) and, in turn, for cf > 0 is

u′ (0)− v′ (g) > 0. The proposition follows. �

Proof of Proposition 6: Comparing (16) with (18), it is easy to see that they only differ in the last

term in (18), that is

−∂θ
∗ (c1, c)

∂c1
[θ∗ (c1, c) v (g) + (1− θ∗ (c1, c)) v (g − (1− λ) c)− v (g)] ,

which is negative for given c1 and c. Thus, the expression in (16) is smaller than that in (18), implying

cF1 < cF1G. The proposition follows. �

Proof of Proposition 7: Differentiating (19) with respect to c1 gives∫ θF (c1,cf )

0

[u′ (c1)− v′ (g − c1 + 1)] dθ. (35)

The expression in (35) is negative when evaluated at c1 = 1 since, by assumption, u′ (1) − v′ (g) < 0. The

proposition follows. �

Proof of Proposition 8: The proof proceeds in steps. First, we characterize the threshold θ∗ (c1, c).

Then, we analyze its properties. In each step of the proof, we distinguish two cases depending on whether c

is larger or smaller than 1.

Characterization of the threshold θ∗ (c1, c)

Consider first the case where c ≤ 1. The proof is analogous to the one for Proposition 2. A patient

depositor who receives the signal x∗(c1, c) must be indifferent between withdrawing at date 1 and at date 2.

The threshold x∗(c1, c) can be then found as the solution to

f(θ, c1, c) =

∫ n

n=λ

[
θ(n)u

(
1− nc1
1− n R

)
+ (1− θ(n))u (c)− u(c1)

]
+

∫ n̂

n=n

[u (c)− u(c1)]

+

∫ 1

n=n̂

[
u (c)− u

(
1

n

)]
= 0, (36)

where, still from (26), θ(n) = x∗(c1, c) + ε− 2ε (n−λ)1−λ . Equation (36) follows from (20) in the case c ≤ 1 and

requires that a late depositor’s expected utility when he withdraws at date 1 is equal to that when he waits

until date 2. At the limit, when ε→ 0, θ(n)→ x∗(c1, c), and the threshold θ
∗(c1, c) solves (36).
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The case where c > 1 is more involved since we need first to show that, despite the fact that the function

v(θ, n, c) is zero in the range ñ ≤ n ≤ 1, a unique threshold equilibrium exists. We then split this part of

the proof in two parts. First, we prove that a unique threshold equilibrium exists and then, we compute the

equilibrium threshold.

Existence of a unique threshold equilibrium when c > 1

The proof follows Goldstein and Pauzner (2005). Recall that the proportion of depositors running n(θ, x∗)

when they behave according to the same threshold strategy x∗ is given by (26). Denote as ∆(xi, ṅ(θ)) an

agent’s expected difference in utility between withdrawing at date 2 rather than at date 1 when he holds

beliefs ṅ(θ) regarding the number of depositors running. The function ∆(xi, ṅ(θ)) is given by

∆(xi, ṅ(θ)) =
1

2ε

∫ xi+ε

xi−ε
En [v(θ, ṅ(θ))] dθ.

Since for any realization of θ, the proportion of depositors running is deterministic, we can write n(θ) instead

of ṅ(θ) and the function ∆(xi, n(θ)) simplifies to

∆(xi, ṅ(θ)) =
1

2ε

∫ xi+ε

xi−ε
v(θ, n(θ))dθ.

Notice that when all depositors behave according to the same threshold strategy x∗, ṅ(θ) = n(θ, x∗) defined

in (26). The following lemma states a few properties of the function ∆(xi, ṅ(θ)).

Lemma 1 i) The function ∆(xi, ṅ(θ)) is continuos in xi; ii) for any a > 0, ∆(xi + a, ṅ(θ) + a) is non-

decreasing in a, iii) ∆(xi + a, ṅ(θ) + a)is strictly increasing in a if there is a positive probability that n < n

and θ < θ.

Proof of Lemma 1. The proof follows Goldstein and Pauzner (2005). The function ∆(.) is continuous

in xi as a change in xi only changes the limits of integration in the computation of ∆(.). The function

∆(xi + a, ṅ(θ) + a) is non-decreasing in a since, as a increases, depositors see the same distribution of n

but expect θ to be higher. Since v(θ, n) is non-decreasing in θ, ∆(.) is non-decreasing in a. In order for

∆(xi + a, ṅ(θ) + a) to be strictly increasing in a, we need that θ < θ and that there is a positive probability

that n < n. This is the case because, when n < n and θ < θ, v(θ, n) is strictly increasing in θ, and, thus,

∆(xi + a, ṅ(θ) + a) is strictly increasing in a.

A threshold equilibrium with the threshold signal x∗ exists, if and only if no depositor finds it optimal

to run if he receives a signal higher than x∗ and to wait if he receives a signal below x∗:

∆(xi, n(θ, x∗)) < 0 ∀xi < x∗; (37)

∆(xi, n(θ, x∗)) > 0 ∀xi > x∗. (38)

By continuity, a depositor must be indifferent between withdrawing at date 1 rather than date 2 when he

receives the signal xi = x∗

∆(x∗, n(θ, x∗)) = 0. (39)

In the lower and upper dominance regions, ∆(x∗, n(θ, x∗)) < 0 and ∆(x∗, n(θ, x∗)) > 0, respectively. Thus,

by continuity of ∆(x∗, n(θ, x∗)) in xi, there exists some x∗ at which it equals to zero. To prove that the x∗ is

unique, we use the property stated in Lemma 1 that ∆(x∗, n(θ, x∗)) is strictly increasing in xi in the range

35



θ ∈ [x∗ − ε, x∗ + ε] since from (26), there is always a positive probability that n < n in that range. Thus,

there is only one value of x∗, which is a candidate to be a threshold equilibrium. To show that it is indeed

an equilibrium we have to show that no depositor has an incentive to deviate. This means that we have to

show that, given that (39) holds, (37) and (38) also hold.

Let’s start from (37). Decompose the intervals [xi − ε, xi + ε] and [x∗ − ε, x∗ + ε] over which the integrals in

∆(xi, n(θ, x∗)) and ∆(x∗, n(θ, x∗)) are defined into a common part c = [xi − ε, xi + ε]
⋂

[x∗ − ε, x∗ + ε] and

two disjoint parts di = [xi−ε,xi+ε]
c and d∗ = [x∗−ε,x∗+ε]

c . We can then rewrite the integrals ∆(xi, n(θ, x∗))

and ∆(x∗, n(θ, x∗)) as follows:

∆(xi, n(θ, x∗)) =
1

2ε

∫
θ∈c

v(θ, n(θ, x∗)) +
1

2ε

∫
θ∈di

v(θ, n(θ, x∗))

∆(x∗, n(θ, x∗)) =
1

2ε

∫
θ∈c

v(θ, n(θ, x∗)) +
1

2ε

∫
θ∈d∗

v(θ, n(θ, x∗))

For any θ ∈ di, n = 1 since θ ≤ x∗ − ε. Thus, v(θ, n(θ, x∗)) = 0 and, in turn ∆(xi, n(θ, x∗)) = 0 in that

interval. In order to show that ∆(xi, n(θ, x∗)) < 0, we need to show that 1
2ε

∫
θ∈c v(θ, n(θ, x∗)) < 0. This

is the case because (39) holds and the fundamentals in the range d∗ are better than those in the range di,

which implies that 1
2ε

∫
θ∈d∗ v(θ, n(θ, x∗)) > 1

2ε

∫
θ∈di v(θ, n(θ, x∗)) = 0. The proof for (38) is analogous.

The equilibrium threshold when c > 1

Having proved the existence of a unique threshold equilibrium, we can now compute x∗(c1, c). A patient

depositor who receives the signal x∗(c1, c) must be indifferent between withdrawing at date 1 and at date 2.

The threshold x∗(c1, c) can be then found as the solution to

f(θ, c1, c) =

∫ n

n=λ

[
θ(n)u

(
1− nc1
1− n R

)
+ (1− θ(n))u (c)− u(c1)

]
+

∫ n̂

n=n

[u (c)− u(c1)]

+

∫ ñ

n=n̂

[
u (c)− u

(
1

n

)]
+

∫ 1

n=ñ

[u (c)− u(c)] = 0. (40)

As before, θ(n) = x∗(c1, c) + ε− 2ε (n−λ)1−λ and, in the limit, when ε→ 0, θ(n)→ x∗(c1, c) and the threshold

θ∗(c1, c) solves (40).

Properties of the threshold θ∗ (c1, c)

We now move on to analyze the properties of the threshold θ∗ (c1, c). To prove that θ
∗(c1, c) is increasing

in c1, we use the implicit function theorem and obtain

∂θ∗(c1, c)

∂c1
= −

∂f(θ∗, c1, c)
∂c1

∂f(θ∗, c1, c)
∂θ∗

,

where the expression for f(θ∗, c1, c) is given in (36) for the case c ≤ 1 and (40) for the case c > 1. It is easy

to see that the denominator is positive since

∂f(θ∗, c1, c)

∂θ∗
=

∫ n

n=λ

[
u

(
1− nc1
1− n R

)
− u (c)

]
> 0,

for both cases c ≤ 1 and c > 1. Thus, the sign of ∂θ
∗(c1,c)
∂c1

is given by the opposite sign of ∂f(θ
∗,c1,c)
∂c1

. After

some manipulations, we obtain:

∂f(θ∗, c1, c)

∂c1
= −

∫ n̂

n=λ

u′(c1)−
∫ n

n=λ

θ∗(c1, c)u
′
(

1− nc1
1− n R

)(
nR

1− n

)
< 0,
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for both cases c ≤ 1 and c > 1. This implies

∂θ∗(c1, c)

∂c1
=

∫ n̂
n=λ

u′(c1) +
∫ n
n=λ

θ∗(c1, c)u
′
(
1−nc1
1−n R

)(
nR
1−n

)
∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] > 0. (41)

We now turn to the effect of c on the threshold. To prove that θ∗(c1, c) is decreasing in c, we again use the

implicit function theorem and obtain

∂θ∗(c1, c)

∂c
= −

∂f(θ∗,c1,c)
∂c

∂f(θ∗,c1,c)
∂θ

.

The denominator is as before and it is positive. Thus, the sign of ∂θ
∗(c1,c)
∂c is given by the opposite sign of

∂f(θ∗,c1,c)
∂c .

We start from the case c ≤ 1. Taking the derivative of (36) with respect to c, after some manipulations,

we obtain:
∂f(θ∗, c1, c)

∂c
=

∫ 1

n=λ

u′(c)−
∫ n

n=λ

θ∗(c1, c)u
′(c) > 0,

which implies that
∂θ∗(c1, c)

∂c
= −

∫ 1
n=λ

u′(c)−
∫ n
n=λ

θ∗(c1, c)u
′(c)∫ n

n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] < 0. (42)

The case c > 1 is analogous. Taking the derivative of (40) with respect to c, after a few manipulations, we

obtain

∂θ∗(c1, c)

∂c
= −

∫ ñ
n=λ

u′(c)− θ∗(c1, c)
∫ n
n=λ

u′(c)∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] < 0.

Thus, the proposition follows. �

Proof of Proposition 9: We consider first the case c ≤ 1. Denote FOCDIc1 (c1, c) as the first order

condition that implicitly determines cDI1 . This is given by (25) evaluated at c ≤ 1 and, thus equal to

λ

∫ 1

θ∗(c1,c)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ

−∂θ
∗(c1, c)

∂c1

[
λu(c1) + (1− λ)θ∗(c1, c)

[
u

(
1− λc1
1− λ R

)
− u(c)

]
+ (1− λ)u(c)− u(1)

]
= 0. (43)

To compute dc1dc the we use the implicit function theorem. Thus,
dc1
dc = −

∂FOCDIc1
(c1,c)

∂c
∂FOCDIc1

(c1,c)

∂c1

. Since cDI1 is an interior

solution, dc
DI
1

dc > 0 if and only if
∂FOCDIc1

(c1,c)

∂c > 0. We have

∂FOCDIc1 (c1, c)

∂c
= −λ∂θ

∗(c1, c)

∂c

[
u′(c1)− θ∗(c1, c)Ru′

(
1− λc1
1− λ R

)]
−∂θ

∗(c1, c)

∂c1∂c

[
λu(c1) + (1− λ)θ∗(c1, c)

[
u

(
1− λc1
1− λ R

)
− u(c)

]
+ (1− λ)u(c)− u(1)

]
−∂θ

∗(c1, c)

∂c1
(1− λ)

∂θ∗(c1, c)

∂c

[
u

(
1− λc1
1− λ R

)
− u(c)

]
−∂θ

∗(c1, c)

∂c1
(1− λ) (1− θ∗(c1, c))u′(c).
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Recall that ∂θ∗(c1,c)
∂c1

> 0 and ∂θ∗(c1,c)
∂c < 0. Deriving ∂θ∗(c1,c)

∂c1
, as given in (41), with respect c, after a few

manipulations, the cross derivative ∂θ∗(c1,c)
∂c1∂c

becomes

∂θ∗(c1, c)

∂c1∂c
=

1∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] {−R(c1 − 1)

(Rc1 − c)2
θ∗(c1, c)

(
nR

1− n

)
u′
(

1− nc1
1− n R

)

+
∂θ∗(c1, c)

∂c1

∫ n

n=λ

u′ (c) +
∂θ∗(c1, c)

∂c

∫ n

n=λ

u′
(

1− nc1
1− n R

)(
nR

1− n

)}

Substituting the expression for ∂θ
∗(c1,c)
∂c1∂c

into that for ∂FOCc1 (c
DI
1 ,c)

∂c , after a few manipulations, we obtain:

∂FOCc1(c1, c)

∂c
= −λ∂θ

∗(c1, c)

∂c

[
u′(c1)− θ∗(c1, c)Ru′

(
1− λc1
1− λ R

)]
(44)

−∂θ
∗(c1, c)

∂c

∫ n
n=λ

u′
(
1−nc1
1−n R

)(
nR
1−n

)
∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] [λu(c1) + (1− λ)θ∗(c1, c)

[
u

(
1− λc1
1− λ R

)
− u(c)

]

−(1− λ)u(c)− u(1)]− ∂θ∗(c1, c)

∂c1

[
(1− λ)

∂θ∗(c1, c)

∂c

[
u

(
1− λc1
1− λ R

)
− u(c)

]
+ (1− λ)(1− θ∗(c1, c))u′(c)

]
−∂θ

∗(c1, c)

∂c1

∫ n
n=λ

u′ (c)∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] [λu(c1) + (1− λ)θ∗(c1, c)

[
u

(
1− λc1
1− λ R

)
− u(c)

]

−(1− λ)u(c)− u(1)] +

R(c1−1)
(Rc1−c)2 θ

∗(c1, c)
(
nR
1−n

)
u′
(
1−nc1
1−n R

)
∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] [
λu(c1) + (1− λ)θ∗(c1, c)

[
u

(
1− λc1
1− λ R

)
− u(c)

]
−(1− λ)u(c)− u(1)] .

All the terms in the expression above are positive beside the bracket

−∂θ
∗(c1, c)

∂c1

[
(1− λ)

∂θ∗(c1, c)

∂c

[
u

(
1− λc1
1− λ R

)
− u(c)

]
+ (1− λ)(1− θ∗(c1, c))u′(c)

]
(45)

and

−∂θ
∗(c1, c)

∂c1

∫ n
n=λ

u′ (c)∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] [λu(c1) + (1− λ)θ∗(c1, c)

[
u

(
1− λc1
1− λ R

)
− u(c)

]
− (1− λ)u(c)− u(1)

]
(46)

We first show that (45) is positive. In order for this to be true, we need to show that the term in the square

bracket is negative. Substituting the expression for ∂θ
∗(cDI1 ,c)
∂c from (42), after a few manipulations, the term

in the square bracket simplifies to

−
∫ 1
n=λ

u′ (c) + θ∗(c1, c)
∫ n
n=λ

u′ (c)∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] ∫ 1

n=λ

[
u

(
1− λc1
1− λ R

)
− u (c)

]
+

∫ 1

n=λ

(1− θ∗(c1, c))u′ (c) ,

which can be rearranged as

−
∫ 1

n=λ

u′ (c)

∫ 1
n=λ

[
u
(
1−λc1
1−λ R

)
− u (c)

]
∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] + θ∗(c1, c)

∫ n

n=λ

u′ (c)

∫ 1
n=λ

[
u
(
1−λc1
1−λ R

)
− u (c)

]
∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

]
+

∫ 1

n=λ

(1− θ∗(c1, c))u′ (c) .
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After a few manipulations, the expression above can be rewritten as follows

u′ (c)

 −(n− λ)(1− θ∗(c1, c))
∫ 1
n=λ[u( 1−λc11−λ R)−u(c)]∫ n
n=λ[u( 1−nc11−n R)−u(c)]

− (1− n)
∫ 1
n=λ[u( 1−λc11−λ R)−u(c)]∫ n
n=λ[u( 1−nc11−n R)−u(c)]

+

+(1− λ)(1− θ∗(c1, c))

 .
To show that (45) is positive it suffi ces to show that

(n− λ)(1− θ∗(c1, c))

∫ 1
n=λ

[
u
(
1−λc1
1−λ R

)
− u (c)

]
∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] > (1− λ)(1− θ∗(c1, c)).

Rewriting the condition above as follows

(1− λ)(1− θ∗(c1, c))

∫ n
n=λ

[
u
(
1−λc1
1−λ R

)
− u (c)

]
∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] > (1− λ)(1− θ∗(c1, c)),

it is easy to see that it always holds since 1−λc1
1−λ R > 1−nc1

1−n R for any n > λ.

In order to prove that cDI1
dc > 0, we are left to show that (46) is dominated by some other term in (44).

Thus, we show that (46) is smaller than the positive term −λ∂θ
∗(c1,c)
∂c

[
u′(c1)− θ∗(c1, c)Ru′

(
1−λc1
1−λ R

)]
. To

do this, first, recall that from (43) it holds

∂θ∗(c1, c)

∂c1

[
λu(c1) + (1− λ)θ∗(c1, c)

[
u

(
1− λc1
1− λ R

)
− u(c)

]
− (1− λ)u(c)− u(1)

]
= λ

∫ 1

θ∗(c1,c)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ.

Thus, a suffi cient condition for dc
DI
1

dc > 0 is that

−λ∂θ
∗(c1, c)

∂c

[
u′(c1)− θ∗(c1, c)Ru′

(
1− λc1
1− λ R

)]
>

λ

∫ 1

θ∗(c1,c)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ

∫ n
n=λ

u′ (c)∫ n
n=λ

[
u
(
1−nc1
1−n R

)
− u (c)

] .
Substituting the expression for ∂θ

∗(c1,c)
∂c , after a few manipulations, the condition above becomes

λ

[
u′(c1)− θ∗(c1, c)Ru′

(
1− λc1
1− λ R

)][∫ 1

λ

u′(c)− θ∗(c1, c)
∫ n

λ

u′(c)

]
>

λ

∫ 1

θ∗(c1,c)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ

∫ n

n=λ

u′ (c) ,

which can be simplified to[
u′(c1)− θ∗(c1, c)Ru′

(
1− λc1
1− λ R

)]
u′(c) [(1− λ)− (n− λ)θ∗(c1, c)] >

(1− θ∗(c1, c))
[
u′(c1)− E[θ | θ > θ∗(c1, c)]Ru

′
(

1− λc1
1− λ R

)]
(n− λ)u′ (c) .

Since θ∗(c1, c) < E[θ | θ > θ∗(c1, c)] and [(1− λ)− (n− λ)θ∗(c1, c)] > (1 − θ∗(c1, c))(n − λ), the condition

above holds and dcDI1
dc > 0. The proof for the case c > 1 is analogous. The inequality cDI1 > cD1 follows

directly from dcDI1
dc > 0 as cD1 is characterized in Proposition 2 for c = 0. Thus, the proposition follows. �
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Proof of Proposition 10: For convenience, as in the previous proofs, we distinguish the case c ≤ 1

from c > 1. Given that the expression (22) is differentiable at c = 1, the optimal level of guarantee cDI

corresponds to the solution to∫ 1

θ∗(c1,c)

(1− λ) (1− θ) [u′ (c)− v′(g − (1− λ)c)] dθ

−∂θ
∗(c1, c)

∂c

[
λu(c1) + (1− λ)

(
θ∗(c1, c)u

(
1− λc1
1− λ R

)
+ (1− θ∗(c1, c))u (c)

)
− u(1)

]
−∂θ

∗(c1, c)

∂c
[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v (g − (1− λ)c)− v(g)] (47)

−∂θ
∗(c1, c)

∂c1

∂c1
∂c

[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v (g − (1− λ)c)− v(g)] = 0,

in the case c ≤ 1 and to∫ θ∗(c1,c)

0

[u′(c)− v′ (g − c+ 1)] dθ +

∫ 1

θ∗(c1,c)

(1− λ)(1− θ) [u′ (c)− v′ (g − (1− λ)c)] dθ

−∂θ
∗(c1, c)

∂c

[
λu(c1) + (1− λ)

(
θ∗(c1, c)u

(
1− λc1
1− λ R

)
+ (1− θ∗(c1, c))u (c)

)
− u(c)

]
−∂θ

∗(c1, c)

∂c
[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v (g − (1− λ)c)− v (g − c+ 1)] (48)

−∂θ
∗(c1, c)

∂c1

∂c1
∂c

[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v (g − (1− λ)c)− v (g − c+ 1)] = 0,

when c > 1.

In order to prove that the government chooses a positive level of guarantees, we show that the first order

condition (47) is positive for c = 0. Evaluating (47) for c = 0, we obtain∫ 1

θ∗(c1,0)

(1− λ) (1− θ) [u′ (0)− v′(g)] dθ

− ∂θ∗(c1, c)

∂c

∣∣∣∣
c=0

[
λu(c1) + (1− λ)

(
θ∗(c1, 0)u

(
1− λc1
1− λ R

)
+ (1− θ∗(c1, 0))u (c)

)
− u(1)

]
− ∂θ∗(c1, c)

∂c

∣∣∣∣
c=0

[θ∗(c1, 0)v(g) + (1− θ∗(c1, 0))v (g)− v(g)]

− ∂θ∗(c1, c)

∂c1

∣∣∣∣
c=0

∂c1
∂c

[θ∗(c1, 0)v(g) + (1− θ∗(c1, 0))v (g)− v(g)] ,

with θ∗(c1, 0) being equal to the threshold θ∗(c1) in the decentralized economy, where c = 0.

As [θ∗(c1, 0)v(g) + (1− θ∗(c1, 0))v (g)− v(g)] = 0, the expression simplifies further to∫ 1

θ∗(c1,0)

(1− λ) (1− θ) [u′ (0)− v′(g)] dθ (49)

− ∂θ∗(c1, c)

∂c

∣∣∣∣
c=0

[
λu(c1) + (1− λ)

(
θ∗(c1, 0)u

(
1− λc1
1− λ R

)
+ (1− θ∗(c1, 0))u (c)

)
− u(1)

]
.

Since n = n̂ when c = 0, ∂θ∗(c1,c)
∂c

∣∣∣
c=0

is equal to

−
∫ 1
n=λ

u′(0)−
∫ n̂
n=λ

θ∗(c1, 0)u′(0)∫ n̂
n=λ

[
u
(
1−nc1
1−n R

)
− u (0)

] < 0,
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and it follows that the second term in (49) is positive. Thus, a suffi cient condition for (49) to be positive

and, in turn, c > 0, is u′ (0)− v′(g) > 0. The proposition follows. �

Proof of Proposition 11: Taking the derivative of (22) with respect to c1, we obtain cDI1G . This

corresponds to the solution to

λ

∫ 1

θ∗(c1,c)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ

−∂θ
∗(c1, c)

∂c1

[
λu(c1) + (1− λ)

(
θ∗(c1, c)u

(
1− λc1
1− λ R

)
+ (1− θ∗(c1, c))u (c)

)
− u(1)

]
−∂θ

∗(c1, c)

∂c1
[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v (g − (1− λ)c)− v(g)] = 0 (50)

when c ≤ 1, and

λ

∫ 1

θ∗(c1,c)

[
u′(c1)− θRu′

(
1− λc1
1− λ R

)]
dθ

−∂θ
∗(c1, c)

∂c1

[
λu(c1) + (1− λ)

(
θ∗(c1, c)u

(
1− λc1
1− λ R

)
+ (1− θ∗(c1, c))u (c)

)
− u(c)

]
−∂θ

∗(c1, c)

∂c1
[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v(g − (1− λ)c)− v(g − c+ 1)] = 0 (51)

when c > 1. Evaluating (25) taking c ≤ 1 and comparing it with (50), it is easy to see that they only differ

in the last term of (50) that is

−∂θ
∗(c1, c)

∂c1
[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v(g − (1− λ)c)− v(g)]

Since [θ∗(c1, c)v(g) + (1− θ∗(c1, c))v(g − (1− λ)c)− v(g)] < 0, for given c1 and c, the expression in (25) is

smaller than that in (50), thus implying that cDI1 < cDI1G .

Evaluate now (25) taking c > 1 and compare it with (51). They only differ in the last term in (51), which

is equal to

−∂θ
∗(c1, c)

∂c1
[θ∗(c1, c)v(g) + (1− θ∗(c1, c))v(g − (1− λ)c)− v(g − c+ 1)]

The bracket [θ∗(c1, c)v(g) + (1− θ∗(c1, c))v(g − (1− λ)c)− v(g − c+ 1)] can be either positive or negative.

Using the same argument as in the case with c ≤ 1, it follows that cDI1 < cDI1G if the bracket is negative, and

cDI1 > cDI1G if it is positive. Thus, the proposition follows. �
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Figure 1: Depositors’ utility differential in the decentralized economy. The figure shows how the utility differential for a late depositor between withdrawing 

at date 2 versus date 1 changes with the number n of depositors withdrawing at date 1. The function is decreasing in n for     
 

  
 and increasing for 

 

  
      It crosses zero only once for n 

 

  
 and remains below zero afterwards. 



 

Figure 2: Depositors’ withdrawal decision. The figure characterizes depositors’ withdrawal decision as a function of the fundamental of the economy  . 

Depositors run if   )( 1

* D
c and do not run otherwise. In the region in which they run, two types of crisis can be distinguished. If   )( 1

D
c , runs are 

fundamentals-driven. If )( 1

D
c <  )( 1

* D
c , runs are panic-driven. While all panic runs are inefficient, fundamental runs are inefficient only in the range 

)1( <  )( 1

D
c . Otherwise they entail an efficient liquidation of the banks’ asset. 



 

Figure 3: Guarantee against panic runs and financial stability. The figure shows the effect of the introduction of the guarantee scheme against panic runs on 

the stability of the banking sector. The guarantee scheme removes completely the occurrence of panic-driven runs, but fundamental runs become more likely 

as a result of an increase in the repayment offered by banks to early withdrawing depositors. If the increase in c1 is very large, then the overall probability of 

runs can be larger in the economy with guarantees than without it (i.e., )( 1

DD
c > )( 1

* D
c ). 



 

Figure 4a: Depositor's utility differential with a guarantee against runs and bank failure when 𝑐̅ ≤ 1. The figure shows how the utility differential for a late 
depositor between withdrawing at date 2 versus date 1 changes with the number n of depositors withdrawing at date 1 for a given guarantee 𝑐̅ chosen by the 
government. The function is decreasing in n for 𝜆 ≤ 𝑛 < 𝑛�, constant in the range 𝑛� ≤ 𝑛 < 𝑛� and increasing for 𝑛� ≤ 𝑛 ≤ 1. It crosses zero only once for 
𝑛 < 𝑛� and remains below zero afterwards. 



 

Figure 4b: Depositor's utility differential with a guarantee against runs and bank failure when  ̅   . The figure shows how the utility differential for a late 

depositor between withdrawing at date 2 versus date 1 changes with the number n of depositors withdrawing at date 1 for a given guarantee  ̅ chosen by the 

government. The function is decreasing in n for      ̅, constant in the range  ̅     ̂, increasing for  ̂     ̃ and again constant in the range 

 ̃     . It crosses zero only once for    ̅ and takes value zero in the interval   ̃     . 
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